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Abstra
tThis Ph.D. thesis investigates morphologi
al quanti�
ation of the human 
erebral 
or-tex from magneti
 resonan
e images (MRI). Morphologi
al quanti�
ation of the 
erebral
ortex is important for understanding the manifestation and progression of neurodegenera-tive diseases su
h as Alzheimer's disease and su
h quanti�
ation are 
onsidered importantdisease markers and may aid in early diagnosis. The �rst part of the thesis deals withre
onstru
tion of the 
ortex from T1 weighted MRI. The se
ond part is 
on
erned withusing the 
orti
al morphologi
al measurements from the re
onstru
tions to 
ompare dif-ferent 
orti
es, and applying the quanti�
ation methods in a study of a neurodegenerativedisease. The thesis is based on �ve papers; three papers 
overing the �rst part and twopapers on the se
ond part.In paper I, the method for re
onstru
ting the 
orti
al boundaries as parametri
 sur-fa
es is presented. The entire pro
ess from s
anner images to 
orti
al thi
kness results isdes
ribed and test of the method on simulated MRI data, several young healthy individ-uals and a single Alzheimer's patient s
anned with an interval of six months is presented.The paper presents a novel 
ombination of a pressure for
e with a gradient ve
tor �ow ina deformable surfa
e model for modeling the outer 
orti
al boundary.In paper II, an improved surfa
e deformation pro
ess is presented. The energy fun
-tional des
ribed in the �rst paper is altered to express ve
tor for
es, and a lo
al weightingof for
es is introdu
ed to better adapt to the highly folded 
orti
al sheet. Test of themethod on simulated MRI is reported and it is shown to be more a

urate than ap-proa
hes without the lo
al weighting strategy. The main 
ontribution of the paper is adeformation approa
h free of sear
h spa
es and a novel 
urvature in�uen
ed weighting ofthe terms in the energy fun
tional.Paper III des
ribes the 
omparison of the developed method with the 
ortex extra
tionmethod used the most in the literature. The 
omparison is based on phantom MRI images
onstru
ted from 
orti
al surfa
es extra
ted from real MRI images. In this way, groundtruth 
orti
al boundaries are 
reated and the geometri
al error of the 
ortex re
onstru
-tions 
an be quanti�ed. The paper reports that the developed method is re
onstru
ting the
orti
al surfa
es with a subvoxel a

ura
y and that it performs better than the 
ompetingmethod in most of the tests while being mu
h faster.In paper IV, the problem of 
omparing di�erent 
orti
es is addressed. A proposed fea-ture driven 
orti
al mapping algorithm is presented together with tests of it and four othermapping algorithms: a feature driven approa
h, two spheri
al mapping approa
hes, anda basi
 iterative 
losest point algorithm. The algorithms are evaluated with 
onstru
ted
riteria for a good mapping, a landmark test using manually pla
ed landmarks and ananalysis of statisti
al maps generated by the results of the algorithms. It is demonstratedthat ea
h method has its strengths and weaknesses and no single method performs betteron all 
riteria and for all purposes. However, it is indi
ated that a 
ombination of someof the evaluated algorithms 
ould be a promising approa
h.Paper V reports the results of applying the developed methods to identify 
orti
alstru
tural 
hanges in individuals with a familial variant of frontotemporal dementia. Ninepresymptomati
 individuals 
arrying the disease mutation are 
ompared to seven individ-uals from the same family without the mutation. The study is based on two serial MRIiii



s
ans of ea
h individual and annualized atrophy rates are 
al
ulated. Both volumetri
and thi
kness measurements show that the presymptomati
 mutation 
arriers degeneratefaster than the healthy 
ontrols. The thi
kness measurements have a higher sensitivitythan the volumetri
 measurements and they are able to dete
t the fo
al di�eren
es be-tween the two groups. Furthermore, the involved 
orti
al areas are linked to symptomsobserved in 
lini
al frontotemporal dementia patients and support the pathogeni
ity ofthe mutation.The work presented in the thesis demonstrate that it is possible to dete
t subtle mor-phologi
al 
hanges in the human 
erebral 
ortex with MRI, and suggest that the goal ofusing morphologi
al disease markers in improving diagnosis of neurodegenerative diseasesis attainable.

iv



Dansk Resumé (Danish Abstra
t)Denne Ph.D. afhandling omhandler morfologisk kvanti�
ering af den menneskelige hjerne-bark fra magnetisk resonans skanning (MRS). Morfologisk kvanti�
ering af hjernebarkener vigtig for forståelsen af hvordan neurodegenerative sygdomme som Alzheimers syg-dom manifesterer sig og udbredes i hjernen. Det vurderes at sådan kvanti�
ering kanidenti�
ere sygdomsmarkører og kan bidrage til tidligere diagnose af neurodegenerativesygdomme. Første del af afhandlingen omhandler rekonstruktion af hjernebarken fra T1vægtet MRS. Anden del fokuserer på at anvende rekonstruktionerne af hjernebarken tilat kvanti�
ere morfologien og sammenligne forskellige hjernebarker, og kvanti�
eringsme-toderne anvendes i et studie af en neurodegenerativ sygdom. Afhandlingen er baseret påfem artikler; tre artikler dækker første del og to omhandler anden del.I artikel I præsenteres metoden til rekonstruktion af hjernebarkens vævsgrænser somparametriske over�ader. Hele pro
essen fra skannerbilleder til måling af hjernebarkenstykkelse er beskrevet og metoden testes på simuleret MRS data, unge raske individer ogen enkelt Alzheimers patient skannet med seks måneders mellemrum. Artiklen præsentereren tryk kraft kombineret med en gradient vektor kraft i en deformérbar over�ademodel tilmodellering af hjernebarkens ydre vævsgrænse.I artikel II præsenteres en forbedret deformeringspro
es. Energifunktionen beskreveti artikel I er forandret så der udtrykkes vektorkræfter, og en lokal vægtning af kræfterneintrodu
eres for bedre tilpasning til hjernebarkens meget foldede struktur. Metoden testespå simulerede MRS og det vises at den er mere nøjagtig end metoder uden lokal vægtningaf kræfterne. Hoved-bidraget i artiklen er en deformeringsmetode uden søgerum og enunik vægtning af termerne i energifunktionen baseret på over�adens krumning.I artikel III sammenlignes den udviklede metode med den i litteraturen mest benyttederekonstruktionsmetode. Sammenligningen er baseret på fantom MRS billeder konstrueretfra over�ader af hjernebarken udtrukket fra rigtige skanninger. På denne måde genereresder data hvor den sande hjernebark er kendt og geometriske fejl i rekonstruktionerne kanmåles. Artiklen viser at den udviklede metode har en nøjagtighed bedre end opløsningenaf billederne, og at metoden er mere nøjagtig og hurtigere end den konkurrerende metode.Artikel IV tager sig af problemet med at sammenligne forskellige hjernebarker. Enmetode til at referere mellem hjernebarker, som er baseret på sammenligning af ge-ometriske features, præsenteres og testes sammen med �re andre referen
emetoder; enanden feature baseret algoritme, to algoritmer der refererer til en kugle, og en simple it-erativ nærmeste punkt algoritme. Algoritmerne evalueres med opstillede kriterier for engod referen
e, en test med manuelt pla
erede �kspunkter, samt en analyse af statistiskeover�adekort genereret på baggrund af algoritmernes resultater. Det demonstreres at hvermetode har sine styrker og svagheder, og at en enkelt metode ikke kan foretrækkes fremfor en anden til alle formål på baggrund af de opstillede kriterier. Det antydes at enkombination af nogle af metoderne synes at være en lovende løsning på problemet.Artikel V rapporterer resultaterne af at anvende de udviklede kvanti�
eringsmetodertil at identi�
ere strukturelle forandringer i hjernebarken i individer fra en familie meden nedarvet variant af frontotemporal demens. Ni præsymptomatiske bærere af sygdoms-genet er sammenlignet med syv individer uden sygdommen fra samme familie. Studiet erbaseret på to serielle skanninger af hvert individ, og atro�rater kan dermed beregnes. Bådev



volumetriske målinger og målinger af hjernebarkens tykkelse viser at de præsymptomatiskesygdomsbærere degenererer hurtigere end de raske kontrolpersoner. Tykkelsesmålingernehar en højere sensitivitet end de volumetriske målinger, og disse muliggør detektering affokale forskelle de to grupper imellem. De involverede områder i hjernebarken kan henførestil symptomer observeret i kliniske patienter med frontotemporal demens og understøtterdermed patogeni
iteten af sygdomsmutationen.Forskningen præsenteret i denne afhandling demonstrerer at det er muligt at detek-tere små morfologiske forandringer i den menneskelige hjernebark fra strukturel MRS, ogsandsynliggør at morfologiske sygdomsmarkører kan benyttes til at forbedre diagnosen afneurodegenerative sygdomme.

vi
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Prefa
eThe 
ontent of this Ph.D. thesis is based on �ve papers written during the period ofJanuary 2005 to June 2008. Four papers were a

epted for presentation at the following
onferen
es:
• SPIE Medi
al Imaging 2005 - International So
iety for Opti
al Engineering, Medi
alImaging 
onferen
e in San Diego, USA, February 2005. Full papers (12 pages) werea

epted on the basis of peer reviewed extended abstra
ts (4 pages).
• MICCAI 2006 - Medi
al Image Computing and Computer-Assisted Intervention 
on-feren
e in Copenhagen, Denmark, O
tober 2006. 232 full papers (8 pages) weresele
ted from 578 submissions based on peer reviews, a

eptan
e rate: 40.1%. Pro-
eedings are published in Le
ture Notes on Computer S
ien
e.
• MICCAI 2007 - Medi
al Image Computing and Computer-Assisted Intervention 
on-feren
e in Brisbane, Australia, O
tober-November 2007. 237 full papers (8 pages)were sele
ted from 637 submissions based on peer reviews, a

eptan
e rate: 37.2%.Pro
eedings are published in Le
ture Notes on Computer S
ien
e.
• SIBGRAPI 2008 - The XXI Brazilian Symposium on Computer Graphi
s and ImagePro
essing in Campo Grande, Mato Grosso do Sul, Brazil, O
tober 2008. 38 full pa-pers (8 pages) were sele
ted from 107 submissions based on peer reviews, a

eptan
erate: 35.5%. Pro
eedings are published by IEEE CS Press.The last paper has been a

epted by the journal NeuroImage and is 
urrently in press.NeuroImage 
ommuni
ates �important advan
es, using imaging and modelling te
hniquesto study stru
ture-fun
tion relationships in the brain.� NeuroImage has an impa
t fa
torof 5.5 (2007).Ea
h paper is inserted into the thesis as a 
hapter only 
hanging the layout and remov-ing the abstra
t 
ompared to the publi
ation/submission. In addition to the �ve papers,the thesis 
ontains a general introdu
tion and dis
ussion of the subje
t going into detailsnot 
overed by the papers. Referen
e listings are 
ontained within ea
h 
hapter.The algorithms developed and presented during the thesis have been implementedusing the freely available software and programmer's interfa
e MINC, whi
h is availablefrom http://www.bi
.mni.m
gill.
a/software/ Simon Fristed EskildsenAalborg, July 2008
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Chapter 1Introdu
tion1.1 Ba
kgroundMagneti
 resonan
e imaging (MRI) emerged in the seventies [68, 80℄ and in the eightiesthe te
hnology was introdu
ed for 
lini
al purposes [33℄. Today, MRI is widely used forstru
tural and fun
tional imaging as well as for spe
tros
opy. Unlike other te
hnologiesbased on x-rays or ultra-sound, MRI has the ability to distinguish soft tissues based onmagneti
 properties of atomi
 nu
lei and this has revolutionized the �eld of stru
turalmedi
al imaging of the inner organs. Continuing improvement of MRI regarding imageresolution and 
ontrast has pushed the level of detail for visualization of the anatomy andimages with sub-millimeter resolution are now 
ommon. Espe
ially within the �eld of neu-rology, MRI has brought important new perspe
tives into understanding and diagnosingvarious diseases and disorders of the 
entral nervous system as detailed visualization ofthe brain tissues is possible. Many neurologi
al diseases and disorders are manifested inMRI visible pathologies of the 
erebral anatomy.Sin
e the introdu
tion of stru
tural MRI in the �eld of neurology, in
reasing e�orthas been put into quanti�
ation of the imaged anatomi
al stru
tures. In addition tophysi
ians' qualitative and subje
tive assessments in 
lini
al pra
ti
e, resear
h has pushedthe need for standardized quantitative data to 
ompare brain images a
ross patients andimaging equipment, understand disease e�e
ts and progression and formalize diagnosti

riteria based on the imaging data. One way to quantify an anatomi
al stru
ture is bydelineation of its boundaries. Proto
ols for manual delineations of anatomi
al stru
tureboundaries are widely used [101, 116℄ and sin
e the early nineties spe
i�
 attention hasbeen given to 
omputerization and automation of stru
tural quanti�
ation for 
onsisten
yand pre
ision improvement and human workload minimization.Pathologi
al 
onditions of both the 
erebral gray matter (GM) and the 
erebral whitematter (WM) have been intensively investigated. The GM is primarily 
omposed of neu-rons and holds fun
tional areas 
ontrary to the 
erebral WM whi
h is 
omposed of signaltransmitting myelinated axons. Many neurologi
al disorders are linked to degenerationof the neurons, while others are due to 
hroni
 damage to the brain tissues. Important
hroni
 neurologi
al disorders a�e
ting the 
erebral tissues in
lude epilepsy and mentaldisorders su
h as s
hizophrenia. Some neurodegenerative diseases su
h as multiple s
le-rosis primarily a�e
t the WM while most neurodegenerative diseases primarily a�e
t theGM. An important 
lass of neurodegenerative diseases a�e
ting the GM is dementias su
has Alzheimer's disease (AD) whi
h is re
ognized as one of the major health 
hallengesof this 
entury be
ause of the growing elderly population [11℄. Pathologi
al GM regionsare mainly found in the 
erebral 
ortex, the largest part of the human brain. Regions ofextensive resear
h are the hippo
ampal formation and neo
orti
al regions.Hippo
ampus is part of the limbi
 system and primarily involves memory formations.It is a�e
ted in diseases su
h as s
hizophrenia, temporal lobe epilepsy (TLE) and various1



Chapter 1: Introdu
tion 2neurodegenerative diseases. In TLE, the hippo
ampal size and shape play 
riti
al rolesin the diagnosis and assessment of need for surgi
al intervention and for these reasonsmeasurement of the hippo
ampus is used in 
lini
al pra
ti
e. Be
ause of the stru
tural
ompa
tness and limited size of the hippo
ampus, it is possible to quantify the stru
tureby manual delineation of the boundaries dire
tly on the images. Various neurodegenera-tive diseases su
h as AD, vas
ular dementia, and Parkinson's disease 
ause hippo
ampalatrophy [12, 65, 67℄. However, hippo
ampal volume estimates are not used in the 
lini-
al diagnosis of these patients despite existing eviden
e that hippo
ampal volume is animportant 
lini
al marker in these diseases and may aid in earlier diagnosis 
omparedto diagnosti
 
riteria only based on neuropsy
hologi
al tests [18℄. A reason for this isthat, 
ontrary to TLE, 
hanges in the hippo
ampal stru
ture are not spe
i�
 for theseneurodegenerative diseases as more information is needed to di�erentiate between the di-agnoses. Studies indi
ate that a 
ombination of 
hanges found in the hippo
ampus andthe neo
ortex may provide better di�erentiation [18℄. Despite the small and 
on�ned sizeof the hippo
ampus, no globally a

epted 
onsensus on the manual delineation yet ex-ists [78℄. Even if operators follow the same segmentation proto
ol, signi�
ant inter- andintra-operator variability in the resulting hippo
ampal volume is observed [55℄. This makeshippo
ampal measurements di�
ult to 
ompare a
ross studies and 
ompli
ates statisti
sbased on su
h measurements.The neo
ortex is a tightly folded sheet of tissue 
overing the 
erebral hemispheres.Neo
ortex is relatively thin (2-3 mm) 
ompared to its area (2000-2500 
m2) and holds themajority of the brain's fun
tional areas su
h as visual, sensory and auditory pro
essingand interpretation, motor 
ontrol and 
ognition [44℄. In some diseases, e.g. frontotemporaldementia, the primary stru
tural 
hanges are found in the neo
ortex, thus rendering thisanatomi
al stru
ture an important 
lini
al marker [96℄. The asso
iation neo
ortex is alsoinvolved in early AD and this involvement of neo
ortex di�erentiates AD from normalaging a

ording to histopathologi
al studies [18℄. However, as with the hippo
ampus,neo
orti
al stru
tural 
hanges are rarely used in the diagnosis of neurodegenerative diseasesand MRI s
ans are usually only a
quired to rule out di�erential diagnoses su
h as tumorsor other brain damage when diagnosing a suspe
ted dementia [100℄.Many of the neurodegenerative diseases a�e
ting the 
erebral 
ortex are di�
ult todiagnose be
ause of their overlapping symptoms and insidious onset. This is the 
aseespe
ially for dementias and as only symptomati
 and disease stalling treatment 
an beo�ered, early and 
orre
t diagnosis is 
riti
al [45℄. Corti
al atrophy is seen as one pos-sible marker in early dementia [93℄. Widespread 
orti
al atrophy 
an be observed fromMRI images, often manifested in enlarged ventri
les, but it is not 
learly present in theearly stages of neurodegenerative diseases. The subtle fo
al 
hanges related to the earlystages of neurodegenerative diseases, as revealed by detailed stru
tural MRI, have beenextensively resear
hed for the purpose of early dete
tion, thus aiding in early diagno-sis [3, 7, 12, 15, 16, 18, 37, 46, 56�58, 65, 67, 92, 96, 100, 117℄. Dete
tion of su
h fo
al 
orti
al
hanges o

urring in larger 
orti
al areas seems highly impra
ti
al in the 
lini
 using 
on-ventional manual delineations when 
onsidering the limited 
lini
al use of hippo
ampalquanti�
ation. Therefore, robust, automati
 delineations or segmentations of the 
erebral
ortex may be the only way to integrate knowledge of subtle stru
tural 
hanges in theearly diagnosis of neurodegenerative diseases.In addition to aiding in patient diagnosis, automati
 methods for quantifying 
erebralstru
tures bring the possibility of performing large s
ale 
ohort studies when investigat-ing the stru
tural manifestations of various brain diseases. Furthermore, standardizedquanti�
ations may aid in validating pharma
euti
als targeted to stop or redu
e 
erebralatrophy and may even speed up the pro
ess of 
lini
al trials. In re
ognition of these impor-tant perspe
tives, numerous automati
 or semi-automati
 methods have been developedfor quantifying the stru
tures of the human 
erebral 
ortex.



3 1.2 Quanti�
ation of Corti
al Stru
tures1.2 Quanti�
ation of Corti
al Stru
turesTraditionally, stru
tural brain imaging has been applied to dete
t pathologies readily vis-ible in the images. Pathologi
al 
onditions su
h as tumors, hemorrhages and is
haemiaare usually dis
overed by a single MR s
an while tissue in the pro
ess of neurodegen-eration may not be dete
table from a single s
an. Be
ause of the large variability ofthe normal brain, the subtle 
hanges o

urring in the early stages of neurodegenerativediseases require serial s
ans to follow the progression and dete
t the pathologi
al tissue.However, with the in
reasing knowledge of the alterations to the brain tissues 
aused byvarious neurodegenerative diseases, disease spe
i�
 atrophy patterns or signatures may berevealed in the future whi
h enables dete
tion of early atrophy from a single s
an [118℄.Therefore, resear
hers are working toward a goal of di�erentiating between di�erent neu-rodegenerative diseases by 
orti
al atrophy patterns and identifying 
lini
al markers to aidin early diagnosis. Rea
hing this goal involves a

urately measuring subtle morphologi
al
hanges, identifying similar patterns of atrophy in population groups, and �nally applyingthe quanti�
ation methods in 
lini
al studies.To e�e
tively measure subtle morphologi
al 
hanges and di�eren
es in the 
erebral
ortex, 3D T1 weighted high resolution images are needed [4℄ and are usually a
quired bygradient e
ho sequen
es. Voxel sizes around one 
ubi
 millimeter are 
ommon and imageswith high tissue 
ontrast are generated with at least 1.5 Tesla s
anners. 3 Tesla s
annersare in
reasingly be
oming available in hospitals [90℄.Even though MRI 
an 
apture the 
erebral anatomy in high detail and with ex
el-lent 
ontrast, the morphologi
al quanti�
ation is 
ompli
ated by fa
tors related to noise,distortion and other artifa
ts found in MRI [119℄. Corti
al morphologi
al quanti�
ationis further 
ompli
ated by the 
omplex stru
ture and proximate obje
ts with overlappingimage intensities su
h as the dura mater and larger veins.A proliferation of methods to quantify di�eren
es and 
hanges in the 
erebral 
ortexhas been seen during the last twenty years. The methods apply a variety of te
hniquesand a taxonomy of the methods 
an be 
onstru
ted based on these te
hniques [107℄. Herethe fo
us is on three main 
ategories in whi
h most work on 
orti
al quanti�
ation fall:1) methods that perform segmentation of the 
ortex by labeling the image voxels (regionbased), 2) methods that quantify 
hanges in intensity between s
ans (morphometry based)and 3) methods that integrate knowledge of the underlying anatomy to re
onstru
t thetissue boundaries (surfa
e based).1.2.1 Region Based Approa
hesA 
lassi
al way of quantifying stru
tures in images is segmentation of the obje
t of inter-est. Region based approa
hes operate in the image domain analyzing the intensity valuesand perform dis
rete morphologi
al operations to identify stru
tures. Segmentation isperformed by labeling ea
h pixel or voxel in the image as belonging to di�erent 
lasses(di�erent obje
ts of interest). Stru
tural quanti�
ations are usually based on voxel 
ounts(volumetri
 measurements).Conventional image segmentation te
hniques in
lude thresholding, region growing and
lustering algorithms. However, when analyzing biologi
al images su
h simple approa
hesare rarely su�
ient. Within the �eld of neuro imaging, more 
omplex segmentation so-lutions have therefore been proposed. Here three 
ategories of segmentation approa
hesare 
overed: region of interest segmentation, atlas based methods and segmentation ap-proa
hes based on tissue 
lassi�
ation.Region of InterestRegion of interest (ROI) methods 
ompute an overall size for ea
h brain stru
ture basedon segmentations. Conventional segmentations involve manual delineations of tissueboundaries in 
onse
utive sli
es of an MRI s
an [56�58℄. Su
h delineations of tissue



Chapter 1: Introdu
tion 4boundaries are laborious and subje
t to inter-operator variability [30℄. However, semi-automated [92,125℄ and fully automated [51�53,89℄ methods have been proposed, but theseare not widely used [3℄. Other ROI methods use stereology to quantify the stru
ture [26℄.Volume estimates from ROI analysis 
an provide valuable insight into neurodegenerativediseases, but in the early stages of neurodegenerative diseases, 
hanges in overall volumeare minimal [4℄ and the subtle 
hanges in subregions of the ROI may be overlooked. ROIanalysis is mainly applied in quanti�
ation of relatively small 
on�ned stru
tures su
h asthe hippo
ampus, the 
audate nu
leus and the entorhinal 
ortex as these are of a manage-able size but still re
ognized as important surrogate markers for several neurodegenerativediseases [92℄.Apart from human intera
tion related problems of manual or semi-automated methods,the fo
us on a single stru
ture ignores 
hanges in other stru
tures and may forestall newinsight into the pathology of neurodegenerative diseases [3℄.Atlas BasedAtlas based approa
hes 
o-register the subje
t image with a template 
ontaining prede-�ned target regions of interest (atlas) so that segmentation of the target regions 
an beobtained by mapping atlas regions to the subje
t image. Su
h an approa
h is depen-dent on the registration te
hnique used, the template sele
ted and the atlas applied forthe segmentation. Numerous registration methods exist [77, 128℄, as image registration isintensively resear
hed and driven by a wide range of appli
ation areas.Usually a brain template is the average of a large sample of spatially aligned images.Su
h an average has well-de�ned image edges of morphologi
ally invariant stru
tures whilestru
tures with greater variation, su
h as the 
orti
al regions, are usually blurred in thetemplate image. Morphologi
al variations 
an be redu
ed by generating templates basedon high dimensional non-linear registrations, thus resulting in averages with more well-de�ned image edges. However, removing morphologi
al variations may lead to alignmentswhere the images no longer are anatomi
ally 
onsistent. Several groups have developedand re�ned MRI brain templates and atlases [32, 34, 39℄.Choi
e of template is important for the subsequent segmentation [95℄. If the subje
tsunder study are homogeneous with respe
t to fa
tors su
h as age and disease stage, itmay be preferred to use an image from the target population as template instead of anaverage template from a broader population [16℄. In su
h 
ases, manual intervention isneeded to de�ne the regions of interest in the template. Problems with artifa
ts and poorsignal-to-noise of a single image 
an be solved by repeated imaging and averaging of thesame subje
t [54℄.Atlas based approa
hes are well-suited for quanti�
ation of regions with little mor-phologi
al variation. However, in the 
ase of the 
erebral 
ortex it is di�
ult, if notin
on
eivable, to 
reate a template representative of the great variation in 
orti
al foldingpatterns.Tissue Classi�
ationTissue 
lassi�
ation of the 
orti
al GM provides means for measuring the 
orti
al volume.Usually, a 
lassi�
ation into WM, GM, and 
erebrospinal �uid (CSF) is performed. Inorder to a

omplish su
h 
lassi�
ation, non-
erebral tissues are usually removed prior to
lassi�
ation. A variety of 
lassi�
ation methods have been proposed based on Bayesiananalysis [81℄, 
lustering [86℄, fuzzy 
lassi�
ation [112℄, neural networks [114℄, deterministi
annealing [40℄, Markov Random Fields [98℄ and 
ombinations [8℄.Other methods for 
orti
al GM 
lassi�
ation have been proposed. Bazin and Phamproposed a method that enfor
es a given topology on the target stru
ture whi
h preventsholes and handles from o

urring in the segmentation [10℄. Su
h topologi
al in
onsisten
iesare often seen in 
onventional 
lassi�
ation methods due to image noise. Angelini et al.used a deformable model to segment the brain into WM, GM and CSF [2℄. As des
ribed



