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Abstract 

This paper introduces an adaptive growing and 
pruning radial basis function (GAP-RBF) neural 
network for on-line identification of hybrid systems. 
The main idea is to identify a global nonlinear model 
that can predict the continuous outputs of hybrid 
systems. In the proposed approach, GAP-RBF neural 
network uses a modified unscented kalman filter (UKF) 
with forgetting factor scheme as the required on-line 
learning algorithm. The effectiveness of the resulting 
identification approach is tested and evaluated on a 
simulated benchmark hybrid system. 

 

1. Introduction 

In recent years, the interest in hybrid systems has 
grown widely. Hybrid systems arise when the 
continuous dynamics, driven by physical laws, and 
discrete dynamics, derived by logical rules, coexist and 
interact with each other. Thus, hybrid models describe 
processes that evolve according to dynamic equations 
and logic rules. Most of the literature on hybrid 
systems has dealt with control, stability analysis, 
verification and fault detection based on the 
availability of a model for the hybrid system. Getting 
such a model from a given input-output data is an 
identification problem, which does not seem to have 
enough attention in the hybrid system research 
community. 

The existing identification approaches for the hybrid 
systems can generally be classified into the variants of 
the Mixed-Integer Programming (MIP) approach [1], 
the clustering-based approach [2], the bounded-error 
approach [3], the Bayesian approach [4] and the 
algebraic approach [5]. 

[1] reformulates the identification problem into 
subclasses of PieceWise Affine (PWA) systems which 
require highly computational complexity of Mixed-

Integer Linear or Quadratic Programming algorithms to 
be solved. 

Other identification approaches rely on different 
model classes of PieceWise Auto-regressive 
eXogenous (PWARX) systems. PWARX models are 
suitable when dealing with input-output data, since 
they provide an input-output description of PWA 
systems. This model structure partitions the regressor 
space into polyhedral with ARX sub-models. Thus, it 
involves the estimation of the number of discrete 
modes, the parameters of the affine sub-models and the 
coefficients of the hyperplanes defining the partitions 
of the regressor set. However the simultaneous optimal 
estimation of all the quantities mentioned is a very hard 
and computationally intractable problem. Hence, the 
available approaches are heuristic and suboptimal 
based which in most cases either assume a fixed 
number of discrete modes, or adjust it iteratively. For 
instance, both the clustering-based approach and the 
Bayesian approach require a priori knowledge of the 
discrete modes number. Moreover, some approaches, 
such as the clustering-based approach, the bounded-
error approach and the Bayesian approach require the 
ARX sub-models orders to be fixed. This can arise two 
significant limitations. First, all the existing 
identification algorithms concern only the classes of 
switched linear and PWA model while the actual 
hybrid systems are dynamically non-linear. Second, it 
can be practically unacceptable to assume a priori 
knowledge about the hybrid system dynamics such as 
modes and the model orders. 

To the best of our knowledge, [6] is the first 
contribution paper which addresses the more 
identification challenging case in which the hybrid 
system dynamics are assumed to be non-linear without 
the need to consider a priori assumptions about the 
number of modes, the model parameters and the 
switching sequence. For the first time, they used a 
feed-forward neural network to obtain global 
parametric models for the considered class of hybrid 
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systems without the need to know the number of 
modes and the current mode. However this approach 
works in an off-line mode and results in a black-box 
model with a large number of parameters. 

In this paper, an on-line identification approach 
based on an adaptive GAP-RBF neural network is 
presented. The UKF learning algorithm is utilized to 
estimate the network parameters during the 
identification phase. 

The paper is organized as follows. The proposed on-
line identification approach is introduced briefly in 
section 2. In section 3, performance of the developed 
identification approach is illustrated on a simulated 
benchmark hybrid system and a well known PWA 
system. Section 4 summarizes the conclusions from 
this research study.    

2. Adaptive GAP-RBF Neural Network 

The ability of Neural Networks to identify a global 
parametric model for a class of hybrid systems has 
been demonstrated in [6] for the first time in the 
literature. In this contributed paper, two feed-forward 
neural networks were used to model a hybrid 
benchmark system consisting of two interconnected 
tanks with 64 different number of modes. In this 
approach, each neural network was associated with 
each continuous tank level as the corresponding system 
outputs. However the proposed identification approach 
was off-line based which required some dedicated 
methods to choose the optimal structure of the neural 
networks involving the choice of inputs (i.e. the 
regression vector) and the number of hidden neurons. 

