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Abstract

Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for
building statistical models of complex systems. This is particularly true for boolean
systems, where BNs often prove to be a more efficient modelling framework than tra-
ditional reliability-techniques (like fault trees and reliability block diagrams). How-
ever, limitations in the BNs’ calculation engine have prevented BNs from becoming
equally popular for domains containing mixtures of both discrete and continuous
variables (so-called hybrid domains). In this paper we focus on these difficulties,
and summarize some of the last decade’s research on inference in hybrid Bayesian
networks. The discussions are linked to an example model for estimating human
reliability.

1 Introduction

A reliability analyst will often find himself making decisions based on uncer-
tain information. Examples of decisions he may need to take include defining
a maintenance strategy or choosing between different system configurations
for a safety system. These decisions are typically based on only limited knowl-
edge about the failure mechanisms that are in play and the environment the
system will be deployed in. This uncertainty, which can be both aleatory and

Email addresses: helgel@idi.ntnu.no (Helge Langseth,), tdn@cs.aau.dk
(Thomas D. Nielsen,), rrumi@ual.es (Rafael Rumı́,), antonio.salmeron@ual.es
(Antonio Salmerón).

Preprint submitted to Reliability Engineering & System Safety 11 February 2009



epistemic, requires the analyst to use a statistical model representing the sys-
tem in question. This model must be mathematically sound, and at the same
time easy to understand for the reliability analyst and his team. To build the
models, the analyst can employ different sources of information, e.g., histori-
cal data or expert judgement. Since both of these sources of information can
have low quality, as well as come with a cost, one would like the modelling
framework to use the available information as efficiently as possible. Finally,
the model must be encoded such that the quantities we are interested in (e.g.,
the availability of a system) can be calculated efficiently.

All of these requirements have lead to a shift in focus, from traditional frame-
works, like fault trees, to more flexible modeling frameworks. One such frame-
work for building statistical models for complex systems is the Bayesian net-
work (BN) framework [1–3]. BNs have gained popularity over the last decade
[4], partly because a number of comparisons between BNs and the classical
reliability formalisms have shown that BNs have significant advantages [5–10].

BNs consist of a qualitative part, an acyclic directed graph, where the nodes
mirror stochastic variables and a quantitative part, a set of conditional prob-
ability functions. An example of the qualitative part of a BN is shown in
Fig. 1. This BN models the risk of an explosion in a process system. An explo-
sion (Explosion?) might occur if there is a leak (Leak?) of chemical substance
that is not detected by the gas detection (GD) system. The GD system de-
tects all leaks unless it is in its failed state (GD Failed?). The environment
(Environment?) will influence the probability of a leak as well as the probabil-
ity of a failure in the GD system. Finally, an explosion may lead to a number
of casualties (Casualties?).

Environment?

Leak?

GD failed?

Explosion? Casualties?

Fig. 1. An example BN describing a gas leak scenario. Only the qualitative part of
the BN is shown.

The graphical structure has an intuitive interpretation as a model of causal
influences. Although this interpretation is not necessarily entirely correct, it
is helpful when the BN structure is to be elicited from experts. Furthermore,
it can also be defended if some additional assumptions are made [11].

BNs originated as a robust and efficient framework for reasoning with uncer-
tain knowledge. The history of BNs in reliability can (at least) be traced back
to [12,13]; the first real attempt to use BNs in reliability analysis is proba-
bly the work of Almond [13], where he used the Graphical-Belief tool to
calculate reliability measures concerning a low pressure coolant injection sys-
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tem for a nuclear reactor (a problem originally addressed by Martz [14]). BNs
constitute a modelling framework which is particularly easy to use in inter-
action with domain experts, also in the reliability field [15]. BNs have found
applications in, e.g., fault detection and identification, monitoring, software
reliability, troubleshooting systems, and maintenance optimization. Common
to these models are that all variables are discrete. As we shall see in Section 3,
there is a purely technical reason why most BN models fall in this class. How-
ever, in Section 4 we introduce a model for human reliability analysis, where
both discrete and continuous variables are in the same model. Attempts to
handle such models are considered in Section 5 and we conclude in Section 6.

2 Preliminaries

Mathematically, a BN is a compact representation of a joint statistical dis-
tribution function. A BN encodes the probability density function governing
a set of variables by specifying a set of conditional independence statements
together with a set of conditional probability functions.

For notational convenience, we consider the variables {X1, . . . , Xn} when we
make general definitions about BNs in the following, and we use the corre-
sponding lower-case letters when referring to instantiations of these variables.
Now, we call the nodes with outgoing edges pointing into a specific node the
parents of that node, and say that Xj is a descendant of Xi if and only if
there exists a directed path from Xi to Xj in the graph. In Fig. 1, Leak?
and GD Failed? are the parents of Explosion?, written pa (Explosion?) =
{Leak?,GD Failed?} for short. Furthermore, pa (Casualties?) = {Explosion?}.
Since there are no directed paths from Casualties? to any of the other nodes,
the descendants of Casualties? are given by the empty set and, accordingly,
its non-descendants are {Environment?, GD Failed?, Leak?, Explosion?}. The
edges of the graph represent the assertion that a variable is conditionally in-
dependent of its non-descendants in the graph given its parents in the same
graph. The graph in Fig. 1 does for instance assert that for all distributions
compatible with it, we have that {Casualties?} is conditionally independent
of {Environment?,GD fails?,Leak?} when conditioned on {Explosion?}.

