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inflammation [2, 3] and clonal mast cell disorders [4]. 
Mast cells undergo maturation outside the bone mar-
row, in peripheral tissues [5], under the influence of 
microenvironmental growth factors such as stem cell 
factor [6]. Most mast cell progenitors express the stem 
cell factor receptor c-kit (CD117) and the high-affinity 
immunoglobulin E receptor FcɛRIα, which maintain their 
expression throughout maturation [5]. These antigens, 
alongside the common leukocyte antigen (CD45), serve 
as markers for the identification and quantification of 
mast cells by flow cytometry [7, 8]. The use of antigens, 
including CD117, FcɛRIα and CD45 has enabled the 

Background
Mast cells are heterogenous, tissue-resident leukocytes 
present in most vascularised tissues around the body 
[1]. They sit as key mediators of both innate and adap-
tive immunity [2] and play important roles in vari-
ous pathologies around the body, such as in allergies, 
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Abstract
Background  Mast cells have been implicated in the pathology of various urinary bladder disorders. However, the 
distribution of mast cells throughout urinary bladder tissue remains uncertain despite mast cell prevalence being 
relatively well-defined. Using a mouse tissue model, this study aims to characterise the prevalence and distribution of 
mast cells throughout the urinary bladder.

Methods  Bladder tissues were collected from six C57BL/6J female mice. Mast cell prevalence was quantified by flow 
cytometry, based on the expression of the following characteristic markers: CD45, CD117 and FcɛRIα. The toluidine 
blue stain assessed mast cell distribution, size, and proximity to vasculature. A repeated measures one-way ANOVA 
was used to evaluate the density of mast cells between the discrete layers of the urinary bladder, and an ordinary 
one-way ANOVA was used to assess potential differences between mast cell size across the urinary bladder wall.

Results  It was determined that mast cells compose less than 4% of all live leukocytes in the urinary bladder. They 
were also found to be more prominent in the lamina propria and detrusor muscle layers, compared to the urothelium 
and adventitia. In addition, 20.89% of mast cells were located near vasculature, which may be an important factor 
in consideration of their function and potential to contribute to various bladder pathologies, such as cystitis or 
overactive bladder.

Conclusion  These findings provide a baseline understanding of mast cell prevalence and distribution throughout 
the urinary bladder.
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identification and quantification of mast cells, allowing 
for a better understanding of their role in diseases.

In the urinary bladder, mast cells have been implicated 
in the pathogenesis of various disorders, such as overac-
tive bladder [9, 10], bladder outlet obstruction [11, 12], 
urinary tract infections [13], bladder carcinoma [14] and 
various forms of cystitis, namely interstitial cystitis [10, 
15, 16], radiation-induced cystitis [17] and bacterial cys-
titis [18]. In such pathologies, abnormalities have been 
reported in their activation state, prevalence and distri-
bution. For example, in the healthy human urinary blad-
der, mast cells are reported to be distributed throughout 
the urothelium, lamina propria and detrusor muscle lay-
ers [15, 19]. Mast cells are noted to be in particularly low 
quantities in the urothelium and lamina propria [10] and 
are also reported to be in close proximity to vasculature 
[20]. In interstitial cystitis, several reports have indi-
cated the involvement of mast cells in the pathology of 
this disease by demonstrating large numbers of activated 
and degranulated mast cells [19, 21–23]. In particular,  a 
comprehensive study conducted by Theoharides, Kem-
puraj [23] found that in the detrusor of non-ulcerative 
interstitial cystitis, mast cell prevalence increased 6- to 
8-fold higher compared to control data, whereas in ulcer-
ative interstitial cystitis mast cell infiltration was 2- to 
3-fold higher compared to non-ulcerative interstitial 
cystitis [23]. A significant increase of mast cells was also 
observed in the mucosa and submucosa in non-ulcerative 
interstitial cystitis, however it was noted that mast cell 
infiltration in this layer occurs to a lesser extent than that 
of the detrusor muscle [23].