Radial basis functions (RBF) neural networks have 
been popularly used in many identification applications 
in recent years due to their ability to approximate 
complex non-linear mappings directly from the input-
output data with a simple topological dynamic 
structure. Combining this network with self-organizing 
network learning algorithms offers an attractive 
approach to make efficient adaptive RBF neural 
network which can adjust its dynamic structure 
complexity and parameters to varying non-linear 
system dynamics without requiring a priori knowledge. 
Huang et al. [7] have recently proposed a simple 
sequential learning algorithm with network growing 
and pruning (GAP) capabilities. The original GAP-
RBF neural network algorithm has been modified in 
[8] to enhance it’s capabilities for on-line system 
identification applications as follows: 

a) Enhancing the smooth criterion of the neurons. 
b) Enhancing the pruning criterion to prevent 

probable oscillation in the number of created 
neurons. 

c) Utilization of the unscented kalman filter (UKF) 
estimation algorithm to adjust free network 
parameters. 

d) Utilization of a time-varying forgetting factor 
scheme in the UKF learning algorithm to 
maintain a desired parameter tracking 
capability. 

2.1. Modified GAP-RBF (MGAP-RBF) Neural 
Network 

The complete description of the MGAP-RBF 
learning algorithm can be summarized as follows: 

The learning algorithm begins with no initial hidden 
neurons. As each new observation data ( )nn yx , , 

where l
n Rx ∈ , are received the following steps are 

performed: 
1. Compute the overall network output:  

∑
=

=
K

k
nkkn xxf

1

)()( φα   (1) 

where K is the number of hidden neurons , kα is 
the connecting weight of the kth hidden neuron to 
the output neuron. )( nk xφ denotes response of 

the kth hidden unit to the input vector nx , defined 
by the following Gaussian function:  

⎟
⎟

⎠
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⎜
⎜
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⎛ −
−= 2
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k

nn
nk

x
x

σ
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where kμ  and kσ  refer to the center and width of 

the kth hidden neuron respectively and ⋅ indicates 
the Euclidean distance. 

2. Calculate the parameters required in the 
modified growth criterion: 

)1)(( /
minmaxmin

τεεεε n
n e−−−+=              (3) 

where τ is the time constant parameter that can be 
used to control the time rate evolution of nε  . 

minε  and maxε  are minimum and maximum 
distance thresholds, respectively. 

)( nnn xfye −=                (4) 
3. Apply the growth criterion for adding neurons: 

( ) min

min

)(/8.1 and

  and If

eXSex

xee

n
l

nrn

nnrnn

>−

>−>

μκ

εμ
     (5) 

(where mine  is the expected desired accuracy and 

nrμ  is the center of the nearest neuron to nx  and 

)(XS  is the estimated size of range )(X  where 
the training samples are drawn from) 
Allocate a new hidden K+1 with: 
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              (6) 

Else 
Adjust the network parameters nrnrnr σμα ,, for 
the nearest (nrth) neuron only, using the UKF 
algorithm. 
Check the modified pruning criterion for the 
nearest (nrth) hidden neuron: 

min )(/)8.1(If eXSnr
l

nr βασ < , (in which a 

new pruning factor 10 ≤< β has been added), 
remove the nearest (nrth) hidden neuron and do the 
necessary changes in the UKF algorithm. 
Endif  
Endif  

2.2. The UKF Modified Learning Algorithm  
The original GAP-RBF algorithm uses the extended 

kalman filter (EKF) as its network parameter 
estimation algorithm. In practice, however, the use of 
the EKF has two well-known drawbacks: 

a. Linearization can provide highly unstable filter 
if the local linearity assumption is violated. 

b. The derivations of the Jacobian matrices are 
nontrivial inn most applications and often lead 
to significant implementation difficulties. 

To address these limitations, Julier and Uhlmann [9] 
developed the UKF algorithm. Consider the non-linear 
system, described by the following equations: 

kkkk wuxfx +=+ ),(1                             (7) 

kkk vxhy += )(                             (8) 
In the UKF algorithm, instead of linearizing the 

above non-linear system model equations using 
Jacobian matrices in the EKF, a “deterministic 
sampling” approach is used to calculate the mean and 
variance estimates of Gaussian random state variables 

nx  with a minimal set of 12 +L  sample points ( L  is 
the state dimension), called as sigma points. The results 
are accurate to the third-order (Taylor series 
expansion) for Gaussian inputs for all nonlinearities. 