When it comes to the quantitative part, each variable is described by the con-
ditional probability function (CPF) of that variable given the parents in the
graph, i.e., the collection of CPFs {f(xi|pa (xi))}ni=1 is required. The under-
lying assumptions of conditional independence encoded in the graph allow us
to calculate the joint probability function as

f(x1, . . . , xn) =
n
∏

i=1

f(xi|pa (xi)), (1)
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i.e., that the joint probability can be completely expressed as the product of a
collection of local probability distributions. This is in fact the main point when
working with BNs: Assume that a distribution function f(x1, . . . , xn) factor-
izes according to Equation (1). This defines the parent set of each Xi, which
in turn defines the graph, and from the graph we can read off the conditional
independence statements encoded in the model. As we have seen, this also
works the other way around, as the graph defines that the joint distribution
must factorize according to Equation (1). Thus, the graphical representation
is bridging the gap between the (high level) conditional independence state-
ments we want to encode in the model and the (low level) constraints this
enforces on the joint distribution function. After having established the full
joint distribution over {X1, . . . , Xn} (using Equation (1)), any marginal dis-
tribution f(xi, xj , xk), as well as any conditional distribution f(xi, xj |xk, xℓ),
can in principle be calculated using extremely efficient algorithms. These will
be considered in Section 3.

We will use X = {X1, . . . , Xn} to denote the set of variables in the BN. If
we want to make explicit that some variables are observed, we use E ⊂ X to
denote the set of observed variables, and e will be used for the observed value
of E. We will use ΩXi

to denote the possible values a variable Xi can take.
If Xi is discrete, then ΩXi

is a countable set of values, whereas when Xi is
continuous, ΩXi

⊆ R. For X = {X1, . . . , Xn} we have ΩX = ×n
i=1ΩXi

.

3 Inference

In this paper we will only consider a special type of inference, namely the case
of updating the marginal distributions of some variables of interest given that
the values of some other variables are known, e.g., to compute the conditional
density of Xi ∈ X \ E given the observation E = e, denoted f(xi|e). Observe
that

f(xi|e) =
f(xi, e)

f(e)
,

and since the denominator f(e) does not depend on xi, the inference task is
therefore equivalent to obtaining f(xi, e) and normalizing afterwards. A brute
force algorithm for carrying out this type of inference could be as follows:

(1) Obtain the joint distribution f(x1, . . . , xn) using Equation (1).
(2) Restrict f(x1, . . . , xn) to the value e of the observed variables E, thereby

obtaining f(x1, . . . , xn, e).
(3) Compute f(xi, e) from f(x1, . . . , xn, e) by marginalizing out every vari-

able except Xi.
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A problem with this näıve approach is that the joint distribution is usually
unmanageably large. For instance, assume a simple case in which we deal
with 10 discrete variables that have three states each. Specifying the joint
distribution for those variables would be equivalent to defining a table with
310 − 1 = 59 048 probability values, i.e., the size of the distribution grows
exponentially with the number of variables. For instance, for 11 variables, the
size of the corresponding table would increase to 311−1 = 177 146, and so on.
Models used in reliability domains commonly consist of hundreds or thousands
of variables, and this näıve inference approach is simply not able to handle
problems of this size.

The inference problem can be simplified by taking advantage of the factor-
ization of the joint distribution encoded by the structure of the BN, which
supports the design of efficient algorithms for this task. For instance, consider
the network in Fig. 2, which is structurally equivalent to the model in Fig. 1;
the variables are labelled X1, . . . , X5 for notational convenience.

X1

X2

X3

X4 X5

Fig. 2. An example of Bayesian network.

For this example, assume we are interested in X5, that all variables are discrete,
and that E = ∅. By starting from the joint distribution, we find that

f(x5)=
∑

x1,...,x4

f(x1, x2, x3, x4, x5)

=
∑

x1,...,x4

f(x1)f(x2|x1)f(x3|x1)f(x4|x2, x3)f(x5|x4)

=
∑

x2,...,x4

∑

x1

f(x1)f(x2|x1)f(x3|x1)f(x4|x2, x3)f(x5|x4)

=
∑

x2,...,x4

f(x4|x2, x3)f(x5|x4)
∑

x1

f(x1)f(x2|x1)f(x3|x1)

=
∑

x2,...,x4

f(x4|x2, x3)f(x5|x4)h(x2, x3), (2)

where h(x2, x3) =
∑

x1
f(x1)f(x2|x1)f(x3|x1). Therefore, we have reached a

similar problem as initially, but with one variable less. Note that this opera-
tion, called elimination of X1, only requires us to consider 3 variables at the
same time (namely, X1, X2 and X3), instead of all 5 variables. Repeating the
same procedure for all variables except X5 would lead us to the desired result.
This procedure is known as the variable elimination algorithm [16–18]. Thus,
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the idea that distinguishes this approach from the näıve approach outlined
above, is to organize the operations among the conditional distributions in
the network, so that we do not manipulate distributions that are unnecessar-
ily large. One limitation of the variable elimination algorithm, as formulated
above, is that it has to be repeated for each variable of interest. This is over-
come in other inference algorithms, e.g., [19].

Regardless of which algorithm that is used for implementing the inference
process, there are three basic operations involved, which will be defined below.
In the definitions we use for subset Y ⊆ X the notation x↓ΩY to denote the
sub-vector of x, which is defined on ΩY (i.e., dropping all coordinates not in
Y ).

Restriction is used for inserting the values of the observed variables. For-
mally, the restriction of a function f to the values x′ ⊂ x is a new function
defined on ΩX\X′ s.t.:

f(w) = fR(X′=x′)(x)

for all w ∈ ΩX\X′ such that x ∈ ΩX, x′ = x↓ΩX′ and w = x↓ΩX\X′ . Restric-
tion is used to obtain a probability distribution over the variables X when
E = e, which in this notation will be written as f(w) = fR(E=e)(x) for
w ∈ ΩX\E.

Combination is the multiplication of two functions; this operation is used,
e.g., when the conditional probability functions {fXi

(xi|pa (xi))}ni=1 are mul-
tiplied in Equation (1). More formally, let us consider two probability func-
tions f1 and f2 defined for X1 and X2 respectively. The combination of f1

and f2 is a new function defined on X = X1 ∪X2 s.t.

f(x) = f1(x
↓ΩX1 ) · f2(x

↓ΩX2 ) ∀x ∈ ΩX.