5 1.2 Quanti�
ation of Corti
al Stru
tureslater on, deformable models are often used to re
onstru
t the 
orti
al surfa
e; however,this approa
h uses a level set frame work solely for voxel 
lassi�
ation.Tissue 
lassi�
ation of voxels in the image is limited by the image resolution so partialvolume e�e
ts in�uen
e the segmentation. Furthermore, 
lassi�
ation of the 
orti
al GMonly provides global measures of di�eren
es in the 
orti
al volume. For measuring fo
ale�e
ts regional subdivisions are needed. This involves manual delineations or 
ombinationwith an atlas te
hnique.Dis
ussion of Region Based Approa
hesRegion based approa
hes for quanti�
ation of the 
erebral 
ortex all have problems at-ta
hed: ROI analysis requires human intera
tion whi
h is laborious and prone to errorsand variability. Model and atlas based approa
hes have di�
ulties 
apturing the wide mor-phologi
al variety of the human 
ortex. Tissue 
lassi�
ation only provides global measuresof 
orti
al volume di�eren
es.Generally, methods resulting in voxel based segmentation su�er a number of problemsregardingmorphologi
al quanti�
ation. Firstly, the segmentations are limited by the imageresolution so only stru
tural 
hanges of voxel size proportions 
an be dete
ted. Se
ondly,morphologi
al 
hara
teristi
s su
h as 
urvature and thi
kness are di�
ult to 
apture fromsimple 
onne
ted segmentations. This is even more 
ompli
ated for the 
orti
al stru
turebe
ause of its tightly folded appearan
e. Corti
al thi
kness estimates have been proposedusing a segmentation method propagating out distan
e values from the WM 
omponentuntil the GM/CSF interfa
e is rea
hed [73℄. However, partial volume e�e
ts 
ompli
atethe dete
tion of GM/CSF image edges and often subvoxel a

ura
y is needed to identifysubtle tissue di�eren
es.1.2.2 Morphometry Based Approa
hesMorphometry based approa
hes analyze the intensity di�eren
e between serial images orbetween an image and a template. Su
h approa
hes rely on registration te
hniques tospatially align images. Three types of intensity di�eren
e based methods have been devel-oped for quanti�
ation of 
erebral stru
tures. Two approa
hes dire
tly measure di�eren
esin intensity while one analyzes the deformation �eld involved in the spatial alignment ofimages.Intensity Shift Approa
hesIntensity shift approa
hes 
ompute brain volume 
hange by quantifying the di�eren
e inimage intensity between spatially aligned serial MRI s
ans in longitudinal studies. Usuallyonly whole brain volume 
hange is measured automati
ally; regional atrophy is determinedby manually de�ned regions. Two intensity shift methods are popular, namely the bound-ary shift integral (BSI) [38℄ and stru
tural image evaluation using normalization of atrophy(SIENA) [103℄.BSI uses a rigid transformation in the alignment and intensities are normalized to
ompare follow-up s
ans with the baseline s
an. The method quanti�es the shift in tissueboundaries by integrating over the di�eren
e in image intensities.SIENA 
orre
ts for skull size in the registration pro
edure whi
h results in a full a�netransformation and resamples both baseline and follow-up s
ans to obtain images withsimilar interpolation-related blurring. SIENA identi�es edge points in both images andestimates the motion of ea
h point perpendi
ularly to the lo
al edge. This redu
es thesensitivity to intensity normalization.Both BSI and SIENA have been shown to provide reasonably a

urate measures ofbrain atrophy [14℄ and to be 
apable of separating AD patients from healthy 
ontrols[46℄. However, whole brain measures are insu�
ient for determining subtle 
hanges in theearly stages of neurodegenerative diseases and regional measures using these methods are
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tion 6dependent on manual intervention. Furthermore, these methods are dependent on serials
ans whi
h indu
e diagnosis delay [4℄.Intensity shift approa
hes are highly dependent on the registration and normaliza-tion of intensities whi
h is 
ompli
ated by 
ommon intensity non-uniformities 
aused byinhomogeneities in the radio frequen
y �eld 
oil [127℄ and other artifa
ts [119℄.Voxel Based MorphometryVoxel based morphometry (VBM) performs voxel-wise 
omparisons between spatiallyaligned MRI s
ans of subje
t groups enabling identi�
ation of in
reased or de
reasedGM density throughout the entire brain [5, 120℄. The spatial alignment involves 
lassi�-
ation of GM, WM and CSF. The GM map is non-linearly registered to a template andgroup averages are 
al
ulated and spatially smoothed with a �lter. Group di�eren
es and
orrelations with 
lini
al parameters are estimated by �tting a statisti
al model at ea
hvoxel [3℄.The a

ura
y of VBM depends on the registration te
hnique used and anatomi
aldi�eren
es may be inferred by systemati
 registration errors or by systemati
 shifts inuna�e
ted regions 
aused by 
hanges in a�e
ted regions [13,110℄. To address these issues,information of the deformations (expansions or 
ontra
tions) involved in the registrationis en
oded in the aligned GM map [43℄. This approa
h is 
alled optimized VBM.A similar approa
h, 
alled regional analysis of volumes examined in normalized spa
e(RAVENS), has been proposed [29,30,42℄. RAVENS use a high-dimensional elasti
 trans-formation driven by point 
orresponden
es in the spatial normalization pro
ess while opti-mized VBM relies on relatively smoother parametri
 transformations [4,30℄. The informa-tion of the deformation �eld is en
oded in the aligned map thus preserving tissue volumesof the original image similar to optimized VBM [30℄.VBM analysis has been applied in numerous studies of 
erebral disorders [62, 117℄,normal brain development and aging [104℄ and other non-pathologi
al investigations [25,82, 88℄.VBM te
hniques are 
riti
ized for being too reliant on a perfe
t registration and doubt-ful assumptions in the statisti
al model [110℄. Another issue is that VBM does not a

ountfor the 
orti
al folds whi
h means that small e�e
ts of opposing sul
al walls may give riseto an a

umulated signi�
ant e�e
t when averaging the GM maps [3, 36℄.Tensor Based MorphometryTensor based morphometry (TBM) analyzes the deformation �eld involved in high-dimensional non-linear mapping of serial intra-subje
t images [6, 19℄. Using the determi-nant of the Ja
obian matrix asso
iated with the deformation �eld, lo
al tissue expansionand shrinkage 
an be identi�ed and the Ja
obian maps 
an be used to quantify intra-subje
t longitudinal e�e
ts and di�eren
es between subje
t groups. Expressing the tissueexpansion and shrinkage by the Ja
obian maps removes dire
tional information of atrophywhi
h may be non-isotropi
. New methods use the full dimensionality of the deformationtensors and 
an better dete
t and visualize fo
al areas of atrophy [3℄.TBM has been used in di�erent areas su
h as studying the developing human brain [21℄,visualizing the atrophy pattern in patients with AIDS [19℄ and measuring degeneration inAlzheimer's disease [37℄ and fronto-temporal lobar degeneration [7, 15, 105℄.The a

ura
y of TBM depends on the applied registration method and 
orti
al foldingpatterns are not a

ounted for.Dis
ussion of Morphometry Based Approa
hesMorphometry based approa
hes address the problem of the limited resolution as sub-voxel 
hanges of the stru
tures 
an be seen as 
hanges in voxel intensity. However, su
h
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ation of Corti
al Stru
turesapproa
hes have other problems atta
hed regarding the morphologi
al quanti�
ation. In-tensity shift analysis measures whole brain 
hanges whi
h is insensitive to subtle 
orti
al
hanges found in the early stages of many neurodegenerative diseases. Furthermore, thesemethods are very reliant on intensity normalization and registration performan
e whi
hmay introdu
e un
ertainties in the measurements. Also VBM and TBM are relying on thequality of image registration and they further la
k the ability to distinguish e�e
ts fromopposing walls of tight sul
i.1.2.3 Surfa
e Based Approa
hesSurfa
e based approa
hes model the 
orti
al sheet with 2D manifold surfa
es embeddedin 3D, thus aiming at modeling the underlying anatomy. This relaxes the restri
tions im-posed by the limited image resolution and enables in
orporation of anatomi
al knowledge.Furthermore, surfa
e based approa
hes are potentially independent of image registrationand intensity normalization. Finally, su
h approa
hes allow for distinguishing opposingwalls of sul
i due to the expli
it re
onstru
tion of the 
orti
al sheet.Apart from morphologi
al quanti�
ation purposes, surfa
e based re
onstru
tion of the
erebral 
ortex has appli
ation within fun
tional brain imaging for mapping a
tivity ontothe 
orti
al surfa
e [109℄ and within neuro-surgery for preoperative planning, postoperativeevaluation and surgery simulation. Also, visualizations of the buried 
orti
al regions arepossible by 
orti
al unfolding [36℄, as well as assignment of anatomi
al labels to the 
orti
alGM [99℄. In addition to visualization purposes, surfa
e re
onstru
tions provide the meansfor 
reating surfa
e based atlases where anatomi
al and fun
tional regions 
an be de�nedin a 
anoni
al spa
e, thus 
omplementing the widely a

epted volumetri
 
oordinate spa
esand atlases [36℄.As the human 
erebral 
ortex is a 
omplex, highly 
onvolved sheet-like stru
ture, themodeling of the stru
ture using surfa
es is 
hallenging. In MRI, the 
orti
al boundariesare often obs
ured or partly missing be
ause of noise, inhomogeneity artifa
ts and partialvolume e�e
ts originating from the a
quisition [119℄. Opposite banks of tight sul
i on theouter boundary may meet inside the sul
al folds and appear as 
onne
ted in MRI. Surfa
emodeling 
an 
ompensate for obs
ured and in
omplete image edges. However, in MRI,information on the outer 
orti
al boundary may be 
ompletely missing in several tightsul
i and at the top of gyri the boundary may be obs
ured by meninges and dura mater
lose to the 
ortex. Furthermore, issues 
on
erning the topology of the 
orti
al sheet areunavoidable be
ause of the inherent noise in MR images.The ideal surfa
e modeling of the 
erebral 
ortex must align with the true underly-ing anatomi
al boundaries of the 
ortex and respe
t the true 
orti
al topology whi
h isspheri
al if 
losed at the brain stem [48℄. To a
hieve these properties, a proliferation ofmethods for modeling the 
erebral 
ortex with surfa
es has been proposed during the lastde
ade. One way of re
onstru
ting the 
ortex is using deformable models where a 
on-tour or surfa
e is manipulated to �t target image boundaries. Usually, approa
hes basedon deformable models implement either a variant of the 
lassi
al a
tive 
ontours [23, 61℄;parametri
 deformable models or a variant based on geometri
 deformable models [87,97℄.Other approa
hes for 
orti
al re
onstru
tion by surfa
es usually apply voxel based te
h-niques in 
ombination with iso-surfa
e algorithms su
h as Mar
hing Cubes [74℄.A 
ommon trait of deformable models is that an initial 
ontour or surfa
e is evolvedtoward target boundaries. In parametri
 deformable models, the initial 
ontour or surfa
ekeeps the same topology during deformation. This is espe
ially useful when the targetstru
ture has a known topology. Geometri
 deformable models have the ability to 
hangetopology and adapt to the topology of the target stru
ture. This is advantageous in manysegmentation problems, however, when the target stru
ture has a known topology it is adistin
t disadvantage not having a �xed topology during surfa
e evolution. This drawba
kis espe
ially pronoun
ed when geometri
 deformable models are applied to noisy imagesas found in MRI.
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tion 8Usually the 
ontour or surfa
e is initialized 
ompletely inside or 
ompletely outside thetarget boundary and uses in�ation or 
ontra
tion to approa
h the target boundary in aniterative manner. The main di�
ulty in 
orti
al re
onstru
tion lies in 
orre
tly modelingthe tightly folded sul
i. Methods initializing a surfa
e outside the 
ortex have problemspenetrating the sul
i and rea
hing their fundi. The GM/WM boundary is easier to dis
ernin MRI be
ause these image edges, 
ontrary to the GM/CSF boundary, are una�e
ted bythe tight folds and proximate dura mater. Therefore, several methods utilize information ofthe GM/WM boundary to dete
t the GM/CSF boundary as the 
ortex 
an be 
onsideredas a 
ontinuous laminar stru
ture with smoothly varying thi
kness.Methods for surfa
e re
onstru
tion of the 
erebral 
ortex have been developed sin
ethe early nineties and many resear
h groups have 
ontributed to the �eld. The followingdes
ribe a sele
tion of these 
ontributions using parametri
 and geometri
 deformablemodels as well as other surfa
e based approa
hes for re
onstru
ting or quantifying the
erebral 
ortex.Parametri
 Deformable ModelsParametri
 deformable models are originating from the so-
alled snake formulation by Kasset al. [61℄. The basi
 method des
ribes a parametri
 2D 
ontour in�uen
ed by internalspline for
es and external image and 
onstraint for
es. A fun
tional expressing the energyof the snake was iteratively minimized to obtain the lo
ation of the 
ontour with the lowestenergy, thus resulting in a segmentation of the image. Cohen and Cohen introdu
ed anin�ation for
e to the a
tive 
ontour [22℄ and extended it to 3D and so named it a balloonmodel [23℄.Davatzikos and Prin
e proposed to model the 
orti
al sheet by a ribbon model where a2D 
ontour was �tted to the 
enter of the 
orti
al sheet using the homogeneity of intensitylevels within the GM [31℄. Davatzikos and Bryan extended the ribbon model to 3D withinitialization outside the brain [28℄. Vaillant and Davatzikos further re�ned the methodand obtained parametrizations of the sul
al folds using separate a
tive 
ontours for ea
hfold [113℄. This approa
h relies on 
lose initialization of the 
ontour and manual intera
tionin order to model the sul
al folds. Furthermore, the use of separate a
tive 
ontours tomodel the sul
i alters the topology of the re
onstru
tion.M
Inerney and Terzopoulos added a reparametrization step to the a
tive 
ontour byde�ning a grid of nodes as either inside or outside the 
ontour [83, 85℄. This way, the
ontour 
an dynami
ally 
hange the topology and easily grow from a small initialization
ontour. These so-
alled T-snakes were extended to 3D (T-surfa
es), and it was demon-strated that a T-surfa
e 
an be �tted to the GM/CSF boundary by initializing it outsidethe 
ortex [84℄. This strategy, however, fails to grow into the sul
i.Ma
Donald et al. used a sphere as the initial surfa
e and deformed it to the GM/WMboundary in a multis
ale fashion. Subsequently, a 
oupled surfa
e approa
h was applied.In this approa
h, two surfa
es simultaneously are deformed under proximity 
onstraintsmaintaining a prede�ned minimum and maximum distan
e between the GM/WM andGM/CSF boundary [75℄. This way the GM/CSF surfa
e is dragged towards the fundi ofsul
i and spheri
al topology is enfor
ed due to the spheri
al initial surfa
e. The proximity
onstraints prevent the 
oupled surfa
es model from a

urately delineating 
orti
al areaswith a thi
kness outside the prede�ned distan
e interval. Furthermore, su
h an approa
his more 
omputational expensive as the model be
omes more 
omplex by the surfa
e
oupling.An approa
h by Dale et al. identi�es the GM/WM boundary using voxel 
lassi�
ations,iso-surfa
e extra
tion and a deformable model. This surfa
e is subsequently expandedtowards the GM/CSF boundary [27℄. This has the advantage that all sul
i are present inthe initial state and enables the preservation of the sul
i during deformation even thougheviden
e of the GM/CSF boundary may be missing in the MRI data. The tight sul
al foldsare modeled by preventing self-interse
tions in the deforming surfa
e, thus the delineationof the folds are pla
ed equidistantly from the sul
al walls of the GM/WM boundary.
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ation of Corti
al Stru
turesClearly, the dire
tion of in�ation is important to the resulting outer surfa
e. Dale et al.used the dire
tions of the surfa
e normals. This single surfa
e approa
h is faster thanthe 
oupled surfa
e approa
h by Ma
Donald et al. and it 
aptures all the tight sul
i.However, the expansion of the surfa
e towards the outer boundary is sensitive to smallerrors or irregularities in the initial surfa
e whi
h may lead to modeling of non-existentfolds.Xu et al. also used a GM/WM surfa
e as the initialization of a deformable model [121℄.They used a gradient ve
tor �ow (GVF) to de�ne dire
tions toward the 
entral layer ofthe 
ortex. This solution provides a fast and 
onsistent 
onvergen
e of the surfa
e, buttight sul
i with no eviden
e of the outer boundary are not 
aptured by this method. Theirapproa
h does not impose self-interse
tion 
onstraints whi
h is ne
essary when segmentingthe outer boundary and the approa
h requires manual intera
tion.Another approa
h using a WM/GM boundary representation for subsequent GM/CSFdelineation was proposed by Kriegeskorte and Goebel [66℄. They extra
t the WM voxelsin ea
h hemisphere of the 
erebrum using a 
ombination of atlas masking, intensity inho-mogeneity 
orre
tion, anisotropi
 �ltering and region growing. The hemispheri
 WM 
om-ponents are modi�ed to obtain spheri
al topology and are tessellated to polygon meshes.Verti
es of the polygon meshes are shifted along surfa
e normals to delineate the GM/WMboundary and the GM/CSF boundary. Unfortunately, it is not 
lear from the do
umen-tation how the boundaries are dete
ted during the deformation pro
ess.Kim et al. [64℄ proposed a method where the WM surfa
e is obtained by deforminga spheri
al polygon model to the GM/WM boundary as done by Ma
Donald et al. [75℄.The GM/CSF boundary is found by expanding the WM surfa
e along a Lapla
ian �eldgenerated between the WM surfa
e and a skeletonized CSF image while preventing self-interse
tions. While a
hieving relatively robust and 
onsistent 
onvergen
e, this method ishighly dependent on 
lassi�
ation of CSF and the assumption that CSF is at least partlyvisible between all sul
al folds.Xu et al. initialized an ellipsoidal mesh outside the 
ortex and used a GVF �eld
ombined with an inward pressure for
e to deform the mesh to the 
orti
al boundaries[122℄. They used a reprodu
ing kernel parti
le method as the deformation model whi
hprovides e�
ient reparametrization pro
edures and self-interse
tions are avoided by usingfast mar
hing methods. Though this approa
h is novel in the way the deformations areimplemented, the shrink-wrapping strategy still su�ers from inability to rea
h deep intotight sul
al folds.Geometri
 Deformable ModelsGeometri
 deformable models are variants of the propagating fronts methods [17,20,87,97℄,where the surfa
e is impli
itly represented as the zero isovalue of a level set fun
tion. Be-
ause of the impli
it representation, no self-interse
tions 
an o

ur in geometri
 deformablemodels. After propagation of the level set fun
tion, a parametri
 surfa
e 
an be obtainedby 
omputing an iso-surfa
e at the zero isovalue of the level set fun
tion. Level set methodsare numeri
ally stable and faster than algorithms deforming parametri
 models [50℄.Zeng et al. used a 
oupled surfa
es approa
h in a level set framework [126℄. Goldenberget al. adopted the 
oupled surfa
es approa
h and formulated the segmentation as a mini-mization problem [41℄. Coupled surfa
es approa
hes enable modeling of tight sul
al foldsbe
ause of an inter-surfa
e distan
e 
onstraint. However, these methods su�er the sameproblems as the approa
h by Ma
Donald et al. [75℄. Furthermore, in both approa
hes theresulting surfa
es have arbitrary topologies due to the level set evolution te
hnique.Han et al. proposed a topology preserving geometri
 deformable model (TGDM) wherethe evolving surfa
e is kept homeomorphi
 to the boundary of a digital obje
t delineatedby the level set fun
tion on an underlying grid [47, 50℄. The surfa
e is only allowed to
hange sign at simple points of the underlying grid, thus preserving the topology of thedigital obje
t and the surfa
e. A GM/WM surfa
e is obtained by WM 
lassi�
ationfollowed by a TGDM with a regularizing for
e and a signed pressure for
e based on fuzzy
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tion 10tissue 
lassi�
ations. The 
entral 
orti
al layer are delineated by evolving the GM/WMsurfa
e using a TGDM with a GVF for
e similar to the parametri
 approa
h by Xu etal. [121℄. Finally, the GM/CSF boundary is obtained by propagating the 
entral 
orti
alsurfa
e using a TGDM with 
ombined pressure and GVF for
es. This approa
h over
omesa number of the problems related to 
orti
al surfa
e re
onstru
tion by enfor
ing 
orre
ttopology while maintaining fast and 
onsistent 
onvergen
e. However, manual intera
tionis required in the prepro
essing steps of the method.Xue et al. used the framework of Han et al. [47℄ to re
onstru
t the 
orti
al surfa
es ofneonates [124℄. Corti
al re
onstru
tion of neonate brains is parti
ularly di�
ult be
auseof inverted GM/WM 
ontrast in MRI images 
ompared to adults, lower 
ontrast-to-noiseratio, the maturation pro
ess whi
h 
ontinuously 
hanges the GM/WM 
ontrast and thedi�erent folding patterns at di�erent stages of the developing brain. Therefore, the maindi�eren
es between the methods by Xue et al. and Han et al. are the tissue 
lassi�
ationpro
ess and a relaxation of the spheri
al topology 
onstraint as the topology of neonate
orti
es are not well-established. In 
ontrast to the method by Han et al., the re
on-stru
tion of neonatal 
orti
es is fully automati
, suggesting that re
onstru
tions of adult
orti
es also 
ould be done fully automati
.Li et al. proposed a very fast method based on dual front a
tive 
ontours [71℄. Dualfront a
tive 
ontours iteratively �nd the global minimum within an a
tive region basedon minimal path te
hniques [24℄ where the a
tive region is de�ned on both sides of the
ontour, typi
ally by simple dilations with a stru
turing element. For the purpose of
ortex segmentation, Li et al. used histogram analysis to de�ne the a
tive region insteadof simple dilations. The approa
h requires manual adjustment of histogram parameters.Furthermore, in pathologi
al brains tissue intensities may not have distin
t peaks in thehistogram whi
h 
ompli
ates the estimation of a proper threshold. Finally, the topologyproblem was not addressed in the proposed method.Other Surfa
e Re
onstru
tionsThough most approa
hes to 
orti
al re
onstru
tion are variants of parametri
 or geometri
deformable models, other te
hniques have also been suggested. In addition to low levelmethods su
h as edge dete
tion [63℄ and region growing [123℄, a variety of algorithms havebeen proposed. For example Mangin et al. used a 3D skeletonization of the GM/CSFinterfa
e to generate a surfa
e and extra
t sul
al patterns [79℄. Van Essen et al. useda 
ombination of Gaussian intensity transformations, gradient information and manualguidan
e with subsequent iso-surfa
e extra
tion and topology 
orre
tion to obtain a surfa
erepresentation of the 
enter of the 
ortex [115℄. Shattu
k and Leahy segmented the WM ofea
h hemisphere, modi�ed the WM 
omponent to obtain spheri
al topology, and extra
tedthe GM/WM boundary using an iso-surfa
e algorithm [102℄. A similar approa
h with aBayesian segmentation was used by Joshi et al. on digitized 
ryose
tions of ma
aquemonkey brains [60℄. However, su
h methods are not well suited for generating a

urateand topologi
ally 
orre
t representations of the outer 
orti
al boundary whi
h is whydeformable models have gained popularity within the �eld over the re
ent years.Some methods quantify the 
orti
al morphology by 
ombining a surfa
e representationwith analysis of the image intensity. Barta et al. used a sto
hasti
 model of the intensitydistan
e histogram relative to the GM/WM surfa
e to measure the 
orti
al thi
kness [9℄.Others 
al
ulate the 
orti
al thi
kness using voxel segmentation and only use the 
or-ti
al surfa
e for proje
tion of the thi
kness, thus enabling visualization and mapping ofthe 
orti
al thi
kness [111℄. It is argued that voxel based 
orti
al thi
kness estimations,though less a

urate, are more robust than approa
hes expli
itly modeling the outer 
or-ti
al boundary [9, 111℄. Su
h hybrid methods may be useful. However, to quantify themorphology of the 
orti
al sheet to its full extent, 
omplete surfa
e re
onstru
tions stillseem to be the best solution.
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ation of Corti
al Stru
turesDis
ussion of Surfa
e Based Approa
hesSurfa
e based approa
hes applying deformable models have problems atta
hed to surfa
einitialization, topology of target stru
ture and robust dete
tion of image boundaries duringsurfa
e evolution. As des
ribed above several solutions to over
ome these problems havebeen proposed.Several resear
hers suggest the use of 
oupled surfa
es [41, 75, 126℄. Coupled surfa
esapproa
hes have the advantage of expli
itly using information of both 
orti
al boundariesto dete
t the outer boundary. This enables the GM/CSF surfa
e to model the deep, narrowsul
i. The 
oupling is a
hieved by spe
ifying a minimum and a maximum distan
e betweenthe surfa
es. Su
h 
onstraints, however, pre
lude the modeling of anatomy deviating fromthe norm as de�ned by the distan
e limits. When modeling abnormal anatomy found inneurodegenerative diseases and other neurologi
al disorders or normal neonatal anatomy,restri
tions on the 
orti
al thi
kness render su
h approa
hes inapt to a

urately quantifythe true morphology [124℄. Furthermore, even in normal adult 
orti
es, a bias betweenthe 
hosen prede�ned distan
e and a measured 
orti
al thi
kness may be inferred by therestri
tions [75℄.Re
ent methods seem to develop in similar dire
tions. The most promising meth-ods, whether based on parametri
 or geometri
 deformable models, for re
onstru
ting theGM/CSF boundary use a GM/WM boundary representation to �t the surfa
e to the outer
orti
al boundary. These methods follow roughly the steps of 1) 
erebrum WM 
lassi�
a-tion, 2) topology 
orre
tion, 3) WM tessellation and 4) expansion of WM surfa
e towardsthe GM/CSF boundary [27, 47, 64, 66℄, where step 2 and 3 may be omitted if a spheri
alsurfa
e is deformed to the WM/GM boundary [64℄. The methods proposed by Dale etal. [27℄, Xu et al. [121℄, Han et al. [47℄, and Kim et al. [64℄ all use similar strategies forexpanding the WM surfa
e towards the 
entral/GM surfa
e; all four methods use a ve
tor�eld for guiding the surfa
e towards the target boundary. Dale et al. use surfa
e normals,Xu et al. and Han et al. use a GVF �eld, and Kim et al. use a Lapla
ian �eld. Su
hve
tor �elds provide better and more 
onsistent 
onvergen
e than using variants of thebasi
 image gradient.Developers expanding the WM surfa
e to the 
entral 
orti
al layer instead of the outer
orti
al boundary argue that this representation of the 
ortex provides better geometri
information than both the inner and outer boundaries [72, 121℄. However, expli
it rep-resentations of the tissue boundaries better support measurements of 
orti
al thi
kness.Furthermore, altered morphology 
aused by pathologies may be easier dete
table at thetissue boundaries than at the 
enter-line of the stru
ture.The di�erent image for
es proposed for evolving the deformable models towards the 
or-ti
al boundaries 
an all be applied in both parametri
 and geometri
 frameworks. Choi
eof framework seems to be dependent on what property the individual developer �nds mostimportant. One property that is emphasized repeatedly is the ability to 
onstrain topologyof the �nal 
ontour. With the 
lassi
al deformable models this 
ould only be a
hieved byparametri
 models. However, with the development of topology preserving level sets [49℄,the use of geometri
 models for 
orti
al re
onstru
tion have be
ome more popular. Re-
ently, Ségonne developed a level set method where the topology 
an be 
ontrolled withoutloosing the ability of 
ontours to merge, split and vanish during evolution whi
h usuallyadvo
ates a strong advantage over parametri
 deformable models [108℄. Others are alsoworking on variants of topology preserving level sets [1, 69, 94, 106℄.Hybrid methods 
ombining surfa
e re
onstru
tion with voxel based analysis are po-tentially very robust. However, full 
orti
al surfa
e re
onstru
tions provide information ofthe morphology whi
h 
annot be quanti�ed by hybrid methods. So far, the most promis-ing methods to obtain 
omplete 
orti
al re
onstru
tions rely on deformable models. Eventhough problems related to deformable models, su
h as robustness, are evident in today'ssurfa
e solutions, the goal is still a

urate re
onstru
tions of the 
erebral 
ortex for thedete
tion of subtle, fo
al morphologi
al 
hanges as found in neurodegenerative diseases.