Despite the available literature on mast cell distribu-
tion in the human urinary bladder, current literature 
relating to mast cell distribution in murine models of dis-
ease remains sparse. Mice are commonly used to model 
immunological pathologies, such as cystitis [8, 24, 25], 
though comprehensive data relating to the prevalence 
and distribution of mast cells in the murine urinary blad-
der is lacking. It is possible that changes to mast cell 
prevalence and distribution may be a contributing fac-
tor to a variety of urinary bladder pathologies, warrant-
ing exploratory investigation into baseline data. As such, 
this study aims to assess the prevalence and distribution 
of mast cells across the urinary bladder wall.

Methods
Animals
Female C57BL/6JArc (C57BL/6J; CD45.2) mice were 
acquired from Animal Resource Centre (Perth, Western 
Australia, Australia) and housed at the Bond University 
animal holding facility.

Ethics approval
Mice were housed and handled according to stan-
dard operation protocols approved by the University 
of Queensland Animal Ethics Committee. Euthanasia 
was performed by cervical dislocation. Animal ethics 
approval was granted by the University of Queensland 
Molecular Biosciences Animal Ethics Committee under a 
shared tissue agreement (BOND/ANRFA/162/20).

Cell counting
Cell numbers were estimated by staining single-cell sus-
pensions with trypan blue (12% saline) (Sigma-Aldrich 
Corporation; St. Louis, Missouri, U.S.A.) at a 1:2 dilu-
tion. Cells were transferred onto a haemocytometer 
(Electron Microscopy Sciences; Hatfield, Pennsylvania, 
U.S.A.). Live cells unstained by trypan blue were counted 
by phase-contrast microscopy using a Diavert Inverted 
microscope (Leica Microsystems GmbH; Wetzlar, 
Germany).

Flow cytometry
Flow cytometry was used to identify and quantify mast 
cells from six urinary bladders. Cells were aliquoted into 
a 96-well U-bottom plate (TPP Techno Plastic Products 
AG; Trasadingen, Switzerland), centrifuged for five min-
utes at 4  °C for 200G, after which the supernatant was 
discarded. Cells were resuspended in 1.5mL of PBS and 
dispersed across a 96-well plate. Wells were labelled with 
10µL antibody solution, prepared by diluting each anti-
body 1:100 in staining buffer. 10µL of antibody solution 
was added to each well and then incubated for 10 min on 
ice, protected from light. Stained cells were then washed 
with 150µL of staining buffer. Samples were then resus-
pended in 150µL of staining buffer and transferred into 
5mL falcon round-bottom tubes (Becton, Dickinson and 
Company; Franklin Lakes, New Jersey, U.S.A) for flow 
cytometry analysis.

Propidium iodide (Sigma-Aldrich Corporation) was 
used to discriminate between live and dead cell popu-
lations. CD45, a pan-leukocyte marker that can detect 
almost all haematopoietic derived cells [26], was used to 
contextualise mast cell prevalence out of all leukocytes 
in the urinary bladder. Mast cell markers are described 
below (Table 1).

Flow cytometry analysis was performed using BD 
FACSAria™ Fusion III (Becton Dickinson). Single-colour 
controls were used to adjust compensation for spectral 

Table 1  Experimental markers. aF647 = Alexa Fluorochrome 
647 dye; PB = Pacific Blue; PE = phycoerythrin. All markers were 
supplied by BioLegend
Antibody Fluorochrome Clone Concentration
FcεRIα PE MAR-1 0.2 mg/mL
CD117 aF647 2B8 0.5 mg/mL
CD45.2 Pacific Blue 104 0.5 mg/mL
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overlap, and cell population gating was based on a series 
of fluorescence minus-one control antibody mixtures. 
Flow cytometric data was analysed using FlowJo (FlowJo 
v10.8.1; FlowJo LLC; Ashland, Oregon, U.S.A.).

