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Abstract

This Ph.D. thesis investigates morphological quantification of the human cerebral cor-
tex from magnetic resonance images (MRI). Morphological quantification of the cerebral
cortex is important for understanding the manifestation and progression of neurodegenera-
tive diseases such as Alzheimer’s disease and such quantification are considered important
disease markers and may aid in early diagnosis. The first part of the thesis deals with
reconstruction of the cortex from T1 weighted MRI. The second part is concerned with
using the cortical morphological measurements from the reconstructions to compare dif-
ferent cortices, and applying the quantification methods in a study of a neurodegenerative
disease. The thesis is based on five papers; three papers covering the first part and two
papers on the second part.

In paper I, the method for reconstructing the cortical boundaries as parametric sur-
faces is presented. The entire process from scanner images to cortical thickness results is
described and test of the method on simulated MRI data, several young healthy individ-
uals and a single Alzheimer’s patient scanned with an interval of six months is presented.
The paper presents a novel combination of a pressure force with a gradient vector flow in
a deformable surface model for modeling the outer cortical boundary.

In paper II, an improved surface deformation process is presented. The energy func-
tional described in the first paper is altered to express vector forces, and a local weighting
of forces is introduced to better adapt to the highly folded cortical sheet. Test of the
method on simulated MRI is reported and it is shown to be more accurate than ap-
proaches without the local weighting strategy. The main contribution of the paper is a
deformation approach free of search spaces and a novel curvature influenced weighting of
the terms in the energy functional.

Paper IIT describes the comparison of the developed method with the cortex extraction
method used the most in the literature. The comparison is based on phantom MRI images
constructed from cortical surfaces extracted from real MRI images. In this way, ground
truth cortical boundaries are created and the geometrical error of the cortex reconstruc-
tions can be quantified. The paper reports that the developed method is reconstructing the
cortical surfaces with a subvoxel accuracy and that it performs better than the competing
method in most of the tests while being much faster.

In paper IV, the problem of comparing different cortices is addressed. A proposed fea-
ture driven cortical mapping algorithm is presented together with tests of it and four other
mapping algorithms: a feature driven approach, two spherical mapping approaches, and
a basic iterative closest point algorithm. The algorithms are evaluated with constructed
criteria for a good mapping, a landmark test using manually placed landmarks and an
analysis of statistical maps generated by the results of the algorithms. It is demonstrated
that each method has its strengths and weaknesses and no single method performs better
on all criteria and for all purposes. However, it is indicated that a combination of some
of the evaluated algorithms could be a promising approach.

Paper V reports the results of applying the developed methods to identify cortical
structural changes in individuals with a familial variant of frontotemporal dementia. Nine
presymptomatic individuals carrying the disease mutation are compared to seven individ-
uals from the same family without the mutation. The study is based on two serial MRI
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scans of each individual and annualized atrophy rates are calculated. Both volumetric
and thickness measurements show that the presymptomatic mutation carriers degenerate
faster than the healthy controls. The thickness measurements have a higher sensitivity
than the volumetric measurements and they are able to detect the focal differences be-
tween the two groups. Furthermore, the involved cortical areas are linked to symptoms
observed in clinical frontotemporal dementia patients and support the pathogenicity of
the mutation.

The work presented in the thesis demonstrate that it is possible to detect subtle mor-
phological changes in the human cerebral cortex with MRI, and suggest that the goal of
using morphological disease markers in improving diagnosis of neurodegenerative diseases
is attainable.
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Dansk Resumé (Danish Abstract)

Denne Ph.D. athandling omhandler morfologisk kvantificering af den menneskelige hjerne-
bark fra magnetisk resonans skanning (MRS). Morfologisk kvantificering af hjernebarken
er vigtig for forstaelsen af hvordan neurodegenerative sygdomme som Alzheimers syg-
dom manifesterer sig og udbredes i hjernen. Det vurderes at sddan kvantificering kan
identificere sygdomsmarkgrer og kan bidrage til tidligere diagnose af neurodegenerative
sygdomme. Fgrste del af athandlingen omhandler rekonstruktion af hjernebarken fra T1
vaegtet MRS. Anden del fokuserer pa at anvende rekonstruktionerne af hjernebarken til
at kvantificere morfologien og sammenligne forskellige hjernebarker, og kvantificeringsme-
toderne anvendes i et studie af en neurodegenerativ sygdom. Afhandlingen er baseret pa
fem artikler; tre artikler deekker fgrste del og to omhandler anden del.

I artikel T praesenteres metoden til rekonstruktion af hjernebarkens veevsgraenser som
parametriske overflader. Hele processen fra skannerbilleder til maling af hjernebarkens
tykkelse er beskrevet og metoden testes pa simuleret MRS data, unge raske individer og
en enkelt Alzheimers patient skannet med seks maneders mellemrum. Artiklen praesenterer
en tryk kraft kombineret med en gradient vektor kraft i en deformérbar overflademodel til
modellering af hjernebarkens ydre vaevsgranse.

I artikel IT preesenteres en forbedret deformeringsproces. Energifunktionen beskrevet
i artikel I er forandret sa der udtrykkes vektorkraefter, og en lokal vaegtning af kraefterne
introduceres for bedre tilpasning til hjernebarkens meget foldede struktur. Metoden testes
pa simulerede MRS og det vises at den er mere ngjagtig end metoder uden lokal veegtning
af kreefterne. Hoved-bidraget i artiklen er en deformeringsmetode uden sggerum og en
unik veegtning af termerne i energifunktionen baseret pa overfladens krumning.

I artikel ITT sammenlignes den udviklede metode med den i litteraturen mest benyttede
rekonstruktionsmetode. Sammenligningen er baseret pa fantom MRS billeder konstrueret
fra overflader af hjernebarken udtrukket fra rigtige skanninger. P4 denne méade genereres
der data hvor den sande hjernebark er kendt og geometriske fejl i rekonstruktionerne kan
males. Artiklen viser at den udviklede metode har en ngjagtighed bedre end oplgsningen
af billederne, og at metoden er mere ngjagtig og hurtigere end den konkurrerende metode.

Artikel IV tager sig af problemet med at sammenligne forskellige hjernebarker. En
metode til at referere mellem hjernebarker, som er baseret pa sammenligning af ge-
ometriske features, praesenteres og testes sammen med fire andre referencemetoder; en
anden feature baseret algoritme, to algoritmer der refererer til en kugle, og en simple it-
erativ nzermeste punkt algoritme. Algoritmerne evalueres med opstillede kriterier for en
god reference, en test med manuelt placerede fikspunkter, samt en analyse af statistiske
overfladekort genereret pa baggrund af algoritmernes resultater. Det demonstreres at hver
metode har sine styrker og svagheder, og at en enkelt metode ikke kan foretrakkes frem
for en anden til alle formal pa baggrund af de opstillede kriterier. Det antydes at en
kombination af nogle af metoderne synes at veere en lovende lgsning pa problemet.

Artikel V rapporterer resultaterne af at anvende de udviklede kvantificeringsmetoder
til at identificere strukturelle forandringer i hjernebarken i individer fra en familie med
en nedarvet variant af frontotemporal demens. Ni praesymptomatiske baerere af sygdoms-
genet er sammenlignet med syv individer uden sygdommen fra samme familie. Studiet er
baseret pa to serielle skanninger af hvert individ, og atrofirater kan dermed beregnes. Bade



volumetriske malinger og malinger af hjernebarkens tykkelse viser at de praesymptomatiske
sygdomsbearere degenererer hurtigere end de raske kontrolpersoner. Tykkelsesmalingerne
har en hgjere sensitivitet end de volumetriske méalinger, og disse muligggr detektering af
fokale forskelle de to grupper imellem. De involverede omrader i hjernebarken kan henfgres
til symptomer observeret, i kliniske patienter med frontotemporal demens og understgtter
dermed patogeniciteten af sygdomsmutationen.

Forskningen praesenteret i denne athandling demonstrerer at det er muligt at detek-
tere sma morfologiske forandringer i den menneskelige hjernebark fra strukturel MRS, og
sandsynligggr at morfologiske sygdomsmarkgrer kan benyttes til at forbedre diagnosen af
neurodegenerative sygdomme.
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Preface

The content of this Ph.D. thesis is based on five papers written during the period of
January 2005 to June 2008. Four papers were accepted for presentation at the following
conferences:

e SPIE Medical Imaging 2005 - International Society for Optical Engineering, Medical
Imaging conference in San Diego, USA, February 2005. Full papers (12 pages) were
accepted on the basis of peer reviewed extended abstracts (4 pages).

e MICCAI 2006 - Medical Image Computing and Computer-Assisted Intervention con-
ference in Copenhagen, Denmark, October 2006. 232 full papers (8 pages) were
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ceedings are published in Lecture Notes on Computer Science.

e MICCAT 2007 - Medical Image Computing and Computer-Assisted Intervention con-
ference in Brisbane, Australia, October-November 2007. 237 full papers (8 pages)
were selected from 637 submissions based on peer reviews, acceptance rate: 37.2%.
Proceedings are published in Lecture Notes on Computer Science.

e SIBGRAPI 2008 - The XXI Brazilian Symposium on Computer Graphics and Image
Processing in Campo Grande, Mato Grosso do Sul, Brazil, October 2008. 38 full pa-
pers (8 pages) were selected from 107 submissions based on peer reviews, acceptance
rate: 35.5%. Proceedings are published by IEEE CS Press.

The last paper has been accepted by the journal NeuroImage and is currently in press.
Neurolmage communicates “important advances, using imaging and modelling techniques
to study structure-function relationships in the brain.” Neurolmage has an impact factor
of 5.5 (2007).

Each paper is inserted into the thesis as a chapter only changing the layout and remov-
ing the abstract compared to the publication/submission. In addition to the five papers,
the thesis contains a general introduction and discussion of the subject going into details
not covered by the papers. Reference listings are contained within each chapter.

The algorithms developed and presented during the thesis have been implemented
using the freely available software and programmer’s interface MINC, which is available
from http://www.bic.mni.mcgill.ca/software/

Simon Fristed Eskildsen
Aalborg, July 2008

ix






Contents

List of Figures Xiv
List of Tables XV
1 Introduction 1
1.1 Background . . . . . . . L 1
1.2 Quantification of Cortical Structures . . . . . . .. . .. .. ... . ... .. 3
1.2.1 Region Based Approaches . . . . . . .. ... ... .. 3

1.2.2  Morphometry Based Approaches . . . . ... .. .. ... ...... )

1.2.3 Surface Based Approaches . . . . . . .. ... ... ... 7

1.3 Aim of the Ph.D. Study . . . . . . . .. ... . .. 12
1.4 Outline and Contents of Thesis . . . . . .. .. ... .. .. ... ...... 12
References . . . . . . . . L 14

2 Extraction of the Cerebral Cortical Boundaries from MRI for Measure-

ment of Cortical Thickness 23
2.1 Introduction . . . . . . . . . . . . e e e e 23
2.2 Methods . . . . . . . . . e e 24
2.2.1 Initial Inner Surface Generation . . . . . . . . . . .. ... ... ... 24
2.2.2 Inner Surface Deformation . . . . . . . . .. . . ... ... ...... 25
2.2.3 Outer Surface Deformation . . . .. . . ... . ... ... ...... 26
2.2.4 Measurements . . . . . ... i i e e e e e e e e e e e 28
2.3 Results. . . . . . . e e 28
2.4 Conclusion . . . . . . . e e e e e 32
References . . . . . . . . . Lo 33

3 Active Surface Approach for Extraction of the Human Cerebral Cortex

from MRI 35
3.1 Introduction . . . . . . . . . . . .. 35
3.2 Methods . . . . . . . . ..o 36
3.2.1 Deformation Process . . . . . . . . ... .. e 36
3.2.2 Internal Forces . . . . . .. . . . . ... . . ... e 36
3.2.3 External Forces . . . . . . . . . . . ... .. ... e 37
3.3 Results. . . . . . . e 39
3.4 Summary and Conclusion . . . . . .. . ... ... 39
References . . . . . . . . . Lo 41

4 Quantitative Comparison of Two Cortical Surface Extraction Methods

Using MRI Phantoms 43
4.1 Introduction . . . . . . . . . . . e e e e e 43
4.2 Methods . . . . . . . e e e e 43
4.2.1 FreeSurfer Method . . . . . . . . . .. .. .. ... .. ... .. ... 44
4.2.2 Fast Accurate Cortex Extraction Method . . . ... ... ... ... 44

xi



4.2.3 Phantom Generation . . . . . . . . . .. ..o 45

4.2.4 Accuracy Assessment . . . . . ... Ll e 45
4.3 Results. . . . . . . . e e e e 46
4.4 Discussion . . . . . . .. e e e e e e e e 47
References . . . . . . . . . . e e e 48

Evaluation of Five Algorithms for Mapping Brain Cortical Surfaces 51

5.1 Introduction . . . . . . . . . . . e e 51
5.2 Background . . . ... o1
5.3 Proposed Mapping Algorithm . . . . . . ... .. ... ... ... 52
5.4 Algorithms Selected for Comparison . . . . . . ... .. ... ... ..... 53
5.5 Mapping Evaluation . . . . ... . ... ... .. L oL 54
5.6 Results. . . . . . . 56
5.7 Discussion . . . . .. ..o e e o7
5.8 Conclusion . . . . . . .. 60
References . . . . . . . . . L 60