Chapter 1: Introdu
tion 121.3 Aim of the Ph.D. StudyA main goal within the �eld of stru
tural brain imaging and brain morphometry is todi�erentiate between di�erent neurodegenerative diseases by 
orti
al atrophy patterns.This thesis addresses the initial steps toward this goal. The aim is to develop methodsfor quantifying stru
tural 
hanges in the human 
erebral 
ortex from MRI images. Toa

omplish this, a method based on deformable models is developed to automati
allydelineate the 
orti
al boundaries. Spe
i�
ally, parametri
 deformable surfa
es are used todelineate the GM/WM and GM/CSF boundaries of the 
ortex. From surfa
es representingthe 
orti
al boundaries several measures des
ribing the 
orti
al stru
ture 
an be obtained.The 
orti
al thi
kness is an important measure, but quantities su
h as the 
orti
al areaand 
urvature may also be involved in des
ribing the 
hanging 
ortex as well as 
orti
alvolume for 
omparison purposes with volumetri
 methods.Measuring the 
orti
al thi
kness from surfa
es of the 
orti
al boundaries is not a sim-ple matter due to the 
omplex morphology. Several methods for measuring the thi
knessfrom 
orti
al re
onstru
tions have been proposed [35,59,70,76℄. Also morphologi
al quan-ti�
ation by other measures exists [91℄, but it is outside the s
ope of this Ph.D. study todevelop new methods for su
h quanti�
ation.The ability to quantify the 
orti
al stru
ture from MRI provides a mean for quantifying
hanges over time or di�eren
es between subje
ts for the entire 
orti
al stru
ture. However,su
h global quantities are not sensitive to small 
orti
al 
hanges and this raises a need forquantifying fo
al 
hanges and di�eren
es. This 
an be a

omplished by subdividing the
orti
al sheet by means of an atlas whi
h may be based on anatomi
al, fun
tional or othertypes of regions. However, applying �xed 
orti
al regions wherein the measurements areaveraged, also limits the sensitivity of the quanti�
ation as fo
al 
hanges may be presenta
ross regions. Therefore, a point 
orresponden
e between 
orti
al surfa
es is needed tofully bene�t from the measurements 
orti
al surfa
es provide and part of the study is
on
erned with the sear
h for a suitable method for obtaining su
h a 
orti
al mapping.Finally, the Ph.D. study investigates the appli
ation of the methods developed duringthe study within the �eld of neurodegenerative diseases. This is done by applying themethods to quantify 
orti
al stru
tural 
hanges in individuals from a large Danish familywith an inherited variant of frontotemporal dementia.1.4 Outline and Contents of ThesisThe thesis is based on �ve papers. Two papers des
ribe the fundamental method forextra
ting the 
orti
al boundaries from MRI using deformable surfa
es. The third pa-per 
ompares the developed method with a well-known and widely used method. Thefourth paper deals with the mapping between di�erent 
orti
al surfa
es to 
ompare sim-ilar anatomi
al regions over groups of subje
ts. Finally, in the last paper, the methodsdeveloped during the Ph.D. study are applied in a study of pre
lini
al individuals with afamilial neurodegenerative disease.Paper I: Extra
tion of the Cerebral Corti
al Boundaries from MRIfor Measurement of Corti
al Thi
kness (Chapter 2)In this paper the fundamental idea of extra
ting the 
orti
al boundaries is presented. Theentire pro
ess from s
anner images to 
orti
al thi
kness results is des
ribed and test of themethod on simulated MRI data, several young healthy individuals and a single AD patients
anned with an interval of six months is presented. The surfa
e deformation pro
essdes
ribed in the paper is based on a parametri
 deformable model and uses a dis
retesear
h spa
e to minimize an energy fun
tional. The method is related to the approa
h byM
Inerney and Terzopoulos [84℄ in the sense that reparametrizations are performed during



13 1.4 Outline and Contents of Thesissurfa
e evolution. The main 
ontribution of the paper is the 
ombination of a pressurefor
e with a gradient ve
tor �ow in the deformation of the outer 
orti
al boundary.Paper II: A
tive Surfa
e Approa
h for Extra
tion of the HumanCerebral Cortex from MRI (Chapter 3)In this paper an improved surfa
e deformation pro
ess is presented. Instead of minimizingan energy fun
tional in a dis
rete sear
h spa
e, the optimal deformation dire
tions areexpressed as ve
tors leading to a for
e balan
ing s
heme. The energy fun
tional des
ribedin the �rst paper is altered to express ve
tor for
es and a lo
al weighting of for
es isintrodu
ed to better adapt to the highly folded 
orti
al sheet. Test of the method onsimulated MRI is reported and the resulting 
orti
al surfa
es are shown to better modelthe folded stru
ture than surfa
es obtained by a pressure for
e or a gradient ve
tor �owfor
e alone. The main 
ontribution of the paper is a deformation approa
h free of sear
hspa
es and a novel weighting of the terms in the energy fun
tional in�uen
ed by surfa
e
urvature.Paper III: Quantitative Comparison of Two Corti
al Surfa
e Ex-tra
tion Methods Using MRI Phantoms (Chapter 4)This paper des
ribes the 
omparison of the developed method with the 
ortex extra
tionmethod used the most in the literature, namely FreeSurfer, whi
h is developed at Harvardand based on the method by Dale et al. [27℄. The 
omparison is based on phantomMRI images 
onstru
ted from 
orti
al surfa
es extra
ted from real MRI images. In thisway, ground truth 
orti
al boundaries are 
reated and the geometri
al error of the 
ortexre
onstru
tions 
an be quanti�ed. The paper's 
on
lusion is that the developed method isre
onstru
ting the 
orti
al surfa
es with a subvoxel a

ura
y and that it performs betterthan FreeSurfer in most of the tests as well as being mu
h faster.Paper IV: Evaluation of Five Algorithms for Mapping Brain Cor-ti
al Surfa
es (Chapter 5)In this paper �ve di�erent algorithms for mapping between surfa
es of the 
erebral 
ortexare evaluated. The fo
us is on algorithms for mapping between verti
es of dis
rete surfa
eswhi
h is 
ompli
ated by the possibly arbitrary vertex 
ount of the 
orti
al surfa
es. Aproposed feature driven mapping algorithm is presented together with tests of it and fourother mapping algorithms 
onsisting of a feature driven approa
h, two spheri
al mappingapproa
hes and a basi
 iterative 
losest point algorithm. The algorithms are evaluatedwith 
onstru
ted 
riteria for a good mapping, a landmark test using manually pla
edlandmarks and an analysis of 
onstru
ted statisti
al maps. The paper 
on
ludes that noalgorithm 
an be singled out as the best 
hoi
e of mapping between 
orti
al surfa
es; ea
hmethod has its strengths and weaknesses. However, it is indi
ated that a 
ombination ofa spheri
al warp approa
h with an iterative feature based algorithm 
ould be a promising
hoi
e.Paper V: Corti
al Volumes and Atrophy Rates in FTD-3 CHMP2BMutation Carriers and Related Non-
arriers (Chapter 6)This paper reports the results of applying the developed methods to identify 
orti
alstru
tural 
hanges in individuals with a familial variant of frontotemporal dementia. Ninepresymptomati
 individuals 
arrying the disease mutation are 
ompared to seven individ-uals from the same family without the mutation. The study is based on two serial MRIs
ans of ea
h individual and annualized atrophy rates are 
al
ulated. Both volumetri
and thi
kness measurements show that the presymptomati
 mutation 
arriers degenerate
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Chapter 2Extra
tion of the CerebralCorti
al Boundaries from MRIfor Measurement of Corti
alThi
knessAdapted from: S. F. Eskildsen, M. Uldahl and L. R. Østergaard: Extra
tion of the Cere-bral Corti
al Boundaries from MRI for Measurement of Corti
al Thi
kness, Progress inBiomedi
al Opti
s and Imaging, vol. 5747, issue II, 2005, p. 1400-10.2.1 Introdu
tionSeveral diseases degenerate the human 
erebral 
ortex. One of the most 
ommon and fastdeveloping neurodegenerative diseases is Alzheimer's disease (AD). Subtle, spatially lo
al-ized atrophy may o

ur before the �rst 
lini
al signs [2℄. Knowledge on the earliest signsof atrophy and its initiating site in AD patients may a

ompany earlier and more a

uratediagnosis of AD. Atrophy of the 
erebral 
ortex may be quanti�ed in vivo by measuringthe volume or thi
kness of the 
ortex from a magneti
 resonan
e imaging (MRI) s
an,
ontaining a series of 
ross-se
tional images. Knowledge of 
orti
al volume may indi
ateatrophy, but 
annot reveal the exa
t site of atrophy as lo
al thi
kness measurements 
an.Measurements of 
orti
al thi
kness from a series of MRI images is 
ompli
ated as it re-quires the images to be orthogonal onto the measured stru
ture in order to avoid under- orover-estimates. In addition to this, the relatively low resolution and partial volume e�e
ts(PVE) may 
ompli
ate an a

urate de�nition of the 
orti
al boundaries. Manual measure-ment of the 
orti
al thi
kness is a tedious and time 
onsuming pro
ess, and the manualmeasurements are likely to be biased to the operator due to the di�
ulty of de�ning the
orti
al boundaries. Hen
e, there is a need for fully automati
 and obje
tive methods.Automati
 measurements of the 
ortex requires an automati
 delineation of the 
orti
alboundaries. The 
erebral 
ortex is a thin sheet of gray matter (GM), surrounding the
erebrum white matter (WM), and surrounded by 
erebrospinal �uid (CSF). In this paperthe WM/GM and GM/CSF 
rossings are referred to as the inner and outer boundary ofthe 
ortex respe
tively. The 
ortex is isomorph to a sphere, if 
losed at the brain stem [1℄.Thus, advantageously, the boundaries may be represented as simple surfa
es, isomorph toa sphere.Segmentation algorithms based on deformable surfa
es rely on a 
ombination of high-and low-level information, whi
h enables delineation of the boundary in areas where imageedges are obs
ured or missing. Opposite banks of tight sul
i may meet inside the sul
al23
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al Thi
kness 24folds and appear as 
onne
ted in MRI due to undersampling and artifa
ts. The maindi�
ulty in 
orti
al segmentation lies in 
orre
tly penetrating su
h sul
i and rea
hingtheir fundi, as the true 
orti
al thi
kness otherwise will be overestimated. Ma
Donald etal. [9℄ addressed this problem by deforming the inner and outer surfa
e simultaneouslyunder in�uen
e of interse
tion 
onstraints and an inter-surfa
e distan
e 
onstraint, whi
hdrags the outer surfa
e towards the fundi of sul
i. However, a bias between the 
hosenprede�ned distan
e and the measured 
orti
al thi
kness may exist [9℄.A di�erent approa
h to modeling the 
ortex without a distan
e 
onstraint is taken byDale et al. [5℄ In this approa
h, Dale et al. �t a surfa
e to the inner boundary of the
ortex, and in�ates it towards the outer boundary of the 
ortex. The approa
h 
ausesthe surfa
e to settle at approximately the midpoints of tight sul
i when no CSF is evi-dent between the sul
al banks, and 
onstraints prevent the surfa
e from self-interse
ting.Clearly, the dire
tion of in�ation is important to the resulting outer surfa
e. Dale et al.use the dire
tions of the surfa
e normals. However, su
h an approa
h requires the use ofex
essive smoothing to avoid the formation of non-existent folds, in the presen
e of small
on
avities, or noise in the in�ating surfa
e. Xu et al. [16℄ introdu
ed an alternative tothe dire
tion of the surfa
e normals with a generalized gradient ve
tor �ow (GGVF) for
e,whi
h provides ve
tors pointing towards the nearest image boundary. Xu et al. used thisfor
e for extending the inner surfa
e towards the 
entral layer of the 
ortex. Xu et al.noted that their approa
h 
ould be tailored to segmenting the GM/CSF boundary insteadof the 
entral layer. However, their approa
h does not impose self-interse
tion 
onstraints,whi
h is ne
essary when segmenting the outer boundary, nor is it fully automati
.This paper presents a new method inspired by the work of Dale et al. [5℄ and Xu etal. [16℄ The method is 
apable of fully automati
ally extra
ting measurements of 
orti
althi
kness, volume and area from a T1-weighted MRI s
an. The details of the method isdes
ribed in the following se
tion, and preliminary test results are presented in se
tion2.3.2.2 MethodsThe data used as input to the method are T1-weighted MRI s
ans en
ompassing theentire 
erebrum. Tissue inhomogeneity artifa
ts in the MRI volumes are redu
ed usinga method by Sled et al. [12℄, and the volumes are registered into a 
ommon referen
espa
e using a method by Collins et al. [4℄ The steps in the 
ortex extra
tion method isillustrated in �gure 2.1. An initial surfa
e is extra
ted from the T1-weighted MRI s
an,and deformed to �t the inner 
orti
al boundary. The resulting surfa
e is then deformedto �t the outer 
orti
al boundary. From these surfa
e representations of the inner andouter 
orti
al boundary, anatomi
al properties of the 
ortex, su
h as the thi
kness, 
an beobtained.
Generation

Initial Inner Surface
Deformation

Inner Surface
Deformation

Outer Surface
Cortex ModelMRI Volume MeasurementsFigure 2.1: Pipeline of the method. Rounded boxes indi
ate pro
essing steps. Gray boxesindi
ate data.2.2.1 Initial Inner Surfa
e GenerationA surfa
e of the inner boundary of the 
erebral 
ortex is generated by extra
ting the WM
omponent of the 
erebrum, and then performing a tessellation of this 
omponent. Thesteps are illustrated in �gure 2.2.The brain is extra
ted from the MRI volume using a brain extra
tion tool [13℄. Theresult after applying the brain extra
tion tool is a volume 
onsisting of the 
erebrum,
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Brain Extraction

Cerebrum WM
Isolation of

Cerebrum WM Segmentation Surface Generation

Tessellation
Correction
Topology Initial Inner

Surface
Fuzzy SegmentationMRI VolumeFigure 2.2: Pro
ess of generating the initial surfa
e. Rounded boxes indi
ate pro
essingsteps. Gray boxes indi
ate data.the 
erebellum and the brain stem. To identify the WM voxels in the volume, the fuzzy
-means algorithm is applied [14℄. The volume is divided into WM, GM, CSF and ba
k-ground, and the output of the algorithm is a membership volume for ea
h 
lass. TheWM membership volume is used in the further pro
edure of generating the initial sur-fa
e. To �nd the WM inside the 
erebrum, the 
erebrum is automati
ally separated fromthe 
erebellum and brain stem, using morphologi
al operations on the WM membershipvolume.A tessellation of the 
erebrumWM is performed using a simple iso-surfa
ing algorithm.The tessellation of the 
erebrum WM may in
lude handles or holes. To ensure that thetessellated surfa
e is isomorph to a sphere, a topology 
orre
tion algorithm by Han etal. [6℄ is applied to the tessellated surfa
e of the 
erebrum WM.2.2.2 Inner Surfa
e DeformationThe initial estimate of the inner boundary of the 
erebral 
ortex is a surfa
e 
lose tothe true WM/GM boundary. The purpose of the surfa
e deformation is to smoothenthe surfa
e and adjust it to the 
orre
t tissue boundary. An a
tive 
ontour frameworkoriginally des
ribed by Kass et al. [8℄ is used to deform the surfa
e. The deformation ismade by iteratively moving the verti
es to the positions, in a spheri
al sear
h spa
e, whi
hresult in the lowest energy level expressed by an energy fun
tion. The energy fun
tion mustensure that the energy minimum is situated where the surfa
e �ts the 
orre
t WM/GMboundary.Internal and external energies are used to 
ontrol the behavior of the deformable sur-fa
e. The internal energies are applied to a
hieve a smooth 
hara
teristi
 of the surfa
eand help keeping the verti
es uniformly distributed on the surfa
e. For this purpose atension term and a �exural term are used. The tension term is an approximation of theLapla
ian [10℄:

ELaplacian = ‖~L(~v)‖, where ~L(~v) =
1

n

n
∑

i=0

~vi − ~v , (2.1)where ~v is a vertex in the surfa
e, ~vi is the ith neighbor to ~v, and n is the number ofneighboring verti
es to ~v. The �exural term is an approximation to the squared Lapla
ian[10℄:
Esquared Laplacian =

∥

∥

∥

∥

∥

1

n

n
∑

i=0

~L(~v) − ~L(~vi)

∥

∥

∥

∥

∥

(2.2)External energies are used to guide the surfa
e towards the WM/GM boundary. Threedi�erent external energies are used, namely gradient, in�ation and initial energy.The gradient energy attra
ts the deforming surfa
e to the WM/GM boundary when
lose to image edges of this boundary:
Egradient = −‖~∇I(~v)‖ , (2.3)where ~∇I is the �rst derivative of the intensities in the MRI volume. The magnitude of
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al Boundaries from MRI for Measurementof Corti
al Thi
kness 26the gradient is used, as the energy fun
tion must return an energy level at a given position,not a ve
tor.The fuzzy membership values and the dire
tions of the surfa
e normals are used todispla
e the surfa
e towards the 
orre
t tissue boundary. If a vertex in the surfa
e ispla
ed in WM, the vertex is displa
ed in the dire
tion of the surfa
e normal. Contrary,if the vertex is pla
ed outside WM, the vertex is displa
ed in the opposite dire
tion ofthe surfa
e normal. The WM membership is assumed to equal or to be 
lose to theGM membership when exa
tly on the GM/WM boundary, but to di�er signi�
antly fromthe GM membership when far from the boundary. The in�ation energy has no in�uen
ewhenever the di�eren
e between the WM and GM memberships is between the thresholds
−T and T :

Einflation =







−(~n(~v) · ~D), if µWM (~v) − µGM (~v) > T (In WM)
−(−~n(~v) · ~D), if µWM (~v) − µGM (~v) < −T (In GM)
0, otherwise (Border region),where ~n(~v) is the unit surfa
e normal at vertex ~v, ~D des
ribes the dire
tion of the move-ment of ~v, and µ is the membership values from the fuzzy segmentation. The expressionis negated to yield a low energy whenever the inner produ
t between ±~n and ~D is high.The initial surfa
e is generally a good estimate of the WM/GM boundary. Therefore,an energy penalizing large deviations from the initial surfa
e is introdu
ed:

Einitial = g(|~vinitial − ~vdeforming|), (2.4)where ~vinitial is a vertex in the initial surfa
e and ~vdeforming is the 
orresponding vertexin the deforming surfa
e. g is a weighting fun
tion 
ontrolling the extent of a range Rwhere the energy has no in�uen
e. This range is ne
essary as the initial surfa
e is only anapproximation. g is de�ned as:
g(x) =

{

|x − R|2 , if x > R
0 , otherwise (2.5)The 
omplete energy fun
tion used for the deformation of the inner surfa
e is:

Einner = c1ELaplacian + c2Esquared Laplacian

+c3Egradient + c4Einflation + c5Einitial,
(2.6)where c1...c5 are weights. This fun
tion is an expression of the energy level of a singleposition in the sear
h spa
e of a vertex. The greedy algorithm by Williams et al. [15℄is used to �nd the minimum energy position in the sear
h spa
e of ea
h vertex. Theverti
es are moved in this way until the number of verti
es moved during an iteration isbelow a given threshold, where equilibrium is assumed. The used sear
h spa
e is spheri
al
ontaining 26 di�erent positions.Two hard 
onstraints are applied to the surfa
e during deformation; one that ensures a
ertain minimum distan
e between neighboring verti
es, and one that prevents the surfa
efrom self-interse
ting.2.2.3 Outer Surfa
e DeformationThe inner surfa
e is used as the initial estimate of the outer 
orti
al boundary. As men-tioned in the introdu
tion, the image edges of the outer boundary in tight sul
al folds
annot always be observed in MRI s
ans. As the 
ortex has approximately the same 
on-vexity and 
on
avity as the WM, tight sul
al folds 
an be modeled by displa
ing the innersurfa
e in the dire
tion of the surfa
e normals. This is done using an in�ation energysimilar to the one used in the inner surfa
e deformation. If a vertex is lo
ated in WM orGM, the vertex is displa
ed in the dire
tion of the surfa
e normal, otherwise it is displa
ed



27 2.2 Methodsin the opposite dire
tion:
Einflation =

{

−(~n(~v) · ~D), if µGM (~v) + µWM (~v) ≥ µCSF (In WM or GM)
−(−~n(~v) · ~D), otherwise (In CSF)A hard 
onstraint prevents the surfa
e from self-interse
ting in sul
i where no CSF isevident in-between the sul
al banks. This 
auses the in�ation energy to 
ollapse walls oftight sul
al folds at a position approximately equidistant to the inner surfa
e, when noCSF is evident (see �gure 2.3). However, the in�ation energy may erroneously 
ollapse

(a) Initial (b) Deforming (
) FinalFigure 2.3: Example of how the in�ation for
e enables modeling of narrow sul
i with noCSF evident. The gray solid line indi
ates the deformable surfa
e, whi
h approa
hes theGM/CSF boundary from the WM/GM boundary. As the deformable surfa
e is pushed inthe dire
tion of the lo
al surfa
e normals, it will eventually meet itself inside deep narrowsul
i.the surfa
e in small 
on
avities, and for example model non-existent folds on top of gyri.In
reasing the in�uen
e of the internal energies resolves these problems, but also impairsthe ability of the surfa
e to 
onform to 
urved regions on the outer boundary. To over
omethis tradeo�, an energy displa
ing the surfa
e dire
tly towards the GM/CSF image edge isin
luded in the energy fun
tion. This energy has the e�e
t of unfolding 
on
avities on thedeforming surfa
e when no outer surfa
e 
on
avities is evident in the image data, and thusavoids forming non-existent folds in the surfa
e. A proper weighting between this energyand the in�ation energy 
auses tight sul
al folds to 
ollapse and small 
on
avities to beunfolded, while 
apturing the GM/CSF image edge. The energy uses a GGVF �eld by Xuet al. [16℄ The 
omponents of the GGVF �eld point towards edges in a given edge map. Inorder to ensure that the GGVF �eld points towards the outer boundary, the edge map is
al
ulated by taking the �rst derivative of the sum of the WM and GM fuzzy memberships(see �gure 2.4). The GGVF energy is the inner produ
t between the normalized GGVF�eld ve
tor ~G and the normalized dire
tion ve
tor ~D:
EGGV F = −~G(~v) · ~D (2.7)When 
lose to the edge de�ned by the edge map, the GGVF energy is swit
hed to agradient energy 
al
ulated from the MRI data. This swit
h is made when the di�eren
ebetween the CSF and GM membership value goes below a given threshold ρ:

EGGV F =

{

−~G(~v) · ~D , if |µCSF − µGM | ≥ ρ

−‖~∇I(~v)‖ , otherwise (2.8)The same internal energies is used for the deformation of the outer surfa
e as thoseused for the inner surfa
e. The 
omplete energy fun
tion used for the deformation of theouter surfa
e is:
Eouter = c6ELaplacian + c7Esquared Laplacian + c8Einflation + c9EGGV F , (2.9)
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Figure 2.4: Example of a GGVF �eld based on an edge map 
al
ulated from the sum ofthe WM and GM memberships using the �rst order derivative.where c6...c9 are weights.2.2.4 MeasurementsHaving the inner and outer boundary of the 
ortex represented as 
losed surfa
es, it ispossible to obtain a variety of measurements, su
h as volume, area and thi
kness. However,in this paper the fo
us is on the 
orti
al thi
kness. The thi
kness is measured as theshortest distan
e from a given vertex on the outer surfa
e to the fa
e of the inner surfa
e(not ne
essarily being a vertex). A thi
kness measurement is obtained at ea
h vertex ofthe outer surfa
e.2.3 ResultsThe generated surfa
es 
ontain approximately 200.000 verti
es ea
h. The entire extra
tionof the 
orti
al boundaries requires less than one hour on a 2.8GHz Pentium 4 pro
essor,although the deformation pro
ess alone is done in less than 10 minutes.The method was tested on six simulated MRI s
ans of a brain phantom [3℄ with respe
-tively 0%, 1%, 3%, 5%, 7% and 9% of noise added, and an isotropi
 voxel size of 1.00mm.Surfa
es representing the GM/CSF tissue boundary were extra
ted for all datasets, andthe surfa
e of the dataset without noise was used as a referen
e in order to fa
ilitate a
omparison. The 
omparison was made by 
al
ulating the distan
e to the nearest vertexon the referen
e surfa
e for all verti
es on ea
h of the remaining surfa
es. The mean dis-tan
es and standard deviations are reported in table 2.1. Only a small in
rease in error,measured as mean distan
e, is the result when the noise level is in
reased from 1% to 9%.



29 2.3 Results1% 3% 5% 7% 9%0.27mm (0.22) 0.31mm (0.26) 0.34mm (0.27) 0.37mm (0.30) 0.41mm (0.33)Table 2.1: Mean distan
e to nearest vertex on referen
e surfa
e and standard deviations.To assess the robustness of the method, thi
kness measurements of the same subje
t,s
anned at two di�erent sessions on the same s
anner were 
ompared. First session voxelsize was 0.89x0.89x2.00mm, and the se
ond session voxel size was 0.86x0.86x2.00mm. Thedi�eren
e in mean 
orti
al thi
kness between the �rst and se
ond s
an was 0.01mm. To in-vestigate these subtle deviations, a vertex to vertex 
omparison of the 
orti
al thi
kness forthe two s
ans was done by 
al
ulating the deviation in 
orti
al thi
kness for 
orrespondingverti
es (using nearest point 
orresponden
e) on the GM/CSF surfa
es of the two s
ans.The mean deviation was found to 0.33mm with a standard deviation of 0.27mm.

(a) Rendering of the outer 
orti
al surfa
e. (b) Interse
tions of inner and outer 
orti
alsurfa
es with MRI data.Figure 2.5: Visualization of the extra
ted inner and outer 
orti
al surfa
es of an ICBMsubje
t.The method was applied to 38 T1-weighted MRI s
ans of healthy subje
ts a
quiredfrom the ICBM database [7℄. These data have an isotropi
 voxel size of 1.00mm. A visualinspe
tion of surfa
e/data interse
tions for all 38 datasets revealed few visible errors (see�gures 2.5 and 2.6). The mean 
orti
al thi
kness for the 38 subje
ts was measured to2.59mm (0.15mm). This is within the range of what was measured in a post-mortem studyby Pakkenberg et al. [11℄, where the mean thi
kness in the four main lobes were measuredto be in the range 2.16mm to 2.88mm. The 
orti
al thi
kness of the 38 subje
ts was 
olormapped onto the outer 
orti
al surfa
e. An example of this, 
onverted to grays
ale, isshown in �gure 2.7. As it 
an be observed from the �gure, the 
ortex is measured to bethi
kest in the frontal and temporal regions, and thinnest in the o

ipital and parietalregions. This was the 
ase of all 38 subje
ts, and is 
onsistent with normal anatomi
al�ndings. Even though the pattern of thi
k frontal and temporal lobes, and thin parietaland o

ipital lobes 
an be re
ognized in all subje
ts, inter-subje
t variations exist in the
orti
al thi
kness. Figure 2.8 illustrates this by the thi
kness map of 16 healthy subje
tsseen from the top.To evaluate the method on a brain with an abnormal morphology, 
orti
al thi
knessmeasurements were obtained from two MRI s
ans of an Alzheimer's patient with severeatrophy a
quired six months apart. These data have an isotropi
 voxels size of 0.9 mm,however, the 
ontrast is lower than the ICBM data. The method su

eeded in 
apturingthe inner and outer 
orti
al surfa
es of the brain with abnormal morphology, and thethi
kness measurements indi
ated a small de
rease in mean 
orti
al thi
kness from 2.02
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Figure 2.6: Interse
tions of inner and outer surfa
es with MRI data of an ICBM subje
t.Top row: Inner surfa
e. Bottom row: Outer surfa
e. A few errors are visible in theimages of se
ond 
olumn, where the surfa
es are penetrating both ventri
les. These errorsoriginate from the topology 
orre
tion algorithm, that enfor
es a 
losed genus zero surfa
e.