Elimination is used to remove a variable from a function; an example of
elimination is seen in Equation (2), where the variable X5 is eliminated
from the distribution f(x1, . . . , x5). Analogously to elimination, we also talk
about marginalization. For example, {X1, X2, X3, X4} are marginalized out
of f(x1, . . . , x5) in Equation (2). Formally, we say that the marginal of f
over a set of variables X′ ⊆ X is the function computed as

f(x′) =
∑

x:x↓Ω
X′=x′

f(x),

Note that this function is defined on ΩX′ . If some of the variables in X \X′

are continuous, the summation is replaced by an integration over those
variables.

So far we have considered inference for discrete variables whose distribution
can be represented by a table of probability values. This representation is very
convenient from an operational point of view, as restriction, combination,
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and marginalization are closed for probability tables. It means that all the
operations required during the inference process can be carried out using a
single unique data structure. The problem becomes more complex when we
face inference tasks that involve continuous variables.

Let us for instance consider the problem of calculating the reliability of a
parallel system of three components. The components have life-lengths T1,
T2 and T3 respectively, and the system’s life-length is thus given as R =
max(T1, T2, T3). We assume that each of the component’s life lengths follow
the exponential distribution with the parameter λi, so the survival probability
at system level is P (R ≤ t) =

∏3
i=1 P (Ti ≤ t) =

∏3
i=1 (1− exp(λit)), see Fig. 3

(a).

T1

T2

T3

R

(a)

E

T1

T2

T3

R

(b)

Fig. 3. Three components in a parallel system have life-lengths T1, T2 and T3 re-
spectively, giving the system a life-length of R = max (T1, T2, T3).

A problem with this model is that the life lengths of the three components
are considered independent, even if the components are exposed to the same
environment. Obviously, a common environment introduces a correlation be-
tween T1, T2 and T3: A rough environment will lead to reduced life-lengths for
all components, whereas a gentle environment would imply an increase in the
expected life-lengths of the components. Several researchers have been trying
to overcome this defect by explicitly modelling the environment-induced cor-
relation between components’ life-lengths (see, e.g., [20–22]). We will now con-
sider a candidate-solution to this problem, described by Lindley and Singpur-
walla [21]. The authors assumed that when the components are operating in
a controlled laboratory environment, their life-lengths Ti follow an exponen-
tial distribution with known parameter λi. To model the effect of the com-
mon environment, they introduced a random variable E affecting each Ti, see
Fig. 3 (b). They assumed that E follows a Gamma distribution, and that
Ti|{E = ξ} is exponentially distributed with parameter gi(ξ; λi) for known
functions gi(ξ; λi) = λiξ. These assumptions made them able to derive the
marginal distribution of R when E is unobserved. However, it should be clear
that we can make this problem analytically intractable, simply by choosing
“difficult” functions gi(ξ; λi), for instance g1(ξ; λ1) = λ1

√
ξ, g2(ξ; λ1) = λ2ξ,

and g3(ξ; λ1) = λ3ξ
2. From an implementation point of view we now need

to represent exponentials of more complex functions, but a more fundamen-
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tal problem is that the results are no longer available analytically, so exact
inference cannot be performed. Note that this is a consequence not of the mod-
elling language, but of the model itself. Nevertheless, the simplicity of making
Bayesian network models does not go well together with the difficulties of in-
ference in the models, and restricting our attention to models containing only
discrete variables seems very unsatisfactory in the domain of reliability analy-
sis. This is why a lot of research is currently put into approximative methods
for inference in hybrid Bayesian networks.

The most common approach to approximate inference among BN practitioners
is discretization, i.e., to “translate” all continuous variables into discrete ones
(we assume the reader has some familiarity with this concept; more detail is
given in Section 5.1). The continuous variables are to be replaced by discrete
variables, where the discrete variables are given a sufficient number of states
to capture the true (continuous) variables sufficiently well. The problem with
this approach is to balance the desire for high accuracy in the approxima-
tions with a reasonable calculation burden to obtain the results. Obviously,
the accuracy of the approximations are particularly important in reliability
applications, where the tails of the distributions receive a lot of attention.
Say we are interested in calculating the survival function of the system, i.e.
P (R ≤ t), and, in particular, we are concerned about the lower tail of the life
length distribution of R. If we näıvely discretize each continuous variable into
d states, then the operations for inference will need to handle d4 numbers at
once (c.f. Equation (2)). d must be chosen sufficiently large to convey enough
information to find the (approximately) correct probability, and even refined
discretzation techniques (like [23]) require d ∼ 30 to obtain sufficiently accu-
rate results, and thus need to perform sums over about 800.000 numbers to
calculate P (R > t0) for a given t0. If the parallel system had 10 components
instead of 3, the sum would be over approximately 3011 = 2 · 1016 numbers,
which is intolerable in practice.

To conclude this section, exact inference in Bayesian networks require the
three operations restriction, combination, and elimination. From a fundamen-
tal point of view we must make sure we can perform the operations ana-
lytically, and from a practical point of view it is beneficial if a single data
structure can represent all intermediate results of these operations. It is not
difficult to find examples were the requirements fail, particularly when some
of the variables in the domain are continuous. In these cases, the most-used
survival-strategy is to discretize the continuous variables, but as we just saw,
this will typically either increase the computational complexity unbearable or
give approximations with unacceptably poor quality. It is evident that models
containing both discrete as well as continuous variables are of high interest
to the reliability community, and we will therefore spend the remainder of
the paper looking at the most powerful methods for approximate inference
in Bayesian networks from the reliability analyst’s point of view (meaning
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that we are also interested in accurate approximation of the probability of
infrequent events, like major accidents).

We proceed by discussing a model for human reliability in Section 4. Not only
is this model of interest to us in its own right, but it is also quite simple, and
it relies on only a few standard statistical distributions in its specification.
This makes the model well-suited as a test–bed when we discuss the different
methods for approximate inference in Section 5.