Cortical Volumes and Atrophy Rates in FTD-3 CHMP2B Mutation Car-

riers and Related Non-carriers 63
6.1 Introduction . . . . . . . . . . . .. e e e 63
6.2 Materials and Methods . . . . . . . . . . .. ... . ... o 64
6.2.1 Subjects . . . . ... 65
6.2.2 Image Acquisition . . . . . .. . .. ... 65
6.2.3 Image Processing . . . . . . . . . . ..o 65
6.2.4 Cortical Boundary Extraction . . . . . . ... ... ... ... .. .. 66
6.2.5 Cortical Measurements . . . . . . . . . . .. .. ... 67
6.2.6 Surface Mapping . . . . . . . . .. 67
6.2.7 Statistical Analysis . . . . . .. ..o 67
6.3 Results. . . . . . . e e 68
6.3.1 Cortical Boundary Extraction and Compartment Segmentations . . 68
6.3.2 Cross-sectional Differences . . . . . . . . .. . ... ... ... ... 69
6.3.3 Longitudinal Effects . . . . ... .. .. ... ... L. 69
6.3.4 Atrophy Rates . . . . . . . . .. 69
6.3.5 Volume Measurements . . . . . . .. .. ... .. .. ... ...... 72
6.3.6 Asymmetry . . . . . ... e 75
6.4 Discussion . . . . . . . L e e e e 75
6.4.1 Cortical Thickness . . . . . . . . . ... ... ... ... ....... 75
6.4.2 Cerebral Volumes . . . . . . . . . . .. . ... e 76
6.4.3 Limitations of the Study . . . . . . ... ... ... ... ... ... 7
6.4.4 Conclusion . . . .. .. . .. .. 77
References . . . . . . . . . . e e 78
Discussion and Conclusion 83
7.1 Cortical Reconstruction . . . . . . . .. ... .. .. ... ... ... .. 83
7.1.1 Deformable Surface Algorithm . . . . . ... ... . ... ... ... 83
7.1.2 Automation and Robustness . . . . . . ... ... ... .. ..... 85
7.1.3 Computational Expense . . . . . ... . ... . ... ... 86
7.2 Cortical Surface Mapping . . . . . . . . . . Lo 87
7.3 Application on Neurodegenerative Diseases . . . . . .. .. ... . ... .. 87
7.4 Future Directions . . . . . . . . . . .. 89
7.5 Conclusion . . . . . . . .. e e 90
References . . . . . . . . . . e e e 90

xii



List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8
2.9

3.1

3.2

3.3

4.1
4.2

4.3

Pipeline of the method. Rounded boxes indicate processing steps. Gray
boxes indicate data. . . . . . . . .. ..o
Process of generating the initial surface. Rounded boxes indicate processing
steps. Gray boxes indicate data. . . . . .. ... oo oo L.
Example of how the inflation force enables modeling of narrow sulci with
no CSF evident. The gray solid line indicates the deformable surface, which
approaches the GM/CSF boundary from the WM/GM boundary. As the
deformable surface is pushed in the direction of the local surface normals,
it will eventually meet itself inside deep narrow sulci. . . . . . .. ... ...
Example of a GGVF field based on an edge map calculated from the sum
of the WM and GM memberships using the first order derivative. . . . . . .
Visualization of the extracted inner and outer cortical surfaces of an ICBM
subject. . . .. e
Intersections of inner and outer surfaces with MRI data of an ICBM subject.
Top row: Inner surface. Bottom row: Outer surface. A few errors are visible
in the images of second column, where the surfaces are penetrating both
ventricles. These errors originate from the topology correction algorithm,
that enforces a closed genus zero surface. . . . . . . . .. .. ... ... ...
Cortical thickness mapped onto the outer cortical surface as gray levels.
Dark regions are thin, while bright regions are thick, ranging from 0 mm to
6mMm. . . .. e e e e e e e
The thickness pattern of 16 ICBM subjects seen from the top. . . . . . . . .
Cortical thickness at two time points (The color scale ranges from 0 mm
(black) to 6 mm (white)). . . . . . ... L

Mlustration of how the pressure force enables modelling of narrow sulci with
no CSF evident. As the deformable surface (grey line) is pushed away from
the WM/GM boundary in the direction of the local surface normals, it will
eventually meet itself inside narrow sulci. . . . .. .. ... ... ... ...
Outer surface deformation process using different external forces at different
stages in the process. Left to right: Deformation process at iterations 0,5,15
and 30. Top: Only pressure force is enabled. Middle: Only GGVF force
is enabled. Bottom: Combination of both forces balanced by the curvature
weighting function. . . . . . . . .. L L
Example of a generated cortex from ICBM data. Left: Rendering of outer
surface. Right: Inner (black) and outer (white) surfaces superimposed onto

Flow chart illustration of the comparison method. . . . .. ... ... ...
Fuzzy membership volumes generated from the extracted surfaces. Left to
right: WM, GM, and CSF. . . . . ... ... ... ... ...
Phantom produced by the MRI simulator (left), and final phantom after
normalisation and added original tissue (right). . . . .. .. ... ... ...

xiii

46



4.4

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

Left: Surface extracted from original scan by FACE. Middle: Reconstruc-
tion from phantom by FreeSurfer. Right: Reconstruction from phantom by

From cortex surface to sphere. Left: Original cortical surface. Middle: In-
flated surface with curvature values superimposed. Right: Surface mapped
to a sphere with curvature values superimposed. . . .. .. ... ... ...
Average errors of mapping with the five tested algorithms between permu-
tations of the 10 cortical surfaces (n=90). . . . ... ... ... ... ....
Average distances in mm from mapped landmark to manually labeled land-
mark of 90 mappings. Landmarks are temporal pole (TP), supramarginal
gyrus (SG), cuneus (Cun), gyrus rectus (GR), post central gyrus (PCG),
and anterior cingulate gyrus (CG). . . . ... . ... ... ...
ICF compared vertex by vertex to the other four mapping algorithms vi-
sualized on an inflated reference surface. White areas indicate significant
difference (p<0.05) in the cortical thicknesses mapped to a vertex. . . . . .

Extraction of the cortical boundaries. a) Spatially aligned MRI data with
initial (red contour) and final (yellow contour) brain extraction contour su-
perimposed. b) Brain tissue classified as WM, GM, and CSF. c) Ventricles
and subcortical regions labelled as WM, and WM separated into hemi-
spheres by a sagittal cut through corpus callosum. d) Edge map calculated
from the fuzzy classifications. e) WM surface superimposed on the MRI
data. f) GM surface superimposed on the MRI data. . . . . ... ... ...
Statistical parametric map of differences in cortical thickness showing areas
with p < 0.01 for one-sided t-test testing significant thinner cortex in muta-
tion carriers compared to non-carriers. Map generated from pooled (base-
line and follow-up) measurements and blurred with a diffusion smoothing
approximating a Gaussian kernel smoothing with 10 mm FWHM. . . . . . .
Statistical parametric map of longitudinal differences in cortical thickness
in mutation carriers showing areas with p < 0.05 for paired t-test testing
significant thinner cortex. Map blurred with a diffusion smoothing approx-
imating a Gaussian kernel smoothing with 10 mm FWHM. . ... ... ..
Statistical parametric map of significantly (p<0.01) higher atrophy ratios in
mutation carriers. Map blurred with a diffusion smoothing approximating
a Gaussian kernel smoothing with 10 mm FWHM. Surface parts have been
removed for better visualization of regions buried by the lateral fissures.
Labels correspond to the clusters listed in table 6.5. Cluster sizes may
appear smaller than they are due to visualization on a partially flattened
surface. . . .. L L

xiv

o7



List of Tables

2.1

4.1

5.1
5.2

6.1
6.2

6.3

6.4

6.5

6.6

Mean distance to nearest vertex on reference surface and standard deviations. 29

Errors measured by the four metrics on both WM and GM surfaces. Errors
are deviation from the reference surfaces. For each metric the performance
on both FreeSurfer and FACE phantoms is compared for the two methods
(two-tailed paired t-test). Significant smaller errors are marked by bold font. 47

Average difference in mean cortical thickness after mapping. . . . . . . . . . 56
Percent vertices of reference surface where the MWW test rejects the
hypothesis that the cortical thicknesses come from the same population
(a = 0.05) for the different mapping algorithms, which means that the
mappings influence the conclusion. . . . . ... ... ... oo 0L 58

Subject demographic information. . . . ... ... oL L. 65
Cortical thickness measurements (mm) averaged within main lobes at base-
line and follow-up for mutation carriers (MC) and non-carriers (NC). Longi-
tudinal differences evaluated by two-tailed paired ¢-test. Group differences
evaluated by one-sided t-test with assumption of unequal variance on pooled
measurements. . . ... .. Lol e 70
Anatomical regions with significantly (p < 0.01) thinner cortex in mutation
carriers compared to non-carriers after smoothing. Only regions with an
involved area of more than 1 ecm? of either the left (LH) or right (RH)
hemisphere are reported. The significant areas are visualized in figure 6.2. . 71
Annualized atrophy rates as percent decline of baseline thickness for muta-
tion carriers (MC) and non-carriers (NC). Difference between groups eval-
uated as one-sided ¢-test with assumption of unequal variance. . . . .. .. 73
Clusters of statistically significant higher atrophy ratios in mutation carriers
compared with non-carriers. Clusters with significant contiguous areas >20
mm? are reported. Clusters are visualized in figure 6.4. . . ... ... ... 74
Compartment volumes (ml) corrected by eTIV for mutation carriers (MC)
and non-carriers (NC) at baseline and follow-up. Longitudinal differences
were adjusted for inter-scan interval and evaluated by two-tailed paired ¢-
test. Group differences were evaluated by two-tailed ¢-test with assumption
of unequal variance on pooled group measurements. . . . . ... ... ... 74

XV



xvi



Chapter 1

Introduction

1.1 Background

Magnetic resonance imaging (MRI) emerged in the seventies [68,80] and in the eighties
the technology was introduced for clinical purposes [33]. Today, MRI is widely used for
structural and functional imaging as well as for spectroscopy. Unlike other technologies
based on x-rays or ultra-sound, MRI has the ability to distinguish soft tissues based on
magnetic properties of atomic nuclei and this has revolutionized the field of structural
medical imaging of the inner organs. Continuing improvement of MRI regarding image
resolution and contrast has pushed the level of detail for visualization of the anatomy and
images with sub-millimeter resolution are now common. Especially within the field of neu-
rology, MRI has brought important new perspectives into understanding and diagnosing
various diseases and disorders of the central nervous system as detailed visualization of
the brain tissues is possible. Many neurological diseases and disorders are manifested in
MRI visible pathologies of the cerebral anatomy.

Since the introduction of structural MRI in the field of neurology, increasing effort
has been put into quantification of the imaged anatomical structures. In addition to
physicians’ qualitative and subjective assessments in clinical practice, research has pushed
the need for standardized quantitative data to compare brain images across patients and
imaging equipment, understand disease effects and progression and formalize diagnostic
criteria based on the imaging data. One way to quantify an anatomical structure is by
delineation of its boundaries. Protocols for manual delineations of anatomical structure
boundaries are widely used [101,116] and since the early nineties specific attention has
been given to computerization and automation of structural quantification for consistency
and precision improvement and human workload minimization.

Pathological conditions of both the cerebral gray matter (GM) and the cerebral white
matter (WM) have been intensively investigated. The GM is primarily composed of neu-
rons and holds functional areas contrary to the cerebral WM which is composed of signal
transmitting myelinated axons. Many neurological disorders are linked to degeneration
of the neurons, while others are due to chronic damage to the brain tissues. Important
chronic neurological disorders affecting the cerebral tissues include epilepsy and mental
disorders such as schizophrenia. Some neurodegenerative diseases such as multiple scle-
rosis primarily affect the WM while most neurodegenerative diseases primarily affect the
GM. An important class of neurodegenerative diseases affecting the GM is dementias such
as Alzheimer’s disease (AD) which is recognized as one of the major health challenges
of this century because of the growing elderly population [11]. Pathological GM regions
are mainly found in the cerebral cortex, the largest part of the human brain. Regions of
extensive research are the hippocampal formation and neocortical regions.

Hippocampus is part of the limbic system and primarily involves memory formations.
It is affected in diseases such as schizophrenia, temporal lobe epilepsy (TLE) and various
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neurodegenerative diseases. In TLE, the hippocampal size and shape play critical roles
in the diagnosis and assessment of need for surgical intervention and for these reasons
measurement of the hippocampus is used in clinical practice. Because of the structural
compactness and limited size of the hippocampus, it is possible to quantify the structure
by manual delineation of the boundaries directly on the images. Various neurodegenera-
tive diseases such as AD, vascular dementia, and Parkinson’s disease cause hippocampal
atrophy [12,65,67]. However, hippocampal volume estimates are not used in the clini-
cal diagnosis of these patients despite existing evidence that hippocampal volume is an
important clinical marker in these diseases and may aid in earlier diagnosis compared
to diagnostic criteria only based on neuropsychological tests [18]. A reason for this is
that, contrary to TLE, changes in the hippocampal structure are not specific for these
neurodegenerative diseases as more information is needed to differentiate between the di-
agnoses. Studies indicate that a combination of changes found in the hippocampus and
the neocortex may provide better differentiation [18]. Despite the small and confined size
of the hippocampus, no globally accepted consensus on the manual delineation yet ex-
ists [78]. Even if operators follow the same segmentation protocol, significant inter- and
intra-operator variability in the resulting hippocampal volume is observed [55]. This makes
hippocampal measurements difficult to compare across studies and complicates statistics
based on such measurements.

The neocortex is a tightly folded sheet of tissue covering the cerebral hemispheres.
Neocortex is relatively thin (2-3 mm) compared to its area (2000-2500 cm?) and holds the
majority of the brain’s functional areas such as visual, sensory and auditory processing
and interpretation, motor control and cognition [44]. In some diseases, e.g. frontotemporal
dementia, the primary structural changes are found in the neocortex, thus rendering this
anatomical structure an important clinical marker [96]. The association neocortex is also
involved in early AD and this involvement of neocortex differentiates AD from normal
aging according to histopathological studies [18]. However, as with the hippocampus,
neocortical structural changes are rarely used in the diagnosis of neurodegenerative diseases
and MRI scans are usually only acquired to rule out differential diagnoses such as tumors
or other brain damage when diagnosing a suspected dementia [100].

Many of the neurodegenerative diseases affecting the cerebral cortex are difficult to
diagnose because of their overlapping symptoms and insidious onset. This is the case
especially for dementias and as only symptomatic and disease stalling treatment can be
offered, early and correct diagnosis is critical [45]. Cortical atrophy is seen as one pos-
sible marker in early dementia [93]. Widespread cortical atrophy can be observed from
MRI images, often manifested in enlarged ventricles, but it is not clearly present in the
early stages of neurodegenerative diseases. The subtle focal changes related to the early
stages of neurodegenerative diseases, as revealed by detailed structural MRI, have been
extensively researched for the purpose of early detection, thus aiding in early diagno-
sis [3,7,12,15,16,18,37,46,56-58,65,67,92,96,100,117]. Detection of such focal cortical
changes occurring in larger cortical areas seems highly impractical in the clinic using con-
ventional manual delineations when considering the limited clinical use of hippocampal
quantification. Therefore, robust, automatic delineations or segmentations of the cerebral
cortex may be the only way to integrate knowledge of subtle structural changes in the
early diagnosis of neurodegenerative diseases.

In addition to aiding in patient diagnosis, automatic methods for quantifying cerebral
structures bring the possibility of performing large scale cohort studies when investigat-
ing the structural manifestations of various brain diseases. Furthermore, standardized
quantifications may aid in validating pharmaceuticals targeted to stop or reduce cerebral
atrophy and may even speed up the process of clinical trials. In recognition of these impor-
tant perspectives, numerous automatic or semi-automatic methods have been developed
for quantifying the structures of the human cerebral cortex.
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1.2 Quantification of Cortical Structures

Traditionally, structural brain imaging has been applied to detect pathologies readily vis-
ible in the images. Pathological conditions such as tumors, hemorrhages and ischaemia
are usually discovered by a single MR scan while tissue in the process of neurodegen-
eration may not be detectable from a single scan. Because of the large variability of
the normal brain, the subtle changes occurring in the early stages of neurodegenerative
diseases require serial scans to follow the progression and detect the pathological tissue.
However, with the increasing knowledge of the alterations to the brain tissues caused by
various neurodegenerative diseases, disease specific atrophy patterns or signatures may be
revealed in the future which enables detection of early atrophy from a single scan [118].
Therefore, researchers are working toward a goal of differentiating between different neu-
rodegenerative diseases by cortical atrophy patterns and identifying clinical markers to aid
in early diagnosis. Reaching this goal involves accurately measuring subtle morphological
changes, identifying similar patterns of atrophy in population groups, and finally applying
the quantification methods in clinical studies.