(a) Top view (b) Left viewFigure 2.7: Corti
al thi
kness mapped onto the outer 
orti
al surfa
e as gray levels. Darkregions are thin, while bright regions are thi
k, ranging from 0 mm to 6 mm.mm to 1.89 mm. Figure 2.9 shows the 
orti
al thi
kness measurements extra
ted fromthe two s
ans, mapped onto the outer 
orti
al surfa
es as gray levels. The small de
reasein 
orti
al thi
kness 
an be observed from the surfa
es by a faintly darker texture on these
ond surfa
e.
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Figure 2.8: The thi
kness pattern of 16 ICBM subje
ts seen from the top.
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(a) Time point 1 (b) Time point 2Figure 2.9: Corti
al thi
kness at two time points (The 
olor s
ale ranges from 0 mm(bla
k) to 6 mm (white)).2.4 Con
lusionThis paper presented a new fully automati
 method for segmenting the inner and outerboundaries of the human 
erebral 
ortex from MRI data. The method is based on adeformable surfa
e framework, and in
orporates a new 
ombination of energies in theenergy fun
tion. The a

urate initial surfa
e speeds up the overall extra
tion pro
ess, asfewer iterations are ne
essary in the deformation pro
ess, and in
reases the probability oflo
ating the 
orre
t minimum of the energy fun
tion.The tests 
ondu
ted on a simulated brain phantom with various degrees of noise added,showed that in
reased image noise only in�uen
es the sub-voxel a

ura
y of the method.This, along with the test/retest experiment, suggests that the method is robust to 
hangesin image noise and other image artifa
ts.Preliminary tests have been 
ondu
ted on neuroanatomi
al data of normal brains andbrains with severe atrophy at di�erent time points. Results of these tests show that themethod is fast, robust and a

urate for segmenting the 
orti
al boundaries. The thi
knessmeasurements 
ondu
ted on normal subje
ts are 
lose to post-mortem measurements, andthe relative thi
kness between the major lobes are in a

ordan
e with the known anatomyof the brain. The inter-subje
t variability in the 
orti
al thi
kness patterns, found amongthe normal subje
ts (illustrated in �gure 2.8), indi
ates that knowledge of this variabilitymust be obtained in order to dis
ern normal and abnormal anatomy. The results obtainedfrom the Alzheimer's subje
t indi
ate that the method is 
apable of tra
king progressionof atrophy in Alzheimer's patients.In the near future, we intend to apply the method on a large 
olle
tion of MRI s
ansof Alzheimer's patients, and a 
olle
tion of longitudinal data from Alzheimer's patients.This data material give us the opportunity to investigate the possibility of tra
king theprogression of 
orti
al atrophy. Furthermore, we intend to 
reate statisti
al models ofboth Alzheimer's and normal brains based on the data material. With this, we hopeto get indi
ations of whi
h anatomi
al markers 
ould be relevant in the identi�
ation ofAlzheimer's patients.A
knowledgementsThe data material of normal healthy subje
ts was provided with 
ourtesy of the Inter-national Consortium of Brain Mapping. The data material of the Alzheimer's subje
twas provided with 
ourtesy of Centre for Magneti
 Resonan
e, University of Queensland,



33 REFERENCESAustralia. The brain phantom used in the robustness test was provided with 
ourtesy ofM
Connell Brain Imaging Centre, Montréal Neurologi
al Institute, M
Gill University. Theauthors thank these institutions for their 
ontribution. The authors also thank Center forFun
tionally Integrative Neuros
ien
e, Aarhus University, Denmark, for their 
ooperationand funding.Referen
es[1℄ L. Abrams, D. E. Fishkind, and C. E. Priebe. A proof of the spheri
al homeomorphism
onje
ture for surfa
es. IEEE Transa
tions on Medi
al Imaging, 21(12):1564�1566,2002.[2℄ G. Chetelat and J.-C. Baron. Early diagnosis of alzheimer's disease: 
ontribution ofstru
tural neuroimaging. NeuroImage, 18:525�541, 2003.[3℄ D. Collins, A. Zijdenbos, V. Kollokian, J. Sled, N. Kabani, C. Holmes, and A. Evans.Design and 
onstru
tion of a realisti
 digital brain phantom. IEEE Transa
tions onMedi
al Imaging, 17(3):463�468, June 1998.[4℄ D. L. Collins, A. P. Zijdenbos, T. Paus, and A. C. Evans. Use of registration for 
ohortstudies. Te
hni
al report, Montreal Neurologi
al Institute, M
Gill University, 2000.[5℄ A. M. Dale, B. Fis
hl, and M. I. Sereno. Corti
al surfa
e-based analysis i: Segmentationand surfa
e re
onstru
tion. NeuroImage, 9:179�194, 1999.[6℄ X. Han, C. Xu, U. Braga-Neto, and J. L. Prin
e. Topology 
orre
tion in brain 
or-tex segmentation using a multis
ale, graph-based algorithm. IEEE Transa
tions onMedi
al Imaging, 21(2):109�121, 2002.[7℄ ICBM. International Consortium for Brain Mapping.http://www.loni.u
la.edu/ICBM/, 2002.[8℄ M. Kass, A. Witkin, and D. Terzopoulos. Snakes: A
tive 
ontour models. InternationalJournal of Computer Vision, 1988.[9℄ D. Ma
Donald, N. Kabani, D. Avis, and A. C. Evans. Automated 3-D extra
tion ofinner and outer sura
es of 
erebral 
ortex from mri. NeuroImage, 12:340�356, 2000.[10℄ T. M
Inerney and D. Terzopoulos. Topology adaptive deformable surfa
es for medi
alimage volume segmentation. IEEE Transa
tions on Medi
al Imaging, 18(10):840�850,1999.[11℄ B. Pakkenberg and H. J. G. Gundersen. Neo
orti
al neuron number in humans: E�e
tof sex and age. Journal of Comparative Neurology, (384):312�320, 1997.[12℄ J. G. Sled, A. P. Zijdenbos, and A. C. Evans. A non-parametri
 method for automati

orre
tion of intensity non-uniformity in mri data. IEEE Transa
tions on Medi
alImaging, 17(1):87�97, 1998.[13℄ S. M. Smith. Fast robust automated brain extra
tion. Human Brain Mapping,17(3):143�155, 2002.[14℄ J. S. Suri, S. Singh, and L. Reden. Computer vision and pattern re
ognition te
hniquesfor 2-D and 3-D MR 
erebral 
orti
al segmentation(part I): A state-of-the-art review.Pattern Analysis and Aplli
ations, 5:46�76, 2002.[15℄ D. J. Williams and M. Shah. A fast algorithm for a
tive 
ontours. In Third Interna-tional Conferen
e on Computer Vision, 1990.[16℄ C. Xu, D. L. Pham, M. E. Rettmann, D. N. Yu, and J. L. Pri
e. Re
onstru
tion ofthe human 
erebral 
ortex from magneti
 resonan
e images. IEEE Transa
tions onMedi
al Imaging, 18(6):467�480, 1999.



REFERENCES 34



Chapter 3A
tive Surfa
e Approa
h forExtra
tion of the HumanCerebral Cortex from MRIAdapted from: Simon F. Eskildsen and Lasse R. Østergaard: A
tive Surfa
e Approa
hfor Extra
tion of the Human Cerebral Cortex from MRI, MICCAI 2006, Le
ture Notes inComputer S
ien
e, 4191, pp. 823-830, O
tober, 2006.3.1 Introdu
tionDuring the last de
ade, several methods for extra
ting the boundaries of the human 
ere-bral 
ortex from magneti
 resonan
e imaging (MRI) have been proposed [1,3,5�8,10,11℄.The segmentation of the 
erebral 
ortex may fa
ilitate extra
tion of important anatomi
alfeatures, su
h as the 
orti
al thi
kness, whi
h may be utilised in studying the progress ofa long list of neurodegenerative diseases, and in turn may aid in diagnosing these diseases.Furthermore, anatomi
al models of the 
ortex may be useful in 
onne
tion with surgerysimulation, preoperative planning, and postoperative evaluation.The human 
erebral 
ortex is a 
omplex, highly 
onvolved sheet-like stru
ture. InMRI the 
orti
al boundaries are often obs
ured or partly missing be
ause of poor 
on-trast, noise, inhomogeneity artifa
ts and partial volume averaging originating from thea
quisition. Opposite banks of tight sul
i on the outer boundary may meet inside the sul-
al folds and appear as 
onne
ted in MRI. A
tive surfa
es have the ability to 
ompensatefor obs
ured and in
omplete image edges. However, in brain MRI, information of the outer
orti
al boundary may be 
ompletely missing in several tight sul
i. The most promisingmethods for delineating the outer boundary use information of the white matter/greymatter (WM/GM) boundary to �t the surfa
e to the outer 
orti
al boundary. Ma
Donaldet al. used a 
oupled surfa
e approa
h, where the inner and outer surfa
e simultaneouslywere deformed under proximity 
onstraints maintaining a prede�ned minimum and maxi-mum distan
e between the inner and outer boundary [7℄. Zeng et al. also used the 
oupledsurfa
es approa
h in a level set framework [11℄. The 
oupled surfa
es approa
h has theadvantage of expli
itly using information of both 
orti
al boundaries to dete
t the outerboundary. This solves the problem of penetrating the deep narrow sul
i. The drawba
ksare the 
omputational expense, and the 
onstraints of a prede�ned distan
e, whi
h mayprevent the dete
tion of abnormal thin or thi
k areas of the 
ortex. Kim et al. proposed amodi�
ation to the method by Ma
Donald et al. whi
h does not 
ontain a 
oupled surfa
e
onstraint [6℄. This method has shown promising results.Another approa
h by Dale et al. identi�ed the inner 
orti
al boundary, and expandedthis surfa
e towards the outer boundary [3℄. This has the advantage that all sul
i are35
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tive Surfa
e Approa
h for Extra
tion of the Human Cerebral Cortex fromMRI 36present in the initial state, and enables the preservation of the sul
i during deformation,even though the eviden
e of the outer boundary may be missing in the MRI data. Thetight sul
al folds are modelled by preventing self-interse
tions in the deforming surfa
e,thus the delineation of the folds is pla
ed equidistant from the sul
al walls of the innerboundary. This single surfa
e approa
h is fast and 
aptures all the tight sul
i. However,the expansion of the surfa
e towards the outer boundary is sensitive to small errors orirregularities in the initial surfa
e, whi
h may lead to modelling of non-existent sul
i. Xuet al. used a Generalised Gradient Ve
tor Flow (GGVF) to de�ne a dire
tion toward the
entral layer of the 
ortex [10℄. This solution provided a fast and 
onsistently 
onvergen
eof the surfa
e, but tight sul
i with no eviden
e of the outer boundary were not 
apturedby this method. Re
ent work by Han et al. expands the surfa
e from the 
entral layertoward the outer boundary using a topology-preserving geometri
 deformable model [5℄.In this approa
h the GGVF is only in
luded in the model when re
onstru
ting the 
entral
orti
al layer.This paper presents an a
tive surfa
e approa
h for 
ortex extra
tion 
hara
terised bythe in
lusion of a GGVF in the extra
tion of the outer 
orti
al boundary and the use ofa lo
al weighting strategy based on the intrinsi
 properties of the deforming surfa
e.3.2 MethodsThe strategy for re
onstru
ting the 
erebral 
ortex is to �rst extra
t the inner boundary,and then displa
e this surfa
e towards the outer boundary under the in�uen
e of internaland external for
es. The inner boundary is extra
ted using the method dis
losed in ourearlier work [4℄ ensuring a surfa
e topology of a sphere. The following explains the defor-mation that �ts a surfa
e to the outer 
orti
al boundary using a surfa
e estimating theinner boundary.3.2.1 Deformation Pro
essThe a
tive surfa
e is a non-parametri
 triangular mesh. The surfa
e is deformed by it-eratively updating ea
h vertex with a ve
tor de�ned as the sum of deformation for
es.This deformation s
heme has the advantage of being fast (O(n)) and eliminates problemsregarding granularity, whi
h is found in dis
rete methods. Even though 
onvergen
e maybe fast, absolute equilibrium is never rea
hed, due to the iterative nature of the algorithm.Therefore, a threshold for the update ve
tor is given that de�nes whether or not a vertexhas moved during an iteration. The stop 
riterion is met when a su�
iently small numberverti
es are displa
ed during an iteration.During surfa
e deformation the surfa
e is remeshed at prespe
i�ed intervals using asimple mesh adaption algorithm. The remeshing is based on the vertex density of thesurfa
e. This is done to avoid 
lustering of verti
es and allowing the surfa
e to expandwhere ne
essary, i.e. the distribution of verti
es are kept uniform throughout the surfa
e.The surfa
e remeshing algorithm does not 
hange the topology of the surfa
e, but is allowedto alter the surfa
e geometry. Finally, the surfa
e is prevented from self-interse
ting duringdeformation using the same prin
iple as des
ribed in [3℄.3.2.2 Internal For
esInternal for
es are applied to keep the verti
es well-distributed and a
hieve a smooth
hara
teristi
 of the surfa
e. The internal for
es used in this paper are similar to 
onven-tional smoothing for
es [1, 8℄ in form of a tensile and a �exural for
e. The tensile for
e is
al
ulated by an approximation of the Lapla
ian [8℄:
~L(i) =

1

m

∑

j∈N(i)

~x(j) − ~x(i) , (3.1)



37 3.2 Methodswhere ~x(i) is the position of vertex i, N(i) are the neighbour verti
es to i, ~x(j) is theposition of i's neighbour j, and m is the number of verti
es in N(i). The �exural for
e is
al
ulated by an approximation of the squared Lapla
ian [8℄:
~L2(i) =

1

m

∑

j∈N(i)

~L(~x(j)) − ~L(~x(i)) (3.2)Both ~L and ~L2 are de
omposed into a tangential and a normal 
omponent of the for
eve
tor as in the method of Dale et al. [3℄. This enables adjustment of the 
ontra
tive e�e
tof the internal for
es by weighting ea
h 
omponent.The internal for
es have the e�e
t of smoothing and �attening the surfa
e, however,as the target boundary is highly 
onvolved with both peaked and �at areas, the internalfor
es should be relaxed in 
ertain areas of the surfa
e and in
reased in others. Thedeforming surfa
e is used as a referen
e for the 
urvature of the target boundary to obtainlo
al 
urvature weighting of the internal for
es. To enable the surfa
e to 
ompensate forerrors in the initial surfa
e, and fa
ilitate some degree of surfa
e 
urvature alteration, the
urvature values are re
al
ulated at prespe
i�ed intervals during the deformation pro
ess.The 
urvature is estimated at ea
h vertex of the deforming surfa
e using the expression:
ρ(i) =

{

σ(i) , if ~w(i) · ~n(i) ≤ 0
−σ(i) , otherwise

(3.3)
σ(i) =

1

m

∑

j∈Ng(i)

π − 2cos−1

(

~x(j) − ~x(i)

|~x(j) − ~x(i)|
· ~w(i)

)

, (3.4)where Ng(i) is a geodesi
 neighbourhood around vertex i, ~w(i) is a unit ve
tor pointingfrom i towards the 
entre of gravity of Ng(i), ~n(i) is the unit ve
tor normal at i, and m isthe number of verti
es in Ng(i). Curvature values of zero are found in �at areas, positivevalues in 
onvex areas and negative values in 
on
ave areas. Note that the size of Nghas great in�uen
e on the 
urvature values and should be 
hosen 
arefully. The 
urvaturevalues are Gaussian �ltered (σ = 1), normalised, and in this form used to weight theinternal for
es:
~̂uint(i) = f(ρ(i))~uint(i), (3.5)where f is a weighting fun
tion de�ned as

f(x) = 1 −
1

2
tan(|x|), x ∈ [−1; 1] (3.6)3.2.3 External For
esThe outer boundary of the 
erebral 
ortex follows approximately the same 
onvexities and
on
avities as the inner 
orti
al boundary. Hen
e, a surfa
e delineating the inner 
orti
alboundary is used as an initial estimate of the outer 
orti
al boundary. This inner surfa
eis displa
ed in the dire
tion of the lo
al surfa
e normals until the surfa
e meets itself (see�gure 3.1), and thereby model sul
i, even though only little or no image information isavailable. For this purpose a pressure for
e [1℄ is used. The for
e is similar to the externalfor
e used in [3, 8℄, but based on fuzzy memberships of the tissue 
lasses as des
ribedin [10℄. The fuzzy memberships are 
al
ulated using the fuzzy 
-means algorithm [9℄. Thepressure for
e is expressed as:

~p(i) = ∆µ(i)~n(i)
∆µ(i) = µWM (i) + µGM (i) − µCSF (i),

(3.7)where µ is the membership values (trilinearly interpolated) and ~n(i) is the unit ve
tornormal at vertex i. A weighting fun
tion is applied to the membership di�eren
e to
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(a) Initial (b) Deforming (
) FinalFigure 3.1: Illustration of how the pressure for
e enables modelling of narrow sul
i withno CSF evident. As the deformable surfa
e (grey line) is pushed away from the WM/GMboundary in the dire
tion of the lo
al surfa
e normals, it will eventually meet itself insidenarrow sul
i.ensure a degree of freedom at membership di�eren
es 
lose to zero:

~̂p(i) = c1g(∆µ(i))~n(i), (3.8)where c1 is a weighting 
onstant and
g(x) = x(2 − 2cos(x)), x ∈ [−1 : 1] (3.9)Surfa
e normals, approximated from a dis
rete mesh, may be misleading, as they 
anbe perturbed by noise in the surfa
e. This may erroneously 
ause modelling of non-existingfeatures, when the surfa
e is displa
ed over larger distan
es. In
reasing the in�uen
e ofthe internal for
es resolves this problem, but also prevents the surfa
e from rea
hing small
on
avities, whi
h are truly evident in the MRI. To solve the problem, the pressure for
eis 
ombined with a GGVF for
e similar to the one used by Xu et al. [10℄, but with anedge map of the outer 
orti
al boundary instead of the 
entral 
orti
al layer. This edgemap is the �rst order derivative of the sum of the WM and GM fuzzy memberships.The GGVF for
e performs best at the gyri where information of the GM/CSF boundaryis evident in the MRI, thus the normal ve
tor is 
ombined with the GGVF ve
tor so theGGVF ve
tor dominates the normal ve
tor at the 
rown and ridges of gyri, and the normalve
tor dominates the GGVF ve
tor along the fundi, and walls of sul
i. The lo
al surfa
e
urvature, 
al
ulated in a geodesi
 neighbourhood, is used for balan
ing the in�uen
e ofthe GGVF ve
tor and the normal ve
tor:

~uext(i) = c2

(

~̂p(i)
1 − ρ(i)

2
+ ~g(i)

1 + ρ(i)

2

)

, (3.10)where ~̂p(i) is the pressure for
e ve
tor at vertex i, ~g(i) is the GGVF ve
tor at vertex i,
ρ(i) is the 
urvature value at i given in (3.3), and c2 is a 
onstant.Gradient information is used to s
ale the update ve
tor ~u, so the magnitude of theupdate ve
tor is redu
ed when the magnitude of the gradient in
reases. This is done bymapping the normalised gradient magnitudes with the fun
tion:

h(x) = cos(
π

2
x), x ∈ [0 : 1] (3.11)and s
aling the update ve
tor ~u by the result. The update ve
tor is un
hanged whenthere is no gradient and greatly shortened when a strong gradient is present at the givenvertex position. Information of the gradient is used only when 
lose to the GM/CSFboundary and suppressed when far from the boundary. The weighted membership di�er-en
e g(∆µ(i)) in (3.8), that provides an estimate for the spatial position of the GM/CSF



39 3.3 Resultsboundary, is therefore utilised to weight the in�uen
e of the gradient. The resulting up-date ve
tor is given as a weighted sum of a gradient weighted term and a non-gradientweighted term:
~u(i) = ((1 − τ)cos

(

π
2 |

~∇(i)|
)

+ τ)(~̂uint(i) + ~uext(i)),

τ = |g(∆µ(i))|,
(3.12)where ~∇(i) is the image gradient trilinearly interpolated at vertex i, ~̂uint(i) is the weightedsum of the internal for
es given in (3.5), and ∆µ(i) is given in (3.7).3.3 ResultsSimulated MRI s
ans of a brain phantom1 [2℄ and 36 T1 weighted MRI datasets of youngnormal subje
ts from the International Consortium for Brain Mapping (ICBM) databasewere used for testing the general behaviour of the deformation. The same weighting
onstants were used in all test 
ases. Initial surfa
es isomorph to a sphere were generatedand �tted to the inner 
orti
al boundary. The initial surfa
es 
onsisted of approximately

1.5 · 105 verti
es. During deformation this number was in
reased to approximately 2.0 ·
105. The deformation pro
ess 
onverged after 30-40 iterations with the stop 
riterion of(#moved verti
es) < (1% of total verti
es). The deformation of the outer surfa
e requiredapproximately 20 minutes on a 3 GHz Pentium 4 pro
essor. The self-interse
tion testsperformed throughout the deformation of the inner and outer surfa
e were responsible forthe majority of the pro
essing time.Figure 3.2 shows three di�erent modes of the deformation pro
ess in a sele
ted partof the simulated MRI. The three modes di�er in their external for
es, the internal for
esare the same for all three modes. In the �rst mode, only the pressure for
e is enabled,simulating the method by Dale et al. [3℄. This 
learly shows that the use of the pressurefor
e alone result in irregularities in the surfa
e. This is espe
ially evident at top of gyri.In the se
ond mode, only the GGVF for
e is enabled, simulating the method by Xu etal. [10℄. In this 
ase the surfa
e does not rea
h the fundus of sul
i without eviden
e ofCSF. There is also an undesirable behaviour in some of the sul
i, be
ause the surfa
e isattra
ted to the nearest visible GM/CSF image edge. The last mode shows deformationwith both the pressure for
e and the GGVF for
e enabled, balan
ed using the 
urvatureweighting fun
tion. Now the tight sul
i are being modelled 
orre
tly while avoiding surfa
eirregularities on top of gyri.All 36 
orti
es from the ICBM database were automati
ally re
onstru
ted and quali-tatively assessed by visual inspe
tion. An example of an extra
ted outer surfa
e is shownin �gure 3.3. As it 
an be seen from the �gure, the extra
ted surfa
e appears smooth,realisti
 and major gyri and sul
i are easily re
ognised. The qualitative assessment of thea

ura
y of the extra
ted surfa
es was made by superimposing the surfa
es onto the MRIand visually inspe
ting the 
ontours (�gure 3.3, right). As it 
an be observed from the�gure the outer 
orti
al boundary is a

urately delineated. Tight sul
i are modelled evenwhen the 
rowns of adja
ent gyri are not separated in the image data, and the surfa
etend to be pla
ed at a position equidistant to the WM walls when no CSF is evident insul
i. This indi
ates that the method follows the intended behaviour.3.4 Summary and Con
lusionThis paper presented a new method for extra
ting the outer boundary of the human 
ere-bral 
ortex from MRI. The a
tive surfa
e approa
h 
ombines a 
onventional pressure for
ewith fuzzy tissue 
lassi�
ations, and a generalised gradient ve
tor �ow for
e, while lo
ally1The brain phantom was provided by the M
Connel Brain Imaging Centre at the Montreal Neurologi
alInstitute, http://www.bi
.mni.m
gill.
a
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Figure 3.2: Outer surfa
e deformation pro
ess using di�erent external for
es at di�erentstages in the pro
ess. Left to right: Deformation pro
ess at iterations 0,5,15 and 30.Top: Only pressure for
e is enabled. Middle: Only GGVF for
e is enabled. Bottom:Combination of both for
es balan
ed by the 
urvature weighting fun
tion.

Figure 3.3: Example of a generated 
ortex from ICBM data. Left: Rendering of outersurfa
e. Right: Inner (bla
k) and outer (white) surfa
es superimposed onto MRI.weighting the for
es based on the surfa
e 
urvature. Preliminary tests were 
ondu
tedon both simulated data and real data of young normal subje
ts. The primary results of
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urate for segmenting the 
or-ti
al boundary in both simulated and real neuroanatomi
al data. Still, the method needsfurther validation, as it must be able to perform on data with varying quality and froma varying population, if it is going to be appli
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al use. Future workin
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ts with altered 
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Chapter 4Quantitative Comparison of TwoCorti
al Surfa
e Extra
tionMethods Using MRI PhantomsAdapted from: Simon F. Eskildsen and Lasse R. Østergaard: Quantitative Comparison ofTwo Corti
al Surfa
e Extra
tion Methods Using MRI Phantoms, MICCAI 2007, Le
tureNotes in Computer S
ien
e, 4791, pp. 409-416, O
tober, 2007.4.1 Introdu
tionRe
onstru
tion of the human 
erebral 
ortex from magneti
 resonan
e (MR) images fa-
ilitates morphometri
 studies and brain mapping, and provides intuitive visualisation ofthe human brain for the use in e.g. surgi
al planning. Sin
e the nineties a number ofalgorithms has been developed for extra
ting the boundaries of the 
ortex from MR im-ages [2, 4, 8, 9, 12, 13, 15℄. FreeSurfer has been around for more than seven years, and has,due to the fa
t that it is freely available, be
ome widespread in the s
ienti�
 
ommunity.We have re
ently published a method (hen
eforth designated Fast A

urate Cortex Extra
-tion (FACE)), whi
h resembles FreeSurfer in many aspe
ts, but is signi�
antly improvedin terms of 
omputational speed [5, 6℄.When performing morphometri
 studies the a

ura
y of the 
ortex re
onstru
tions isvery important. Therefore, it is of interest to investigate how well FACE performs interms of a

ura
y 
ompared to FreeSurfer. Quanti�
ation of the a

ura
y is di�
ult asthe ground truth is rarely available. A means to measure the a

ura
y is using phantomsresembling real neuroanatomi
al data. Lee et al. [11℄ 
ompared FreeSurfer [4℄, CLASP[9℄ and BrainVISA [12℄ using generated phantoms. They found that CLASP was morea

urate than BrainVISA and FreeSurfer. However, CLASP is not publi
ly available,while the two other methods are. FreeSurfer performed se
ond best in the study. In thisstudy we 
ompare our method, FACE, to FreeSurfer using realisti
 phantoms generatedfrom real MR s
ans.4.2 MethodsTo evaluate the two 
ortex extra
tion methods, eight healthy young subje
ts (age: 32±7.4)and eight healthy middle-aged subje
ts (age: 54.3±6.0) were sele
ted , and a 
omparisonmethod similar to the method des
ribed by Lee et al. was used [11℄. For ea
h subje
tboth methods were used to extra
t the 
orti
al boundaries. The surfa
es extra
ted byea
h method were used as referen
e for the generation of simulated MR s
ans as des
ribed43
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ortex of these 
ustomised phantoms were extra
ted by ea
h method and theresulting surfa
es were 
ompared to the referen
e surfa
es (see �gure 4.1).