Toluidine blue staining
Toluidine blue was used to identify mast cells in the uri-
nary bladder. Tissue was harvested and prepared from 
six C57BL6/J mice. Tissue was fixed in 10% neutral 
buffered formalin (Sigma-Aldrich Corporation) prior 
to being snap-frozen in Tissue-Tek O.C.T. compound 
(Sakura Finetek USA Inc; Torrance, California, U.S.A). 
Three 10 μm tissue sections were taken per sample and 
placed onto Starfrost advanced adhesive slides (ProSci-
Tech; Kirwan, Queensland, Australia). Sections were first 
rehydrated through sequential 5-minute immersions in 
100%, 95%, and 70% ethanol before being placed in dis-
tilled water for 2 min. Slides were then immersed being 
submersed in toluidine blue for 3 min. Slides were then 
sequentially dehydrated in 70% ethanol, 95% ethanol 
(twice) and 100% ethanol (twice) for two minutes each. 
Tissue were imaged using a live cell microscope equipped 
with a brightfield camera (Nikon Eclipse Ti2-E; Nikon 
Corporation; Tokyo, Japan).

Statistics
Mast cell density was reported out of all three sections 
per sample by mm2 of bladder tissue and proximity to 
vasculature was determined if the mast cell was situated 
less than 10 μm away from the nearest blood vessel.

A repeated measures one-way ANOVA was used to 
assess the density of mast cells between the discrete 
layers of the urinary bladder, and an ordinary one-way 
ANOVA was used to assess potential differences between 
mast cell size across the urinary bladder wall. All other 
data was presented as descriptive statistics, reported as 
mean±SEM. Statistics were performed using Prism 9 for 
macOS (v9.3.0, GraphPad Software; San Diego, Califor-
nia, U.S.A.).

Results
Mast cell prevalence in the urinary bladder
Single-cell bladder suspensions (2.8 × 105±1.0 × 104 
(mean±SEM) cells/bladder) were stained with surface 
markers described previously to identify mast cells in the 
urinary bladder. Flow cytometry gating was optimised to 
minimise the inclusion of debris and dead cells for each 
sample, as well the incorporation of first minus one con-
trol (FMOC) antibody mixtures to determine accurate 
gate placement. Using this optimised gating strategy, we 
identified 23.4±4.6% of live urinary bladder cells were 
CD45.2+. From the identified CD45.2+ populations, we 
determined that 3.8±0.5% were mast cells (Fig. 1).

Mast cell distribution in the urinary bladder
Toluidine blue was used to determine mast cell size and 
distribution throughout the urinary bladder. Across six 
urinary bladder samples, we determined that mast cells 
composed 1.1±0.1 (mean±SEM) cells per mm2 of bladder 
tissue. Mast cells were least prevalent in the urothelium 
(0.1±0.3 cells per mm2) and the adventitia (0.13±0.28), 
followed by the lamina propria (0.3±0.4) and the high-
est density of mast cells being recorded in the detrusor 
muscle (0.5±0.4). A repeated measures one-way ANOVA 
revealed statistical significance in the density of mast cells 
between the urothelium and lamina propria (p ≤ 0.05), 
the urothelium and detrusor muscle (p ≤ 0.005), and the 
detrusor muscle and adventitia (p ≤ 0.05), shown in Fig. 2.

The diameter of mast cells was also measured across 
the discrete layers of the urinary bladder wall, shown 
in Fig.  3. On average, the diameter of mast cells was 
approximately 10.2±0.5 μm, with no statistical difference 
between the layers of the urinary bladder wall (Fig. 3).

The proximity of mast cells to vasculature was also 
assessed, with 8.9% of total mast cells situated close to 
blood vessels in the lamina propria, 11.9% in the detru-
sor layer, and 2.9% in the adventitia (Fig. 4). Mast cells in 
the urothelium were all considered distal to vasculature. 
20.9% of the total mast cells were observed near vascula-
ture across all layers of the urinary bladder wall.