To effectively measure subtle morphological changes and differences in the cerebral
cortex, 3D T1 weighted high resolution images are needed [4] and are usually acquired by
gradient echo sequences. Voxel sizes around one cubic millimeter are common and images
with high tissue contrast are generated with at least 1.5 Tesla scanners. 3 Tesla scanners
are increasingly becoming available in hospitals [90].

Even though MRI can capture the cerebral anatomy in high detail and with excel-
lent contrast, the morphological quantification is complicated by factors related to noise,
distortion and other artifacts found in MRI [119]. Cortical morphological quantification
is further complicated by the complex structure and proximate objects with overlapping
image intensities such as the dura mater and larger veins.

A proliferation of methods to quantify differences and changes in the cerebral cortex
has been seen during the last twenty years. The methods apply a variety of techniques
and a taxonomy of the methods can be constructed based on these techniques [107]. Here
the focus is on three main categories in which most work on cortical quantification fall:
1) methods that perform segmentation of the cortex by labeling the image voxels (region
based), 2) methods that quantify changes in intensity between scans (morphometry based)
and 3) methods that integrate knowledge of the underlying anatomy to reconstruct the
tissue boundaries (surface based).

1.2.1 Region Based Approaches

A classical way of quantifying structures in images is segmentation of the object of inter-
est. Region based approaches operate in the image domain analyzing the intensity values
and perform discrete morphological operations to identify structures. Segmentation is
performed by labeling each pixel or voxel in the image as belonging to different classes
(different objects of interest). Structural quantifications are usually based on voxel counts
(volumetric measurements).

Conventional image segmentation techniques include thresholding, region growing and
clustering algorithms. However, when analyzing biological images such simple approaches
are rarely sufficient. Within the field of neuro imaging, more complex segmentation so-
lutions have therefore been proposed. Here three categories of segmentation approaches
are covered: region of interest segmentation, atlas based methods and segmentation ap-
proaches based on tissue classification.

Region of Interest

Region of interest (ROI) methods compute an overall size for each brain structure based
on segmentations. Conventional segmentations involve manual delineations of tissue
boundaries in consecutive slices of an MRI scan [56-58]. Such delineations of tissue
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boundaries are laborious and subject to inter-operator variability [30]. However, semi-
automated [92,125] and fully automated [51-53,89] methods have been proposed, but these
are not widely used [3]. Other ROI methods use stereology to quantify the structure [26].
Volume estimates from ROI analysis can provide valuable insight into neurodegenerative
diseases, but in the early stages of neurodegenerative diseases, changes in overall volume
are minimal [4] and the subtle changes in subregions of the ROI may be overlooked. ROI
analysis is mainly applied in quantification of relatively small confined structures such as
the hippocampus, the caudate nucleus and the entorhinal cortex as these are of a manage-
able size but still recognized as important surrogate markers for several neurodegenerative
diseases [92].

Apart from human interaction related problems of manual or semi-automated methods,
the focus on a single structure ignores changes in other structures and may forestall new
insight into the pathology of neurodegenerative diseases [3].

Atlas Based

Atlas based approaches co-register the subject image with a template containing prede-
fined target regions of interest (atlas) so that segmentation of the target regions can be
obtained by mapping atlas regions to the subject image. Such an approach is depen-
dent on the registration technique used, the template selected and the atlas applied for
the segmentation. Numerous registration methods exist [77,128], as image registration is
intensively researched and driven by a wide range of application areas.

Usually a brain template is the average of a large sample of spatially aligned images.
Such an average has well-defined image edges of morphologically invariant structures while
structures with greater variation, such as the cortical regions, are usually blurred in the
template image. Morphological variations can be reduced by generating templates based
on high dimensional non-linear registrations, thus resulting in averages with more well-
defined image edges. However, removing morphological variations may lead to alignments
where the images no longer are anatomically consistent. Several groups have developed
and refined MRI brain templates and atlases [32,34, 39].

Choice of template is important for the subsequent segmentation [95]. If the subjects
under study are homogeneous with respect to factors such as age and disease stage, it
may be preferred to use an image from the target population as template instead of an
average template from a broader population [16]. In such cases, manual intervention is
needed to define the regions of interest in the template. Problems with artifacts and poor
signal-to-noise of a single image can be solved by repeated imaging and averaging of the
same subject [54].

Atlas based approaches are well-suited for quantification of regions with little mor-
phological variation. However, in the case of the cerebral cortex it is difficult, if not
inconceivable, to create a template representative of the great variation in cortical folding
patterns.

Tissue Classification

Tissue classification of the cortical GM provides means for measuring the cortical volume.
Usually, a classification into WM, GM, and cerebrospinal fluid (CSF) is performed. In
order to accomplish such classification, non-cerebral tissues are usually removed prior to
classification. A variety of classification methods have been proposed based on Bayesian
analysis [81], clustering [86], fuzzy classification [112], neural networks [114], deterministic
annealing [40], Markov Random Fields [98] and combinations [8].

Other methods for cortical GM classification have been proposed. Bazin and Pham
proposed a method that enforces a given topology on the target structure which prevents
holes and handles from occurring in the segmentation [10]. Such topological inconsistencies
are often seen in conventional classification methods due to image noise. Angelini et al.
used a deformable model to segment the brain into WM, GM and CSF [2]. As described
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later on, deformable models are often used to reconstruct the cortical surface; however,
this approach uses a level set frame work solely for voxel classification.

Tissue classification of voxels in the image is limited by the image resolution so partial
volume effects influence the segmentation. Furthermore, classification of the cortical GM
only provides global measures of differences in the cortical volume. For measuring focal
effects regional subdivisions are needed. This involves manual delineations or combination
with an atlas technique.

Discussion of Region Based Approaches

Region based approaches for quantification of the cerebral cortex all have problems at-
tached: ROI analysis requires human interaction which is laborious and prone to errors
and variability. Model and atlas based approaches have difficulties capturing the wide mor-
phological variety of the human cortex. Tissue classification only provides global measures
of cortical volume differences.

Generally, methods resulting in voxel based segmentation suffer a number of problems
regarding morphological quantification. Firstly, the segmentations are limited by the image
resolution so only structural changes of voxel size proportions can be detected. Secondly,
morphological characteristics such as curvature and thickness are difficult to capture from
simple connected segmentations. This is even more complicated for the cortical structure
because of its tightly folded appearance. Cortical thickness estimates have been proposed
using a segmentation method propagating out distance values from the WM component
until the GM/CSF interface is reached [73]. However, partial volume effects complicate
the detection of GM/CSF image edges and often subvoxel accuracy is needed to identify
subtle tissue differences.

1.2.2 Morphometry Based Approaches

Morphometry based approaches analyze the intensity difference between serial images or
between an image and a template. Such approaches rely on registration techniques to
spatially align images. Three types of intensity difference based methods have been devel-
oped for quantification of cerebral structures. Two approaches directly measure differences
in intensity while one analyzes the deformation field involved in the spatial alignment of
images.

Intensity Shift Approaches

Intensity shift approaches compute brain volume change by quantifying the difference in
image intensity between spatially aligned serial MRI scans in longitudinal studies. Usually
only whole brain volume change is measured automatically; regional atrophy is determined
by manually defined regions. Two intensity shift methods are popular, namely the bound-
ary shift integral (BSI) [38] and structural image evaluation using normalization of atrophy
(SIENA) [103].

BSI uses a rigid transformation in the alignment and intensities are normalized to
compare follow-up scans with the baseline scan. The method quantifies the shift in tissue
boundaries by integrating over the difference in image intensities.

SIENA corrects for skull size in the registration procedure which results in a full affine
transformation and resamples both baseline and follow-up scans to obtain images with
similar interpolation-related blurring. SIENA identifies edge points in both images and
estimates the motion of each point perpendicularly to the local edge. This reduces the
sensitivity to intensity normalization.

Both BSI and STENA have been shown to provide reasonably accurate measures of
brain atrophy [14] and to be capable of separating AD patients from healthy controls
[46]. However, whole brain measures are insufficient for determining subtle changes in the
early stages of neurodegenerative diseases and regional measures using these methods are
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dependent on manual intervention. Furthermore, these methods are dependent on serial
scans which induce diagnosis delay [4].

Intensity shift approaches are highly dependent on the registration and normaliza-
tion of intensities which is complicated by common intensity non-uniformities caused by
inhomogeneities in the radio frequency field coil [127] and other artifacts [119].

Voxel Based Morphometry

Voxel based morphometry (VBM) performs voxel-wise comparisons between spatially
aligned MRI scans of subject groups enabling identification of increased or decreased
GM density throughout the entire brain [5,120]. The spatial alignment involves classifi-
cation of GM, WM and CSF. The GM map is non-linearly registered to a template and
group averages are calculated and spatially smoothed with a filter. Group differences and
correlations with clinical parameters are estimated by fitting a statistical model at each
voxel [3].

The accuracy of VBM depends on the registration technique used and anatomical
differences may be inferred by systematic registration errors or by systematic shifts in
unaffected regions caused by changes in affected regions [13,110]. To address these issues,
information of the deformations (expansions or contractions) involved in the registration
is encoded in the aligned GM map [43]. This approach is called optimized VBM.

A similar approach, called regional analysis of volumes examined in normalized space
(RAVENS), has been proposed [29,30,42]. RAVENS use a high-dimensional elastic trans-
formation driven by point correspondences in the spatial normalization process while opti-
mized VBM relies on relatively smoother parametric transformations [4,30]. The informa-
tion of the deformation field is encoded in the aligned map thus preserving tissue volumes
of the original image similar to optimized VBM [30].

VBM analysis has been applied in numerous studies of cerebral disorders [62,117],
normal brain development and aging [104] and other non-pathological investigations [25,
82,88].

VBM techniques are criticized for being too reliant on a perfect registration and doubt-
ful assumptions in the statistical model [110]. Another issue is that VBM does not account
for the cortical folds which means that small effects of opposing sulcal walls may give rise
to an accumulated significant effect when averaging the GM maps [3, 36].

Tensor Based Morphometry

Tensor based morphometry (TBM) analyzes the deformation field involved in high-
dimensional non-linear mapping of serial intra-subject images [6,19]. Using the determi-
nant of the Jacobian matrix associated with the deformation field, local tissue expansion
and shrinkage can be identified and the Jacobian maps can be used to quantify intra-
subject longitudinal effects and differences between subject groups. Expressing the tissue
expansion and shrinkage by the Jacobian maps removes directional information of atrophy
which may be non-isotropic. New methods use the full dimensionality of the deformation
tensors and can better detect and visualize focal areas of atrophy [3].

TBM has been used in different areas such as studying the developing human brain [21],
visualizing the atrophy pattern in patients with AIDS [19] and measuring degeneration in
Alzheimer’s disease [37] and fronto-temporal lobar degeneration [7,15,105].

The accuracy of TBM depends on the applied registration method and cortical folding
patterns are not accounted for.

Discussion of Morphometry Based Approaches

Morphometry based approaches address the problem of the limited resolution as sub-
voxel changes of the structures can be seen as changes in voxel intensity. However, such
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approaches have other problems attached regarding the morphological quantification. In-
tensity shift analysis measures whole brain changes which is insensitive to subtle cortical
changes found in the early stages of many neurodegenerative diseases. Furthermore, these
methods are very reliant on intensity normalization and registration performance which
may introduce uncertainties in the measurements. Also VBM and TBM are relying on the
quality of image registration and they further lack the ability to distinguish effects from
opposing walls of tight sulci.

1.2.3 Surface Based Approaches

Surface based approaches model the cortical sheet with 2D manifold surfaces embedded
in 3D, thus aiming at modeling the underlying anatomy. This relaxes the restrictions im-
posed by the limited image resolution and enables incorporation of anatomical knowledge.
Furthermore, surface based approaches are potentially independent of image registration
and intensity normalization. Finally, such approaches allow for distinguishing opposing
walls of sulci due to the explicit reconstruction of the cortical sheet.

Apart from morphological quantification purposes, surface based reconstruction of the
cerebral cortex has application within functional brain imaging for mapping activity onto
the cortical surface [109] and within neuro-surgery for preoperative planning, postoperative
evaluation and surgery simulation. Also, visualizations of the buried cortical regions are
possible by cortical unfolding [36], as well as assignment of anatomical labels to the cortical
GM [99]. In addition to visualization purposes, surface reconstructions provide the means
for creating surface based atlases where anatomical and functional regions can be defined
in a canonical space, thus complementing the widely accepted volumetric coordinate spaces
and atlases [36].

As the human cerebral cortex is a complex, highly convolved sheet-like structure, the
modeling of the structure using surfaces is challenging. In MRI, the cortical boundaries
are often obscured or partly missing because of noise, inhomogeneity artifacts and partial
volume effects originating from the acquisition [119]. Opposite banks of tight sulci on the
outer boundary may meet inside the sulcal folds and appear as connected in MRI. Surface
modeling can compensate for obscured and incomplete image edges. However, in MRI,
information on the outer cortical boundary may be completely missing in several tight
sulci and at the top of gyri the boundary may be obscured by meninges and dura mater
close to the cortex. Furthermore, issues concerning the topology of the cortical sheet are
unavoidable because of the inherent noise in MR images.

The ideal surface modeling of the cerebral cortex must align with the true underly-
ing anatomical boundaries of the cortex and respect the true cortical topology which is
spherical if closed at the brain stem [48]. To achieve these properties, a proliferation of
methods for modeling the cerebral cortex with surfaces has been proposed during the last
decade. One way of reconstructing the cortex is using deformable models where a con-
tour or surface is manipulated to fit target image boundaries. Usually, approaches based
on deformable models implement either a variant of the classical active contours [23,61];
parametric deformable models or a variant based on geometric deformable models [87,97].
Other approaches for cortical reconstruction by surfaces usually apply voxel based tech-
niques in combination with iso-surface algorithms such as Marching Cubes [74].

A common trait of deformable models is that an initial contour or surface is evolved
toward target boundaries. In parametric deformable models, the initial contour or surface
keeps the same topology during deformation. This is especially useful when the target
structure has a known topology. Geometric deformable models have the ability to change
topology and adapt to the topology of the target structure. This is advantageous in many
segmentation problems, however, when the target structure has a known topology it is a
distinct disadvantage not having a fixed topology during surface evolution. This drawback
is especially pronounced when geometric deformable models are applied to noisy images
as found in MRI.
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Usually the contour or surface is initialized completely inside or completely outside the
target boundary and uses inflation or contraction to approach the target boundary in an
iterative manner. The main difficulty in cortical reconstruction lies in correctly modeling
the tightly folded sulci. Methods initializing a surface outside the cortex have problems
penetrating the sulci and reaching their fundi. The GM/WM boundary is easier to discern
in MRI because these image edges, contrary to the GM/CSF boundary, are unaffected by
the tight folds and proximate dura mater. Therefore, several methods utilize information of
the GM/WM boundary to detect the GM/CSF boundary as the cortex can be considered
as a continuous laminar structure with smoothly varying thickness.