4 A model for human reliability

In this section we will consider a model used for explaining and predicting
humans’ ability to perform specific tasks in a given environment. The model
is based on the THERP methodology 1 .

Consider the BN model in Fig. 4. Ti represents a person’s ability to correctly
perform task i, and Ti takes on the values “true” or “false”. Ti is influenced
by a set of explanatory variables, Zj. The goal of the model is to quantify the
effect the explanatory variables have on the observable ones, and to use this
to predict a subject’s ability to perform the tasks T1, . . . , T4.

Z1 Z2

T1 T2 T3 T4

Fig. 4. A model for the analysis of human reliability. A subject’s ability to perform
four different tasks T1, . . . , T4 is influenced by the two explanatory variables Z1

and Z2. The explanatory variables are drawn with double-line to signify that these
variables are continuous.

Assume first that the explanatory variables are used to model the environ-
ment, that the environment can be considered constant between subjects, and
that it can be disclosed in advance (that is, the variables are observed before
inference is performed). An example of such a factor can for instance be “Lack
of lighting”, with the assumption that the luminous flux can be measured
in advance, and that it affects different people in the same way. Each Ti is
modelled by logistic regression, meaning that we have

P (Ti = true|z) =
1

1 + exp (− (w′
iz + bi))

, (3)

1 THERP: Technique for Human Error Rate Prediction [24]
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for a given set of weights wi and offset bi. As long as Z = z is observed, this
is a simple generalized linear model. Therefore, inference in this model can
be handled; note that the Z’s can be regarded simply as tools to fill in the
probability tables for each Ti in this case.

Next, assume that some of the explanatory variables are used to model subject-
specific properties, like a subject’s likelihood for “Omitting a step in a pro-
cedure” (this is one of the explanatory variables in the THERP method).
It seems natural to assume that these explanatory variables are unobserved,
and for the case of simplicity, we give them Gaussian distributions a priori,
Zj ∼ N (µj, σ

2
j ). To this end, the model is a latent trait model [25]; closely

related to a factor analysis model, but with binary attributes.

Assume we have parameters wi determining the strength of the influences the
explanatory variables have on Ti, and that we are interested in calculating the
likelihood of an observation {T1 = 1, T2 = 1, T3 = 1, T4 = 1}. (We will use the
shorthand T = 1 to denote the observation in the following.) The likelihood
is given by

P (T = 1) =
1

2πσ1σ2

∫

R2

exp
(

−∑2
j=1

(zj−µj)
2

2σ2

j

)

∏4
i=1

{

1 + exp(−wT

i z − bi)
} dz,

which unfortunately has no known analytic representation in general. Hence,
we are confronted by a model where we cannot calculate the exact likelihood
of the observation. We will now turn to some of the state-of-the-art techniques
for approximate inference in Bayesian networks containing discrete and con-
tinuous variables, and use the model in Fig. 4 as our running example while
doing so.

5 Approximative inference for hybrid Bayesian networks

As we saw in the previous section, exact inference is not tractable in the exam-
ple model. The mathematical tools are simply not available for the calculations
to be made. In this section we will therefore cover some of the more popular
ways of approximating the inference procedure. In Section 5.1, Section 5.2,
and Section 5.3, we consider three approaches that make explicit changes in
the representations of the conditional distribution functions defined for each
variable, then in Section 5.4 we will consider a scheme that leaves the un-
derlying model definition unchanged, but uses sampling to approximate the
inference procedure.

We will use the model in Fig. 4 as our running example, and for each ap-
proximative method we will calculate both the likelihood of the observation,
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P (T = 1), as well as the posterior distribution over the explanatory variables,
f(z|T = 1). For simplicity, we assume that w = [1, 1]T and that bi = 0, so
Equation (3) can be simplified to P (Ti = true|z) = (1 + exp (−z1 − z2))

−1.

5.1 Discretization

The most common technique for handling inference in hybrid Bayesian net-
works is probably discretization. Discretization has been widely studied from
both a general point of view [26,27], and aimed specifically at BNs [28,29] and
classification problems [30,31]. Discretization amounts to replacing a continu-
ous variable X in a model by its discrete counterpart X ′. X ′ is obtained from
X by separating ΩX into disjoint intervals, that can formally be described as
follows:

Definition 1 (Discretization) A discretization of an interval ΩX ⊆ R is a
partitioning of ΩX into a finite set of disjoint connected regions {Wj : j =
1, . . . , m}, where Wi ∩Wj = ∅ and ∪m

j=1Wj = ΩX . Each Wj is labelled with a
constant positive real value, fD(Wj), which denotes the value at the interval
Wj.

An example of discretization is shown in the left panel of Fig. 5. X follows the
standard Gaussian distribution; the discretized version of X, X ′, has density
function fD(x′). Notice that fD(x′) is a step-function, i.e., piece-wise constant.

After discretization, X ′ replaces X in the model, and can be handled as any
other discrete variable. X ′ is defined such that its value is the same whenever X
falls in the interval Wi. There are a number of different strategies for selecting
the regions Wi, for example equal width, equal frequency, and even Bayesian
approaches to mention a few.

Note that as long as m, the number of partitions, is “low” compared to the
length of ΩX , discretization may entail lack of accuracy, as fD(x′) can be a
poor approximation of f(x). On the other hand, the distribution of X ′ can
be made arbitrarily close to the one of X as m→∞. Unfortunately, though,
introducing too many states in the variables may lead to an unfeasible problem
from an inference point of view. In Equation (2) we saw that marginalizing
amounts to summing over all states of the unobserved variables (which grows
as m increases), and since the complexity depends on the size of the largest
function handled during the variable elimination process, the computational
burden may grow uncontrolled. Moreover, even though discretization can be a
good choice to control the error in each local distribution f(xi|pa (xi)), it may
not control the global error in the model, see, e.g., [23] for a discussion. This
problem is in part due to the fact that many of the most common approaches
discretize each variable independently, without considering the dependence
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relations in the graph. If one takes these relations into account, one would pay
more attention to regions of the multivariate space where changes in the joint
probability distribution is large, both a priori and also after inserting evidence
[29].