Discussion
In the urinary bladder, mast cells have been implicated 
in the pathogenesis of various disorders, such as overac-
tive bladder [9, 10], bladder outlet obstruction [11, 12], 
urinary tract infections [13], bladder carcinoma [14] 
and various forms of cystitis [15–18]. Functionally, mast 
cells are known for their ability to release a wide range 
of mediators upon activation, which include: histamine, 
prostaglandin, proteases (tryptase and chymase), cyto-
kines and chemokines such as IL-6, IL-13, chemokine 
(C-C motif ) ligand (CCL)-2, CCL-3, and tumour necro-
sis factor-α [2, 27–29]. Histamine is one of the best-
known mast cell degranulates, and is known to regulate 
vasodilation and angiogenesis, and is also reported to 
contribute to the production of prostaglandins and pro-
inflammatory cytokines [2]. A recent study by Strom-
berga, Chess-Williams [30] suggested that histamine can 
influence contractile activity of the urothelium, lamina 
propria and detrusor muscle layers through H1 and H2 
histamine receptors, with H1 resulting in contraction 
throughout all discrete layers of the urinary bladder 
wall, and H2 inhibiting H1-mediated contractions. This 
data suggests that mast cell-derived histamine may con-
tribute to contractile activity in the urinary bladder, and 
raises the possibility that increases in mast cell-derived 
histamine may contribute to contractile dysfunction, 
seen in overactive bladder [31]. Other degranulates, such 
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as proteases, cytokines and chemokines can: contribute 
to tissue remodelling [28] and the recruitment of other 
leukocytes, induce inflammation and fibrosis, and regu-
late the innate and adaptive immune responses [2, 28, 
29]. It is possible that the dysfunction of this multifunc-
tional leukocyte may contribute to the development of 
disease, evidenced by their implication in a variety of 
urinary bladder pathologies [19, 22, 32–34]. Despite this, 
information relating to the distribution of mast cells in 
the mouse urinary bladder, a common model of urinary 

bladder diseases, is poorly defined. As such, this study 
focused on assessing the typical prevalence and distribu-
tion of urinary bladder mast cells.

In the present study, we quantified mast cells using flow 
cytometry based on the expression of their characteristic 
markers CD45, CD117, and FcɛRIα. We determined that 
mast cells constituted less than 4% of all leukocytes in the 
urinary bladder, consistent with previous literature [8]. 
Our findings provide a baseline understanding of mast 
cell prevalence in the urinary bladder of mice, which is 

Fig. 2  Mast cell distribution across the urinary bladder wall. (A) Shows representative image of urinary bladder wall layers, x20 magnification where 
U = urothelium, LP = lamina propria, DM = detrusor muscle and Ad = adventitia. Mast cells are indicated by black arrowheads. Scale bar represents 100 μm. 
(B) Shows number of mast cells per mm2 of urinary bladder tissue and (C) shows number of mast cells per mm2 tissue across the discrete layers of the 
urinary bladder wall. Each dot represents one section of urinary bladder tissue

 

Fig. 1  Identification of urinary bladder mast cells. (A) Shows identification of live cells (LC) through the exclusion of propidium iodide, followed by 
forward scatter (FSC) and side scatter (SSC) doublet discrimination and the identification of CD45.2+ cells. (B) Shows FMOCs for FcεRIα and CD117 antibod-
ies, which were used to assist the identification urinary bladder mast cells. (C) Shows the frequency of LC/FSC Singlet/SSC Singlet CD45.2+ cells and (D) 
shows mast cell frequency within CD45.2+ populations
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essential for future studies investigating their involve-
ment in various urinary bladder diseases. This finding 
also suggests that mast cells compose a relatively rare 
population of leukocytes in the urinary bladder, which 
may reflect their functional significance in the healthy 
urinary bladder.