Methods for surface reconstruction of the cerebral cortex have been developed since
the early nineties and many research groups have contributed to the field. The following
describe a selection of these contributions using parametric and geometric deformable
models as well as other surface based approaches for reconstructing or quantifying the
cerebral cortex.

Parametric Deformable Models

Parametric deformable models are originating from the so-called snake formulation by Kass
et al. [61]. The basic method describes a parametric 2D contour influenced by internal
spline forces and external image and constraint forces. A functional expressing the energy
of the snake was iteratively minimized to obtain the location of the contour with the lowest
energy, thus resulting in a segmentation of the image. Cohen and Cohen introduced an
inflation force to the active contour [22] and extended it to 3D and so named it a balloon
model [23].

Davatzikos and Prince proposed to model the cortical sheet by a ribbon model where a
2D contour was fitted to the center of the cortical sheet using the homogeneity of intensity
levels within the GM [31]. Davatzikos and Bryan extended the ribbon model to 3D with
initialization outside the brain [28]. Vaillant and Davatzikos further refined the method
and obtained parametrizations of the sulcal folds using separate active contours for each
fold [113]. This approach relies on close initialization of the contour and manual interaction
in order to model the sulcal folds. Furthermore, the use of separate active contours to
model the sulci alters the topology of the reconstruction.

MclInerney and Terzopoulos added a reparametrization step to the active contour by
defining a grid of nodes as either inside or outside the contour [83,85]. This way, the
contour can dynamically change the topology and easily grow from a small initialization
contour. These so-called T-snakes were extended to 3D (T-surfaces), and it was demon-
strated that a T-surface can be fitted to the GM/CSF boundary by initializing it outside
the cortex [84]. This strategy, however, fails to grow into the sulci.

MacDonald et al. used a sphere as the initial surface and deformed it to the GM/WM
boundary in a multiscale fashion. Subsequently, a coupled surface approach was applied.
In this approach, two surfaces simultaneously are deformed under proximity constraints
maintaining a predefined minimum and maximum distance between the GM/WM and
GM/CSF boundary [75]. This way the GM/CSF surface is dragged towards the fundi of
sulci and spherical topology is enforced due to the spherical initial surface. The proximity
constraints prevent the coupled surfaces model from accurately delineating cortical areas
with a thickness outside the predefined distance interval. Furthermore, such an approach
is more computational expensive as the model becomes more complex by the surface
coupling.

An approach by Dale et al. identifies the GM /WM boundary using voxel classifications,
iso-surface extraction and a deformable model. This surface is subsequently expanded
towards the GM/CSF boundary [27]. This has the advantage that all sulci are present in
the initial state and enables the preservation of the sulci during deformation even though
evidence of the GM/CSF boundary may be missing in the MRI data. The tight sulcal folds
are modeled by preventing self-intersections in the deforming surface, thus the delineation
of the folds are placed equidistantly from the sulcal walls of the GM/WM boundary.
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Clearly, the direction of inflation is important to the resulting outer surface. Dale et al.
used the directions of the surface normals. This single surface approach is faster than
the coupled surface approach by MacDonald et al. and it captures all the tight sulci.
However, the expansion of the surface towards the outer boundary is sensitive to small
errors or irregularities in the initial surface which may lead to modeling of non-existent
folds.

Xu et al. also used a GM/WM surface as the initialization of a deformable model [121].
They used a gradient vector flow (GVF) to define directions toward the central layer of
the cortex. This solution provides a fast and consistent convergence of the surface, but
tight sulci with no evidence of the outer boundary are not captured by this method. Their
approach does not impose self-intersection constraints which is necessary when segmenting
the outer boundary and the approach requires manual interaction.

Another approach using a WM /GM boundary representation for subsequent GM /CSF
delineation was proposed by Kriegeskorte and Goebel [66]. They extract the WM voxels
in each hemisphere of the cerebrum using a combination of atlas masking, intensity inho-
mogeneity correction, anisotropic filtering and region growing. The hemispheric WM com-
ponents are modified to obtain spherical topology and are tessellated to polygon meshes.
Vertices of the polygon meshes are shifted along surface normals to delineate the GM /WM
boundary and the GM/CSF boundary. Unfortunately, it is not clear from the documen-
tation how the boundaries are detected during the deformation process.

Kim et al. [64] proposed a method where the WM surface is obtained by deforming
a spherical polygon model to the GM/WM boundary as done by MacDonald et al. [75].
The GM/CSF boundary is found by expanding the WM surface along a Laplacian field
generated between the WM surface and a skeletonized CSF image while preventing self-
intersections. While achieving relatively robust and consistent convergence, this method is
highly dependent on classification of CSF and the assumption that CSF is at least partly
visible between all sulcal folds.

Xu et al. initialized an ellipsoidal mesh outside the cortex and used a GVF field
combined with an inward pressure force to deform the mesh to the cortical boundaries
[122]. They used a reproducing kernel particle method as the deformation model which
provides efficient reparametrization procedures and self-intersections are avoided by using
fast marching methods. Though this approach is novel in the way the deformations are
implemented, the shrink-wrapping strategy still suffers from inability to reach deep into
tight sulcal folds.

Geometric Deformable Models

Geometric deformable models are variants of the propagating fronts methods [17,20,87,97],
where the surface is implicitly represented as the zero isovalue of a level set function. Be-
cause of the implicit representation, no self-intersections can occur in geometric deformable
models. After propagation of the level set function, a parametric surface can be obtained
by computing an iso-surface at the zero isovalue of the level set function. Level set methods
are numerically stable and faster than algorithms deforming parametric models [50].

Zeng et al. used a coupled surfaces approach in a level set framework [126]. Goldenberg
et al. adopted the coupled surfaces approach and formulated the segmentation as a mini-
mization problem [41]. Coupled surfaces approaches enable modeling of tight sulcal folds
because of an inter-surface distance constraint. However, these methods suffer the same
problems as the approach by MacDonald et al. [75]. Furthermore, in both approaches the
resulting surfaces have arbitrary topologies due to the level set evolution technique.

Han et al. proposed a topology preserving geometric deformable model (TGDM) where
the evolving surface is kept homeomorphic to the boundary of a digital object delineated
by the level set function on an underlying grid [47,50]. The surface is only allowed to
change sign at simple points of the underlying grid, thus preserving the topology of the
digital object and the surface. A GM/WM surface is obtained by WM classification
followed by a TGDM with a regularizing force and a signed pressure force based on fuzzy
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tissue classifications. The central cortical layer are delineated by evolving the GM /WM
surface using a TGDM with a GVF force similar to the parametric approach by Xu et
al. [121]. Finally, the GM/CSF boundary is obtained by propagating the central cortical
surface using a TGDM with combined pressure and GVF forces. This approach overcomes
a number of the problems related to cortical surface reconstruction by enforcing correct
topology while maintaining fast and consistent convergence. However, manual interaction
is required in the preprocessing steps of the method.

Xue et al. used the framework of Han et al. [47] to reconstruct the cortical surfaces of
neonates [124]. Cortical reconstruction of neonate brains is particularly difficult because
of inverted GM/WM contrast in MRI images compared to adults, lower contrast-to-noise
ratio, the maturation process which continuously changes the GM/WM contrast and the
different folding patterns at different stages of the developing brain. Therefore, the main
differences between the methods by Xue et al. and Han et al. are the tissue classification
process and a relaxation of the spherical topology constraint as the topology of neonate
cortices are not well-established. In contrast to the method by Han et al., the recon-
struction of neonatal cortices is fully automatic, suggesting that reconstructions of adult
cortices also could be done fully automatic.

Li et al. proposed a very fast method based on dual front active contours [71]. Dual
front active contours iteratively find the global minimum within an active region based
on minimal path techniques [24] where the active region is defined on both sides of the
contour, typically by simple dilations with a structuring element. For the purpose of
cortex segmentation, Li et al. used histogram analysis to define the active region instead
of simple dilations. The approach requires manual adjustment of histogram parameters.
Furthermore, in pathological brains tissue intensities may not have distinct peaks in the
histogram which complicates the estimation of a proper threshold. Finally, the topology
problem was not addressed in the proposed method.

Other Surface Reconstructions

Though most approaches to cortical reconstruction are variants of parametric or geometric
deformable models, other techniques have also been suggested. In addition to low level
methods such as edge detection [63] and region growing [123], a variety of algorithms have
been proposed. For example Mangin et al. used a 3D skeletonization of the GM/CSF
interface to generate a surface and extract sulcal patterns [79]. Van Essen et al. used
a combination of Gaussian intensity transformations, gradient information and manual
guidance with subsequent iso-surface extraction and topology correction to obtain a surface
representation of the center of the cortex [115]. Shattuck and Leahy segmented the WM of
each hemisphere, modified the WM component to obtain spherical topology, and extracted
the GM/WM boundary using an iso-surface algorithm [102]. A similar approach with a
Bayesian segmentation was used by Joshi et al. on digitized cryosections of macaque
monkey brains [60]. However, such methods are not well suited for generating accurate
and topologically correct representations of the outer cortical boundary which is why
deformable models have gained popularity within the field over the recent years.

Some methods quantify the cortical morphology by combining a surface representation
with analysis of the image intensity. Barta et al. used a stochastic model of the intensity
distance histogram relative to the GM/WM surface to measure the cortical thickness [9].
Others calculate the cortical thickness using voxel segmentation and only use the cor-
tical surface for projection of the thickness, thus enabling visualization and mapping of
the cortical thickness [111]. It is argued that voxel based cortical thickness estimations,
though less accurate, are more robust than approaches explicitly modeling the outer cor-
tical boundary [9,111]. Such hybrid methods may be useful. However, to quantify the
morphology of the cortical sheet to its full extent, complete surface reconstructions still
seem to be the best solution.
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Discussion of Surface Based Approaches

Surface based approaches applying deformable models have problems attached to surface
initialization, topology of target structure and robust detection of image boundaries during
surface evolution. As described above several solutions to overcome these problems have
been proposed.

Several researchers suggest the use of coupled surfaces [41,75,126]. Coupled surfaces
approaches have the advantage of explicitly using information of both cortical boundaries
to detect the outer boundary. This enables the GM/CSF surface to model the deep, narrow
sulci. The coupling is achieved by specifying a minimum and a maximum distance between
the surfaces. Such constraints, however, preclude the modeling of anatomy deviating from
the norm as defined by the distance limits. When modeling abnormal anatomy found in
neurodegenerative diseases and other neurological disorders or normal neonatal anatomy,
restrictions on the cortical thickness render such approaches inapt to accurately quantify
the true morphology [124]. Furthermore, even in normal adult cortices, a bias between
the chosen predefined distance and a measured cortical thickness may be inferred by the
restrictions [75].

Recent methods seem to develop in similar directions. The most promising meth-
ods, whether based on parametric or geometric deformable models, for reconstructing the
GM/CSF boundary use a GM /WM boundary representation to fit the surface to the outer
cortical boundary. These methods follow roughly the steps of 1) cerebrum WM classifica-
tion, 2) topology correction, 3) WM tessellation and 4) expansion of WM surface towards
the GM/CSF boundary [27,47,64,66], where step 2 and 3 may be omitted if a spherical
surface is deformed to the WM/GM boundary [64]. The methods proposed by Dale et
al. [27], Xu et al. [121], Han et al. [47], and Kim et al. [64] all use similar strategies for
expanding the WM surface towards the central/GM surface; all four methods use a vector
field for guiding the surface towards the target boundary. Dale et al. use surface normals,
Xu et al. and Han et al. use a GVF field, and Kim et al. use a Laplacian field. Such
vector fields provide better and more consistent convergence than using variants of the
basic image gradient.

Developers expanding the WM surface to the central cortical layer instead of the outer
cortical boundary argue that this representation of the cortex provides better geometric
information than both the inner and outer boundaries [72,121]. However, explicit rep-
resentations of the tissue boundaries better support measurements of cortical thickness.
Furthermore, altered morphology caused by pathologies may be easier detectable at the
tissue boundaries than at the center-line of the structure.

The different image forces proposed for evolving the deformable models towards the cor-
tical boundaries can all be applied in both parametric and geometric frameworks. Choice
of framework seems to be dependent on what property the individual developer finds most
important. One property that is emphasized repeatedly is the ability to constrain topology
of the final contour. With the classical deformable models this could only be achieved by
parametric models. However, with the development of topology preserving level sets [49],
the use of geometric models for cortical reconstruction have become more popular. Re-
cently, Ségonne developed a level set method where the topology can be controlled without
loosing the ability of contours to merge, split and vanish during evolution which usually
advocates a strong advantage over parametric deformable models [108]. Others are also
working on variants of topology preserving level sets [1,69,94,106].

Hybrid methods combining surface reconstruction with voxel based analysis are po-
tentially very robust. However, full cortical surface reconstructions provide information of
the morphology which cannot be quantified by hybrid methods. So far, the most promis-
ing methods to obtain complete cortical reconstructions rely on deformable models. Even
though problems related to deformable models, such as robustness, are evident in today’s
surface solutions, the goal is still accurate reconstructions of the cerebral cortex for the
detection of subtle, focal morphological changes as found in neurodegenerative diseases.
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1.3 Aim of the Ph.D. Study

A main goal within the field of structural brain imaging and brain morphometry is to
differentiate between different neurodegenerative diseases by cortical atrophy patterns.
This thesis addresses the initial steps toward this goal. The aim is to develop methods
for quantifying structural changes in the human cerebral cortex from MRI images. To
accomplish this, a method based on deformable models is developed to automatically
delineate the cortical boundaries. Specifically, parametric deformable surfaces are used to
delineate the GM /WM and GM /CSF boundaries of the cortex. From surfaces representing
the cortical boundaries several measures describing the cortical structure can be obtained.
The cortical thickness is an important measure, but quantities such as the cortical area
and curvature may also be involved in describing the changing cortex as well as cortical
volume for comparison purposes with volumetric methods.

Measuring the cortical thickness from surfaces of the cortical boundaries is not a sim-
ple matter due to the complex morphology. Several methods for measuring the thickness
from cortical reconstructions have been proposed [35,59,70,76]. Also morphological quan-
tification by other measures exists [91], but it is outside the scope of this Ph.D. study to
develop new methods for such quantification.

The ability to quantify the cortical structure from MRI provides a mean for quantifying
changes over time or differences between subjects for the entire cortical structure. However,
such global quantities are not sensitive to small cortical changes and this raises a need for
quantifying focal changes and differences. This can be accomplished by subdividing the
cortical sheet by means of an atlas which may be based on anatomical, functional or other
types of regions. However, applying fixed cortical regions wherein the measurements are
averaged, also limits the sensitivity of the quantification as focal changes may be present
across regions. Therefore, a point correspondence between cortical surfaces is needed to
fully benefit from the measurements cortical surfaces provide and part of the study is
concerned with the search for a suitable method for obtaining such a cortical mapping.

Finally, the Ph.D. study investigates the application of the methods developed during
the study within the field of neurodegenerative diseases. This is done by applying the
methods to quantify cortical structural changes in individuals from a large Danish family
with an inherited variant of frontotemporal dementia.