Figure 4.1: Flow 
hart illustration of the 
omparison method.The following brie�y des
ribes the two 
ortex extra
tion methods, the generation ofthe test phantoms, and how the error between the referen
e surfa
es and the test surfa
eswas quanti�ed.4.2.1 FreeSurfer MethodFreeSurfer [4, 7℄ �rst registers the input MR volume to Talaira
h spa
e [3℄. Non-uniformities originating from inhomogeneities in the magneti
 �eld are 
orre
ted, andthe intensities are normalised. The resulting volume is skull stripped using an approa
hsimilar to BET [14℄. The WM voxels inside the skull stripped volume is labelled using atwo-step segmentation algorithm based on intensities and prior knowledge of the GM/WMinterfa
e. The ventri
les and sub
orti
al matter inside the WM 
omponent is �lled, andthe WM is separated into the two hemispheres by a sagittal 
ut through the 
orpus 
al-losum and an axial 
ut through the pons. A 
onne
ted 
omponent algorithm is used toisolate the main body of WM voxels, i.e. the 
erebrum WM voxels.From the WM voxels a surfa
e mesh is 
onstru
ted by generating 
onne
ted triangleson the fa
es of the voxels. The resulting surfa
e for ea
h hemisphere is topology 
orre
tedto be isomorph to a sphere, and a deformation pro
ess smoothes the surfa
e while main-taining it at the WM/GM interfa
e. The pial, or GM surfa
e is found by displa
ing theWM surfa
e toward the GM/CSF interfa
e using the lo
al surfa
e normals and intensitygradients.4.2.2 Fast A

urate Cortex Extra
tion MethodFACE performs similar prepro
essing steps as FreeSurfer. The registered, intensity 
or-re
ted, and skull stripped volume is segmented into WM, GM, and CSF using a fuzzy
lustering algorithm solely based on the intensities, and a WM labelling is performed bymaximum membership 
lassi�
ation. Cerebellum and the brain stem is removed usingatlas information, and the hemispheres are separated by a sagittal 
ut through the 
orpus
allosum. After a 
onne
ted 
omponent analysis spheri
al topology of ea
h hemisphere



45 4.2 Methodsis obtained using a topology 
orre
tion algorithm [1℄, and the WM hemispheres 
an betessellated by an iso-surfa
e algorithm yielding surfa
es with Euler 
hara
teristi
s of asphere (genus=0).The iso-surfa
e generated from the WM 
erebrum voxels are deformed to �t theWM/GM interfa
e under the in�uen
e of smoothing for
es and for
es derived from thesurfa
e normals, the fuzzy voxel 
lassi�
ation, and gradient information of the originalimage.The GM surfa
e is found using the method des
ribed in [6℄. The WM surfa
e isdispla
ed towards the GM/CSF interfa
e using a 
ombination of the lo
al surfa
e normalsand a gradient ve
tor �eld 
al
ulated from an edge map of the voxel segmentation. Thein�uen
e of the two ve
tor for
e �elds on ea
h vertex in the surfa
e is weighted by the
urvature of the surfa
e, whi
h enables di�erent deformation behaviour a

ording theposition on the surfa
e (sul
us or gyrus). The deformation is not minimising an obje
tivefun
tion, whi
h means that the 
omplexity is low 
ompared to the deformation pro
ess inFreeSurfer.4.2.3 Phantom GenerationMembership volumes of WM, GM, and CSF were generated dire
tly from the extra
tedsurfa
es. This was a

omplished by labelling ea
h voxel 
ompletely inside the WM surfa
eas WM, and 
al
ulating the inside fra
tion of ea
h voxel interse
ted by the surfa
e. Thiswas also done for the GM surfa
e, and the memberships for the three tissue 
lasses were
al
ulated from the fuzzy labelled volumes (see �gure 4.2). The three membership volumes

Figure 4.2: Fuzzy membership volumes generated from the extra
ted surfa
es. Left toright: WM, GM, and CSF.were used as input to an MRI simulator [10℄ with the same a
quisition parameters as theoriginal MR s
ans (TR=18ms, TE=10ms, 1mm sli
es). The intensities of the resultingvolume were normalised to the range of the original s
an. Finally, sub
ortex, ventri
les,
erebellum, brain stem, and extra-
erebral tissue were added from the original s
an bysuperimposing the simulated brain s
an onto the original (�gure 4.3).4.2.4 A

ura
y AssessmentTo test the a

ura
y of ea
h method, re
onstru
tions of the 
orti
al boundaries weregenerated from the 32 phantoms. The re
onstru
tions were then 
ompared to the re
on-stru
tions of the original MR s
ans. Both methods ensures 
orre
t topology by volume-or surfa
e-
orre
tion. Thus the 
omparison was based solely on geometri
al fa
tors. Fourfa
tors were 
onsidered, namely volume di�eren
e, surfa
e area di�eren
e, over/under seg-
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Figure 4.3: Phantom produ
ed by the MRI simulator (left), and �nal phantom afternormalisation and added original tissue (right).mentation ratio, and the expli
it geometri
al error. Also the vertex density was takinginto 
onsideration in the 
omparison.
• Volume Di�eren
e: The en
losing volume of the surfa
es was 
al
ulated and thedi�eren
e (in per
ent) from the referen
e surfa
es was measured.
• Surfa
e Area Di�eren
e: Surfa
e areas were 
al
ulated and the di�eren
e (inper
ent) from the referen
e surfa
es was measured.
• Over/under segmentation ratio: Tissue membership volumes of WM, GM andCSF were 
reated from the test surfa
es similar to the pro
edure used in the phantomgeneration. The resulting fuzzy maps were 
ompared to the maps generated fromthe referen
e surfa
es, and the per
entages of voxels respe
tively missing inside (falsenegatives) and added outside (false positives) the referen
e map were 
al
ulated.
• Expli
it Geometri
al Error: The Eu
lidean distan
e from ea
h vertex in thereferen
e surfa
e to the 
losest fa
e on the test surfa
e was measured. The rootmean square error of these distan
es was 
al
ulated for both the WM surfa
e andthe GM surfa
e. Similarly, the distan
e was measured from the test surfa
e to thereferen
e surfa
e. The latter was done to avoid that simply adding verti
es to thesurfa
e did not ne
essarily redu
e the error.4.3 ResultsThe 
orti
al extra
tions were performed on an AMD Opteron 2.6 GHz pro
essor with 12GB memory. The average extra
tion time from native s
an to �nal surfa
es for FreeSurferwas 20.1 hours, while it was 0.8 hours for FACE. The following presents the results onhow well the methods re
onstru
ted the original surfa
es from the generated phantoms.When 
omparing the re
onstru
ted surfa
es visually, only small di�eren
es 
an bedis
erned. Figure 4.4 shows the original GM surfa
e along with the re
onstru
tions bythe two methods. The number of verti
es in the surfa
es generated by the two methods



47 4.4 Dis
ussion

Figure 4.4: Left: Surfa
e extra
ted from original s
an by FACE. Middle: Re
onstru
tionfrom phantom by FreeSurfer. Right: Re
onstru
tion from phantom by FACE.FreeSurfer Phantom FACE PhantomMetri
 FreeSurfer FACE P-value FreeSurfer FACE P-valueWM ∆vol (%) 1.2±1.1 5.4±2.6 0.00 1.7±1.9 4.9±2.3 0.00WM ∆area (%) 7.6±1.9 3.1±1.5 0.00 15.4±3.4 9.4±1.9 0.00Brain ∆vol (%) 4.4±1.2 4.0±1.0 0.36 5.5±2.0 3.7±0.8 0.01GM ∆area (%) 5.4±1.4 5.0±3.1 0.54 2.5±2.4 1.6±1.5 0.22WM FN (%) 8.5±1.3 4.2±0.6 0.00 10.0±2.1 3.2±0.6 0.00WM FP (%) 7.8±0.8 9.1±2.3 0.01 8.7±0.8 7.4±1.8 0.00GM FN (%) 23.4±1.3 21.9±2.0 0.01 26.4±3.7 19.9±1.9 0.00GM FP (%) 15.7±1.4 7.3±1.4 0.00 17.6±3.1 6.9±1.3 0.00WM ref2test (mm) 0.95±0.64 1.14±0.11 0.20 1.47±0.90 0.63±0.07 0.00WM test2ref (mm) 0.75±0.14 0.84±0.17 0.13 1.28±0.17 0.46±0.05 0.00GM ref2test (mm) 0.86±0.50 1.07±0.11 0.08 1.26±0.92 0.64±0.08 0.02GM test2ref (mm) 0.83±0.14 0.63±0.13 0.00 1.39±0.19 0.59±0.06 0.00Table 4.1: Errors measured by the four metri
s on both WM and GM surfa
es. Errors aredeviation from the referen
e surfa
es. For ea
h metri
 the performan
e on both FreeSurferand FACE phantoms is 
ompared for the two methods (two-tailed paired t-test). Signi�-
ant smaller errors are marked by bold font.vary. FreeSurfer generates surfa
es with almost twi
e the number of verti
es 
ompared toFACE (310,415±18,628 vs. 169,218±9,755).Table 4.1 lists the results for ea
h error metri
 averaged for the 16 subje
ts. The errorsof the two methods for ea
h metri
 was 
ompared and tested by two-tailed paired t-test(the p-values are listed in the right hand 
olumn of ea
h phantom). Signi�
ant smallererrors are marked by bold font. The volume and area errors are absolute per
ent 
hange
ompared the to referen
e surfa
es. The under/over segmentation error is measured byper
ent outside referen
e surfa
e volume (false positives (FP)) and per
ent missing insidereferen
e surfa
e (false negatives (FN)). The expli
it geometri
al di�eren
e is measuredby the RMS error in mm.4.4 Dis
ussionFrom table 4.1 it 
an be observed that FACE has signi�
antly fewer WM false negativesand GM false positives when testing on both groups of phantoms. The two metri
s are



REFERENCES 48related in that missing WM voxels most likely are 
lassi�ed as GM voxels. Generally,both methods seem to over-expand the surfa
es when 
ompared to the phantoms. Thisespe
ially in
reases the GM false negatives per
entage, as the GM tissue 
lass is smallerthan the WM tissue 
lass.The geometri
al error rates show that the average distan
e between the test and ref-eren
e surfa
es is at subvoxel level when testing the a

ura
y of FACE. Reprodu
ibilityerrors of FACE are 
onsistently around half a voxel size, while FreeSurfer reprodu
ibilityerrors are between 0.75 - 0.95 voxel size. For purposes of 
omparison the di�eren
e for thereferen
e surfa
es of the two methods was measured to 1.48±0.31 mm (average for bothWM and GM surfa
es).When looking at the volume and area errors for the GM surfa
es, i.e. 
erebrum vol-ume and area, there is little di�eren
e between the two methods, and the error is fairlysmall (1.6% - 5.5%). Also, the WM volume errors are low. However, higher error ratesare found in the WM area. Looking at the area 
hange per subje
t, it was found thatall re
onstru
ted WM surfa
es had a smaller area than the referen
e, while the volumeremained more or less the same. This 
ould point to the fa
t that the WM voxels inthe phantoms do not exa
tly resemble the original MR WM voxels leading to less deepsul
i. Improvements of the phantoms 
ould solve this bias. Also, visual inspe
tion of thesurfa
es revealed signi�
ant di�eren
es in the surfa
es at the base of the brain due to thedi�erent brain stem 
utting strategies in the two methods. The inspe
tion also revealedthat FreeSurfer in a few surfa
es missed part of the o

ipital lobe. This 
ould be 
ausedby registration errors whi
h again 
ould be 
aused by tissue voxels not resembling realMR data.Generally, the tests show that the a

ura
y of FACE is 
omparable to Free-Surfer.In most 
ases FACE has a signi�
antly better a

ura
y. FACE is on average more than25 times faster than FreeSurfer. The longer extra
tion time in FreeSurfer 
an partly beexplained by the high number of verti
es in the surfa
es. FreeSurfer generates surfa
eswith almost twi
e the number of verti
es 
ompared to FACE. Another reason for the speeddi�eren
e is a very fast 
onvergen
e of the deformation in FACE due to refraining fromminimising an obje
tive fun
tion.Even though FACE in the 
omparison proved to be more a

urate, results from some ofthe error metri
s and visual inspe
tions suggested that the phantoms 
ould be improved toresemble real anatomi
al MR data. However, the results indi
ate that FACE is 
omparableto FreeSurfer in terms of a

ura
y.The subje
ts used in this study were healthy without altered 
orti
al morphology.Further studies must examine the a

ura
y of the two methods when analysing subje
tswith altered morphology (e.g. Alzheimer's patients), whi
h is often the 
ase in 
lini
altrials.A
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Chapter 5Evaluation of Five Algorithms forMapping Brain Corti
al Surfa
esAdapted from: S. F. Eskildsen and L. R. Østergaard: Evaluation of Five Algorithms forMapping Brain Corti
al Surfa
es, SIBGRAPI, pp. 137-144, 2008 XXI Brazilian Sympo-sium on Computer Graphi
s and Image Pro
essing, 20085.1 Introdu
tionMorphologi
al analysis of the human 
erebral 
ortex from in-vivo medi
al images plays animportant role in the investigation of various neurologi
al disorders, su
h as s
hizophreniaand dementia [6, 18℄. In
reasing e�ort is being put into measuring 
orti
al morphologi-
al 
hanges over time and di�eren
es between populations. Magneti
 resonan
e imaging(MRI) provides ex
ellent stru
tural information of the 
erebral tissues, and surfa
e re
on-stru
tions of the 
ortex from MRI have grown popular for studying morphologi
al features,su
h as 
orti
al thi
kness, area, and patterns of the 
orti
al folds. During the last de
adeseveral surfa
e re
onstru
tion algorithms have been proposed [7,9,14,17,21,34℄, and severalways to obtain 
orti
al thi
kness measurements and other features from 
orti
al surfa
eshave been developed [24, 28℄. Usually the 
orti
al surfa
es are approximated by dis
retepolygonal meshes, and 
orti
al features are 
al
ulated at ea
h vertex provided a reasonablyuniform distribution of verti
es a
ross the surfa
e. To measure morphologi
al di�eren
esbetween subje
ts one 
an average the measurements over the entire 
ortex or within spe
-i�ed regions, but to exploit the detailed map of measurements provided by high resolutionsurfa
es and be able to dete
t fo
al di�eren
es a point 
orresponden
e between 
orti
alsurfa
es is required. Su
h a mapping must preserve anatomi
al landmarks a
ross subje
tsin order to reliably 
ompare measurements, i.e. it does not make sense to 
ompare thetop of a fold (gyrus) on one surfa
e with the bottom of a fold (sul
us) on another surfa
e.Be
ause of the high diversity of folding patterns a
ross individual 
orti
es, su
h a mappingis far from trivial.5.2 Ba
kgroundSeveral methods to solve the 
orti
al mapping problem have been proposed. A popularapproa
h is to parameterize the 
orti
al surfa
e by mapping the surfa
e into a 
anoni
alspa
e and solve the 
orresponden
e problem in this spa
e. Often the unit sphere is used,as it is topologi
ally equivalent to the 
orti
al surfa
e and provides an attra
tive 
oor-dinate system for easy parameterization [13℄. Utilizing the Riemann mapping theoremon manifold surfa
es [1℄ several approa
hes have been proposed to 
onformally map the
orti
al surfa
e to a sphere [16, 19, 23, 25, 26, 31℄. Also other 
anoni
al spa
es have been51
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al Surfa
es 52used for parameterization, su
h as an ellipsoid and the 2D plane [33℄. The latter, so-
alled�at maps, require 
uts in the 
losed surfa
e to be able to map the surfa
e to the plane.Consistent 
uts are hard to automate, thus requiring manual intervention.After parameterization of 
orti
al surfa
es the 
orresponden
e between verti
es 
anbe obtained by registration of the surfa
es in the 
anoni
al spa
e using the preservedgeometri
al features as similarity measure. This registration is usually a non-linear warpbe
ause of the highly irregular folding patterns [12, 35℄.The mapping onto a 
anoni
al spa
e introdu
es geometri
al distortion in the surfa
e,and even though work has been fo
used on minimizing the distortion in the 
onformalmapping [23℄ it remains a problem for the subsequent parameterization and registration.Creating �at maps introdu
es more geometri
al distortion than the spheri
al approa
hand alters the topology thus partly destroying geodesi
 relations between verti
es [12℄.Several methods 
onstrain the mapping using landmark 
urves [16, 25, 29, 33℄. These areoften manually de�ned, but methods have been proposed to automate identi�
ation oflandmark 
urves [15, 22, 28℄, though it is hard to do 
onsistently [4℄.Another group of methods try to solve the 
orresponden
e problem without the in-termediate step of mapping to a 
anoni
al spa
e. One family of su
h methods is derivedfrom the iterative 
losest point method (ICP) [2,5℄. Apart from variations over the simple
losest point method, several methods 
ombine ICP with point feature registration [10,27℄.Others approa
h the problem by �nding a dire
t mapping using partial di�erential equa-tions (PDE) [29℄ or di�eomorphisms [32℄.Common for the mapping approa
hes des
ribed above is the preservation of intrinsi
vertex 
on�guration, ex
ept from the 
uts introdu
ed when 
reating �at maps. This mayseem important, as these geometri
 properties re�e
t the underlying 
ytoar
hite
ture ofthe 
ortex. However, when mapping between 
orti
es with very di�erent 
orti
al foldingpatterns, this 
onstraint 
an be relaxed to better mat
h morphologi
al features. A featurebased method disregarding the intrinsi
 vertex 
on�gurations was proposed by Spjuth etal. [30℄. They used a similarity fun
tional based on mean 
urvature, surfa
e normals,and Eu
lidean distan
e to �nd 
orresponding verti
es between surfa
es after an initial,global, a�ne registration. The method allows several verti
es to map to the same targetvertex while other verti
es are left without mapping. Thereby information is lost. Toretain information, the optimal solution is a bije
tion between the surfa
es only mappingbetween similar anatomi
al points. When a vertex to vertex 
orresponden
e is needed themapping 
annot be a bije
tion if the two 
ortex surfa
es have di�erent number of verti
es.However, one 
an try to approximate a bije
tion by having unique proje
tions for as manyverti
es as possible.As des
ribed above a variety of algorithms for solving the 
orti
al mapping problemhave been proposed. However, to the best of our knowledge, 
omparisons of the di�erentapproa
hes have not been 
arried out. In this paper we propose a new algorithm for theproblem of �nding vertex 
orresponden
e between surfa
es with di�erent vertex 
ountsand evaluate the performan
e of the proposed algorithm along with a sele
tion of othermapping algorithms.5.3 Proposed Mapping AlgorithmThe proposed algorithm for mapping a sour
e surfa
e to a target surfa
e is inspired bySpjuth et al. [30℄, and it uses the same similarity features, but seeks to optimize thenumber of unique mappings, thereby approximating a bije
tion as 
lose as possible. Thealgorithm initially aligns the two surfa
es with a rigid transformation found by 
enter ofmass normalization followed by ICP optimization [5℄. The method for �nding a vertex tovertex 
orresponden
e from sour
e to target surfa
e uses a 
ost fun
tional J . The 
ost ofmapping between sour
e vertex i and target vertex j is given by
J(i, j) = αec(i,j) + βen(i,j) + γed(i,j) (5.1)



53 5.4 Algorithms Sele
ted for Comparisonwhere c is the absolute di�eren
e in normalized mean 
urvature at the verti
es, n isthe normalized angle between the vertex normals, d is the normalized Eu
lidean distan
ebetween the verti
es, and α, β and γ are weights. This 
ost fun
tional is sought minimizedper sour
e vertex by the following algorithm:De�nitions:
Vs is the set of sour
e verti
es.
Vt is the set of target verti
es.
tc is the 
ost threshold any mapping must be below.
tm is the maximum number of mappings allowed to the same target vertex.
Ns is the set of sour
e verti
es without a mapping.
Nt is the set of target verti
es with number of mappings < tm.Initial 
onditions : Ns = Vs, Nt = Vt, and tm = 1.1. For ea
h vertex in Ns �nd the vertex in Nt with the lowest mapping 
ost de�ned by

J .2. For ea
h vertex in Vt where number of mappings > tm remove highest 
ost mappingsuntil number of mappings = tm. Update Ns and Nt.3. Repeat from 1 until no mappings are found with a 
ost < tc, or either Ns or Nt isempty.4. If Ns is non-empty, set Nt = Vt, tm = tm + 1 and repeat from 1.We designate the algorithm iterative 
losest feature (ICF), be
ause of its use of pointfeatures and iterative behavior. The weights in the 
ost fun
tional were found by repeatedtrials of mapping between two simple phantom surfa
es where the true mapping wasknown. The found weights were α = 3.7, β = 1.1, and γ = 2.7.5.4 Algorithms Sele
ted for ComparisonApart from the proposed mapping algorithm we wanted to evaluate a handful of typi
alalgorithms to �nd their strengths and weaknesses. The following algorithms were in
ludedin the evaluation:
• Iterative 
losest point (ICP). The basi
 ICP algorithm [5℄ to 
ompare with a simpleand �naive� approa
h.
• Feature. The method by Spjuth et al. [30℄ was in
luded as this method is similarto the proposed algorithm but without the iterative behavior.
• Iterative 
losest feature (ICF). The proposed method as des
ribed in se
tion 5.3.
• Spheri
alWarp. This is the method used in FreeSurfer to register a 
orti
al surfa
eto a �
anoni
al� surfa
e [12, 13℄. Sour
e and target surfa
es are mapped to the unitsphere (�gure 5.1) and the folding patterns are aligned using a warp minimizing themean squared di�eren
e between the average 
onvexity [13℄. This method is in
ludedas the algorithm is freely available and the spheri
al mapping introdu
es less metri
distortion than other mapping methods [20℄. To obtain a vertex 
orresponden
emap, the geodesi
 
losest points are used between two surfa
es registered to the
anoni
al surfa
e provided by FreeSurfer.
• Spheri
al. A method where sour
e and target surfa
es are mapped to a sphereand 
orresponding points are found by rotations of the sour
e surfa
e optimizing
urvature 
orrelation. The method is similar to the approa
h des
ribed by Fis
hl etal. [12℄, but instead of the �nal non-linear warp a rigid optimization is performediteratively in a multi-s
ale manner. The spheri
al mapping was done using FreeSurfer
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Figure 5.1: From 
ortex surfa
e to sphere. Left: Original 
orti
al surfa
e. Middle: In�atedsurfa
e with 
urvature values superimposed. Right: Surfa
e mapped to a sphere with
urvature values superimposed.[7℄, while the subsequent optimization was implemented lo
ally. As in the warpapproa
h des
ribed above, a vertex 
orresponden
e map is obtained by the geodesi

losest points between the two surfa
es after optimization.The following se
tion des
ribes how the �ve mapping algorithms were evaluated.5.5 Mapping EvaluationPerforman
e of the algorithms was tested using 10 
orti
al surfa
es extra
ted bythe FreeSurfer software [7℄ from T1 weighted MRI s
ans (1.5 Tesla, 30◦�ip angle,TR/TE=18/10 ms, isotropi
 1 mm voxels) from young healthy subje
ts. FreeSurfer pro-du
es surfa
es of the inner and outer boundary of the 
ortex for ea
h hemisphere sepa-rately. Surfa
es of the outer 
orti
al boundary of left hemispheres only were used in theevaluation, as brain symmetri properties suggest that either hemisphere is representativefor the 
orti
al variation, and the mapping algorithms are expe
ted to perform equallywell on both hemispheri
 surfa
es. Surfa
es generated by FreeSurfer are triangular mesheswith spheri
al topology and have arbitrary number of verti
es, thus they are well-suitedfor testing the algorithms des
ribed here. The 10 extra
ted left 
orti
al surfa
es had onaverage 148k±8k verti
es. The distribution of verti
es were assumed similar for the gen-erated surfa
es. All 10 
orti
al surfa
es were in turn used as target for mapping the othernine surfa
es, thus resulting in 90 mappings in total used in the evaluation.The optimal 
orresponding target vertex for any given sour
e vertex 
an be sought eventhough this means that two distin
t verti
es may map to the same vertex on the targetsurfa
e. It is desirable to map to as many verti
es on the target surfa
e as possible to retaininformation, i.e. the image of the mapping must 
over as mu
h of the target surfa
e aspossible. The higher 
overage of the target surfa
e the better approximation of a bije
tionbetween the surfa
es. Therefore, one 
riterion for a good mapping is the per
entage ofverti
es on the target surfa
e that are used as 
orresponden
e points for verti
es on thesour
e surfa
e, i.e. the 
overage of the target surfa
e. If the sour
e surfa
e has less verti
esthan the target surfa
e full 
overage is not possible. Therefore the 
overage error, C, isde�ned as:
C = 1 −

|Mt|

min(|Vs|, |Vt|)
, (5.2)where Mt is the set of target verti
es with a mapping, and Vs and Vt are the same as inse
tion 5.3. Thus a full 
overage results in C = 0 while mappings with less 
overage havehigher values with a theoreti
al upper limit of C = 1.In
reasing the vertex 
ount of the sour
e surfa
e provides better 
onditions for a good
overage. However, a sour
e surfa
e with twi
e as many verti
es as the target surfa
e may



55 5.5 Mapping Evaluationprovide full 
overage of the target surfa
e without being 
onsidered a good mapping iffor instan
e a large portion of sour
e verti
es map to the same target vertex. Therefore,another 
riterion for a good mapping is the mean square number of mappings per targetvertex normalized by the squared sour
e/target vertex 
ount ratio. The multiple mappingerror, M , is de�ned as:
M =

1
|Vt|

∑

j∈Vt

m2
j

( |Vs|
|Vt|

)2
− 1 =

|Vt|
∑

j∈Vt

m2
j

|Vs|2
− 1 (5.3)where mj is the number of mappings to vertex j of the target surfa
e. If M = 0 themapping is optimal with regard to the 
riterion, while higher values of M signal worsemappings with a theoreti
al upper limit of M = |Vt| − 1.When mapping between surfa
es we expe
t that pat
hes of the sour
e surfa
e aremapped to pat
hes of similar size on the target surfa
e. We introdu
e a third 
riterionaiming at evaluating this property. For ea
h vertex i on the sour
e surfa
e we determinethe geodesi
 distan
es to the neighbors along the target surfa
e after applying the map,where the geodesi
 distan
e is 
al
ulated as the minimum edge length between verti
es(Dijkstra's algorithm [8℄). Optimally, this distan
e should be the same as on the sour
esurfa
e when surfa
es have equally distributed verti
es. We 
al
ulate the geodesi
 errorat vertex i as:

φ(i) =
1

|N(i)|

∑

j∈N(i)

|g(m(i), m(j)) − g(i, j)| (5.4)where N(i) is the set of neighboring verti
es to vertex i on the sour
e surfa
e, g(i, j) isthe geodesi
 distan
e between i and neighbor j, while g(m(i), m(j)) the geodesi
 distan
ebetween these verti
es after the mapping. The density evaluation 
riteria, D, is de�nedas the average of the geodesi
 errors:
D =

1

|Vs|

∑

i∈Vs

φ(i) (5.5)A mapping with good preservation of sour
e surfa
e pat
hes has a small D with a theoret-i
al minimum of D = 0 for the perfe
t preservation. This metri
 is a�e
ted if the vertexdistributions of the two surfa
es are highly irregular. For this reason, similar distributionsof the surfa
es are assumed.Finally, we wanted to evaluate if verti
es are mapped between similar topographi
alareas. To quantify this we de�ne a topography 
riterion, T , as the average di�eren
e inmean 
urvature before and after mapping to the target surfa
e:
T =

1

|Vs|

∑

i∈Vs

|ρ(i) − ρ(m(i))| (5.6)where ρ(i) is the mean 
urvature at vertex i and m(i) is the mapping of vertex i (the targetvertex). Curvature values are normalized to the interval [−1 : 1], thus the topography
riterion has values in [0 : 2] with theoreti
al extrema.The four 
riteria des
ribed above are all quantitative approa
hes to evaluating themapping between 
orti
al surfa
es. To add a more qualitative approa
h we performed alandmark test to evaluate the algorithms' performan
e in mapping to the same anatomi
allandmarks between di�erent 
orti
al surfa
es. Six landmarks were identi�ed manually onall 10 
orti
al surfa
es of the left hemisphere. Landmarks were pla
ed by labeling verti
esspanning areas of 1-5 mm2. The sele
ted anatomi
al landmarks were the temporal pole(TP) at the anterior end of the superior temporal gyrus, the supramarginal gyrus (SG) atthe posterior end of the lateral sul
us, the 
uneus (Cun) where the parieto-o

ipital sul
usmeets the 
al
arine sul
us, the posterior part of gyrus re
tus (GR), the most superior