The UKF learning algorithm can be summarized as 
follows: 
1. Initialize with some initial guesses for the state 

estimate ( nx ) and the error covariance matrix 
)( oP , defined as: 

][ˆ 00 xEx =                     (9) 

])ˆ)(ˆ[( 00000
TxxxxEP −−=                        (10) 

for },,1{ ∞∈ Kk , ( ][⋅E denotes the expected value). 
2. Calculate the sigma points: 

]ˆ   ˆ  ˆ[ 111111 −−−−−− −+= kkkkkk PxPxx γγχ   (11) 

where LkL −+= )(2αλ  and λγ += L  are 
scaling parameters. 
3. Time update equations: 
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where }{ )(m

iW  and }{ )(c
iW are sets of scalar weights, 

wR  is process noise covariance, and  
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4. Measurement update equations: 
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k
T

kyykkk KPKPP
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where kη behaves as the forgetting factor concept in 
the usual recursive least-squares (RLS) algorithm 
which undergoes the following time-varying evolution. 

10 ),1)(1( k
/

11 ≤−−+= −
−− ηηηη τ pt

kkk e  (23) 
where t is the recursive time interval that is spent in the 
UKF learning algorithm to estimate the MGAP-RBF 
neural network free parameters with fixed structure. 
Thus, t is reset to zero when any network structural 
change, i.e. neuron creation or pruning occurs. This 
scheme maintains a desired parameter adaptive 
capability in the UKF algorithm whenever process 
dynamics undergo a time-varying change. 

 

3. Identification case studies 

3.1. Identification of a two tanks flow hybrid 
benchmark system  

The proposed on-line identification approach has 
been applied to the two tanks flow hybrid benchmark 
system introduced in [6] which has been depicted in 
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figure 1. This system is considered as a black-box 
system equipped with some sensors that provide the 
required I/O data for identification purpose. The 
dynamics of the system can be described by the 
following equations:  

 

Figure 1. The schematic diagram of two 
tanks system 

}1,0{   ,. 111 ∈= PPDQP                (24) 

}1,0{,. 222 ∈= PPDQP             (25) 

}1,0{       ,..2. 1111 ∈= VVhgAQ            (26) 

}1,0{      ,..2. 2222 ∈= VVhgAQ               (27) 

}1,0{    ,||. 33213 ∈−= VVhhQ α            (28) 

}1,0{                   
  ,|)5.0,sup()5.0,sup(|.

4

214

∈

−=

V
VhhQ α

       (29) 

4311 QQQhS −−=&              (30) 

4322 QQQhS ++−=&                           (31) 

where ( )212 hhsigngA −⋅=α , D is the constant 

input flow of both pumps, { }2,1, ∈iPiQ is the input flow of 

tank i, { }2,1, ∈iiQ  is the output flow of tank i, 3Q  is the 

flow in the pipe 1C and 4Q is the flow in the pipe 2C . 
In order to avoid either the draining or the overflow 

of the tanks, the electro valves 1V , 3V  and 4V as well 

as the pump 1P  are driven by an algorithm which 
guarantees the following levels of the fluids in the 
tanks 1R  and 2R : 

111 Mhm ≤≤                            (32) 

222 Mhm ≤≤                            (33) 
with 

.2.0 and 4.0m 
,75.0 ,6.0

21

21

mmm
mMmM

==
==

. 

The pump 2P and the electro valve 2V are considered 

as perturbations which cannot be controlled. Hence 2P  

and 2V were opened and closed according to two 
Nearly Random Binary Sequences of length: 

]30 ,10[
2
∈Pl  and ]50 ,30[

2
∈Vl . 

The simulated hybrid system was identified by two 
MGAP-RBF neural networks using the proposed 
adaptive approach presented in section 2. Each neural 
network was used to identify the behavior of the liquid 
level in each individual tank by considering the 
following Nonlinear Auto-Regressive with eXegenous 
(NARX) input model structure: 

1,2i    ; ))(()( == txfty nii                          (34) 
where  

)]2( ),1(y           
),( ),1( ),( ),1(            
 ),( ),1( ),( ),1(            
 ),( ),1( ),( ),1([)(

i

3322

1133

2211

−−
−−
−−
−−=

tyt
tVtVtVtV
tVtVtPtP
tPtPtPtPtx

i

n

        (35) 

Thus, each neural network has 14 inputs which are 
associated with 6 binary inputs at two latest time 
instants of 1−t  and t  and one continuous liquid level 
output recorded at of 2−t  and 1−t  time instants. 