1.4 Outline and Contents of Thesis

The thesis is based on five papers. Two papers describe the fundamental method for
extracting the cortical boundaries from MRI using deformable surfaces. The third pa-
per compares the developed method with a well-known and widely used method. The
fourth paper deals with the mapping between different cortical surfaces to compare sim-
ilar anatomical regions over groups of subjects. Finally, in the last paper, the methods
developed during the Ph.D. study are applied in a study of preclinical individuals with a
familial neurodegenerative disease.

Paper I: Extraction of the Cerebral Cortical Boundaries from MRI
for Measurement of Cortical Thickness (Chapter 2)

In this paper the fundamental idea of extracting the cortical boundaries is presented. The
entire process from scanner images to cortical thickness results is described and test of the
method on simulated MRI data, several young healthy individuals and a single AD patient
scanned with an interval of six months is presented. The surface deformation process
described in the paper is based on a parametric deformable model and uses a discrete
search space to minimize an energy functional. The method is related to the approach by
McInerney and Terzopoulos [84] in the sense that reparametrizations are performed during
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surface evolution. The main contribution of the paper is the combination of a pressure
force with a gradient vector flow in the deformation of the outer cortical boundary.

Paper II: Active Surface Approach for Extraction of the Human
Cerebral Cortex from MRI (Chapter 3)

In this paper an improved surface deformation process is presented. Instead of minimizing
an energy functional in a discrete search space, the optimal deformation directions are
expressed as vectors leading to a force balancing scheme. The energy functional described
in the first paper is altered to express vector forces and a local weighting of forces is
introduced to better adapt to the highly folded cortical sheet. Test of the method on
simulated MRI is reported and the resulting cortical surfaces are shown to better model
the folded structure than surfaces obtained by a pressure force or a gradient vector flow
force alone. The main contribution of the paper is a deformation approach free of search
spaces and a novel weighting of the terms in the energy functional influenced by surface
curvature.

Paper III: Quantitative Comparison of Two Cortical Surface Ex-
traction Methods Using MRI Phantoms (Chapter 4)

This paper describes the comparison of the developed method with the cortex extraction
method used the most in the literature, namely FreeSurfer, which is developed at Harvard
and based on the method by Dale et al. [27]. The comparison is based on phantom
MRI images constructed from cortical surfaces extracted from real MRI images. In this
way, ground truth cortical boundaries are created and the geometrical error of the cortex
reconstructions can be quantified. The paper’s conclusion is that the developed method is
reconstructing the cortical surfaces with a subvoxel accuracy and that it performs better
than FreeSurfer in most of the tests as well as being much faster.

Paper IV: Evaluation of Five Algorithms for Mapping Brain Cor-
tical Surfaces (Chapter 5)

In this paper five different algorithms for mapping between surfaces of the cerebral cortex
are evaluated. The focus is on algorithms for mapping between vertices of discrete surfaces
which is complicated by the possibly arbitrary vertex count of the cortical surfaces. A
proposed feature driven mapping algorithm is presented together with tests of it and four
other mapping algorithms consisting of a feature driven approach, two spherical mapping
approaches and a basic iterative closest point algorithm. The algorithms are evaluated
with constructed criteria for a good mapping, a landmark test using manually placed
landmarks and an analysis of constructed statistical maps. The paper concludes that no
algorithm can be singled out as the best choice of mapping between cortical surfaces; each
method has its strengths and weaknesses. However, it is indicated that a combination of
a spherical warp approach with an iterative feature based algorithm could be a promising
choice.

Paper V: Cortical Volumes and Atrophy Rates in FTD-3 CHMP2B
Mutation Carriers and Related Non-carriers (Chapter 6)

This paper reports the results of applying the developed methods to identify cortical
structural changes in individuals with a familial variant of frontotemporal dementia. Nine
presymptomatic individuals carrying the disease mutation are compared to seven individ-
uals from the same family without the mutation. The study is based on two serial MRI
scans of each individual and annualized atrophy rates are calculated. Both volumetric
and thickness measurements show that the presymptomatic mutation carriers degenerate
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faster than the healthy controls. The thickness measurements have a higher sensitivity
than the volumetric measurements and are able to detect the focal cortical differences
between the two groups. Furthermore, the involved cortical areas are linked to symptoms
observed in clinical frontotemporal dementia patients and support the pathogenicity of
the mutation.

Discussion and Conclusions (Chapter 7)

The final chapter provides a discussion of the methods developed and results obtained
during the Ph.D. study and the thesis is concluded with summarizing the technological
and scientific contributions of the study and provides directions for future research within
the field.
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Chapter 2

Extraction of the Cerebral
Cortical Boundaries from MRI

for Measurement of Cortical
Thickness

Adapted from: S. F. Eskildsen, M. Uldahl and L. R. Ostergaard: Extraction of the Cere-
bral Cortical Boundaries from MRI for Measurement of Cortical Thickness, Progress in
Biomedical Optics and Imaging, vol. 5747, issue II, 2005, p. 1400-10.

2.1 Introduction

Several diseases degenerate the human cerebral cortex. One of the most common and fast
developing neurodegenerative diseases is Alzheimer’s disease (AD). Subtle, spatially local-
ized atrophy may occur before the first clinical signs [2]. Knowledge on the earliest signs
of atrophy and its initiating site in AD patients may accompany earlier and more accurate
diagnosis of AD. Atrophy of the cerebral cortex may be quantified in vivo by measuring
the volume or thickness of the cortex from a magnetic resonance imaging (MRI) scan,
containing a series of cross-sectional images. Knowledge of cortical volume may indicate
atrophy, but cannot reveal the exact site of atrophy as local thickness measurements can.
Measurements of cortical thickness from a series of MRI images is complicated as it re-
quires the images to be orthogonal onto the measured structure in order to avoid under- or
over-estimates. In addition to this, the relatively low resolution and partial volume effects
(PVE) may complicate an accurate definition of the cortical boundaries. Manual measure-
ment of the cortical thickness is a tedious and time consuming process, and the manual
measurements are likely to be biased to the operator due to the difficulty of defining the
cortical boundaries. Hence, there is a need for fully automatic and objective methods.

Automatic measurements of the cortex requires an automatic delineation of the cortical
boundaries. The cerebral cortex is a thin sheet of gray matter (GM), surrounding the
cerebrum white matter (WM), and surrounded by cerebrospinal fluid (CSF). In this paper
the WM/GM and GM/CSF crossings are referred to as the inner and outer boundary of
the cortex respectively. The cortex is isomorph to a sphere, if closed at the brain stem [1].
Thus, advantageously, the boundaries may be represented as simple surfaces, isomorph to
a sphere.

Segmentation algorithms based on deformable surfaces rely on a combination of high-
and low-level information, which enables delineation of the boundary in areas where image
edges are obscured or missing. Opposite banks of tight sulci may meet inside the sulcal
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folds and appear as connected in MRI due to undersampling and artifacts. The main
difficulty in cortical segmentation lies in correctly penetrating such sulci and reaching
their fundi, as the true cortical thickness otherwise will be overestimated. MacDonald et
al. [9] addressed this problem by deforming the inner and outer surface simultaneously
under influence of intersection constraints and an inter-surface distance constraint, which
drags the outer surface towards the fundi of sulci. However, a bias between the chosen
predefined distance and the measured cortical thickness may exist [9].

A different approach to modeling the cortex without a distance constraint is taken by
Dale et al. [5] In this approach, Dale et al. fit a surface to the inner boundary of the
cortex, and inflates it towards the outer boundary of the cortex. The approach causes
the surface to settle at approximately the midpoints of tight sulci when no CSF is evi-
dent, between the sulcal banks, and constraints prevent the surface from self-intersecting.
Clearly, the direction of inflation is important to the resulting outer surface. Dale et al.
use the directions of the surface normals. However, such an approach requires the use of
excessive smoothing to avoid the formation of non-existent folds, in the presence of small
concavities, or noise in the inflating surface. Xu et al. [16] introduced an alternative to
the direction of the surface normals with a generalized gradient vector flow (GGVF) force,
which provides vectors pointing towards the nearest image boundary. Xu et al. used this
force for extending the inner surface towards the central layer of the cortex. Xu et al.
noted that their approach could be tailored to segmenting the GM/CSF boundary instead
of the central layer. However, their approach does not impose self-intersection constraints,
which is necessary when segmenting the outer boundary, nor is it fully automatic.

This paper presents a new method inspired by the work of Dale et al. [5] and Xu et
al. [16] The method is capable of fully automatically extracting measurements of cortical
thickness, volume and area from a T1-weighted MRI scan. The details of the method is
described in the following section, and preliminary test results are presented in section
2.3.

2.2 Methods

The data used as input to the method are T1-weighted MRI scans encompassing the
entire cerebrum. Tissue inhomogeneity artifacts in the MRI volumes are reduced using
a method by Sled et al. [12], and the volumes are registered into a common reference
space using a method by Collins et al. [4] The steps in the cortex extraction method is
illustrated in figure 2.1. An initial surface is extracted from the T1-weighted MRI scan,
and deformed to fit the inner cortical boundary. The resulting surface is then deformed
to fit the outer cortical boundary. From these surface representations of the inner and
outer cortical boundary, anatomical properties of the cortex, such as the thickness, can be
obtained.

| Initial Inner Surface Inner Surface Outer Surface |
MRIVolime Generation Deformation Deformation #| Cortex Model Measurements

Figure 2.1: Pipeline of the method. Rounded boxes indicate processing steps. Gray boxes
indicate data.

2.2.1 Initial Inner Surface Generation

A surface of the inner boundary of the cerebral cortex is generated by extracting the WM
component of the cerebrum, and then performing a tessellation of this component. The
steps are illustrated in figure 2.2.

The brain is extracted from the MRI volume using a brain extraction tool [13]. The
result after applying the brain extraction tool is a volume consisting of the cerebrum,
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Figure 2.2: Process of generating the initial surface. Rounded boxes indicate processing
steps. Gray boxes indicate data.

the cerebellum and the brain stem. To identify the WM voxels in the volume, the fuzzy
c-means algorithm is applied [14]. The volume is divided into WM, GM, CSF and back-
ground, and the output of the algorithm is a membership volume for each class. The
WM membership volume is used in the further procedure of generating the initial sur-
face. To find the WM inside the cerebrum, the cerebrum is automatically separated from
the cerebellum and brain stem, using morphological operations on the WM membership
volume.

A tessellation of the cerebrum WM is performed using a simple iso-surfacing algorithm.
The tessellation of the cerebrum WM may include handles or holes. To ensure that the
tessellated surface is isomorph to a sphere, a topology correction algorithm by Han et
al. [6] is applied to the tessellated surface of the cerebrum WM.

2.2.2 Inner Surface Deformation

The initial estimate of the inner boundary of the cerebral cortex is a surface close to
the true WM/GM boundary. The purpose of the surface deformation is to smoothen
the surface and adjust it to the correct tissue boundary. An active contour framework
originally described by Kass et al. [8] is used to deform the surface. The deformation is
made by iteratively moving the vertices to the positions, in a spherical search space, which
result in the lowest energy level expressed by an energy function. The energy function must
ensure that the energy minimum is situated where the surface fits the correct WM/GM
boundary.

Internal and external energies are used to control the behavior of the deformable sur-
face. The internal energies are applied to achieve a smooth characteristic of the surface
and help keeping the vertices uniformly distributed on the surface. For this purpose a
tension term and a flexural term are used. The tension term is an approximation of the
Laplacian [10]:

- - 1<
Eraptacian = | L(7)[, where L(5)=— P (2.1)

where ¥ is a vertex in the surface, v; is the ith neighbor to ¢, and n is the number of
neighboring vertices to ¥. The flexural term is an approximation to the squared Laplacian
[10]:

(2.2)

Esquared Laplacian =

LS ) - L)
1=0

External energies are used to guide the surface towards the WM /GM boundary. Three
different external energies are used, namely gradient, inflation and initial energy.

The gradient energy attracts the deforming surface to the WM /GM boundary when
close to image edges of this boundary:

Egradient - —||VI(?7)H 5 (23)

where VI is the first derivative of the intensities in the MRI volume. The magnitude of
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the gradient is used, as the energy function must return an energy level at a given position,
not a vector.

The fuzzy membership values and the directions of the surface normals are used to
displace the surface towards the correct tissue boundary. If a vertex in the surface is
placed in WM, the vertex is displaced in the direction of the surface normal. Contrary,
if the vertex is placed outside WM, the vertex is displaced in the opposite direction of
the surface normal. The WM membership is assumed to equal or to be close to the
GM membership when exactly on the GM/WM boundary, but to differ significantly from
the GM membership when far from the boundary. The inflation energy has no influence
whenever the difference between the WM and GM memberships is between the thresholds
—T and T

—(#()- D), if pwn(@) - pewm (@) >T (In WM)
Einflation = —(—ﬁ(ﬁ) : D), if [J,WM(U) - MGM(ﬁ) < =T (In GM)
0, otherwise (Border region),

where 7i(%) is the unit surface normal at vertex @, D describes the direction of the move-
ment of ¥, and p is the membership values from the fuzzy segmentation. The expression
is negated to yield a low energy whenever the inner product between +7 and Dis high.

The initial surface is generally a good estimate of the WM/GM boundary. Therefore,
an energy penalizing large deviations from the initial surface is introduced:

Einitial = g(|ﬁinitial - ﬁdeformingDa (24)

where ¥initiar is a vertex in the initial surface and Ugeforming is the corresponding vertex
in the deforming surface. g is a weighting function controlling the extent of a range R
where the energy has no influence. This range is necessary as the initial surface is only an
approximation. ¢ is defined as:

[ |Jz—=R? ,ifx>R
g(x) = { 0 , otherwise (2:5)
The complete energy function used for the deformation of the inner surface is:
Einner = ClELaplacian + CQEsquaTed Laplacian (2 6)

+C3Egradient + C4Einflation + CSEinitiala

where ¢;...c5 are weights. This function is an expression of the energy level of a single
position in the search space of a vertex. The greedy algorithm by Williams et al. [15]
is used to find the minimum energy position in the search space of each vertex. The
vertices are moved in this way until the number of vertices moved during an iteration is
below a given threshold, where equilibrium is assumed. The used search space is spherical
containing 26 different positions.

Two hard constraints are applied to the surface during deformation; one that ensures a
certain minimum distance between neighboring vertices, and one that prevents the surface
from self-intersecting.