Let us return to the example described in Section 4, and use discretization to
be able to perform the inference in that model. Firstly, we need to discretize
the distributions for Zi, i = 1, 2. For the purpose of this example, we select
5 regions by means of equal length. We consider the domain [−5

2
, +5

2
] in the

following. This residual mass is allocated to the two extremes, and we get the
following approximation:

Wj [−5
2
,−3

2
] (−3

2
,−1

2
] (−1

2
, +1

2
] (1

2
, 3

2
] (3

2
, 5

2
]

fD(Wj) 0.067 0.242 0.383 0.242 0.067

Fig. 5 (left panel) shows the original distribution of the latent variables to-
gether with the corresponding discretized version.

Recall that the conditional distribution P (Ti = 1|Z1, Z2) is defined using
logistic regression (Equation (3)). To use this definition, we need the dis-
cretized value to have a numerical representation. We obtain this by using
the mid-points of each interval as the numerical interpretation, i.e., ΩZ′

i
=

{−2,−1, 0, 1, 2}.

Doing the calculations, we obtain that P (T = 1) = .176999. The correct
value is approximately P (T = 1) = .173865, so the result is not too far off.
However, the results are poorer if we are interested in the joint distribution
f(z|T = 1), see Fig. 5, right panel. Note particularly the poor fit in the tail
of the distribution.

Most of the software tools available for modelling Bayesian networks allow
continuous variables to be discretized. This holds for instance, for Agena (www.
agena.co.uk), Netica (www.norsys.com), Hugin (www.hugin.com), Elvira (leo.
ugr.es/elvira), and Genie (genie.sis.pitt.edu).

5.2 Mixtures of truncated exponentials

The Mixtures of Truncated Exponentials (MTE) model [32] can be seen as
a generalization of discretization, but instead of approximating the density
function inside each region by a constant, MTEs approximate it by a linear
combination of exponential functions; the benefit from this approach is the
higher flexibility when it comes to approximating the distribution function.
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Fig. 5. Results of discretization in our running example. The left pane gives the
approximation of the Gaussian distribution, whereas the right panel shows the ap-
proximation of f(z1, z2|T = 1) together with the exact results (obtained by numer-
ical integration). Note the poor approximation to the joint posterior distribution,
particularly in the tail of the distribution.

So, in the MTE approach, the density functions (conditional or marginal) are
represented by means of MTEs. A potential is a generalization of a density
function, where it is not required that the integral equals one. A potential is
an interesting structure because not every function involved in BN inference
is a density. We therefore start by defining MTE potentials:

Definition 2 (MTE Potential) Let X be a mixed n-dimensional random
vector. Let Y = (Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the discrete and con-
tinuous parts of X, respectively, with c + d = n. We say that a function
f : ΩX 7→ R

+
0 is a mixture of truncated exponentials potential (MTE poten-

tial) if one of the following two conditions holds:

(1) f can be written as

f(x) = f(y, z) = a0,y +
k
∑

i=1

ai,y exp







c
∑

j=1

b
(j)
i,yzj







, (4)

for all x ∈ ΩX, where ai,y, i = 0, . . . , k and b
(j)
i,y, i = 1, . . . , k, j = 1, . . . , c

are real numbers.
(2) There is a partition Ω1, . . . , Ωm of ΩX for which the domain of the contin-

uous variables, ΩZ, is divided into hypercubes and such that f is defined
as

f(x) = fi(x) if x ∈ Ωi ,

where each fi, i = 1, . . . , m can be written in the form of Equation (4).

An MTE potential φ is said to be an MTE density if
∑

Ωy

∫

Ωz
φ(y, z)dz = 1.

13



Example 3 The function defined as

φ(z1, z2) =



























2 + e3z1+z2 + ez1+z2 if 0 < z1 ≤ 1, 0 < z2 < 2

1 + ez1+z2 if 0 < z1 ≤ 1, 2 ≤ z2 < 3
1
4

+ e2z1+z2 if 1 < z1 < 2, 0 < z2 < 2
1
2

+ 5ez1+2z2 if 1 < z1 < 2, 2 ≤ z2 < 3

is an MTE potential since all its parts are MTE potentials. However, it is not
an MTE density.

MTEs act as a general model, which can approximate any distribution ar-
bitrarily well. As for discretization, the error of the approximation can be
controlled by defining a finer partitioning (increasing m in Part 2 of the def-
inition above), but for MTEs it is also possible to keep m fixed, and rather
increase the number of exponential terms (k in Equation (4)) to improve the
MTE approximation within each part. 2

To model a hybrid domain we need to represent the distribution of all variables
by means of a common structure, in this case MTE potentials. Therefore, also
the conditional distributions have to be MTE potentials:

Definition 4 (Conditional MTE density) Let X1 = (Y1,Z1) and X2 =
(Y2,Z2) be two mixed random vectors. A potential φ defined over ΩX1∪X2

is
said to be a conditional MTE density if for each x2 ∈ ΩX2

, the restriction of
potential φ to x2, φR(X2=x2) is an MTE density for X1.

Finally, a Bayesian network is said to be an MTE network if the conditional
and marginal distributions defined in the network are represented by MTE
potentials.

The most important feature of MTE potentials is that they are closed under
marginalization, combination and restriction [32]. It follows from Equation (1)
that the joint probability distribution of an MTE network is a multivariate
MTE density function. Since marginalization, combination and restriction are
the only operations needed for inference in Bayesian networks, it follows that
Bayesian networks with distributions represented by MTEs offer exact infer-
ence, see for example [35] for the adaption of the Shenoy and Shafer algorithm
[36] to deal with MTE networks.

Going back to our example, we now proceed by building an MTE network for
inference. First, we need to define MTE densities for the marginal distributions
of Zi and the conditional distributions of Ti. Accurate MTE approximations
for the Gaussian distribution and the sigmoid function are given below [33].