Chapter 5: Evaluation of Five Algorithms for Mapping Brain Corti
al Surfa
es 56Avg. di�eren
e (mm) Paired t-test (p-val)ICP -0.10±0.05 <0.01Feature 0.02±0.03 0.11ICF -0.01±0.02 0.06Spheri
al 0.00±0.03 0.64Warp 0.01±0.01 0.13Table 5.1: Average di�eren
e in mean 
orti
al thi
kness after mapping.part of the post 
entral gyrus (PCG), and the 
ingulate gyrus (CG) at the anterior end ofthe 
ingulate sul
us. These anatomi
al lo
ations were used as they are relatively easy tore
ognize on the 
orti
al surfa
e, but are still subje
t of morphologi
al variation. For ea
hmapping the geodesi
 distan
es between the mapped landmarks and the manually labeledlandmarks were measured and averages over all 90 mappings were 
al
ulated.Finally, we wanted to evaluate the e�e
t of di�erent mapping algorithms on statisti-
al maps, whi
h are often used when measuring 
orti
al thi
kness. We wanted to test if
hoi
e of mapping algorithm would 
hange the 
on
lusions drawn from 
orti
al thi
knessstatisti
s. The 
orti
al thi
knesses of the 10 subje
ts were therefore mapped to a ran-dom target surfa
e and the non-parametri
 Kruskal-Wallis test [3℄ was performed at ea
hvertex to test for equality among the mapped values. Furthermore, at ea
h vertex the algo-rithms were tested against ea
h other using the non-parametri
 Mann-Whitney-Wil
oxon(MWW) test [3℄ to evaluate di�eren
es between them.5.6 ResultsThe four quantitative evaluation 
riteria as de�ned in se
tion 5.5 were 
al
ulated for all90 mappings. Figure 5.2 shows the average errors 
al
ulated for ea
h algorithm by theevaluation 
riteria. The results from the landmark test are shown in �gure 5.3. Table 5.1
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ICP Feature ICF Spherical WarpFigure 5.2: Average errors of mapping with the �ve tested algorithms between permuta-tions of the 10 
orti
al surfa
es (n=90).shows the average di�eren
e in mean 
orti
al thi
kness before and after mapping the nine
orti
es to the randomly sele
ted referen
e surfa
e. The Kruskal-Wallis test showed that31% of the verti
es were dependent on the mapping algorithm, and the subsequent MWWtest revealed that the feature and ICF algorithms were providing similar statisti
al results,while spe
i�
ally the spheri
al rigid approa
h had areas with 
on
lusions di�erent fromthe other algorithms (table 5.2). Figure 5.4 shows the statisti
al maps when 
omparingthe ICF algorithm with ea
h of the other four mapping algorithms using the MWW test.
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Figure 5.3: Average distan
es in mm from mapped landmark to manually labeled landmarkof 90 mappings. Landmarks are temporal pole (TP), supramarginal gyrus (SG), 
uneus(Cun), gyrus re
tus (GR), post 
entral gyrus (PCG), and anterior 
ingulate gyrus (CG).
Spherical

ICP

Warp

Feature

(a) Lateral views
Spherical

ICP

Warp

Feature

(b) Medial viewsFigure 5.4: ICF 
ompared vertex by vertex to the other four mapping algorithms visualizedon an in�ated referen
e surfa
e. White areas indi
ate signi�
ant di�eren
e (p<0.05) inthe 
orti
al thi
knesses mapped to a vertex.5.7 Dis
ussionEvaluation Metri
sThe four evaluation 
riteria in se
tion 5.5 were designed to evaluate the behavior of theexamined mapping algorithms. Even though the 
riteria should optimally result in as low
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es 58Feature ICF Spheri
al WarpICP 6% 3% 24% 14%Feature - 0% 22% 6%ICF - - 22% 6%Spheri
al - - - 22%Table 5.2: Per
ent verti
es of referen
e surfa
e where the MWW test reje
ts the hypothesisthat the 
orti
al thi
knesses 
ome from the same population (α = 0.05) for the di�erentmapping algorithms, whi
h means that the mappings in�uen
e the 
on
lusion.values as possible, all 
riteria 
annot be expe
ted to be low be
ause of the highly diversefolding patterns in the surfa
es. For example, a low density error, i.e. a good preservationof the intrinsi
 vertex 
on�gurations, will inevitably result in a high topography error, assome verti
es are mapped from 
onvexities to 
on
avities and vi
e versa. Nevertheless,the four 
riteria are useful for evaluating the algorithms' strengths and weaknesses.From �gure 5.2 it 
an be seen that the algorithms behave more or less as expe
ted.The ICP algorithm not surprisingly has relatively high 
overage, multiple mapping, andtopography errors, while the density error is kept low. This is to be expe
ted as no
onstraints on multiple mappings or topography preservation are applied, and verti
es arekept very 
ompa
t as only the Eu
lidean distan
e is optimized. The feature algorithmas proposed by Spjuth et al. [30℄ has almost as bad a 
overage as the ICP algorithm,but performs better in both the multiple mapping and topography 
riteria. As expe
tedthe density error for the feature algorithm is high, as neighboring verti
es are allowedto jump between gyri resulting in long geodesi
 distan
es between the mapped verti
es.The proposed ICF algorithm behaves approximately similar to the feature algorithm withregard to the density and topography 
riteria. However, when evaluating the 
overage andmultiple mapping, it 
an be seen that this algorithm has the lowest errors among the �veevaluated algorithms. This was expe
ted as 
onstraints are enfor
ed to prevent multiplemappings and optimize the 
overage.The two mapping approa
hes that use an intermediate step in form of mapping toa sphere have a similar behavior. As expe
ted these algorithms have the lowest densityerrors among the algorithms, and the multiple mapping errors are also relatively low.This is be
ause the intrinsi
 vertex 
on�gurations are retained during the spheri
al �ttingpro
ess. However, the 
overage errors are relatively high, and the topography errors arehighest among the evaluated algorithms for the rigid spheri
al approa
h, while a littlelower for the warp approa
h. This is interesting as the �tting pro
ess should minimize thetopographi
al di�eren
es between the surfa
es. This is a tangible sign of the high diversityof the folding patterns, and that maintaining the intrinsi
 vertex 
on�gurations result inmapping between di�erent topographies. The spheri
al warp approa
h whi
h non-linearlyshould 
ompensate for the highly diverse folding patterns still has high topography errors.This may be explained by the fa
t that the non-linear �tting is done to an average modelinstead of the a
tual target surfa
e. It seems that a 
ombination of the ICF and thespheri
al approa
h may provide a ni
e trade-o� between the four mapping 
riteria.Landmark TestFigure 5.3 reveals that the mapping algorithms are far from perfe
t when evaluating howwell they map between manually labeled landmarks. The error is measured as the geodesi
distan
e to the manually labeled landmark, whi
h means that mapping to a gyrus or sul
usadja
ent to the 
orre
t results in a large error. From the �gure it 
an be seen that somelandmarks are generally more a

urately mapped than others no matter the 
hoi
e ofalgorithm. The 
ingulate gyrus are in most 
ases mapped with a pre
ision of less than 1
m, and gyrus re
tus is also in most 
ases mapped more a

urately than the remainingfour landmarks. These two landmarks are both lo
ated medially 
lose to the midbrain



59 5.7 Dis
ussionwhere 
orti
al variations are less pronoun
ed. The supramarginal gyrus, whi
h is lo
atedin an area of deep sul
i and great 
orti
al variability, generally has high errors in all �vealgorithms. This emphasize the fa
t that highly 
onvoluted and variable areas are harderto map than less folded areas. The ICP, feature, and ICF algorithms all have similarpatterns of landmark errors not signi�
antly (0.21<p<0.40) di�erent from ea
h other,whi
h may be due to the similar nature of these algorithms. The spheri
al approa
h withthe rigid optimization seems to have a more uniform distribution of errors, ex
ept for the
ingulate gyrus. This 
an be explained by the rigid optimization. The spheri
al approa
hwith the non-linear optimization is able to 
ompensate for the high 
orti
al variability, andit results in errors similar to landmarks in areas without great 
orti
al variability, su
has the 
ingulate gyrus and gyrus re
tus. Be
ause of the high standard deviations in thelandmark errors, it is hard to 
on�dently determine the best mapping algorithm, however,when averaging all landmark errors within ea
h algorithm the spheri
al warp approa
hperforms signi�
antly (p<0.001) better than the other algorithms with an average errorof 9.5±9.0 mm, while the spheri
al rigid approa
h performs signi�
antly (p<0.001) worsewith an average error of 19.0±23.4 mm. Further tests should in
lude more subje
ts andlandmarks in 
on
ave regions in addition to the 
onvexly lo
ated landmarks used here toget a more representative quanti�
ation of mapping a

ura
y.Statisti
al MapsThe averaged 
orti
al thi
kness after mapping to the random referen
e surfa
e did not
hange signi�
antly ex
ept when using the ICP algorithm (see table 5.1). However, thegenerated statisti
al maps revealed that almost one third of the verti
es on the referen
esurfa
e are dependent on whi
h mapping algorithm is used to map the 
orti
al thi
kness tothe referen
e. Testing ea
h algorithm against the others revealed that the spheri
al rigidapproa
h is the algorithm with the largest areas (22% - 24%) of deviating 
on
lusionsbased on the MWW test (see �gure 5.4 and table 5.2). Almost no di�eren
e is seenbetween the ICF and feature algorithms while smaller di�eren
es is seen between ICF andICP (3%) and ICF and the spheri
al warp (6%). As it 
an be seen from �gure 5.4, 3% isa noti
eable portion of a 
ortex, and may lead to wrong 
on
lusions. This suggests thatthe impa
t of the mapping algorithm on the statisti
al maps is high, and it must be takeninto 
onsideration when drawing 
on
lusions from the statisti
al maps.Proposed AlgorithmThe ICF algorithm extends the simple feature based approa
h by iteratively approximat-ing a bije
tion. This is re�e
ted in the quantitative measures of 
overage and multiplemapping, where ICF has the lowest errors. However, the algorithm is not more a

uratewhen measuring the distan
e to the manually pla
ed landmarks, and the statisti
al mapsshow no di�eren
e between the simple feature based method and the ICF. Though pre-serving more information, the ICF algorithm does not seem to improve a

ura
y or 
hangethe produ
ed statisti
al maps.Both approa
hes use mean 
urvature, normal dire
tion, and Eu
ledian distan
e format
hing verti
es. These features do not distinguish between large 
onvex areas, su
has the sylvian �ssure, and the smaller 
onvexities, su
h as most of the sul
i. Additionalfeatures 
ould be in
luded in the 
ost fun
tional to better map areas of similar sized
onvexity, e.g. the average 
onvexity as used by FreeSurfer 
ould be used [11, 12℄. Also,a term punishing large geodesi
 distan
es between vertex neighbors after mapping 
ouldbe in
luded to 
ompensate for the high density errors. Furthermore, the weights in the
ost fun
tional were optimized by a simple phantom surfa
e, and better a

ura
y may bea
hieved by optimizing using realisti
 
orti
al surfa
es.
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Chapter 6Corti
al Volumes and AtrophyRates in FTD-3 CHMP2BMutation Carriers and RelatedNon-
arriersAdapted from: Simon F. Eskildsen, Lasse R. Østergaard, Anders B. Rodell, Leif Øster-gaard, Jørgen E. Nielsen, Adrian M. Isaa
s, and Peter Johannsen: Corti
al Volumes andAtrophy Rates in FTD-3 CHMP2B Mutation Carriers and Related Non-
arriers, Neu-roImage, In press6.1 Introdu
tionFrontotemporal dementia (FTD) is a syndromi
 
lini
al variant of frontotemporal lobardegeneration (FTLD) whi
h 
onstitutes the third most prevalent group of neurodegenera-tive diseases with 
ognitive impairment [28,43℄. Within re
ent years the 
lini
al, mole
ulargeneti
 and pathologi
al 
lassi�
ations of FTD have evolved [8, 16℄. Up to 40% of FTD
ases are 
onsidered autosomal dominantly inherited. One of the rarer 
auses of famil-ial FTD is CHMP2B -mutation related FTD with a pathogeni
 G-to-C transition in thea

eptor spli
e site of CHMP2B exon 6 (
.532-1G>C) on 
hromosome 3 (FTD-3) [47℄.The CHMP2B protein is a part of the Es
ort-3 
omplex involved in tra�
king proteinsdestined for degradation in the Golgi apparatus. The mole
ular disease me
hanism is notyet fully known. The disease was primarily des
ribed in a large Danish family [26, 36℄,but a novel nonsense mutation in the CHMP2B gene was re
ently identi�ed in a Belgianfamilial FTD patient further supporting the gene to be involved in FTD [53℄.The Danish FTD-3 family is very large with 33 identi�ed patients and another 250at risk for developing the disease within the next 60 years. The average FTD-3 
lini
alonset is 57 years with a broad range from 43 to 65. As the symptom onset is insidious theexa
t time of onset 
an be di�
ult to determine. Patients present with primarily a 
lin-i
al syndrome of frontotemporal dementia with behavioural 
hanges, apathy, sometimesaggression and/or 
hanged eating behaviour. During the early 
ourse they rarely havelanguage disturban
es, but when neuropsy
hologi
ally tested they often have impairmentof more posteriorly 
orti
ally lo
ated fun
tions su
h as memory and visuospatial problems.Urinary in
ontinen
e and gait disturban
es are normally late features although they some-times 
an be seen during the early years of the disease. Disease duration from diagnosisto death ranges from 2 to over 20 years.In FTD 
orti
al stru
tural 
hanges are per se primarily found in the frontal and tem-63



Chapter 6: Corti
al Volumes and Atrophy Rates in FTD-3 CHMP2B Mutation Carriersand Related Non-
arriers 64poral lobes [7℄. However, studies have also reported 
hanges in the parietal lobes [4,25,55℄.The aim of the present study is to assess 
orti
al stru
tural 
hanges in pre
lini
al FTD-3CHMP2B mutation positive 
ases 
ompared to mutation negative family members, andfurthermore to assess a possible progression of 
orti
al 
hanges. A se
ondary aim has beento try to identify possible pre
lini
al fo
al 
orti
al abnormalities.In vivo investigation of brain 
orti
al stru
tural 
hanges using magneti
 resonan
eimaging (MRI) has primarily employed manual or semi-automati
 tra
ing of tissue bound-aries to quantify anatomi
al stru
tures [29,42℄. Su
h approa
hes are time 
onsuming andsubje
t to inter-rater variability. Therefore, automati
 unbiased 
omputational approa
heshave gained popularity when studying 
ohorts of subje
ts.A variety of studies [54℄ have used voxel-based morphometry (VBM) to dete
t brain
hanges in diseases with FTLD and di�eren
es between disease FTLD sub-types andhealthy 
ontrols sin
e the introdu
tion of the method [2, 60℄. VBM performs voxel-wise
omparisons between spatially aligned MRI s
ans of subje
t groups enabling identi�
ationof tissue growth and tissue loss throughout the entire brain. A related method is tensor-based morphometry (TBM) [3℄, analyzing the deformation �eld involved in non-linearmapping of images, su
h as mapping of intra-subje
t serial s
ans and mapping of subje
tto group average. This way, lo
al expansions and 
ontra
tions 
an be identi�ed, and thetensor maps 
an be used to quantify longitudinal e�e
ts and di�eren
es between subje
tsand groups. TBM has been used in di�erent areas, su
h as studying the developing humanbrain [12℄ and measuring degeneration in Alzheimer's disease [23℄. TBM has been usedless extensively than VBM within the �eld of FTLD, but re
ently more studies using TBMhave been reported [4, 9, 52℄.A third type of method for measuring 
orti
al 
hanges is the expli
it segmentationof the 
erebral 
ortex for measurements of 
orti
al thi
kness using parametri
 or geo-metri
 deformable models [15, 21, 27, 31�33, 62, 64℄. The 
ortex is expli
itly or impli
itlyrepresented as surfa
es of the white matter/gray matter boundary and the gray mat-ter/
erebrospinal �uid boundary �tted to the images with subvoxel pre
ision. This en-ables measurements of 
orti
al thi
kness throughout the entire 
ortex with the advantageof standardized thi
kness measures, whi
h is unavailable through VBM or TBM. In addi-tion, VBM does not 
onsider the 
orti
al geometry, and 
annot di�erentiate the 
orti
althi
kness of opposing walls in sul
i. The drawba
k of surfa
e based methods is the la
k ofquanti�
ation of sub
orti
al regions, su
h as the thalamus, and basal ganglia. However,in studies where 
orti
al stru
tures are the obje
tive and sub
orti
al stru
tures are lessrelevant, surfa
e based methods are preferable. Surfa
e based methods have been usedto quantify 
hanges in a variety of diseases, su
h as s
hizophrenia [34, 40, 63℄, obsessive-
ompulsive disorder [46℄, and Alzheimer's disease [35℄. In diseases with FTLD surfa
ebased methods are apt, as degeneration is expe
ted in the 
orti
al lobes.In this study we applied a surfa
e based 
orti
al segmentation method to serial MRIs
ans of pre
lini
al individuals with CHMP2B -mutation related FTD and individuals with-out the mutation from the same family. Global volume measurements and lo
al 
orti
althi
knesses were determined from the 
orti
al surfa
es. Longitudinal and 
ross-se
tionaldi�eren
es in 
orti
al thi
kness were evaluated by lobe averages and by 
onstru
tion ofstatisti
al parametri
 maps.6.2 Materials and MethodsThe study adhered to the Helsinki II de
laration, and was approved by The County Ethi
sCommittees in the Counties of Aarhus, Viborg-Nordjylland and Copenhagen, Denmark.Subje
ts were re
ruited via a family 
onta
t group that distributes information within theDanish FTD-3 family. All parti
ipants signed the ethi
s approved informed 
onsent form.All subje
ts had previously parti
ipated in geneti
 studies where they had been geneti
allytested for the CHMP2B mutation. The parti
ipating individuals and 
lini
ians involvedin s
anning or with any dire
t 
onta
t to the parti
ipants have been and still are blinded



65 6.2 Materials and MethodsMutation 
arriers Non-
arriersN 9 7Male:female ratio 7:2 4:3Age at baseline (years, mean±SD) 55.8±5.6 54.3±6.0Inter-s
an interval (years, mean±SD) 1.3±0.2 1.3±0.1Table 6.1: Subje
t demographi
 information.to the geneti
 status of the subje
ts.6.2.1 Subje
tsNine individuals 
arrying the CHMP2B mutation and seven age-mat
hed 1.-degree rela-tives without the mutation (non-
arriers) from the third and fourth generation of the largeDanish FTD-3 family were in
luded in the study. All individuals were pre-symptomati
at the follow-up s
an without any subje
tive 
omplaints and working full time or re
entlyretired due to age. Subje
ts and 
lose relatives (usually the spouse) were interviewed ina semi-stru
tured manner by an experien
ed 
lini
ian, used to assess FTD patients ingeneral and the FTD-3 patients spe
i�
ally. For all parti
ipants, neither the subje
t northe informant des
ribed any 
hanges in behaviour or personality. Some of the parti
i-pants had previously agreed to neuropsy
hologi
al s
reening where no abnormalities werefound. There were no 
omorbidities a�e
ting 
erebral stru
ture. S
reening with standardinstruments, su
h as the MMSE, is not valid for the present disease, as MMSE is knownto be normal even though the patients have gross behavioural and personality 
hanges.None of the parti
ipants showed any sign of insidious symptoms on neither the 
lini
alinterview nor the behavioural observation. Table 6.1 lists the demographi
 information ofthe subje
ts. The age range at baseline s
an was from 45 to 65 years of age.6.2.2 Image A
quisitionT1 MRI data were obtained on a 3T GE Signa Ex
ite using a 3D inversion re
overyfast spoiled gradient re
alled sequen
e with TR/TE/TI = 6.3/2.9/750 ms, 14◦ �ip angle,0.94×0.94 mm2 in-plane resolution (256×256 pixels), and a sli
e thi
kness of 1.2 mm. Fullhead images were a
quired with 126 - 148 axial sli
es using a standard head 
oil. Stan-dard non-volumetri
 T2 weighted (22 axial sli
es, TR/TE=4000/102 ms) images were alsoa
quired. All images were 
he
ked for obvious a
quisition artefa
ts su
h as motion andsus
eptibility artefa
ts whi
h 
an a�e
t the image pro
essing and subsequent quanti�
a-tion.6.2.3 Image Pro
essingThe MRI data were linearly and nonlinearly registered to a 
ommon model using theICBM152 [38℄ as target spa
e. This was done using an automati
 iterative multiresolu-tion approa
h similar to Collins et al. [14℄ and Janke et al. [30℄. The 
ommon model wasbased on 85 subje
ts non-linearly registered, whi
h resulted in an average with more well-de�ned image gradients than averages based on a�ne registrations, thus enabling morea

urate registration of the target MRI data. Intensity non-uniformities originating frominhomogeneities in the magneti
 �eld were 
orre
ted by the N3 algorithm [48℄. A brainmask was 
reated by iteratively �tting a deformable surfa
e to the brain meninges usingan algorithm similar to the brain extra
tion tool (BET) by Smith [50℄ (�gure 6.1.a). Thevoxels inside the brain mask were 
lassi�ed into white matter (WM), gray matter (GM),and 
erebrospinal �uid (CSF) using a fuzzy 
lustering algorithm (�gure 6.1.b). Stereo-taxi
 masks of the brain stem and 
erebellum were applied to isolate the 
erebral WM withan axial 
ut of separation approximately at lamina te
ti. The ventri
les and sub
orti
al
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Figure 6.1: Extra
tion of the 
orti
al boundaries. a) Spatially aligned MRI data withinitial (red 
ontour) and �nal (yellow 
ontour) brain extra
tion 
ontour superimposed. b)Brain tissue 
lassi�ed as WM, GM, and CSF. 
) Ventri
les and sub
orti
al regions labelledas WM, and WM separated into hemispheres by a sagittal 
ut through 
orpus 
allosum.d) Edge map 
al
ulated from the fuzzy 
lassi�
ations. e) WM surfa
e superimposed onthe MRI data. f) GM surfa
e superimposed on the MRI data.regions were labelled WM to obtain a solid WM 
omponent for the following surfa
e gener-ation and 
orti
al segmentation. The 
erebrum WM was separated into two hemispheresby a mid-sagittal 
ut, and spheri
al topology of ea
h hemisphere was obtained using atopology 
orre
tion algorithm [11℄ (�gure 6.1.
). An edge map of the GM/CSF interfa
ewas 
reated using the membership volumes obtained by the previous fuzzy 
lassi�
ation(�gure 6.1.d). The edge map was used in the 
orti
al boundary extra
tion as explainedbelow. All pro
essing steps were fully automati
.6.2.4 Corti
al Boundary Extra
tionCorti
al boundaries were identi�ed using deformable surfa
es and a for
e balan
ing s
heme[39℄. Ea
h hemisphere was pro
essed separately. An initial surfa
e was obtained by apply-ing an iso-surfa
e algorithm on the topologi
al 
orre
t WM 
omponent 
reating a 
losedtriangulated surfa
e [37℄. The initial surfa
e was deformed iteratively to the WM/GMboundary under in�uen
e of for
es derived from the fuzzy 
lassi�
ations and the gradientimage (6.1.e) [17℄. The GM/CSF boundary was found by expanding the initial surfa
eunder in�uen
e of deformation for
es derived from the surfa
e normals, a gradient ve
tor�eld [61℄, and the GM/CSF edge map shown in �gure 6.1.d [18, 19℄. The resulting sur-fa
es a

urately delineated the 
erebral 
ortex rea
hing into the deep narrow sul
i (�gure6.1.f). The 
ortex extra
tion method has been validated on healthy subje
ts and phantom



67 6.2 Materials and Methodsdata [17�19℄, but has not yet been validated on neuropathologi
al data. Therefore, 
orti-
al surfa
es were visually inspe
ted for segmentation errors, both using a 3D visualizationtool and by superimposing the surfa
es onto the original MR images.6.2.5 Corti
al MeasurementsThe surfa
es generated for ea
h hemisphere were triangular meshes ea
h 
onsisting ofapproximately 9×104 verti
es uniformly distributed over the 
ortex. The 
orti
al thi
knesswas measured at ea
h vertex as the distan
e between the WM and GM surfa
e orthogonalto the GM surfa
e using a 
ombination of the surfa
e normals and the nearest point(Eu
lidian) on the opposite surfa
e. The nearest point distan
es between the surfa
eswere used to restrain how far along the surfa
e normals to sear
h for interse
tions of theopposite surfa
e, thus preventing gross overestimation of the thi
kness where the linesde�ned by the GM surfa
e normals do not interse
t the WM surfa
e within the same lo
altopography. To in
rease the signal-to-noise ratio (SNR), 
orti
al thi
kness measurementswere blurred with a surfa
e-based di�usion smoothing approximating a Gaussian kernelsmoothing with 10 mm full-width half maximum (FWHM) [13℄. Ea
h hemisphere wasdivided into the main lobes based on an atlas in stereotaxi
 spa
e that a

ompany theMRI
ro software pa
kage [44℄, thus enabling regional based analysis. The atlas is de�nedas a labelled 3D image in stereotaxi
 spa
e, and the subdivision of the surfa
es was doneby assigning a label to ea
h vertex with the 
losest image label measured by Eu
lidiandistan
e.Tissue 
ompartment volumes were estimated by utilizing the volumes en
losed by theGM and WM surfa
es. The surfa
es en
lose the ventri
les and sub
orti
al regions fromthe lamina te
ti and rostrally. Therefore, 
erebrum volume was estimated by the volumeen
losed by the GM surfa
e minus the volume of the ventri
les and sub
orti
al regions,whi
h were 
al
ulated from non-linearly aligned masks. WM volume was 
al
ulated simi-larly using the WM surfa
e. Corti
al volume was 
al
ulated as the di�eren
e between the
erebrum and WM volume. Compartment volumes were normalized by estimated totalintra
ranial volume (eTIV) obtained from an intra
ranial mask non-linearly �tted to theimages.The a
quired T2 images were visually 
he
ked for 
hanges in WM lesions in order toensure that WM lesions 
ould not be an explanation for the results. We did not �nd any
hanges in the number of WM lesions over the 
ourse of the study. Only one subje
t hadminor age-
onsistent WM-lesions. Thus there was not a 
lini
ally relevant di�eren
e inthe number of WM-lesions between the two groups.6.2.6 Surfa
e MappingSurfa
e mapping was applied to obtain vertex to vertex 
orresponden
e between intra-subje
t surfa
es at baseline and follow-up, thus enabling point-wise di�eren
es in 
orti
althi
kness. After an initial rigid alignment of the surfa
es using the ICP algorithm [5℄,vertex 
orresponden
e was 
al
ulated by minimizing a 
ost fun
tion expressing di�eren
esin mean 
urvature, orientation, and spatial position of the surfa
e verti
es [20, 51℄. Tofa
ilitate the 
onstru
tion of statisti
al parametri
 maps of 
orti
al di�eren
es between thegroups, baseline surfa
es were mapped to a referen
e surfa
e 
hosen among the subje
ts.Surfa
es at baseline were geometri
ally smoothed using a Lapla
e operator and mappedto the referen
e surfa
e using the mapping method [20,51℄. The smoothing was performedto redu
e geometri
al distortion and obtain more well-de�ned sul
al patterns.6.2.7 Statisti
al AnalysisDistributions of 
orti
al thi
kness a
ross subje
ts were assumed to follow normal distribu-tions, both with regard to regional averages and single point measurements. Di�eren
es
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ross groups were evaluated using t-tests with assumptions of unequal varian
e. Longi-tudinal di�eren
es within ea
h group were evaluated using paired t-tests.Statisti
al parametri
 maps were 
onstru
ted to identify point-wise di�eren
es overtime and between the groups. The maps were 
onstru
ted by performing hypothesistesting at ea
h vertex (approximately 105 verti
es) of the referen
e surfa
e testing 
hangein 
orti
al thi
kness or di�eren
es in 
orti
al thi
kness between the groups. Problemswith false positives related to multiple 
omparisons were addressed by 
al
ulating FalseDis
overy Rate (FDR) 
orre
ted signi�
an
e thresholds [24℄. The statisti
al maps wereblurred in the same way as the 
orti
al thi
kness measurements to in
rease SNR andenhan
e fo
al e�e
ts. The blurring, whi
h approximated a Gaussian kernel smoothing with10 mm FWHM, had the e�e
t of removing areas with s
attered signi�
an
e (di�use e�e
ts)leaving only fo
al e�e
ts (
lusters of signi�
an
e). Fo
al e�e
ts were determined wheresigni�
ant di�erent 
ontiguous areas (
lusters) ex
eeded an area of 20 mm2 
al
ulatedas the surfa
e area spanned by 
lusters of 
onne
ted verti
es with p-values below thesigni�
an
e threshold. Anatomi
al labels were assigned to the fo
al di�eren
es in thestatisti
al parametri
 map by mapping labels from the stereotaxi
 atlas onto the referen
esurfa
e as des
ribed above [44℄. The area of the signi�
ant 
ontiguous areas was summedwithin ea
h region to report regional involvement.To limit the intra-subje
t variability and in
rease statisti
al power to the group 
om-parison, di�eren
es in 
orti
al thi
kness and volume between groups were determined by
omparing pooled data from mutation 
arriers (baseline and follow-up) with pooled datafrom non-
arriers. This was done as subje
ts at a given time (baseline or follow-up) notne
essarily are homogeneous, e.g. the disease stage in a mutation 
arrier at baseline may
orrespond to the disease stage in another mutation 
arrier at follow-up.Annualized 
orti
al atrophy rates in ea
h lobe were 
al
ulated as per
ent de
line ofbaseline lobe average thi
kness. To avoid magnifying noise in 
orti
al thi
kness the atrophyrate per vertex was 
al
ulated as a ratio (r) as
ri =