2.2.3 Outer Surface Deformation

The inner surface is used as the initial estimate of the outer cortical boundary. As men-
tioned in the introduction, the image edges of the outer boundary in tight sulcal folds
cannot always be observed in MRI scans. As the cortex has approximately the same con-
vexity and concavity as the WM, tight sulcal folds can be modeled by displacing the inner
surface in the direction of the surface normals. This is done using an inflation energy
similar to the one used in the inner surface deformation. If a vertex is located in WM or
GM, the vertex is displaced in the direction of the surface normal, otherwise it is displaced
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in the opposite direction:

5 o _ [ —@)-D), if pem(® +pwa(@) > pesr (In WM or GM)
inflation —(—7(?) - D), otherwise (In CSF)

A hard constraint prevents the surface from self-intersecting in sulci where no CSF is
evident in-between the sulcal banks. This causes the inflation energy to collapse walls of
tight sulcal folds at a position approximately equidistant to the inner surface, when no
CSF is evident (see figure 2.3). However, the inflation energy may erroneously collapse

(a) Initial (b) Deforming (c) Final

Figure 2.3: Example of how the inflation force enables modeling of narrow sulci with no
CSF evident. The gray solid line indicates the deformable surface, which approaches the
GM/CSF boundary from the WM /GM boundary. As the deformable surface is pushed in
the direction of the local surface normals, it will eventually meet itself inside deep narrow
sulci.

the surface in small concavities, and for example model non-existent folds on top of gyri.
Increasing the influence of the internal energies resolves these problems, but also impairs
the ability of the surface to conform to curved regions on the outer boundary. To overcome
this tradeoff, an energy displacing the surface directly towards the GM /CSF image edge is
included in the energy function. This energy has the effect of unfolding concavities on the
deforming surface when no outer surface concavities is evident in the image data, and thus
avoids forming non-existent folds in the surface. A proper weighting between this energy
and the inflation energy causes tight sulcal folds to collapse and small concavities to be
unfolded, while capturing the GM/CSF image edge. The energy uses a GGVF field by Xu
et al. [16] The components of the GGVF field point towards edges in a given edge map. In
order to ensure that the GGVF field points towards the outer boundary, the edge map is
calculated by taking the first derivative of the sum of the WM and GM fuzzy memberships
(see figure 2. 4) The GGVF energy is the inner product between the normalized GGVF
field vector G and the normalized direction vector D:

Egevr = —G(7)- D (2.7)

When close to the edge defined by the edge map, the GGVF energy is switched to a
gradient energy calculated from the MRI data. This switch is made when the difference
between the CSF and GM membership value goes below a given threshold p:

—é(U) D, if lpesr — pam| > p
E = 2.8
Geve { —|IVI@)| , otherwise (2:8)

The same internal energies is used for the deformation of the outer surface as those
used for the inner surface. The complete energy function used for the deformation of the
outer surface is:

Eouter = C6ELaplacian + C7Esquared Laplacian + CSEinflation +coEgavr, (29)
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Figure 2.4: Example of a GGVF field based on an edge map calculated from the sum of
the WM and GM memberships using the first order derivative.

where cg...cyg are weights.

2.2.4 Measurements

Having the inner and outer boundary of the cortex represented as closed surfaces, it is
possible to obtain a variety of measurements, such as volume, area and thickness. However,
in this paper the focus is on the cortical thickness. The thickness is measured as the
shortest distance from a given vertex on the outer surface to the face of the inner surface
(not necessarily being a vertex). A thickness measurement is obtained at each vertex of
the outer surface.

2.3 Results

The generated surfaces contain approximately 200.000 vertices each. The entire extraction
of the cortical boundaries requires less than one hour on a 2.8GHz Pentium 4 processor,
although the deformation process alone is done in less than 10 minutes.

The method was tested on six simulated MRI scans of a brain phantom [3] with respec-
tively 0%, 1%, 3%, 5%, 7% and 9% of noise added, and an isotropic voxel size of 1.00mm.
Surfaces representing the GM/CSF tissue boundary were extracted for all datasets, and
the surface of the dataset without noise was used as a reference in order to facilitate a
comparison. The comparison was made by calculating the distance to the nearest vertex
on the reference surface for all vertices on each of the remaining surfaces. The mean dis-
tances and standard deviations are reported in table 2.1. Only a small increase in error,
measured as mean distance, is the result when the noise level is increased from 1% to 9%.



29 2.3 Results

| 1% [ 3% [ 5% [ 7% [ 9% |
[ 0.27mm (0.22) [ 0.31mm (0.26) [ 0.34mm (0.27) | 0.37mm (0.30) [ 0.41mm (0.33) |

Table 2.1: Mean distance to nearest vertex on reference surface and standard deviations.

To assess the robustness of the method, thickness measurements of the same subject,
scanned at two different sessions on the same scanner were compared. First session voxel
size was 0.89x0.89x2.00mm, and the second session voxel size was 0.86x0.86x2.00mm. The
difference in mean cortical thickness between the first and second scan was 0.0lmm. To in-
vestigate these subtle deviations, a vertex to vertex comparison of the cortical thickness for
the two scans was done by calculating the deviation in cortical thickness for corresponding
vertices (using nearest point correspondence) on the GM/CSF surfaces of the two scans.
The mean deviation was found to 0.33mm with a standard deviation of 0.27mm.

(a) Rendering of the outer cortical surface. (b) Intersections of inner and outer cortical
surfaces with MRI data.

Figure 2.5: Visualization of the extracted inner and outer cortical surfaces of an ICBM
subject.

The method was applied to 38 T1-weighted MRI scans of healthy subjects acquired
from the ICBM database [7]. These data have an isotropic voxel size of 1.00mm. A visual
inspection of surface/data intersections for all 38 datasets revealed few visible errors (see
figures 2.5 and 2.6). The mean cortical thickness for the 38 subjects was measured to
2.59mm (0.15mm). This is within the range of what was measured in a post-mortem study
by Pakkenberg et al. [11], where the mean thickness in the four main lobes were measured
to be in the range 2.16mm to 2.88mm. The cortical thickness of the 38 subjects was color
mapped onto the outer cortical surface. An example of this, converted to grayscale, is
shown in figure 2.7. As it can be observed from the figure, the cortex is measured to be
thickest in the frontal and temporal regions, and thinnest in the occipital and parietal
regions. This was the case of all 38 subjects, and is consistent with normal anatomical
findings. Even though the pattern of thick frontal and temporal lobes, and thin parietal
and occipital lobes can be recognized in all subjects, inter-subject variations exist in the
cortical thickness. Figure 2.8 illustrates this by the thickness map of 16 healthy subjects
seen from the top.

To evaluate the method on a brain with an abnormal morphology, cortical thickness
measurements were obtained from two MRI scans of an Alzheimer’s patient with severe
atrophy acquired six months apart. These data have an isotropic voxels size of 0.9 mm,
however, the contrast is lower than the ICBM data. The method succeeded in capturing
the inner and outer cortical surfaces of the brain with abnormal morphology, and the
thickness measurements indicated a small decrease in mean cortical thickness from 2.02



Chapter 2: Extraction of the Cerebral Cortical Boundaries from MRI for Measurement
of Cortical Thickness 30

Figure 2.6: Intersections of inner and outer surfaces with MRI data of an ICBM subject.
Top row: Inner surface. Bottom row: Outer surface. A few errors are visible in the
images of second column, where the surfaces are penetrating both ventricles. These errors
originate from the topology correction algorithm, that enforces a closed genus zero surface.

(a) Top view (b) Left view

Figure 2.7: Cortical thickness mapped onto the outer cortical surface as gray levels. Dark
regions are thin, while bright regions are thick, ranging from 0 mm to 6 mm.

mm to 1.89 mm. Figure 2.9 shows the cortical thickness measurements extracted from
the two scans, mapped onto the outer cortical surfaces as gray levels. The small decrease
in cortical thickness can be observed from the surfaces by a faintly darker texture on the
second surface.
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Figure 2.8: The thickness pattern of 16 ICBM subjects seen from the top.
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500 600 a0 600
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(a) Time point 1 (b) Time point 2

Figure 2.9: Cortical thickness at two time points (The color scale ranges from 0 mm
(black) to 6 mm (white)).

2.4 Conclusion

This paper presented a new fully automatic method for segmenting the inner and outer
boundaries of the human cerebral cortex from MRI data. The method is based on a
deformable surface framework, and incorporates a new combination of energies in the
energy function. The accurate initial surface speeds up the overall extraction process, as
fewer iterations are necessary in the deformation process, and increases the probability of
locating the correct minimum of the energy function.

The tests conducted on a simulated brain phantom with various degrees of noise added,
showed that increased image noise only influences the sub-voxel accuracy of the method.
This, along with the test/retest experiment, suggests that the method is robust to changes
in image noise and other image artifacts.

Preliminary tests have been conducted on neuroanatomical data of normal brains and
brains with severe atrophy at different time points. Results of these tests show that the
method is fast, robust and accurate for segmenting the cortical boundaries. The thickness
measurements conducted on normal subjects are close to post-mortem measurements, and
the relative thickness between the major lobes are in accordance with the known anatomy
of the brain. The inter-subject variability in the cortical thickness patterns, found among
the normal subjects (illustrated in figure 2.8), indicates that knowledge of this variability
must be obtained in order to discern normal and abnormal anatomy. The results obtained
from the Alzheimer’s subject indicate that the method is capable of tracking progression
of atrophy in Alzheimer’s patients.

In the near future, we intend to apply the method on a large collection of MRI scans
of Alzheimer’s patients, and a collection of longitudinal data from Alzheimer’s patients.
This data material give us the opportunity to investigate the possibility of tracking the
progression of cortical atrophy. Furthermore, we intend to create statistical models of
both Alzheimer’s and normal brains based on the data material. With this, we hope
to get indications of which anatomical markers could be relevant in the identification of
Alzheimer’s patients.
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Chapter 3

Active Surface Approach for

Extraction of the Human
Cerebral Cortex from MRI

Adapted from: Simon F. FEskildsen and Lasse R. Ostergaard: Active Surface Approach
for Extraction of the Human Cerebral Cortex from MRI, MICCAI 2006, Lecture Notes in
Computer Science, 4191, pp. 823-830, October, 2006.

3.1 Introduction

During the last decade, several methods for extracting the boundaries of the human cere-
bral cortex from magnetic resonance imaging (MRI) have been proposed [1,3,5-8,10,11].
The segmentation of the cerebral cortex may facilitate extraction of important anatomical
features, such as the cortical thickness, which may be utilised in studying the progress of
a long list of neurodegenerative diseases, and in turn may aid in diagnosing these diseases.
Furthermore, anatomical models of the cortex may be useful in connection with surgery
simulation, preoperative planning, and postoperative evaluation.

The human cerebral cortex is a complex, highly convolved sheet-like structure. In
MRI the cortical boundaries are often obscured or partly missing because of poor con-
trast, noise, inhomogeneity artifacts and partial volume averaging originating from the
acquisition. Opposite banks of tight sulci on the outer boundary may meet inside the sul-
cal folds and appear as connected in MRI. Active surfaces have the ability to compensate
for obscured and incomplete image edges. However, in brain MRI, information of the outer
cortical boundary may be completely missing in several tight sulci. The most promising
methods for delineating the outer boundary use information of the white matter/grey
matter (WM/GM) boundary to fit the surface to the outer cortical boundary. MacDonald
et al. used a coupled surface approach, where the inner and outer surface simultaneously
were deformed under proximity constraints maintaining a predefined minimum and maxi-
mum distance between the inner and outer boundary [7]. Zeng et al. also used the coupled
surfaces approach in a level set framework [11]. The coupled surfaces approach has the
advantage of explicitly using information of both cortical boundaries to detect the outer
boundary. This solves the problem of penetrating the deep narrow sulci. The drawbacks
are the computational expense, and the constraints of a predefined distance, which may
prevent the detection of abnormal thin or thick areas of the cortex. Kim et al. proposed a
modification to the method by MacDonald et al. which does not contain a coupled surface
constraint [6]. This method has shown promising results.

Another approach by Dale et al. identified the inner cortical boundary, and expanded
this surface towards the outer boundary [3]. This has the advantage that all sulci are
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present in the initial state, and enables the preservation of the sulci during deformation,
even though the evidence of the outer boundary may be missing in the MRI data. The
tight sulcal folds are modelled by preventing self-intersections in the deforming surface,
thus the delineation of the folds is placed equidistant from the sulcal walls of the inner
boundary. This single surface approach is fast and captures all the tight sulci. However,
the expansion of the surface towards the outer boundary is sensitive to small errors or
irregularities in the initial surface, which may lead to modelling of non-existent sulci. Xu
et al. used a Generalised Gradient Vector Flow (GGVF) to define a direction toward the
central layer of the cortex [10]. This solution provided a fast and consistently convergence
of the surface, but tight sulci with no evidence of the outer boundary were not captured
by this method. Recent work by Han et al. expands the surface from the central layer
toward the outer boundary using a topology-preserving geometric deformable model [5].
In this approach the GGVF is only included in the model when reconstructing the central
cortical layer.

This paper presents an active surface approach for cortex extraction characterised by
the inclusion of a GGVF in the extraction of the outer cortical boundary and the use of
a local weighting strategy based on the intrinsic properties of the deforming surface.

3.2 Methods

The strategy for reconstructing the cerebral cortex is to first extract the inner boundary,
and then displace this surface towards the outer boundary under the influence of internal
and external forces. The inner boundary is extracted using the method disclosed in our
earlier work [4] ensuring a surface topology of a sphere. The following explains the defor-
mation that fits a surface to the outer cortical boundary using a surface estimating the
inner boundary.

3.2.1 Deformation Process

The active surface is a non-parametric triangular mesh. The surface is deformed by it-
eratively updating each vertex with a vector defined as the sum of deformation forces.
This deformation scheme has the advantage of being fast (O(n)) and eliminates problems
regarding granularity, which is found in discrete methods. Even though convergence may
be fast, absolute equilibrium is never reached, due to the iterative nature of the algorithm.
Therefore, a threshold for the update vector is given that defines whether or not a vertex
has moved during an iteration. The stop criterion is met when a sufficiently small number
vertices are displaced during an iteration.

During surface deformation the surface is remeshed at prespecified intervals using a
simple mesh adaption algorithm. The remeshing is based on the vertex density of the
surface. This is done to avoid clustering of vertices and allowing the surface to expand
where necessary, i.e. the distribution of vertices are kept uniform throughout the surface.
The surface remeshing algorithm does not change the topology of the surface, but is allowed
to alter the surface geometry. Finally, the surface is prevented from self-intersecting during
deformation using the same principle as described in [3].

3.2.2 Internal Forces

Internal forces are applied to keep the vertices well-distributed and achieve a smooth
characteristic of the surface. The internal forces used in this paper are similar to conven-
tional smoothing forces [1,8] in form of a tensile and a flexural force. The tensile force is
calculated by an approximation of the Laplacian [8]:

L) =— 3 #G)-70), (3.1)
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where #(7) is the position of vertex i, N(i) are the neighbour vertices to i, Z(j) is the
position of i’s neighbour j, and m is the number of vertices in N (). The flexural force is
calculated by an approximation of the squared Laplacian [8]:

2iy== 3 L@EG) - L) (3.2)

m
JEN(3)

Both I and L2 are decomposed into a tangential and a normal component of the force
vector as in the method of Dale et al. [3]. This enables adjustment of the contractive effect
of the internal forces by weighting each component.