2 Empirical studies have concluded that k = 2 exponential terms are usually enough
to get a very good approximation inside a limited interval [33,34].
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Fig. 6. Results of the MTE approximation in our running example: The approxi-
mation to each distribution is dashed, the true underlying density (Normal in the
left panel and the logistic in the right) is given with solid line.

We use a ‘*’ to indicate that a probability distribution is approximated using
the MTE framework.

f ∗(zi) =



























−0.017203 + 0.930964e1.27zi if − 3 ≤ zi < −1

0.442208− 0.038452e−1.64zi if − 1 ≤ zi < 0

0.442208− 0.038452e1.64zi if 0 ≤ zi < 1

−0.017203 + 0.930964e−1.27zi if 1 ≤ zi < 3

P ∗(Ti = 1|z1+z2) =



























0 if z1 + z2 < −5

−0.021704 + 0.521704e0.635(z1+z2) if − 5 ≤ z1 + z2 < 0

1.021704− 0.521704e−0.635(z1+z2) if 0 ≤ z1 + z2 ≤ 5

1 if z1 + z2 > 5

.

The computation of the likelihood P (T = 1) is

P ∗(T = 1) =
∫

R2

f ∗(z1)f
∗(z2)

4
∏

i=1

P ∗(Ti = 1|z)dz = 0.176819.

The joint density for (Z1, Z2) given T = 1 is

f ∗(z1, z2|T ) =
f ∗(z1)f

∗(z2)
∏4

i=1 P ∗(Ti = 1|z)

P ∗(T = 1)
.

Since the combination of MTE potentials is again an MTE potential, the result
will be an MTE potential (depicted in Fig. 7).
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Fig. 7. The MTE approximation of f(z|T = 1). Note the very good approximation
to the joint posterior distribution when compared to that of discretization (see
Fig. 5).

The open-source project ELVIRA [37] implements the MTE approach outlined
above. It is a research tool implemented in Java.

5.3 Variational approximations

As stated in Section 4, there is no analytical representation for calculating the
likelihood of an observation

P (T = 1) =
∫

R2

{

4
∏

i=1

P (Ti = 1, z)

}

f(z)dz. (5)

A variational approach [38–41] to handle this problem consists in defining a
lower bound approximation to the logistic function. The approximation con-
sidered by the authors above is of a Gaussian shape, which (among other
things) entails a closed form marginal likelihood approximation that also de-
fines a lower bound for the face-value likelihood.

To put it more precisely, the logistic function P (Ti = 1|z) can be approximated
by

P̃ (ti|z, ξi) = g(ξi) exp((Ai − ξi)/2 + λ(ξi)(A
2
i − ξ2

i )), (6)

where

Ai = (2ti − 1)(wT
i z + bi) and λ(ξi) =

exp(−ξi)− 1

4ξi(1 + exp(−ξi))
.

The function P̃ (Ti = 1|z, ξi) is a lower-bound variational approximation to
P (Ti = 1|z), which means that P̃ (Ti = 1|z, ξi) ≤ P (Ti = 1|z) for all values of
the variational parameter ξi; equality is obtained when ξi = (2ti−1)(wT

i z+bi).
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As an example, consider Fig. 8 which shows the logistic function P (Ti = 1|z) as
a function of z := wTz + b = z1 + z2 together with variational approximations
for different values of ξ. Note that at e.g. z = 1 the approximation is exact if
and only if ξ = 1, i.e., the approximation is exact only point-wise. The trick
is now to find a value for ξi that is good “on average” (we shall return to this
a bit later).

K3 K2 K1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ξ = 1

ξ = 2

ξ = 3

g(·)

z

Fig. 8. The solid line shows the logistic function with w = [1, 1]T and b = 0 (as in
our example). The three other functions correspond to the variational approxima-
tions defined by ξ = 1, ξ = 2,and ξ = 3, respectively; ξ is chosen so to maximize
the expected lower bound of the data-complete marginal likelihood, hence it also
depends on the prior distribution for the explanatory variables.

From Equation (6) we see that the variational approximation is Gaussian-
shaped (quadratic in each zj in the exponential), hence with a bit of pencil-
pushing we can get a lower-bound approximation for the marginal likelihood
in Equation (5) (for Equation (5) we have d = 4 and q = 2):

P (t)≥
∫

Rq

{

d
∏

i=1

P̃ (ti|z, ξi)

}

f(z)dz.

= exp

{

−1

2
µTΓ−1µ +

1

2
(µp)T(Γp)−1µp +

1

2
log

(

|Γp|
|Γ|

)}

·

exp

{

d
∑

i=1

{

log(g(ξi))− ξi/2 + λi(b
2
i − ξ2

i ) +
1

2
(2ti − 1)bi

}

}

. (7)

where Γp and µp are the posterior covariance and expectation for Z given
{t, ξ}:

Γp =

[

Γ−1 − 2
d
∑

i=1

λ(ξi)wiw
T
i

]−1

(8)

µp =Γp

{

Γ−1µ +
d
∑

i=1

[

ti −
1

2
+ 2λ(ξi)bi

]

wi

}

. (9)
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Fig. 9. The joint distribution of f(z1, z2|T = 1) obtained by variational methods.

The approximations above all depend on ξi, but since Z is not observed we
cannot directly calculate the value for ξi that maximizes the lower bound
P̃ (t|ξ); recall that the approximation is exact only if ξi = (2ti− 1)(wT

i z + bi).
Instead we can maximize the expected lower bound E[P̃ (t, Z|ξ)] by following
an EM like approach [42]. For this, [43] showed that the expected lower bound
is maximized by ξ2

i = E[(wT
i Z+bi)

2|T = t], but since this expectation depends
on Γp and µp an iterative scheme is required.

Algorithm 1 Variational inference

1: Start with initial guesses for Γp and µp. 3

2: repeat
3: Update values for ξ by setting

ξi ←
√

E [(wT
i Z + bi)2|T ] =

√

(µp)Tµp + wT
i Γpwi + 2biw

T
i µ + b2

i .