During the identification, the first data set called as 
the identification data set, containing N=5000 data, 
generated through the simulation experiment done by 
N. Messai et al.[6] was used in a sequential manner to 
emulate a real-time identification experiment. As a 
consequence, each MGAP-RBF neural network started 
without a priori knowledge about the network structure 
by setting the free-algorithm parameters at 9min =ε  
, 20max =ε , 9.50=k , 001.0min =e . 

The identification results have been illustrated in 
figures 2 and 3. Figures 2(a) and 3(a) show the 
measured and identified liquid levels. The analysis of 
these figures demonstrates the high accuracy of the 
identified models. Figures 2(b) and 3(b) show the error 
residuals which do not exceed 4% of the measured 
levels. Figures 2(c) and 3(c) illustrate the distributions 
of the resulting error residuals which can infer the high 
accuracy of the identified models. Figures 2(d) and 
3(d) show the time history of the hidden neuron 
evolution during the on-line identification for the two 
MGAP-RBF neural networks. As illustrated, the 
resulting network structures are quite simple and 
compact with 2 and maximum 4 neurons respectively. 

Comparing the obtained results with those recorded 
in [6] for the same hybrid system (shown in figures 4 
and 5 [10]), demonstrates the superiority of the 
proposed identification approach based on the 
following general observations: 

a. The proposed algorithm is simple and on-line 
without a priori knowledge while the approach 
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proposed in [6] is off-line and require dedicated       
methods to extract the required model structure 

b. The resulting models are very simple and 
compact. Each network uses 14 inputs with 
maximum 2 and 4 hidden neurons while the 
identified networks in [6] uses 21 input with 8 
hidden neurons. 

c. The obtained models have better accuracy in 
terms of error residuals or residual distributions. 
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Figure 2. Predicted and measured liquid 
level (a), identification residuals (b), 
distribution of the error residuals (c) and 
hidden neuron evolution (d) for 1st tank   
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Figure 3. Predicted and measured liquid 
level (a), identification residuals (b), 
distribution of the error residuals (c) and 
hidden neuron evolution (d) for 2nd tank   
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Figure 4. Predicted and measured liquid 
level (a), identification residuals (b) and 
distribution of the error residuals (c) for 
1st tank using feed forward NN 

3.2. Identification of a PWARX benchmark model  
 
The following PWARX model is considered [11]: 
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  (36) 

 
The input ku  and the noise ke are white noises 

generated from uniform distributions over the intervals 
[−5, 5] and [−0.1, 0.1], respectively. 200 data points 
are available as depicted in figure 6 [11]. 

We applied the bounded-error clustering-based 
identification algorithm [12] on this example. In order 
to compare the results, the predicted output of the 
identification together with error residuals are 
presented in figures 7a-7c. The predicted output and 
actual data are depicted in figure 7a, and the 
identification error with its distribution is shown in 
figures 7b and 7c, respectively. 
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Figure 5. Predicted and measured liquid 
level (a), identification residuals (b) and 
distribution of the error residuals (c) for 
2nd tank using feed forward NN  

 

 

Figure 6. Data points used for 
identification 
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Figure 7. Predicted and measured 
outputs (a), identification residuals (b) 
and distribution of the error residuals (c) 
using Clustering-Based Bounded-Error 
approach. 

1−ku  and 1−ky  are used as inputs of the MGAP-
RBF neural network. Identification is performed using 
just one hidden neuron and the identification error is 
very small compared to previous results (neglecting a 
few points, identification error is between -0.007 and 
0.007), as shown in figures 8a-8d. 

 

4. CONCLUSION 

In this paper, a new method for on-line 
identification of hybrid system by using the MGAP-
RBF neural network has been proposed. The proposed 
approach tested on two examples and the results are 
compared with some existing approaches which leads 
to the following observations: 

1. The proposed approach is an on-line identification 
method, while the considered approaches are off-
line. 

2. The MGAP-RBF neural network has an adaptive 
dynamic structure. 

3. The results show better accuracy in the identified 
models with simple network structures. 
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Figure 8. Predicted and measured 
outputs (a), identification residuals (b), 
distribution of the error residuals (c) and 
hidden neuron evolution (d). 
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