The internal forces have the effect of smoothing and flattening the surface, however,
as the target boundary is highly convolved with both peaked and flat areas, the internal
forces should be relaxed in certain areas of the surface and increased in others. The
deforming surface is used as a reference for the curvature of the target boundary to obtain
local curvature weighting of the internal forces. To enable the surface to compensate for
errors in the initial surface, and facilitate some degree of surface curvature alteration, the
curvature values are recalculated at prespecified intervals during the deformation process.
The curvature is estimated at each vertex of the deforming surface using the expression:

p(i){ o(i) if w()-a(i) <0 (3.3)

—o(i) ,otherwise

o(i) = % Z T — 2cos ! (% u_f(l)) , (3.4)

where N (i) is a geodesic neighbourhood around vertex ¢, w(¢) is a unit vector pointing
from ¢ towards the centre of gravity of N (i), 7i(¢) is the unit vector normal at ¢, and m is
the number of vertices in Ny(i). Curvature values of zero are found in flat areas, positive
values in convex areas and negative values in concave areas. Note that the size of N,
has great influence on the curvature values and should be chosen carefully. The curvature
values are Gaussian filtered (0 = 1), normalised, and in this form used to weight the
internal forces:

it (8) = f(p(0))ime (3), (3.5)

where f is a weighting function defined as

fla) =1~ stan(al),a € [-1:1] (3.6)

3.2.3 External Forces

The outer boundary of the cerebral cortex follows approximately the same convexities and
concavities as the inner cortical boundary. Hence, a surface delineating the inner cortical
boundary is used as an initial estimate of the outer cortical boundary. This inner surface
is displaced in the direction of the local surface normals until the surface meets itself (see
figure 3.1), and thereby model sulci, even though only little or no image information is
available. For this purpose a pressure force [1] is used. The force is similar to the external
force used in [3, 8], but based on fuzzy memberships of the tissue classes as described
in [10]. The fuzzy memberships are calculated using the fuzzy c-means algorithm [9]. The
pressure force is expressed as:

pli) = Ap(i)7i(i)
Ap(i) = pwam (i) + pem (i) — pesre(i), (8.7)

where p is the membership values (trilinearly interpolated) and 7i(i) is the unit vector
normal at vertex i. A weighting function is applied to the membership difference to



Chapter 3: Active Surface Approach for Extraction of the Human Cerebral Cortex from
MRI 38

(a) Initial (b) Deforming (c) Final

Figure 3.1: Illustration of how the pressure force enables modelling of narrow sulci with
no CSF evident. As the deformable surface (grey line) is pushed away from the WM/GM
boundary in the direction of the local surface normals, it will eventually meet itself inside
narrow sulci.

ensure a degree of freedom at membership differences close to zero:
p(i) = crg(Ap(i)i(i), (3-8)
where ¢; is a weighting constant and
g(x) = x(2 — 2cos(x)),x € [-1: 1] (3.9

Surface normals, approximated from a discrete mesh, may be misleading, as they can
be perturbed by noise in the surface. This may erroneously cause modelling of non-existing
features, when the surface is displaced over larger distances. Increasing the influence of
the internal forces resolves this problem, but also prevents the surface from reaching small
concavities, which are truly evident in the MRI. To solve the problem, the pressure force
is combined with a GGVF force similar to the one used by Xu et al. [10], but with an
edge map of the outer cortical boundary instead of the central cortical layer. This edge
map is the first order derivative of the sum of the WM and GM fuzzy memberships.
The GGVF force performs best at the gyri where information of the GM/CSF boundary
is evident in the MRI, thus the normal vector is combined with the GGVF vector so the
GGVF vector dominates the normal vector at the crown and ridges of gyri, and the normal
vector dominates the GGVF vector along the fundi, and walls of sulci. The local surface
curvature, calculated in a geodesic neighbourhood, is used for balancing the influence of
the GGVF vector and the normal vector:

o) = ca (3 =72 4 7)) (310)

where j(i) is the pressure force vector at vertex i, §(i) is the GGVF vector at vertex i,
p(i) is the curvature value at ¢ given in (3.3), and ¢ is a constant.

Gradient information is used to scale the update vector #, so the magnitude of the
update vector is reduced when the magnitude of the gradient increases. This is done by
mapping the normalised gradient magnitudes with the function:

h(z) = cos(gﬂc),x €[0:1] (3.11)

and scaling the update vector @ by the result. The update vector is unchanged when
there is no gradient and greatly shortened when a strong gradient is present at the given
vertex position. Information of the gradient is used only when close to the GM/CSF
boundary and suppressed when far from the boundary. The weighted membership differ-
ence g(Ap(7)) in (3.8), that provides an estimate for the spatial position of the GM/CSF
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boundary, is therefore utilised to weight the influence of the gradient. The resulting up-
date vector is given as a weighted sum of a gradient weighted term and a non-gradient
weighted term:

(i) = (1= 7)cos (FIVD]) +7) (@it (0) + Tewa (),

‘ (3.12)
™= [g(Au(@)l,

where V(i) is the image gradient trilinearly interpolated at vertex i, @in¢ (i) is the weighted

sum of the internal forces given in (3.5), and Au(i) is given in (3.7).

3.3 Results

Simulated MRI scans of a brain phantom! [2] and 36 T1 weighted MRI datasets of young
normal subjects from the International Consortium for Brain Mapping (ICBM) database
were used for testing the general behaviour of the deformation. The same weighting
constants were used in all test cases. Initial surfaces isomorph to a sphere were generated
and fitted to the inner cortical boundary. The initial surfaces consisted of approximately
1.5 - 10° vertices. During deformation this number was increased to approximately 2.0 -
10°. The deformation process converged after 30-40 iterations with the stop criterion of
(#moved vertices) < (1% of total vertices). The deformation of the outer surface required
approximately 20 minutes on a 3 GHz Pentium 4 processor. The self-intersection tests
performed throughout the deformation of the inner and outer surface were responsible for
the majority of the processing time.

Figure 3.2 shows three different modes of the deformation process in a selected part
of the simulated MRI. The three modes differ in their external forces, the internal forces
are the same for all three modes. In the first mode, only the pressure force is enabled,
simulating the method by Dale et al. [3]. This clearly shows that the use of the pressure
force alone result in irregularities in the surface. This is especially evident at top of gyri.
In the second mode, only the GGVF force is enabled, simulating the method by Xu et
al. [10]. In this case the surface does not reach the fundus of sulci without evidence of
CSF. There is also an undesirable behaviour in some of the sulci, because the surface is
attracted to the nearest visible GM/CSF image edge. The last mode shows deformation
with both the pressure force and the GGVF force enabled, balanced using the curvature
weighting function. Now the tight sulci are being modelled correctly while avoiding surface
irregularities on top of gyri.

All 36 cortices from the ICBM database were automatically reconstructed and quali-
tatively assessed by visual inspection. An example of an extracted outer surface is shown
in figure 3.3. As it can be seen from the figure, the extracted surface appears smooth,
realistic and major gyri and sulci are easily recognised. The qualitative assessment of the
accuracy of the extracted surfaces was made by superimposing the surfaces onto the MRI
and visually inspecting the contours (figure 3.3, right). As it can be observed from the
figure the outer cortical boundary is accurately delineated. Tight sulci are modelled even
when the crowns of adjacent gyri are not separated in the image data, and the surface
tend to be placed at a position equidistant to the WM walls when no CSF is evident in
sulci. This indicates that the method follows the intended behaviour.

3.4 Summary and Conclusion
This paper presented a new method for extracting the outer boundary of the human cere-

bral cortex from MRI. The active surface approach combines a conventional pressure force
with fuzzy tissue classifications, and a generalised gradient vector flow force, while locally

IThe brain phantom was provided by the McConnel Brain Tmaging Centre at the Montreal Neurological
Institute, http://www.bic.mni.mcgill.ca
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Figure 3.2: Outer surface deformation process using different external forces at different
stages in the process. Left to right: Deformation process at iterations 0,5,15 and 30.
Top: Only pressure force is enabled. Middle: Only GGVF force is enabled. Bottom:
Combination of both forces balanced by the curvature weighting function.

Figure 3.3: Example of a generated cortex from ICBM data. Left: Rendering of outer
surface. Right: Inner (black) and outer (white) surfaces superimposed onto MRI.

weighting the forces based on the surface curvature. Preliminary tests were conducted
on both simulated data and real data of young normal subjects. The primary results of
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these tests indicate that the method is fast, robust and accurate for segmenting the cor-
tical boundary in both simulated and real neuroanatomical data. Still, the method needs
further validation, as it must be able to perform on data with varying quality and from
a varying population, if it is going to be applicable in everyday clinical use. Future work
include a large scale validation on both healthy subjects and subjects with altered cortical
morphology.
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Chapter 4

Quantitative Comparison of Two

Cortical Surface Extraction
Methods Using MRI Phantoms

Adapted from: Simon F. Eskildsen and Lasse R. Ostergaard: Quantitative Comparison of
Two Cortical Surface Extraction Methods Using MRI Phantoms, MICCAI 2007, Lecture
Notes in Computer Science, 4791, pp. 409-416, October, 2007.

4.1 Introduction

Reconstruction of the human cerebral cortex from magnetic resonance (MR) images fa-
cilitates morphometric studies and brain mapping, and provides intuitive visualisation of
the human brain for the use in e.g. surgical planning. Since the nineties a number of
algorithms has been developed for extracting the boundaries of the cortex from MR im-
ages [2,4,8,9,12,13,15]. FreeSurfer has been around for more than seven years, and has,
due to the fact that it is freely available, become widespread in the scientific community.
We have recently published a method (henceforth designated Fast Accurate Cortex Extrac-
tion (FACE)), which resembles FreeSurfer in many aspects, but is significantly improved
in terms of computational speed [5, 6].

When performing morphometric studies the accuracy of the cortex reconstructions is
very important. Therefore, it is of interest to investigate how well FACE performs in
terms of accuracy compared to FreeSurfer. Quantification of the accuracy is difficult as
the ground truth is rarely available. A means to measure the accuracy is using phantoms
resembling real neuroanatomical data. Lee et al. [11] compared FreeSurfer [4], CLASP
[9] and BrainVISA [12] using generated phantoms. They found that CLASP was more
accurate than BrainVISA and FreeSurfer. However, CLASP is not publicly available,
while the two other methods are. FreeSurfer performed second best in the study. In this
study we compare our method, FACE, to FreeSurfer using realistic phantoms generated
from real MR scans.

4.2 Methods

To evaluate the two cortex extraction methods, eight healthy young subjects (age: 32+7.4)
and eight healthy middle-aged subjects (age: 54.3+£6.0) were selected , and a comparison
method similar to the method described by Lee et al. was used [11]. For each subject
both methods were used to extract the cortical boundaries. The surfaces extracted by
each method were used as reference for the generation of simulated MR scans as described
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below. The cortex of these customised phantoms were extracted by each method and the
resulting surfaces were compared to the reference surfaces (see figure 4.1).

\ 2 L 4

FACE FreeSurfer
Reference surfaces .¢. cmmmm——- .l.
Generate Generate
Phantom Phantom
FACE FreeSurfer FACE FreeSurfer

I 2 .

Test surfaces

Figure 4.1: Flow chart illustration of the comparison method.

The following briefly describes the two cortex extraction methods, the generation of
the test phantoms, and how the error between the reference surfaces and the test surfaces
was quantified.

4.2.1 FreeSurfer Method

FreeSurfer [4, 7] first registers the input MR volume to Talairach space [3]. Non-
uniformities originating from inhomogeneities in the magnetic field are corrected, and
the intensities are normalised. The resulting volume is skull stripped using an approach
similar to BET [14]. The WM voxels inside the skull stripped volume is labelled using a
two-step segmentation algorithm based on intensities and prior knowledge of the GM /WM
interface. The ventricles and subcortical matter inside the WM component is filled, and
the WM is separated into the two hemispheres by a sagittal cut through the corpus cal-
losum and an axial cut through the pons. A connected component algorithm is used to
isolate the main body of WM voxels, i.e. the cerebrum WM voxels.

From the WM voxels a surface mesh is constructed by generating connected triangles
on the faces of the voxels. The resulting surface for each hemisphere is topology corrected
to be isomorph to a sphere, and a deformation process smoothes the surface while main-
taining it at the WM/GM interface. The pial, or GM surface is found by displacing the
WM surface toward the GM/CSF interface using the local surface normals and intensity
gradients.

4.2.2 Fast Accurate Cortex Extraction Method

FACE performs similar preprocessing steps as FreeSurfer. The registered, intensity cor-
rected, and skull stripped volume is segmented into WM, GM, and CSF using a fuzzy
clustering algorithm solely based on the intensities, and a WM labelling is performed by
maximum membership classification. Cerebellum and the brain stem is removed using
atlas information, and the hemispheres are separated by a sagittal cut through the corpus
callosum. After a connected component analysis spherical topology of each hemisphere
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is obtained using a topology correction algorithm [1], and the WM hemispheres can be
tessellated by an iso-surface algorithm yielding surfaces with Euler characteristics of a
sphere (genus=0).

The iso-surface generated from the WM cerebrum voxels are deformed to fit the
WM/GM interface under the influence of smoothing forces and forces derived from the
surface normals, the fuzzy voxel classification, and gradient information of the original
image.

The GM surface is found using the method described in [6]. The WM surface is
displaced towards the GM/CSF interface using a combination of the local surface normals
and a gradient vector field calculated from an edge map of the voxel segmentation. The
influence of the two vector force fields on each vertex in the surface is weighted by the
curvature of the surface, which enables different deformation behaviour according the
position on the surface (sulcus or gyrus). The deformation is not minimising an objective
function, which means that the complexity is low compared to the deformation process in
FreeSurfer.

4.2.3 Phantom Generation

Membership volumes of WM, GM, and CSF were generated directly from the extracted
surfaces. This was accomplished by labelling each voxel completely inside the WM surface
as WM, and calculating the inside fraction of each voxel intersected by the surface. This
was also done for the GM surface, and the memberships for the three tissue classes were
calculated from the fuzzy labelled volumes (see figure 4.2). The three membership volumes

Figure 4.2: Fuzzy membership volumes generated from the extracted surfaces. Left to
right: WM, GM, and CSF.

were used as input to an MRI simulator [10] with the same acquisition parameters as the
original MR scans (TR=18ms, TE=10ms, 1mm slices). The intensities of the resulting
volume were normalised to the range of the original scan. Finally, subcortex, ventricles,
cerebellum, brain stem, and extra-cerebral tissue were added from the original scan by
superimposing the simulated brain scan onto the original (figure 4.3).