4: Calculate Γp and µp based on the current ξ (Equations 8 and 9).
5: until Termination criterion

This iterative scheme is guaranteed to maximize the variational approximation
P̃ (t|ξ) and since the approximation defines a lower bound for P (t) it is also
guaranteed to maximize the actual likelihood of the observation t.

Going back to our running example, we find the variational lower-bound of
the likelihood to be 0.140329, a rather poor estimate. On the other hand, the
shape of the joint distribution for Z1 and Z2 given T = 1 is well approximated
by the variational approximation (see Fig. 9).

From the above considerations we see that for the fixed structure given by
our running example, there exists a variational approximation allowing us to
answer the probabilistic queries of interest. However, applying the variational
framework in domains with other probability distributions may require new
variational approximations and coming up with such approximations may be
a bit of an art-form. In mathematical terms, the general variational Bayes
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approach attempts to minimize the Kullback-Leibler divergence between the
true posterior and a simpler, approximating distribution. Although it is not
the case in our example, we usually see the approximating distribution made
simpler than the true posterior by assuming that the parameters in the ap-
proximating distribution are independent (see, e.g., [44] for an overview).

VIBES (Variational Inference for Bayesian Networks) provides an inference
engine for performing variational inference in Bayesian networks [45].

5.4 Markov Chain Monte Carlo Methods

Instead of using functional approximations to achieve tractable and analytical
representations supporting probability updating, one may also estimate the
required probabilities using sampling. As an example, consider calculating

P (T1 = 1, . . . , T4 = 1) =
∫

R2

4
∏

i=1

P (Ti = 1|z)f(z)dz

= EZ(P (T = 1|Z)).

(10)

This expectation can be estimated by drawing samples {z1, . . . , zN} from f(z)
and then approximating

EZ(P (T = 1|Z)) ≈ 1

N

N
∑

i=1

P (T = 1|zi).

The law of large numbers guarantees that with a sufficiently large number of
independent and identically distributed samples, we can obtain any desired
degree of precision in the estimate. Fig. 10 shows how the precision improves
as more samples are used; the shaded area gives the 5% and 95% quantiles
(1000 repetitions) for the likelihood.

For the expectation above, we have that Z1 and Z2 are marginally indepen-
dent, thus we only need to sample from a univariate normal distribution for
which standard algorithms exist. Unfortunately, for distributions with no an-
alytical representation (such as f(z|T = 1)) it can be quite difficult to draw
independent samples. Instead we may generate dependent samples and ex-
ploit that the independence assumption can be relaxed as long as we obtain
samples throughout the support of the target distribution and in the correct
proportions.

Markov chain Monte Carlo methods provide a general technique for drawing a
sequence of dependent samples {z0, z1, z2, . . . , zt} from a target distribution
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Fig. 10. Uncertainty of the estimate of P (T = 1) as a function of the number of
samples is displayed as the 5% and 95% quantiles (1000 repetitions).

that does not necessarily have an analytical representation. In this setting,
a transition function g(zt+1|zt) is used to sample the next state zt+1 given
zt and independently of zi, for 1 ≤ i ≤ t − 1; thus, the zis form a Markov
chain. Moreover, subject to certain regularity conditions [46], the distribu-
tion ft(z|z0) from which the samples are drawn will eventually converge to a
stationary distribution independent of the starting state z0.

One of the simpler instantiations of this general framework is the Metropolis-
Hastings algorithm. In the Metropolis-Hastings algorithm, a candidate next
state c is sampled from a so-called proposal function q(·|·) (that may depend on
the current state zt) and the proposed state is then acceptated with probability

acc(c, zt) = min

(

1,
P (c|T = 1)q(zt|c)

P (zt|T = 1)q(c|zt)

)

= min

(

1,

∏4
i=1 P (Ti = 1|c)f(c1)f(c2)q(zt|c)

∏4
i=1 P (Ti = 1|z)f(z1)f(z2)q(c|zt)

)

.

If the state is accepted, the chain moves to the proposed state (zt+1 ← c),
otherwise it stays at its current state (zt+1 ← zt). Algorithm 2 summarizes
the description above.

It can be shown (see e.g. [46]) that under certain conditions, the stationary
distribution is in fact the target distribution, irrespectively of the proposal
function being used. Although convergence to the target distribution does
not depend on the proposal function, it does, however, have an impact on
the convergence speed and the mixing rate (the speed in which samples are
drawn from the area with positive support under the target distribution). For
example, Figure 11 shows the sample sequences obtained for P (Z1|T = 1)
using N(zt,

1
2
I) and N(zt, 5I) as proposal functions; Z1 and Z2 are sampled
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Algorithm 2 The Metropolis-Hastings algorithm
1: t← 0
2: Initialize z0

3: repeat
4: Sample a candidate state c form q(·|zt)
5: Sample a value a from a uniform distribution over the unit interval
6: if a ≤ acc(zt, c) then
7: zt+1 ← c

8: else
9: zt+1 ← zt

10: end if
11: t← t + 1
12: until Termination criterion

independently. In particular, for q(·|zt) = N(zt, 5I) we see that the chain
mixes slowly (there are several regions where the chain does not move) and
we will therefore require a longer running time to get a representative sample.
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Fig. 11. The figures show the samples for Z1 using the proposals distributions
N(zt,

1
2I) and N(zt, 5I), respectively.

When using the sampled values to e.g. analyze the conditional distribution
P (z|T = 1), the initial samples (called the burn-in) obtained prior to con-
vergence are usually discarded. The question is now how to detect when the
distribution ft(z|z0) of the chain is sufficiently close to the target distribution
and when a sufficient number of samples have been drawn. As examples, [47]
and [48] discuss methods for analyzing the convergence properties by compar-
ing several chains run in parallel, and [49] consider methods for analyzing a
single chain.