m2,i − m1,i

∆t(m2,i + m1,i)
(6.1)where m1,i and m2,i are measurements at vertex i at respe
tively baseline and follow-up, and ∆t is the subje
t s
an interval. By normalizing with the summed thi
kness forbaseline and follow-up unrealisti
ally high atrophy rates, 
aused by baseline measurements
lose to zero, were avoided.Asymmetry was evaluated by the left to right ratio between thi
kness measurementsand atrophy rates averaged within the hemispheres and within the main lobes.6.3 Results6.3.1 Corti
al Boundary Extra
tion and Compartment Segmen-tationsAll generated 
orti
al surfa
es were found to be free of obvious segmentation errors byvisually 
he
king 3D rendered images as well as images of the original MR data withthe surfa
e 
ontours superimposed. The masks �tted to the intra-
ranial 
avity, the ven-tri
les, and sub
orti
al regions were visually examined by superimposing them onto theoriginal MR data. Intra
ranial and sub
orti
al masks were found to a

urately �t theimages. However, examining the ventri
ular masks revealed problems of �tting to the pos-terior part of the lateral ventri
les in two subje
ts of both groups. In these subje
ts theventri
ular volume is underestimated. The ina

urate ventri
ular segmentations lead tooverestimations of the WM and 
erebrum volume while the 
orti
al volume is una�e
tedby the ventri
ular segmentation. The segmentation a

ura
y was visually estimated to besimilar for baseline and follow-up why it was assumed that longitudinal di�eren
es in WMand 
erebrum volumes are una�e
ted by the segmentation errors.
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Figure 6.2: Statisti
al parametri
 map of di�eren
es in 
orti
al thi
kness showing areaswith p < 0.01 for one-sided t-test testing signi�
ant thinner 
ortex in mutation 
arriers
ompared to non-
arriers. Map generated from pooled (baseline and follow-up) measure-ments and blurred with a di�usion smoothing approximating a Gaussian kernel smoothingwith 10 mm FWHM.6.3.2 Cross-se
tional Di�eren
esAll lobes were signi�
antly thinner in mutation 
arriers 
ompared to non-
arriers (table6.2). For an FDR of 5% the statisti
al parametri
 maps implied an appropriate thresholdof signi�
an
e at αFDR = 0.011 for the left and αFDR = 0.010 for the right hemisphere.We 
hose a threshold of αFDR = 0.01 for both hemispheres. Figure 6.2 shows the blurredstatisti
al parametri
 map of group di�eren
es in 
orti
al thi
kness. Blurring the statis-ti
al map removed 85% of the signi�
ant points leaving highly signi�
ant 
lusters. Table6.3 lists the anatomi
al regions that in
lude the largest areas of signi�
ant di�eren
e. Sig-ni�
antly di�erent regions were primarily found in the parietal lobes (24.8 
m2) and theright temporal lobe (10.9 
m2). O

ipital lobes displayed less di�eren
e (6.2 
m2), whileonly small signi�
ant di�eren
es were found in the left frontal lobe (2.4 
m2). No part ofthe 
ortex was signi�
antly thinner in non-
arriers 
ompared to the mutation group.6.3.3 Longitudinal E�e
tsAnalysis of group lobe averages revealed that in mutation 
arriers all lobes ex
ept theparietal lobes and the right temporal lobe were signi�
antly thinner at follow-up 
omparedto baseline (table 6.2). In non-
arriers only the left o

ipital lobe was signi�
antly thinnerat follow-up.None of the p-values in the statisti
al parametri
 maps of the longitudinal di�eren
esof 
orti
al thi
kness was below α/N (α = 0.05, N = 105), whi
h resulted in no validFDR adjusted signi�
an
e threshold. Setting the threshold to α = 0.01 showed no fo
aldi�eren
es for either mutation 
arriers or non-
arriers. Analyses of the unblurred statisti
almaps revealed s
attered areas of signi�
an
e in both frontal and temporal lobes in mutation
arriers with more signi�
an
e in the left lobes. Also, s
attered areas of signi�
an
e werefound in the left o

ipital and left medial frontal lobes. In non-
arriers s
attered areas ofsigni�
an
e were observed in the left o

ipital lobe. Lowering the signi�
an
e thresholdto α = 0.05 revealed signi�
ant 
ontiguous areas (1.4 
m2) in the left temporal lobe ofmutation 
arriers (see �gure 6.3).6.3.4 Atrophy RatesTable 6.4 lists the annualized 
orti
al atrophy rates within the main lobes for both groups.The 
orti
al atrophy rate was signi�
antly higher in the left frontal and left temporal lobein mutation 
arriers 
ompared to non-
arriers. FDR analysis of the statisti
al parametri
map of group di�eren
es in annualized 
orti
al atrophy ratios (
al
ulated by Eq. 6.1)provided no valid signi�
an
e threshold for the same reason as des
ribed above. Setting
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Frontal lobe Temporal lobe Parietal lobe O

ipital lobeLeft Right Left Right Left Right Left RightMC Baseline (mean±SD) 2.24±0.26 2.20±0.23 2.62±0.24 2.52±0.21 1.57±0.25 1.56±0.25 1.90±0.17 1.88±0.17Follow-up (mean±SD) 2.13±0.31 2.11±0.28 2.50±0.28 2.48±0.27 1.54±0.26 1.50±0.25 1.75±0.14 1.79±0.17Longitudinal di�eren
e 0.005 0.015 0.007 0.335 0.440 0.193 0.002 0.003(p-value)NC Baseline (mean±SD) 2.48±0.17 2.44±0.18 2.84±0.08 2.80±0.13 1.94±0.12 1.88±0.16 2.15±0.20 2.10±0.21Follow-up (mean±SD) 2.46±0.12 2.40±0.16 2.78±0.05 2.81±0.06 1.92±0.06 1.84±0.09 2.00±0.13 2.07±0.18Longitudinal di�eren
e 0.629 0.312 0.112 0.736 0.614 0.348 0.030 0.496(p-value)Pooled group di�eren
e 0.011 0.012 0.010 0.002 0.001 0.002 0.003 0.008(p-value)Table 6.2: Corti
al thi
kness measurements (mm) averaged within main lobes at baseline and follow-up for mutation 
arriers (MC) and non-
arriers(NC). Longitudinal di�eren
es evaluated by two-tailed paired t-test. Group di�eren
es evaluated by one-sided t-test with assumption of unequalvarian
e on pooled measurements.
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Anatomi
al region Involved area, LH Involved area, RHAngular gyrus 655 mm2 456 mm2Supramarginal gyrus 479 mm2 463 mm2Middle temporal gyrus 221 mm2 987 mm2Middle o

ipital gyrus 251 mm2 221 mm2Superior temporal gyrus 158 mm2 76 mm2Inferior parietal gyrus 226 mm2 22 mm2Superior parietal gyrus 106 mm2 No e�e
tTable 6.3: Anatomi
al regions with signi�
antly (p < 0.01) thinner 
ortex in mutation
arriers 
ompared to non-
arriers after smoothing. Only regions with an involved areaof more than 1 
m2 of either the left (LH) or right (RH) hemisphere are reported. Thesigni�
ant areas are visualized in �gure 6.2.

Figure 6.3: Statisti
al parametri
 map of longitudinal di�eren
es in 
orti
al thi
knessin mutation 
arriers showing areas with p < 0.05 for paired t-test testing signi�
antthinner 
ortex. Map blurred with a di�usion smoothing approximating a Gaussian kernelsmoothing with 10 mm FWHM.
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Figure 6.4: Statisti
al parametri
 map of signi�
antly (p<0.01) higher atrophy ratios inmutation 
arriers. Map blurred with a di�usion smoothing approximating a Gaussiankernel smoothing with 10 mm FWHM. Surfa
e parts have been removed for better visu-alization of regions buried by the lateral �ssures. Labels 
orrespond to the 
lusters listedin table 6.5. Cluster sizes may appear smaller than they are due to visualization on apartially �attened surfa
e.the signi�
an
e threshold to α = 0.01 on the blurred map revealed several fo
al e�e
ts(�gure 6.4). Blurring the statisti
al map removed 78% of the statisti
ally signi�
ant pointsleaving only highly fo
al e�e
ts. Clusters of signi�
antly higher atrophy ratios with anarea >20 mm2 are listed in table 6.3 along with the involved anatomi
al regions. Higheratrophy ratios were found in both left and right frontal and temporal lobes. Espe
iallythe left insular 
ortex had a higher atrophy ratio in the mutation group (1.61 
m2), butalso the right inferio-temporal region (0.58 
m2) and the right superior frontal gyrus (0.42
m2) showed fo
al di�eren
es.6.3.5 Volume MeasurementsTable 6.6 lists the measured 
erebrum, WM, and 
orti
al volumes, p-values for longi-tudinal di�eren
es within ea
h group, and p-values for di�eren
es between the groups.Mutation 
arriers had signi�
antly smaller 
orti
al volume at follow-up 
ompared to base-line (p=0.007). The 
orti
al volume of non-
arriers de
reased, but the volume loss wasnot signi�
ant (p=0.142). Cerebrum and WM volumes were not signi�
antly di�erent atfollow-up in either group. All 
erebral volumes were signi�
antly smaller in mutation 
ar-riers 
ompared to non-
arriers. The annualized per
entage volume loss 
orre
ted for eTIVwas 0.3 ± 1.4% 
erebrum, -1.4 ± 2.2% WM, and 2.6 ± 2.2% 
ortex for mutation 
arriers.Annualized volume loss for non-
arriers was 0.1 ± 1.4% 
erebrum, -0.9 ± 2.0% WM, and1.1 ± 1.8% 
ortex. Rates of volume loss were not signi�
antly di�erent between groups,however there was a trend for higher 
orti
al volume loss in mutation 
arriers (p=0.17).
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6.3Results

Frontal lobe Temporal lobe Parietal lobe O

ipital lobeLeft Right Left Right Left Right Left RightMC (mean±SD) 4.18±3.73 3.42±3.51 3.74±3.16 1.37±3.75 1.52±5.30 3.14±6.87 6.15±4.03 3.91±2.97NC (mean±SD) 0.50±3.51 1.15±2.86 1.44±1.96 0.48±2.86 0.81±4.57 1.59±4.89 4.77±5.53 0.84±3.78Di�eren
e (p-value) 0.032 0.088 0.048 0.141 0.388 0.303 0.295 0.052Table 6.4: Annualized atrophy rates as per
ent de
line of baseline thi
kness for mutation 
arriers (MC) and non-
arriers (NC). Di�eren
e betweengroups evaluated as one-sided t-test with assumption of unequal varian
e.
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Cluster Area (mm2) Lobe Main involved anatomi
al regionsL1 120.4 Left frontal Insula (109.5 mm2)L2 119.2 Left frontal Rolandi
 oper
ulum (74.8 mm2)Insula (41.8 mm2)L3 22.4 Left temporal Inferior temporal gyrus (22.4 mm2)R1 53.4 Right temporal Fusiform gyrus (29.7 mm2)Inferior temporal gyrus (23.7 mm2)R2 46.5 Right temporal Transverse temporal gyrus (44.3 mm2)R3 35.3 Right frontal Superior frontal gyrus (31.8 mm2)R4 22.6 Right temporal Middle temporal gyrus (21.0 mm2)Table 6.5: Clusters of statisti
ally signi�
ant higher atrophy ratios in mutation 
arriers
ompared with non-
arriers. Clusters with signi�
ant 
ontiguous areas >20 mm2 arereported. Clusters are visualized in �gure 6.4.

Cerebrum White matter CortexMC Baseline (mean±SD) 980±52 570±31 409±42Follow-up (mean±SD) 969±48 575±30 394±49Longitudinal di� (p-value) 0.161 0.348 0.005NC Baseline (mean±SD) 1048±42 585±32 463±35Follow-up (mean±SD) 1041±26 589±27 453±30Longitudinal di� (p-value) 0.420 0.501 0.086Group di�eren
es (p-value) 0.002 0.175 0.005Table 6.6: Compartment volumes (ml) 
orre
ted by eTIV for mutation 
arriers (MC)and non-
arriers (NC) at baseline and follow-up. Longitudinal di�eren
es were adjustedfor inter-s
an interval and evaluated by two-tailed paired t-test. Group di�eren
es wereevaluated by two-tailed t-test with assumption of unequal varian
e on pooled group mea-surements.



75 6.4 Dis
ussion6.3.6 AsymmetryAsymmetry ratios between hemispheres revealed a trend towards a thinner 
ortex in theright hemisphere in both mutation 
arriers (p=0.121) and non-
arriers (p=0.061). Byevaluating the averaged 
orti
al thi
knesses within lobes signi�
ant asymmetry was foundin the frontal lobes (MC: p=0.046, NC: p=0.013) and parietal lobes (MC: p=0.033, NC:p=0.007) with right lobes being thinner in both groups. No asymmetry was found inthe o

ipital lobes in either group, while mutation 
arriers had signi�
antly thinner righttemporal lobes (p=0.002). Evaluating the 
orti
al atrophy rates, no asymmetry betweenhemispheres was found in either group.6.4 Dis
ussion6.4.1 Corti
al Thi
knessAfter a 16 month follow-up, presymptomati
 CHMP2B mutation 
arriers showed a signif-i
antly thinner 
ortex in the o

ipital and frontal lobes and the left temporal lobe. Thisis 
onsistent with �ndings of other longitudinal studies of other types of symptomati
FTD patients [4, 10℄; however, to our knowledge this is the �rst study des
ribing 
orti
althinning in premanifest FTD disease.Even though the statisti
al parametri
 maps with FDR adjusted signi�
an
e thresholddid not show signi�
ant fo
al atrophy in either group, the unblurred maps revealed s
at-tered areas of atrophy in the same lobes, whi
h were signi�
antly thinner when averagingwithin the lobar measurements. Lowering the signi�
an
e threshold to α = 0.05 showedfo
al e�e
ts in the left middle temporal gyrus (�gure 6.3)When 
omparing the two groups (with and without the CHMP2B mutation) the overalllobe averages were signi�
antly thinner in mutation 
arriers, whereas the statisti
al para-metri
 maps revealed more fo
al di�eren
es (�gure 6.2). Fo
al di�eren
es were mainlyfound in the parietal and temporal gyri, while almost no di�eren
es were found in thefrontal lobes. However, due to the small number of subje
ts in both groups and pre
lin-i
al stage of mutation 
arriers these di�eren
es may simply re�e
t normal variations in
orti
al thi
kness; and not ne
essarily a pathologi
al e�e
t. This is supported by the fo
aldi�eren
es in atrophy ratio, whi
h displayed a di�erent pattern (�gure 6.4). We 
onsider
hange in 
orti
al thi
kness a statisti
ally stronger metri
 than the absolute 
orti
al thi
k-ness when dealing with su
h small number of subje
ts. When examining the statisti
alparametri
 map of fo
al di�eren
es of the atrophy ratio, the right frontal lobe was alsoinvolved, while the o

ipital lobes had no fo
al e�e
ts. The atrophy ratio map reportedmore symmetri
ally distributed fo
al di�eren
es than the dire
t 
orti
al thi
kness 
ross-se
tional 
omparison. Spe
i�
ally, the insular 
ortex (primarily left), the inferio-temporalregions, and the superior frontal gyri were those with the most pronoun
ed fo
al e�e
ts(�gure 6.4).The anterior insula have been reported to be involved in several types of FTLD, mostlybilateral [6, 45, 58℄, but also in some 
ases in the left anterior insula [25, 59℄ and asso
i-ated with progressive non-�uent aphasia [41℄. Earlier examinations of patients with theCHMP2B mutation have shown varying degree of aphasia [26℄, though it is not a primarysymptom of the disease. Hyperorality and 
hanged eating behaviour has been observedin FTD-3 patients [26℄, and the atrophy patterns involving the insula areas found hereshare overlapping patterns with those found in FTLD types with abnormal eating be-haviour [58℄. Thus several of the symptoms observed in patients 
an be related to thepre
lini
al stru
tural 
hanges found in this study. The two distin
t patterns expressed bythe group thi
kness di�eren
es and the group atrophy di�eren
es indi
ate that patterns of
orti
al thi
kness may not alone reveal the a�e
ted anatomi
al regions. Thus using onlyone MRI s
an to establish a �
lini
al� FTD-3 diagnosis in a single CHMP2B mutationpositive subje
t seems impossible at the pre
lini
al stage studied here. A follow-up s
an
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arriers 76is ne
essary to assess the atrophy pattern.Results of 
orti
al thi
kness based on the present method may not be dire
tly 
om-parable with results obtained by VBM analyses. VBM reports statisti
ally signi�
ant
lusters of GM 
hange without 
onsidering the sul
al geometry. Small 
lusters in oppos-ing parts of a sul
us may be insigni�
ant when measuring 
orti
al thi
kness be
ause ofthe relatively large geodesi
 distan
e between the 
lusters, while in VBM they 
ould 
on-verge into one large signi�
ant 
luster be
ause of the relatively small Eu
lidian distan
ebetween the 
lusters. Thus it is important to 
onsider sul
al geometry when measuringfo
al e�e
ts [22℄. Therefore, we in
luded volumetri
 measurements to better 
ompare our�ndings with results from previous studies, whi
h used volumetri
 or VBM measurements,and to evaluate the sensitivity of volumetri
 measurements 
ompared to 
orti
al thi
kness.6.4.2 Cerebral VolumesThe mutation 
arriers showed on average an annualized 
hange in volume of approximatelytwi
e the magnitude of the non-
arriers. Studies have reported annualized GM volume lossin healthy middle-aged and elderly persons of approximately 0.2% without WM loss [1,49℄.Our measurements of average 
orti
al volume loss (1.1%), though not signi�
ant (p=0.14),are in the high end 
ompared to previous �ndings in healthy subje
ts. The small numberof subje
ts (n=7) and signi�
ant normal variation may explain the di�eren
e. Unlikemutation 
arriers, both in
rease and de
rease of 
orti
al volume was measured in non-
arriers, but rates of 
orti
al volume loss were not signi�
antly (p=0.17) higher in mutation
arriers.The averaged annualized 
erebrum volume loss of 0.3% in mutation 
arriers was in-signi�
ant and suggested no 
hange in whole-brain volume. Re
ent �ndings in ubiquitinpositive FTLD reported whole-brain volume loss of 1.7%/year [56, 57℄. These studies in-volved 
lini
ally diagnosed FTD patients above age 55 (average ages of 72/73 years) in
ontrast to the asymptomati
 subje
ts in the present study. The whole-brain volume lossfound by Whitwell et al. indi
ates an a

elerated atrophy rate 
ompared to the youngerasymptomati
 mutation 
arriers studied here, where the loss of tissue seems too subtleto be dete
ted by whole-brain measures. However, 
orti
al volume de
reased signi�
antlywith 2.6% per year on average while a trend (p=0.08) for in
reased WM volume wasobserved (1.4%).The in
rease of WM volume in both mutation 
arriers (1.4%) and non-
arriers (0.9%),though not signi�
ant (p=0.08, p=0.26), was unexpe
ted. Other studies have shown noWM volume 
hange in aged healthy subje
ts [49℄ and only a slight in
rease in WM volumein non-aged healthy subje
ts [1℄. The WM volume was 
al
ulated as the volume en
losedby the WM surfa
e minus an estimated volume of the ventri
les and sub
orti
al regions.Ventri
ular and sub
orti
al volumes were estimated using atlas masks non-linearly alignedto the images. Examining the a

ura
y of these masks revealed problems of �tting to theposterior part of the lateral ventri
les in some subje
ts, why the ventri
ular volumes may beregarded as 
rude estimates a�e
ting the a

ura
y of the 
al
ulatedWM volume. Similarly,ina

urate ventri
ular volumes also a�e
t the 
erebrum volume estimates. To improvethe WM and 
erebrum volume estimates the ventri
les 
ould be expli
itly segmented,e.g. by the use of deformable surfa
es, whi
h would also provide measures of ventri
ularenlargement.The study did not show signi�
ant di�eren
es between mutation 
arriers and non-
arriers when testing for global volumetri
 longitudinal e�e
ts. Nevertheless, using 
orti
althi
kness measurements we were able to determine higher atrophy rates in lobes, and evenidenti�ed fo
al di�eren
es between the groups. This indi
ates that regional and fo
al
orti
al thi
kness measurements are more sensitive than global brain volume or tissue
ompartment measurements when quantifying 
orti
al stru
tural 
hanges.



77 6.4 Dis
ussion6.4.3 Limitations of the StudyThe main limitation of the study is the low number of subje
ts examined. This a�e
tsthe statisti
al power of the measured di�eren
es and 
ompli
ates the assessment of howmeasurements are distributed. The assumption of normally distributed measurements,whi
h was made on the grounds of biologi
al variations tend to be normally distributed,may therefore be in
orre
t. It was not possible to re
ruit more subje
ts, as they had tobe 1.-degree relatives of the same family.The results may be a�e
ted by the within subje
t variability between the two s
ans.A third serial s
an would provide more 
on�dent longitudinal measurements. An addi-tional sour
e of error 
ould arise from the surfa
e mapping used a
ross subje
ts. Spe
i�
anatomi
al lo
ations may be ina

urate, as a point on a 
orti
al surfa
e may be assigned adi�erent anatomi
al label before mapping to the referen
e surfa
e, if it was to be labelledby an expert anatomist. However, the mapping method used ensures that gyral pointsare mapped to a referen
e gyrus and sul
al points are mapped to a referen
e sul
us, thus
orti
al thi
kness 
omparisons are kept within the same 
orti
al topography. Addition-ally, surfa
e based registration has been shown to be more a

urate a
ross subje
ts thantraditional image registrations [22℄.Controlling the rate of falsely reje
ting the null hypothesis in multiple 
omparison asused to 
onstru
t the statisti
al parametri
 maps was attempted with the FDR method[24℄. However, only the map 
al
ulated for the di�eren
es in absolute 
orti
al thi
knessof pooled group data provided FDR 
orre
ted signi�
an
e thresholds. Other statisti
almaps had no p-values less than α/N (α = 0.05, N = 105) thus the FDR method removedall signi�
an
e. This is an e�e
t of the low number of subje
ts used in the study. Still, toenable interpretations of the results, it was de
ided to report the statisti
al maps withoutthe FDR 
orre
ted thresholds. The blurring of the statisti
al maps removed between 78%and 100% of the statisti
ally signi�
ant points (p<0.01), leaving 
lusters of signi�
an
e inthe map. Thus it 
an be argued that su
h blurring removes most of the false positives inthe statisti
al parametri
 maps. Furthermore, most of the found fo
al e�e
ts are bilateral,whi
h seems unlikely if they were 
aused by spurious results.The atlas used for assigning anatomi
al labels to the surfa
es is de�ned as a 3D image,and the pro
edure of assigning labels by Eu
lidian distan
e may lead to un
ertainties inthe exa
t anatomi
al designation of the signi�
ant pathologi
al e�e
ts. However, as theanatomi
al regions used in the study are relatively large, un
ertainties are limited to e�e
tsin the border regions and are 
onsidered not to a�e
t the interpretation.Finally, the 
rude estimates of ventri
ular volume a�e
t the measures of WM and
erebrum volume. Therefore, the reported volumetri
 
hanges and di�eren
es of these
ompartments should be taken lightly. However, the volume measurements of the 
or-tex are 
onsidered a

urate, as these measurements are not in�uen
ed by the ventri
ularvolume estimations.6.4.4 Con
lusionWe have shown that global and fo
al 
orti
al 
hanges 
an be measured in asymptomati
FTD-3 CHMP2B mutation positive subje
ts by using automati
 
orti
al delineation.Global 
orti
al volumetri
 
hanges were statisti
ally signi�
ant, but whole-brain 
hangeswere of a lower rate than rates previously reported in other types of 
lini
ally manifestFTD patients. Fo
al 
orti
al 
hanges were identi�ed by 
orti
al thi
kness measurements,and the results indi
ated that su
h lo
al measures have higher sensitivity for dete
tingsmall 
hanges than global volumetri
 measures. Be
ause of normal variations in 
orti
althi
kness and the low number of subje
ts studied annualized atrophy rates were 
onsid-ered the most reliant features des
ribing di�eren
es between mutation 
arriers and non-
arriers. Symptoms previously reported from patients with the CHMP2B mutation 
ouldbe asso
iated with the a�e
ted anatomi
al regions and our results further support thepathogeni
ity of the CHMP2B 
.532-1G>C mutation. Comparing presymptomati
 FTD-
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Chapter 7Dis
ussion and Con
lusionThis thesis 
ontributes to the �eld of morphometry of the human 
erebral 
ortex fromMRI. The obje
tive is to develop methods for quantifying 
orti
al stru
tural 
hangesas found in neurodegenerative diseases and to investigate the ability of su
h methods tomeasure 
hanges in pre
lini
al individuals. A main goal is to di�erentiate between di�erentneurodegenerative diseases by 
orti
al atrophy patterns and identify 
lini
al markers to aidin early diagnosis. The �rst step to this goal is to a

urately measure the size and shapeof the 
erebral 
ortex. In this thesis, it is proposed to re
onstru
t the 
orti
al stru
tureby manifold surfa
es. The next step towards the goal is to measure atrophy and identifysimilar patterns of atrophy in population groups. For this purpose, 
orti
al mapping isproposed and mapping te
hniques are investigated. The last steps toward the goal ofdi�erentiating between neurodegenerative diseases by atrophy patterns involve applyingthe quanti�
ation methods in 
lini
al studies. A �rst step is taken in that dire
tion byapplying the developed methods to individuals from a family with an inherited variantof frontotemporal dementia. The following dis
usses the 
orti
al re
onstru
tion, 
orti
almapping and appli
ation of quanti�
ation methods presented in this thesis.7.1 Corti
al Re
onstru
tionSu

essful 
orti
al re
onstru
tions use a 
ombination of voxel based methods and de-formable models. Voxel based methods are typi
ally applied as prepro
essing steps priorto a deformable model for the purpose of enhan
ing information of tissue boundaries andredu
ing manual intera
tion. The main fo
us of the thesis is on deformable models whileprepro
essing steps ne
essary for automati
 