We also assessed the distribution of mast cells through-
out the four layers of the urinary bladder wall, finding 

that mast cells were more prominent in the lamina pro-
pria and detrusor muscle layers. Comparatively, mast 
cells were less prominent in the urothelium and the 
adventitia of the urinary bladder. A study conducted by 
Liu, Shie [10] suggested that mast cells were low in quan-
tity in the urothelium and the lamina propria in humans. 
However, evidence presented in this study suggests that 
the urothelium and adventitia exhibit the lowest density 

Fig. 4  Mast cells proximal to vasculature in the urinary bladder wall. (A) shows mast cell proximal to blood vessel (BV) on x40 magnification. Scale 
bar represents 25 μm. (B) Represents relative frequency of mast cell proximity to vasculature. (C) Displays mast cell proximity to vasculature per urinary 
bladder layer

 

Fig. 3  Mast cell size in the urinary bladder. (A) Illustrates measured area of mast cell located in the detrusor muscle, x60 magnification. Scale bar repre-
sents 10 μm. (B) Shows mast cell diameter and (C) illustrates mast cell size across the layers of the urinary bladder wall. Each dot represents one mast cell
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of mast cells per mm2. Specifically, the lamina propria 
had a significantly greater density of mast cells (p ≤ 0.05) 
compared to the urothelium in mice. The detrusor mus-
cle also exhibited greater mast cell density per mm2 con-
trast to the adventitia, suggesting that the lamina propria 
and detrusor muscle layer of the mouse urinary blad-
der have higher numbers of mast cells. The observation 
that 20.9% of mast cells were located near vasculature is 
an interesting finding that may have important implica-
tions for understanding mast cell function in the urinary 
bladder. Physiologically, mast cells are known to regulate 
blood vessels by releasing vasoactive substances, such as 
histamine (20, 35). This finding could further indicate 
mast cell functions, namely extravasation, through its 
proximity to vasculature; however, further research is 
needed to validate this conclusion.

Finally, this study also determined that mast cell size 
did not vary between urinary bladder layers. Previously, 
mast cell size has been described to indicate cellular het-
erogeneity and functional activity [36, 37], with Burwen 
and Satir [36] finding that mast cell radius decreases 
by ∼ 5% upon stimulation. The aforementioned study 
suggests that activation of mast cells alters their size, 
however more work is needed to understand the impor-
tance of mast cell morphology in cell heterogeneity and 
function.

This study has several limitations. Firstly, age and sex 
are recognised contributors to urinary bladder diseases 
such as overactive bladder [38] and interstitial cystitis 
[39], respectively. It is recommended that future stud-
ies investigate both age- and sex-related differences in 
mast cell prevalence and distribution to better under-
stand their physiology and contributions to urinary 
bladder pathologies. Secondly, the fixative used in this 
study has been reported to influence mast cell counts 
[19]. This study suggests that formalin fixation, in com-
bination with the toluidine blue stain, results in poorly 
stained mast cells which may result in inconsistencies 
in the number of reported cells. Despite this, formalin 
is still used in combination with toluidine blue to assess 
mast cell distribution, and has been used as recently as 
2020 [40–42]. Future studies may wish to investigate the 
mechanism underpinning this phenomenon, and may 
recommend an alternative fixative for use with toluidine 
blue. Finally, the method used to investigate mast cell 
proximity to vasculature requires further validation. For 
example, future studies may wish to utilise immunohisto-
chemistry to assess the proximity of mast cells (identified 
by FceRIa and CD117 markers) to an endothelial marker, 
such as CD31 [43], to affirm the findings of this study.

In summary, our findings demonstrate that mast cells 
compose less than 4% of all leukocytes in the urinary 
bladder and are more prominent in the lamina pro-
pria and detrusor muscle layers. Additionally, this study 

determined that mast cell size is consistent throughout 
all layers of the urinary bladder wall, and that approxi-
mately one-fifth of mast cells are proximal to vasculature 
in the urinary bladder. This finding, in particular, sug-
gests that mast cell proximity to vasculature may be an 
important factor in their function and subsequent contri-
bution to bladder pathologies. Further studies are needed 
to elucidate the potential therapeutic implications of tar-
geting mast cells for the treatment of bladder disorders, 
with particular regard to age- and sex-based differences.
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