Given a sample set, we can use the samples to analyze the target distribu-
tion by e.g. estimating the expectation and covariance of Z. We can also
estimate the distribution of Z, say, by using kernel density estimation. The
kernel density estimate for Z given T = 1 is shown in Fig. 12. The calcula-
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tion of the likelihood is, as we have seen (Fig. 10), a stochastic quantity. Using
1000 samples we obtained an estimated likelihood of 0.17466. It is interesting
to see that although the MTEs are better at approximating the joint distri-
bution f(z|T = 1) than MCMC with 1000 samples (compare Fig. 7 to the
left panel of Fig. 12), the likelihood estimate of the MCMC approach outper-
forms that of the MTE. This is due to the nature of sampling: The law of
large numbers ensures rapid convergence of sample-averages (like the likeli-
hood, see Equation (10)), whereas low-probability events (like the probability
P (Z1 > 1.5, Z2 > 1.5|T = 1)) are not as well approximated by moderately
sized samples.
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Fig. 12. The joint distribution of f(z1, z2|T = 1) obtained by MCMC sampling.
Left pane shows the results after 1000 samples, the right pane gives the results after
250.000 samples. In both cases, the first 100 observations were discarded as burn-in.
The density estimates where smoothed using a Gaussian kernel.

BUGS [50] is a general purpose modelling language, which takes as its input
a BN model and returns samples that can be used for estimating any (condi-
tional) probability distribution. BUGS is accompanied by CODA [51], which
is a tool for analyzing whether or not sufficient mixing has taken place.

5.5 Other approaches

There are other approaches for performing inference in hybrid Bayesian net-
works that we have not described here. One of the earliest ideas was based on
the conditional Gaussian (CG) model [52], which assumes that the conditional
distribution for the continuous variables given the discrete ones is multivariate
Gaussian. A particular case is the conditional linear Gaussian (CLG) model,
where the mean of the conditional distribution of each continuous variable is
a linear function of its continuous parent variables in the network. There ex-
ist efficient algorithms for carrying out exact inference in Bayesian networks
following a CLG model [53]. However, it is required that discrete variables
only have discrete parents, and this imposes an important limitation to the
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problems that can be modeled following the CG-approach. For instance, our
running example cannot be directly represented by CG or CLG models. A
solution to this problem is proposed in [54], which consists in transforming
a network containing discrete variables with continuous parents into another
network in which the resulting distribution is a mixture of Gaussians.

Other approaches that are currently receiving some attention in the research
community include Expectation Propagation [55] and techniques based on the
Laplace approximation [56].

6 Conclusions

In this paper we have explored four approaches to inference in hybrid Bayesian
networks: discretization, mixtures of truncated exponentials (MTEs), varia-
tional methods, and Markov chain Monte Carlo (MCMC). Each of them have
their pros and cons, which we will briefly summarize here. We note that this
paper is about inference, hence the specification of the models (either manually
or by learning from data) is outside the scope of this discussion. Furthermore,
we have considered the inference problem in the context of reliability analysis.
This means that we are interested in obtaining good approximations for low
probability events, and will therefore give the tails of the approximations some
attention in the following.

The simplest approach to inference in hybrid domains is to use discretization.
Discretization entails only a simple transformation of the continuous variables,
it is implemented in almost all commercial BN tools, and the user only has to
decide upon one parameter, namely m, the number of intervals the continuous
variables are discretized into. Choosing a “good” value for m can be a bit of
a problem, though, since a too high value leads to complexity problems and
a too low value leads to poor approximations. We note that practitioners in
reliability who use discretization without investigating this effect further are
in danger of under-estimating the probability of unwanted events considerably.

MTEs are generalizations of standard discretization, with the aim of avoid-
ing the complexity problems discretization are hampered by. MTEs benefit
from the BNs’ efficient inference engine. Furthermore, MTEs define a rather
general framework, which can approximate any distribution accurately. In par-
ticular, MTEs are better at approximating the tail of the distribution of our
running example than discretization (compare Fig. 5 and Fig. 6). MTEs are
currently receiving a lot of attention from the research community; both re-
fining the inference and exploring new applications are hot research topics.
On the downside, the MTE framework is still in its infancy, and in particular
methods for learning MTEs from data must be further explored.
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The variational approximations provide satisfactory answers to the kind of
queries associated with inference in hybrid Bayesian networks. However, the
variational approximations are still rather ad hoc, and the formulae have to be
rewritten depending on the underlying distribution used. It is also difficult to
have a well-founded understanding of the error the variational approximation
makes, and as we saw in the example, the error can be substantial.

MCMC is a very general inference technique, and it can take advantage of
a BN’s structure to speed up the simulation process. Together with standard
discretization, MCMC is currently the most popular technique for inference in
hybrid BNs. This is partly due to a strong mathematical foundation and well-
known statistical properties of the generated estimates. From a practitioners
point of view, one should however be vigilant when using MCMC to estimate
the probability of rare events. If the probability of a gas leak, say, is p = 10−4

one would on average need to generate 1/p = 104 samples after burn-in to
obtain a single sample of the event. It is also particularly important to consider
the auto-correlation in the samples before conclusions regarding rare events
are drawn. It is our experience that practitioners are not always aware of these
facts, and sometimes abuse the methodology by underestimating the demands
to obtain representative samples.

In our experience, the discretization method (with moderate number of re-
gions) is the fastest technique, outperforming the MTE method (with the
same number of regions) by a factor of about 2. On the other hand, MTEs
are about four times faster than the variational approximation. This is not
surprising, as the variational approximation requires a number of iterations
to converge (refer to Algorithm 1). MCMC is comparably much slower than
MTEs (a factor of about 103 to obtain results of comparable quality).

Among the four explored approaches, the MTE framework appears to be the
one best suited for reliability applications: It balances the need for good ap-
proximations in the tail of the distributions with not-too-high computational
complexity. MTEs are flexible from the modeling point of view, and there exist
efficient methods for inference building on the classical BN inference scheme.
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