ortex re
onstru
tion has been implementedby use of existing methodologies. The following dis
usses the deformable surfa
e algorithmas proposed during the thesis, followed by a dis
ussion of the steps ne
essary for auto-mati
 and robust 
orti
al re
onstru
tion and �nally re�e
tions on 
omputational expenseis presented.7.1.1 Deformable Surfa
e AlgorithmAs stated in the introdu
tion, two 
riteria are important for surfa
e re
onstru
tions of the
erebral 
ortex. First, the surfa
es must a

urately model the underlying true anatomi
alboundaries. Se
ond, the topology of the 
ortex must be preserved. To meet these 
riteria,a solution based on parametri
 deformable surfa
es is suggested. By using parametri
models, the topology 
riterion 
an be met if the initial surfa
e has the 
orre
t topologyand self-interse
tions are avoided during deformation. Methods for 
orre
ting surfa
etopology [5,25℄ and methods to avoid self-interse
tions of parametri
 surfa
es [21,39℄ havebeen proposed. By sele
ting proper algorithms to solve these problems, the fo
us of thestudy is to obtain as a

urate 
orti
al re
onstru
tions as possible using deformable models.83



Chapter 7: Dis
ussion and Con
lusion 84In Paper I [12℄, it is demonstrated that a parametri
 deformable surfa
e based on the
lassi
 balloon model [7℄ 
ombined with a gradient ve
tor �ow for
e [53℄ is able to delineateeven the tight sul
al folds. The deformation is based on a greedy algorithm [49℄ whi
his fast but prone to be trapped in lo
al minima. However, by initializing the deformablesurfa
e 
lose to the target boundaries, the probability of lo
al minima is redu
ed and fast
onvergen
e is enabled. It is demonstrated that the proposed method is robust to imagenoise; in
reasing the noise level in the image to 9% only results in average errors less thanhalf a voxel size 
ompared to surfa
es extra
ted from noiseless data. Finally, the paperreports that thi
kness measurements obtained from the re
onstru
ted 
orti
al surfa
es arerealisti
 
ompared to measurements found in post mortem studies.The algorithm proposed in Paper I [12℄ has a few drawba
ks. The surfa
e positionwith lowest energy is sear
hed for in a dis
rete sear
h spa
e, thus limiting the a

ura
y ofthe solution even if multis
ale te
hniques are used. Furthermore, the method for enfor
ingspheri
al topology on the initial surfa
e may produ
e anatomi
al in
onsisten
ies in thesurfa
e. The initial surfa
e is a tessellation of the WM of both 
erebral hemispheres 
on-ne
ted by 
orpus 
allosum. A tessellation of an unmodi�ed WM voxel 
omponent usuallyresults in a surfa
e with several handles, where larger handles 
an be 
aused by addi-tional inter-hemispheri
 
onne
tions su
h as the 
ommissures. In addition, 
lassi�
ationof sub
orti
al regions often results in a mixture of WM and GM voxels whi
h give rise tonumerous topologi
al errors. Therefore, the applied topology 
orre
tion algorithm basedon graph 
utting [25℄ has di�
ulties produ
ing surfa
es with anatomi
ally 
onsistent ap-pearan
e. In fa
t, in �gure 2.6 on page 30 su
h anatomi
al in
onsisten
ies 
an be observedas bridges a
ross the ventri
les.In Paper II [13℄, the granularity problem is addressed by altering the deformation ap-proa
h to 
al
ulate displa
ement ve
tors dire
tly by the sum of for
e ve
tors. Furthermore,a lo
al weighting strategy of the deformation for
es is implemented to improve the a

u-ra
y and 
onvergen
e of surfa
es. Exploiting the 
lose initial surfa
e, normalized surfa
e
urvature is used to relax regularizing for
es in 
urved regions and balan
e the use of thetwo external image for
es for optimal modeling of tight sul
i. The paper demonstratesthat su
h a 
ombination and weighting of for
es is superior to approa
hes using only apressure for
e [10℄ or only a gradient ve
tor �ow for
e [52℄.In Paper III [14℄, the topology 
orre
tion method is 
hanged to a more robust and
onsistent approa
h [5℄. The hemispheres are separated and ventri
les and sub
orti
alregions �lled and thereby further optimizing the possibility for topologi
ally 
orre
t and
onsistent surfa
es of the neo
ortex. The paper demonstrates that the proposed algo-rithm is geometri
ally more a

urate and faster than the widely used and freely availablere
onstru
tion algorithm FreeSurfer [10℄.A Note on NoveltyThe �eld of 
orti
al morphometry is rapidly expanding and the progression is fast. At thetime of publi
ation of Paper I, several of the surfa
e re
onstru
tion methods referen
ed inthe introdu
tion of this thesis were not published. Several resear
hers around the worldwork on 
orti
al surfa
e re
onstru
tion from MRI and this is re�e
ted in the amount ofliterature on the subje
t. As noted in the introdu
tion, re
ent methods seem to 
onformto the same strategy of re
onstru
ting the outer 
orti
al boundary by in�ating a surfa
e ofthe inner 
orti
al boundary. This is indeed the same strategy adopted in this thesis. Themain di�eren
e is how this deformation is performed. The 
ombination of external imagefor
es and weighting strategy presented in the papers of this thesis is 
onsidered unique.However, re
ent studies have pointed in similar dire
tions as proposed here.In a re
ent 
omparative study of eight deformable 
ontour methods, it is 
on
luded thatnew methods 
ould 
ombine features from existing methods to handle spe
i�
 segmentationproblems [30℄. Spe
i�
ally, a 
ombination of a balloon model with a gradient ve
tor�ow (GVF) is given as an example. This 
ombination is similar to what is presentedin this thesis for the re
onstru
tion of the outer 
orti
al boundary. Another re
ent paper



85 7.1 Corti
al Re
onstru
tionpropose a method for re
onstru
ting the 
entral layer of the 
ortex by 
ombining a pressurefor
e with a GVF for
e in the deformation pro
ess [37℄. Again, this is similar to theapproa
h des
ribed in this thesis with the di�eren
e that the target here is the outer
orti
al boundary. These studies 
on�rm the novelty and performan
e of the 
orti
alre
onstru
tion approa
h suggested in this thesis.7.1.2 Automation and RobustnessLarge s
ale 
ohort studies 
all for automati
 pro
edures to limit tedious and laboriousmanual intera
tion and to optimize 
onsisten
y. A goal for the 
orti
al re
onstru
tionalgorithm developed during the Ph.D. study is full automation. However, when dealingwith biologi
al images and 
omplex target stru
tures, this is not an easy task when robust-ness to image and obje
t variation is also prioritized. Apart from the deformable surfa
ealgorithm, several other pro
essing steps are involved in an automati
 re
onstru
tion pro-
edure. These steps are performed to ful�ll the pre
onditions and improve the a

ura
yof the deformable surfa
e algorithm. The main pre
ondition of the used deformable sur-fa
e approa
h is initialization 
lose to the target boundary. This is a
hieved by a good
lassi�
ation of the 
erebral WM.The steps taken to perform 
lassi�
ation of the 
erebrum WM in
lude intensity non-uniformity 
orre
tion, image registration to a stereotaxi
 spa
e, brain extra
tion, intensitybased 
lassi�
ation into WM, GM and CSF and �nally removal of brain stem and 
erebel-lum as outlined in Paper I [12℄. Su
h prepro
essing steps are 
ommon for several 
orti
alre
onstru
tion algorithms [10,24,33,35℄. The performan
e, robustness and automation of
orti
al re
onstru
tions depend on 
hoi
es of algorithms to perform ea
h step. For the 
or-ti
al re
onstru
tion presented in this thesis, these 
hoi
es have remained more or less thesame throughout the 
ourse of the Ph.D. study and are in the following brie�y dis
ussedin 
onne
tion with automation and robustness.Corre
tion of intensity non-uniformities 
aused by inhomogeneities in the radio fre-quen
y �eld is usually needed for improving intensity based 
lassi�
ations. The inhomo-geneity in
reases with �eld strength and is very pronoun
ed at 3 Tesla. Various algorithmsto 
orre
t the intensity non-uniformities in the images have been proposed and a numberof these are publi
ly available [31℄. In this thesis, the freely available N3 algorithm isused [43℄. This algorithm is automati
 and performs well on images generated by both 1.5and 3 Tesla s
anners [3℄.Automati
 image registration to a stereotaxi
 spa
e is a 
ru
ial step involved in almostall stru
tural studies as well as many fun
tional studies. For this reason, enormous ef-fort has been put into developing robust registration and freely available, well-performingmethods exists [9, 11, 18, 34, 51℄ 1. In this thesis, registration is done using an automati
pro
edure [8, 9℄ whi
h is found to perform well for the purposes of the 
orti
al re
on-stru
tion. The registration pro
edure need not be highly a

urate, as the purpose forthe 
orti
al re
onstru
tion is gross lo
alization of the major anatomi
al parts. Thus, theregistration is used for the removal of brain stem and 
erebellum. A registration workingfor the wide variability of brain anatomy is usually not su�
iently a

urate to be used forbrain extra
tion as well.Brain extra
tion is ne
essary as several tissues in the human head have overlappingT1 intensities whi
h impairs the tissue 
lassi�
ation. Su
h an algorithm must be able torobustly extra
t the brain tissues without removing parts of the brain and optimally with-out in
luding proximate tissues su
h as dura mater, exterior veins and 
artilage. Severalbrain extra
tion methods have been proposed [40℄. None of the freely available meth-ods [10, 41, 44, 47℄ are found suitable for purposes of robust and automati
 
orti
al re
on-stru
tion. Therefore, in this Ph.D. study, a brain extra
tion algorithm has been developedsimilar in spirit to the brain extra
tion tool by Smith [44℄. Even though this algorithmworks well for most data, brain extra
tion of elderly subje
ts has proved di�
ult to perform1For a list of available software tools see http://www.
ma.mgh.harvard.edu/iatr/



Chapter 7: Dis
ussion and Con
lusion 86robustly and a

urately. The main problem is the in
lusion of dura mater and superiorsagittal sinus whi
h may have intensities similar to WM, thus 
ompli
ating the 
erebrumWM 
lassi�
ation. The problem is probably related to 
hange in MRI signal intensitywhi
h is an e�e
t of age [32℄.Classi�
ation of the 
erebral tissues into WM, GM and CSF 
an be performed usingseveral of the 
lassi�
ation approa
hes des
ribed in the introdu
tion. Parti
ularly, in thisthesis a fuzzy 
lustering approa
h is used [23℄. This 
lassi�
ation algorithm generally per-forms well; however, no formal 
omparisons with other algorithms were 
arried out duringthe Ph.D. study. The algorithm in�uen
es the surfa
e 
onvergen
e and re
onstru
tiona

ura
y as the fuzzy membership images produ
ed are used in the deformation pro
ess.In Papers I and III the a

ura
y of the re
onstru
ted surfa
es is shown to be around halfa voxel size, whi
h is why the a

ura
y of the tissue 
lassi�
ation is deemed a

eptable.Generally, the 
orti
al re
onstru
tion pro
edure runs fully automati
 on most MRIs
ans. However, a small fra
tion of s
ans of elderly individuals need manual intera
tion toremove parts of the dura mater prior to tissue 
lassi�
ation. This is 
aused by insu�
ientbrain extra
tion. It is my experien
e that brain extra
tion remains the main obsta
le toa fully automati
 and robust 
orti
al surfa
e re
onstru
tion method.7.1.3 Computational ExpenseThe time it takes to generate a

urate 
orti
al re
onstru
tions may be relevant in somes
enarios. If 
orti
al re
onstru
tions are to be used in diagnosti
s or preoperative planning,the 
omputational delay may be a nuisan
e at best and 
riti
al at worst. However, in most
ases the re
onstru
tion time is not important though a fast re
onstru
tion signi�
antlyredu
es the time needed to obtain results in large s
ale studies. Espe
ially when repeatedtrials are ne
essary to tune parameters, high throughput is desirable. In any 
ase, opti-mization of 
omputational expense should be prioritized after a

ura
y, robustness andautomation.Traditionally, optimization of parametri
 deformable surfa
es is very slow if 
onver-gen
e to a global minimum must be guaranteed. Global minimum solutions 
an be ob-tained by various minimization algorithms [2, 45℄. The deformation methods applied topropagate the deformable surfa
es in this thesis do not guarantee 
onvergen
e to a globalminimum. This enables faster 
onvergen
e and be
ause of the 
lose initialization, themodels are less vulnerable to problems of lo
al minima. Applying a global minimizationalgorithm does not ne
essarily improve the a

ura
y as the global minimum may not bethe most a

urate delineation of the 
orti
al boundaries due to noise and artefa
tual ir-regularities found in MRI. Global minimum algorithms are suited for problems where theinitial guess is far from the solution. However, in 
orti
al re
onstru
tions, the initial guess
an be determined 
lose to the solution as robust 
lassi�
ation of the 
erebrum WM 
anbe a
hieved. Therefore, the need for 
onvergen
e of surfa
es initialized far from the targetboundary seems arti�
ial and 
omputational expensive optimization algorithms guaran-teeing a global minimum appear super�uous for the purpose of 
orti
al re
onstru
tion.Geometri
 deformable models have be
ome popular solutions to the 
orti
al re
onstru
-tion problem sin
e the introdu
tion of topology preservation to the level set method bythe use of digital topology [26℄. An argument for these models are the low 
omputationalexpense 
ompared to parametri
 models. Authors 
laim that self-interse
tion preventionis very 
omputational intensive in parametri
 deformable surfa
e models [24, 27℄. The so-lution to 
orti
al re
onstru
tions with self-interse
tion avoidan
e presented in this thesisis reasonably fast. Deformation of the GM/CSF surfa
e is done in approximately 5 min.per hemisphere on a 2.8 GHz Opteron CPU. But 
ompared to new level set methods,where the deformation pro
ess is measured in se
onds [42℄, the parametri
 high resolutionmodels are outperformed. However, seen in the perspe
tive of the entire pro
ess neededfor 
orti
al re
onstru
tion, the deformation pro
ess is only a fra
tion of the 
omputationaltime used. Intensity 
orre
tion and 
lassi�
ation algorithms often demand similar 
ompu-



87 7.2 Corti
al Surfa
e Mappingtational resour
es and if high-dimensional non-linear registration methods are used, theprepro
essing steps may be a fa
tor ten more time 
onsuming than the parametri
 de-formable models. Thus, in pra
ti
al 
ortex re
onstru
tion, the deformation algorithm isnot the 
omputational bottle ne
k if a suitable minimization method is 
hosen.7.2 Corti
al Surfa
e MappingThe 
orti
al re
onstru
tions enable detailed morphologi
al quanti�
ations of the entireneo
ortex. To fully utilize these high resolution measurements and identify di�eren
es overtime and between subje
ts, point 
orresponden
e between 
orti
al surfa
es is ne
essary. Inthis thesis the subje
t of 
orti
al surfa
e mapping for the purpose of point 
orresponden
eis brie�y investigated in paper IV [15℄.The main problem when 
omparing di�erent 
orti
al surfa
es is the great variationin folding patterns. Usually 
omparison is enabled by mapping the manifold surfa
es toea
h other or to a template. If the manifold properties of the surfa
es are maintainedby a mapping, it is hard, if not impossible, to mat
h the 
orti
al folding patterns andthereby mat
hing gyri to sul
i is unavoidable without loosing information. As the 
ortexgenerally is thi
ker at the top of gyri than at the bottom of sul
i, su
h mat
hing may leadto unreliable measurements of di�eren
e in 
orti
al thi
kness. By relaxing the manifoldproperties in the mapping, it is possible to only mat
h areas of the surfa
es with similartopography. A mapping method with this purpose is proposed in paper IV and evaluatedalong with methods that maintain the manifold properties when mapping. The evaluation
on�rmed that if the manifold properties are maintained, high topographi
al errors o

ur.The methods a
hieving low topographi
al errors due to manifold relaxation result in neigh-boring verti
es jumping between gyri and sul
i leading to large geodesi
 distan
es. This isalso undesirable as neighboring measurements are not independent and su
h large geodesi
distan
es imposed by a mapping may render the measurements unreliable. Though theproposed algorithm maintains the most information (high 
overage) of the �ve evaluatedmethods, large geodesi
 errors are not a

eptable.A solution to maintain manifold properties and limit the topographi
 errors 
ould beto develop di�erent brain templates ea
h re�e
ting a �type of brain� 
ategorized on thebasis of the 
orti
al folding patterns. This way a subje
t 
ortex 
ould be mat
hed to thebest template representing the type of 
orti
al folding of the subje
t. How many di�erenttemplates would be needed and to what detail the 
ategorization 
an be performed remainsto be investigated. Su
h an approa
h would be feasible only if the number of di�erent
lasses is limited.Another observation supporting the 
ategorization of brains a

ording to the 
orti
alfolding pattern is the large errors and large standard deviations in the landmark testperformed in the paper. All mapping methods resulted in large average geodesi
 distan
esto the manually pla
ed landmarks. However, it was observed that in some 
ases themapping was very 
lose to the landmarks while in others the geodesi
 errors were large asthe high standard deviations also suggest. This indi
ates that some 
orti
es are generallybetter mat
hes whi
h further support the 
ategorization of the brains for the purposeof brain mapping. By spe
ializing the brain templates for spe
i�
 
orti
al patterns, thegeodesi
 landmark errors 
ould be redu
ed.7.3 Appli
ation on Neurodegenerative DiseasesDemonstrating the use of the 
ortex re
onstru
tion method on data from individuals witha neurodegenerative disease is 
ru
ial, as methods behaving well on simulated data anddata from non-pathologi
al brains may fail on pathologi
al brains. In this thesis, the
orti
al re
onstru
tion is applied to individuals from a family with an inherited variant offrontotemporal dementia where a pathogeni
 mutation has been identi�ed on 
hromosome



Chapter 7: Dis
ussion and Con
lusion 883 (FTD-3). Nine individuals with the mutation and seven without the mutation arein
luded in the study.The study whi
h is do
umented in Paper V [16℄ revealed that 
omparison of groupsusing absolute 
orti
al thi
kness need more subje
ts than the 16 used in order to 
ompen-sate for the signi�
ant normal variation in 
orti
al thi
kness. However, when in
ludingthe temporal dimension, atrophy rates 
an be estimated whi
h are statisti
ally strongerwhen 
omparing pathologi
al e�e
ts. This is re�e
ted in the di�erent statisti
al mapsgenerated by respe
tively absolute 
orti
al thi
kness and annualized atrophy ratios. Theatrophy ratio statisti
al map seems more plausible as it shows bilateral e�e
ts 
ontraryto the statisti
al map of di�eren
es in absolute 
orti
al thi
kness. In the spe
i�
 vari-ant of frontotemporal dementia, bilateral e�e
ts are expe
ted although the degenerativemanifestations of the disease remain to be fully mapped.The 
orti
al re
onstru
tion provides means for measuring the 
erebral volumes. This isdone by 
al
ulating the interior volume of the 
losed surfa
es of the WM and GM. Corti
alvolume is determined by the di�eren
e in volume between the surfa
es. In the FTD-3study, only the 
orti
al volume in mutation 
arriers de
reased signi�
antly while trend forin
reased WM volume was observed. By only modeling the neo
ortex, estimations of WMvolume 
annot be dire
tly obtained why volumes were adjusted by masks of ventri
les andsub
orti
al stru
tures. Ventri
ular enlargements are expe
ted over time and the in
reasedWM volume may be due to inability of the masks to �t to the altered ventri
les. Ventri
ularvolume 
an be measured more elegantly by modeling the ventri
les expli
itly by use ofdeformable or shape models.Cerebral volumes should generally be normalized as great inter-subje
t variability ex-ists and the volume of the healthy mature brain is presumed to be 
orrelated with thevolume of the 
ranium 
avity [29, 50℄. In the study, the measurements were normalizedwith estimated total intra-
ranial volume obtained by a �tted stereotaxi
 mask. The a

u-ra
y of su
h an approa
h is highly dependent on the registration method and intra-
ranialvolume estimations 
al
ulated without registration 
ould improve the a

ura
y and removeregistration bias.The rate of 
hange in 
erebral volumes was not signi�
antly higher in mutation 
arriers
ompared to non-
arriers while atrophy rates based on 
orti
al thi
kness both averagedwithin the lobes and fo
ally by the statisti
al maps showed signi�
ant di�eren
e betweenthe groups. This indi
ates that 
orti
al thi
kness is more sensitive than volume mea-sures. A formal study evaluating the sensitivity of the measures should be 
arried out todetermine the di�eren
e between the measures.The statisti
al maps used in the study were 
reated by hypothesis testing at ea
h vertexof a referen
e surfa
e. In hypothesis testing, there is a probability for in
orre
tly reje
tingthe null hypothesis; the false positive rate. When performing thousands of tests as inthe generation of the statisti
al maps, there is bound to be in
orre
t test out
omes, thusleading to false positives. In the study, this problem is addressed by 
al
ulating 
orre
tedsigni�
an
e thresholds based on 
ontrolling the false dis
overy rate (FDR) [20℄. However,the FDR method eliminated all signi�
ant fo
al e�e
ts in some of the statisti
al maps.Controversy exists whether to apply methods for 
ontrolling the false positive rate at therisk of not reporting important �ndings [19, 38℄. In the FTD-3 study, large smoothingkernels were applied to the maps so only 
lusters of verti
es where the null hypothesis arereje
ted remain. The probability that a single test is wrong is at the level of determination;however, the probability that several verti
es in the same neighborhood all have wrongout
omes is signi�
antly redu
ed. Therefore, it is argued that problems with multiple
omparisons are insigni�
ant after smoothing the maps. Even though these argumentsseem to hold, the arguments should be supported by studies investigating the impa
t ofthe di�erent parameters involved in 
reating 
orti
al statisti
al maps, e.g. the e�e
t ofspatial inter-dependen
y of the measurements on the statisti
al model. Su
h investigationsmay lead to a theoreti
al foundation of the statisti
al maps generated for 
orti
al features.



89 7.4 Future Dire
tions7.4 Future Dire
tionsThe subje
ts 
overed in this thesis lead to a range of questions and re
ognition of problemsstill unresolved in quanti�
ation of 
erebral 
orti
al stru
tures by use of surfa
e models.These questions and problems should be addressed in future studies.Firstly, the a

ura
y of the proposed parametri
 deformable model must be furtherinvestigated and 
omparisons with geometri
 deformable models should be 
arried out asthese models have be
ome popular during re
ent years. The a

ura
y of the re
onstru
tedsurfa
es have been evaluated on the basis of young healthy subje
ts and phantom MRIs
ans. Studies of the performan
e on old and pathologi
al brains should be 
ondu
ted. Re-
ent initiatives of 
olle
ting data from neurodegenerative diseases, su
h as the Alzheimer'sDisease Neuroimaging Initiative2, provide means for evaluations on old and pathologi
albrains. Validation by 
omparison to manual delineations, histologi
al measures and ani-mal studies are also possible dire
tions for determining the a

ura
y and reliability of the
orti
al re
onstru
tion.Se
ondly, for the purpose of high throughput in large s
ale studies, automation androbustness is essential. For the 
orti
al re
onstru
tion method presented here, the brainextra
tion step is identi�ed as the weakest link. Future e�ort should be put into improvingthis step with the purpose of developing methods robust to the altered MRI signal intensitydue to age. Robust brain extra
tion is 
ontinuously being resear
hed by other groups[1,4,17,28℄ and progress in the �eld may advantageously be in
orporated into the 
orti
alre
onstru
tion pipeline.Thirdly, the investigation of di�erent 
orti
al mapping algorithms revealed a need forimprovements within the �eld whi
h was mainly 
aused by the high variations of 
orti
alfolding patterns between individuals. Future studies should look into the possibility of
ategorizing 
orti
es on the basis of folding patterns and the 
onstru
tion of spe
ialized
orti
al templates.Fourthly, evaluations of the measures 
al
ulated from the 
orti
al surfa
es have notbeen the subje
t of this thesis and work within this �eld 
ould improve the reliability ofthe results obtained. Others have evaluated di�erent measures of 
orti
al thi
kness [36℄ andit should be investigated whether the 
on
lusions drawn by this study apply to the surfa
esgenerated by the 
orti
al re
onstru
tion method presented in the present thesis. Apartfrom 
orti
al thi
kness, volume estimates are also derived from the surfa
es. When usingthe 
orti
al surfa
es to 
al
ulate volume measurements of the 
erebral tissues two problemsarise: 1) absolute volumes must be normalized by an invariant fa
tor 
orrelated to themaximum matured brain size and 2) WM volume estimates are 
orrupted by enlargementsof the ventri
les as the WM surfa
e en
ompasses these 
avities. As done in the FTD-3study, normalization 
an be performed by estimation of the intra-
ranial volume as thismeasure is presumed to re�e
t the maximummatured brain volume and to remain 
onstantover time [50℄. Often the intra-
ranial volume is estimated by a brain mask generated toremove the s
alp [22, 48, 54℄; however, su
h masks may not re�e
t the true intra-
ranialvolume. Therefore, work spe
i�
ally dire
ted toward estimating the intra-
ranial volumeshould be 
arried out. The problem of enlarged ventri
les in the WM volume estimations
an be addressed by expli
itly modeling the ventri
les. Several methods for ventri
lesmodeling exist [6℄ and future improvement of the 
orti
al re
onstru
tion pipeline 
ouldin
orporate a suitable method for modeling the ventri
les. In
orporation of measures ofventri
le size and shape may provide additional information of atrophy progression [46℄.Fifthly, the sensitivity of the 
orti
al thi
kness 
ompared to traditional volume mea-sures should be investigated. The FTD-3 study [16℄ indi
ated that the 
orti
al thi
knessmeasurements are superior to volume estimates when dete
ting subtle 
orti
al 
hanges.Further work should 
on�rm this observation and evaluate the sensitivity of the measures.This 
ould be done using the realisti
 brain phantoms generated from 
orti
al surfa
es asdes
ribed in Paper III [14℄.2For more information see http://www.loni.u
la.edu/ADNI/



REFERENCES 90Finally, further work on statisti
al parametri
 maps of morphologi
al features, su
has the 
orti
al thi
kness, should be 
arried out. Studies examining the reliability of theeviden
e produ
ed by statisti
al maps are important for the general a

eptan
e of resultsfound by 
orti
al surfa
e re
onstru
tions and subsequent mapping. In addition, the statis-ti
al method for generating the maps should be evaluated and it should be investigated ifin
lusion of the spatial inter-dependen
y of the measurements 
ould improve the statisti
almodel.7.5 Con
lusionThis thesis has demonstrated that the human 
erebral 
ortex 
an be re
onstru
ted frombrain MRI by means of parametri
 deformable surfa
es. The resulting high resolutionsurfa
es provide means for detailed measurements of the 
orti
al morphology. The a

u-ra
y of the developed method has been shown to be at subvoxel level and the method isgeometri
ally more a

urate than a widely used 
ompeting re
onstru
tion method. Thetopologi
ally 
orre
t 
orti
al surfa
es are generated automati
ally and robustly by in
or-porating a series of prepro
essing steps based on existing voxel based methods. Comparedto other parametri
 re
onstru
tion methods, the developed algorithm is fast; 
ompletere
onstru
tions are generated in less than one hour from native s
anner images.The problem of 
orti
al mapping has been addressed and strengths and weaknesses ofdi�erent methods for solving the mapping problem have been un
overed in a 
omparativestudy. The study indi
ates that more work needs to be done in this �eld to address thewide morphologi
al variability of human 
orti
es.Finally, the developed methods have been applied in a study of pre
lini
al subje
ts withan inherited neurodegenerative disease. It was demonstrated that atrophy is dete
tableat this pre
lini
al stage of the disease and that 
orti
al thi
kness based measurements aremore sensitive than volume measures.The work presented in this thesis is part of ongoing e�orts toward the goal of diagnos-ing and di�erentiating between neurodegenerative diseases by means of 
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