4.2.4 Accuracy Assessment

To test the accuracy of each method, reconstructions of the cortical boundaries were
generated from the 32 phantoms. The reconstructions were then compared to the recon-
structions of the original MR scans. Both methods ensures correct topology by volume-
or surface-correction. Thus the comparison was based solely on geometrical factors. Four
factors were considered, namely volume difference, surface area difference, over/under seg-



Chapter 4: Quantitative Comparison of Two Cortical Surface Extraction Methods Using
MRI Phantoms 46

Figure 4.3: Phantom produced by the MRI simulator (left), and final phantom after
normalisation and added original tissue (right).

mentation ratio, and the explicit geometrical error. Also the vertex density was taking
into consideration in the comparison.

e Volume Difference: The enclosing volume of the surfaces was calculated and the
difference (in percent) from the reference surfaces was measured.

e Surface Area Difference: Surface areas were calculated and the difference (in
percent) from the reference surfaces was measured.

e Over/under segmentation ratio: Tissue membership volumes of WM, GM and
CSF were created from the test surfaces similar to the procedure used in the phantom
generation. The resulting fuzzy maps were compared to the maps generated from
the reference surfaces, and the percentages of voxels respectively missing inside (false
negatives) and added outside (false positives) the reference map were calculated.

e Explicit Geometrical Error: The Euclidean distance from each vertex in the
reference surface to the closest face on the test surface was measured. The root
mean square error of these distances was calculated for both the WM surface and
the GM surface. Similarly, the distance was measured from the test surface to the
reference surface. The latter was done to avoid that simply adding vertices to the
surface did not necessarily reduce the error.

4.3 Results

The cortical extractions were performed on an AMD Opteron 2.6 GHz processor with 12
GB memory. The average extraction time from native scan to final surfaces for FreeSurfer
was 20.1 hours, while it was 0.8 hours for FACE. The following presents the results on
how well the methods reconstructed the original surfaces from the generated phantoms.
When comparing the reconstructed surfaces visually, only small differences can be
discerned. Figure 4.4 shows the original GM surface along with the reconstructions by
the two methods. The number of vertices in the surfaces generated by the two methods
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Figure 4.4: Left: Surface extracted from original scan by FACE. Middle: Reconstruction
from phantom by FreeSurfer. Right: Reconstruction from phantom by FACE.

FreeSurfer Phantom FACE Phantom
Metric FreeSurfer FACE P-value | FreeSurfer FACE P-value
WM Avol (%) 1.2+1.1 5.4+2.6 0.00 1.7+1.9 4.9+2.3 0.00
WM Aarea (%) 7.6x£1.9 3.1+1.5 0.00 15.4+3.4 9.4+1.9 0.00
Brain Avol (%) 4.441.2 4.0£1.0 0.36 5.5+£2.0 3.7+0.8 0.01
GM Aarea ( o) 5.4+1.4 5.0£3.1 0.54 2.5+2.4 1.6£1.5 0.22
WM FN (%) 8.5+1.3 4.2+0.6 0.00 10.0£2.1 3.2+0.6 0.00
WM FP (%) 7.8+0.8 9.1+2.3 0.01 8.7+0.8 7.4+1.8 0.00
GM FN (%) 23.4+1.3 21.9+2.0 0.01 26.4+3.7 19.9+1.9 0.00
GM FP (%) 15.7+1.4 7.3+1.4 0.00 17.6+3.1 6.9+1.3 0.00
WM ref2test (mm) | 0.95+0.64  1.1440.11 0.20 1.474+0.90 0.63+0.07 0.00
WM test2ref (mm) 0.75+0.14 0.84+0.17 0.13 1.28+0.17 0.46+0.05 0.00
GM ref2test (mm) | 0.8640.50 1.07+0.11 0.08 1.26+0.92 0.64+0.08 0.02
GM test2ref (mm) | 0.83+0.14 0.63+0.13 0.00 1.39+0.19 0.59+0.06 0.00

Table 4.1: Errors measured by the four metrics on both WM and GM surfaces. Errors are
deviation from the reference surfaces. For each metric the performance on both FreeSurfer
and FACE phantoms is compared for the two methods (two-tailed paired t-test). Signifi-
cant smaller errors are marked by bold font.

vary. FreeSurfer generates surfaces with almost twice the number of vertices compared to
FACE (310,415+18,628 vs. 169,218+9,755).

Table 4.1 lists the results for each error metric averaged for the 16 subjects. The errors
of the two methods for each metric was compared and tested by two-tailed paired t-test
(the p-values are listed in the right hand column of each phantom). Significant smaller
errors are marked by bold font. The volume and area errors are absolute percent change
compared the to reference surfaces. The under/over segmentation error is measured by
percent outside reference surface volume (false positives (FP)) and percent missing inside
reference surface (false negatives (FN)). The explicit geometrical difference is measured
by the RMS error in mm.

4.4 Discussion

From table 4.1 it can be observed that FACE has significantly fewer WM false negatives
and GM false positives when testing on both groups of phantoms. The two metrics are
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related in that missing WM voxels most likely are classified as GM voxels. Generally,
both methods seem to over-expand the surfaces when compared to the phantoms. This
especially increases the GM false negatives percentage, as the GM tissue class is smaller
than the WM tissue class.

The geometrical error rates show that the average distance between the test and ref-
erence surfaces is at subvoxel level when testing the accuracy of FACE. Reproducibility
errors of FACE are consistently around half a voxel size, while FreeSurfer reproducibility
errors are between 0.75 - 0.95 voxel size. For purposes of comparison the difference for the
reference surfaces of the two methods was measured to 1.4840.31 mm (average for both
WM and GM surfaces).

When looking at the volume and area errors for the GM surfaces, i.e. cerebrum vol-
ume and area, there is little difference between the two methods, and the error is fairly
small (1.6% - 5.5%). Also, the WM volume errors are low. However, higher error rates
are found in the WM area. Looking at the area change per subject, it was found that
all reconstructed WM surfaces had a smaller area than the reference, while the volume
remained more or less the same. This could point to the fact that the WM voxels in
the phantoms do not exactly resemble the original MR WM voxels leading to less deep
sulci. Improvements of the phantoms could solve this bias. Also, visual inspection of the
surfaces revealed significant differences in the surfaces at the base of the brain due to the
different brain stem cutting strategies in the two methods. The inspection also revealed
that FreeSurfer in a few surfaces missed part of the occipital lobe. This could be caused
by registration errors which again could be caused by tissue voxels not resembling real
MR data.

Generally, the tests show that the accuracy of FACE is comparable to Free-Surfer.
In most cases FACE has a significantly better accuracy. FACE is on average more than
25 times faster than FreeSurfer. The longer extraction time in FreeSurfer can partly be
explained by the high number of vertices in the surfaces. FreeSurfer generates surfaces
with almost twice the number of vertices compared to FACE. Another reason for the speed
difference is a very fast convergence of the deformation in FACE due to refraining from
minimising an objective function.

Even though FACE in the comparison proved to be more accurate, results from some of
the error metrics and visual inspections suggested that the phantoms could be improved to
resemble real anatomical MR data. However, the results indicate that FACE is comparable
to FreeSurfer in terms of accuracy.

The subjects used in this study were healthy without altered cortical morphology.
Further studies must examine the accuracy of the two methods when analysing subjects
with altered morphology (e.g. Alzheimer’s patients), which is often the case in clinical
trials.
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Chapter 5

Evaluation of Five Algorithms for
Mapping Brain Cortical Surfaces

Adapted from: S. F. Eskildsen and L. R. Ostergaard: Evaluation of Five Algorithms for
Mapping Brain Cortical Surfaces, SIBGRAPI, pp. 137-144, 2008 XXI Brazilian Sympo-
sium on Computer Graphics and Image Processing, 2008

5.1 Introduction

Morphological analysis of the human cerebral cortex from in-vivo medical images plays an
important role in the investigation of various neurological disorders, such as schizophrenia
and dementia [6,18]. Increasing effort is being put into measuring cortical morphologi-
cal changes over time and differences between populations. Magnetic resonance imaging
(MRI) provides excellent structural information of the cerebral tissues, and surface recon-
structions of the cortex from MRI have grown popular for studying morphological features,
such as cortical thickness, area, and patterns of the cortical folds. During the last decade
several surface reconstruction algorithms have been proposed [7,9,14,17,21,34], and several
ways to obtain cortical thickness measurements and other features from cortical surfaces
have been developed [24,28]. Usually the cortical surfaces are approximated by discrete
polygonal meshes, and cortical features are calculated at each vertex provided a reasonably
uniform distribution of vertices across the surface. To measure morphological differences
between subjects one can average the measurements over the entire cortex or within spec-
ified regions, but to exploit the detailed map of measurements provided by high resolution
surfaces and be able to detect focal differences a point correspondence between cortical
surfaces is required. Such a mapping must preserve anatomical landmarks across subjects
in order to reliably compare measurements, i.e. it does not make sense to compare the
top of a fold (gyrus) on one surface with the bottom of a fold (sulcus) on another surface.
Because of the high diversity of folding patterns across individual cortices, such a mapping
is far from trivial.

5.2 Background

Several methods to solve the cortical mapping problem have been proposed. A popular
approach is to parameterize the cortical surface by mapping the surface into a canonical
space and solve the correspondence problem in this space. Often the unit sphere is used,
as it is topologically equivalent to the cortical surface and provides an attractive coor-
dinate system for easy parameterization [13]. Utilizing the Riemann mapping theorem
on manifold surfaces [1] several approaches have been proposed to conformally map the
cortical surface to a sphere [16,19,23,25,26,31]. Also other canonical spaces have been

o1
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used for parameterization, such as an ellipsoid and the 2D plane [33]. The latter, so-called
flat maps, require cuts in the closed surface to be able to map the surface to the plane.
Consistent cuts are hard to automate, thus requiring manual intervention.

After parameterization of cortical surfaces the correspondence between vertices can
be obtained by registration of the surfaces in the canonical space using the preserved
geometrical features as similarity measure. This registration is usually a non-linear warp
because of the highly irregular folding patterns [12, 35].

The mapping onto a canonical space introduces geometrical distortion in the surface,
and even though work has been focused on minimizing the distortion in the conformal
mapping [23] it remains a problem for the subsequent parameterization and registration.
Creating flat maps introduces more geometrical distortion than the spherical approach
and alters the topology thus partly destroying geodesic relations between vertices [12].
Several methods constrain the mapping using landmark curves [16,25,29,33]. These are
often manually defined, but methods have been proposed to automate identification of
landmark curves [15,22, 28], though it is hard to do consistently [4].

Another group of methods try to solve the correspondence problem without the in-
termediate step of mapping to a canonical space. One family of such methods is derived
from the iterative closest point method (ICP) [2,5]. Apart from variations over the simple
closest point method, several methods combine ICP with point feature registration [10,27].
Others approach the problem by finding a direct mapping using partial differential equa-
tions (PDE) [29] or diffeomorphisms [32].

Common for the mapping approaches described above is the preservation of intrinsic
vertex configuration, except from the cuts introduced when creating flat maps. This may
seem important, as these geometric properties reflect the underlying cytoarchitecture of
the cortex. However, when mapping between cortices with very different cortical folding
patterns, this constraint can be relaxed to better match morphological features. A feature
based method disregarding the intrinsic vertex configurations was proposed by Spjuth et
al. [30]. They used a similarity functional based on mean curvature, surface normals,
and Euclidean distance to find corresponding vertices between surfaces after an initial,
global, affine registration. The method allows several vertices to map to the same target
vertex while other vertices are left without mapping. Thereby information is lost. To
retain information, the optimal solution is a bijection between the surfaces only mapping
between similar anatomical points. When a vertex to vertex correspondence is needed the
mapping cannot be a bijection if the two cortex surfaces have different number of vertices.
However, one can try to approximate a bijection by having unique projections for as many
vertices as possible.

As described above a variety of algorithms for solving the cortical mapping problem
have been proposed. However, to the best of our knowledge, comparisons of the different
approaches have not been carried out. In this paper we propose a new algorithm for the
problem of finding vertex correspondence between surfaces with different vertex counts
and evaluate the performance of the proposed algorithm along with a selection of other
mapping algorithms.

5.3 Proposed Mapping Algorithm

The proposed algorithm for mapping a source surface to a target surface is inspired by
Spjuth et al. [30], and it uses the same similarity features, but seeks to optimize the
number of unique mappings, thereby approximating a bijection as close as possible. The
algorithm initially aligns the two surfaces with a rigid transformation found by center of
mass normalization followed by ICP optimization [5]. The method for finding a vertex to
vertex correspondence from source to target surface uses a cost functional J. The cost of
mapping between source vertex i and target vertex j is given by

J('L,]) — aec(i,j) + 6en(i,j) +’y€d(i7j) (51)
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where ¢ is the absolute difference in normalized mean curvature at the vertices, n is
the normalized angle between the vertex normals, d is the normalized Euclidean distance
between the vertices, and «, § and « are weights. This cost functional is sought minimized
per source vertex by the following algorithm:
Definitions:
V; is the set of source vertices.
V; is the set of target vertices.
t. is the cost threshold any mapping must be below.
tm is the maximum number of mappings allowed to the same target vertex.
Ny is the set of source vertices without a mapping.
Ny is the set of target vertices with number of mappings < t,,.
Initial conditions: Ny =V, Ny =V, and t,,, = 1.

1. For each vertex in N find the vertex in N; with the lowest mapping cost defined by
J.

2. For each vertex in V; where number of mappings > t,, remove highest cost mappings
until number of mappings = ¢,,. Update Ns and N;.

3. Repeat from 1 until no mappings are found with a cost < t., or either Ng or Ny is
empty.

4. If Ny is non-empty, set N; = V4, t,,, = t,, + 1 and repeat from 1.

We designate the algorithm iterative closest feature (ICF), because of its use of point
features and iterative behavior. The weights in the cost functional were found by repeated
trials of mapping between two simple phantom surfaces where the true mapping was
known. The found weights were « = 3.7, § = 1.1, and v = 2.7.

5.4 Algorithms Selected for Comparison

Apart from the proposed mapping algorithm we wanted to evaluate a handful of typical
algorithms to find their strengths and weaknesses. The following algorithms were included
in the evaluation:

e Tterative closest point (ICP). The basic ICP algorithm [5] to compare with a simple
and “naive” approach.

e Feature. The method by Spjuth et al. [30] was included as this method is similar
to the proposed algorithm but without the iterative behavior.

o Iterative closest feature (ICF). The proposed method as described in section 5.3.

e Spherical Warp. This is the method used in FreeSurfer to register a cortical surface
to a “canonical” surface [12,13]. Source and target surfaces are mapped to the unit
sphere (figure 5.1) and the folding patterns are aligned using a warp minimizing the
mean squared difference between the average convexity [13]. This method is included
as the algorithm is freely available and the spherical mapping introduces less metric
distortion than other mapping methods [20]. To obtain a vertex correspondence
map, the geodesic closest points are used between two surfaces registered to the
canonical surface provided by FreeSurfer.

e Spherical. A method where source and target surfaces are mapped to a sphere
and corresponding points are found by rotations of the source surface optimizing
curvature correlation. The method is similar to the approach described by Fischl et
al. [12], but instead of the final non-linear warp a rigid optimization is performed
iteratively in a multi-scale manner. The spherical mapping was done using FreeSurfer
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Figure 5.1: From cortex surface to sphere. Left: Original cortical surface. Middle: Inflated
surface with curvature values superimposed. Right: Surface mapped to a sphere with
curvature values superimposed.

[7], while the subsequent optimization was implemented locally. As in the warp
approach described above, a vertex correspondence map is obtained by the geodesic
closest points between the two surfaces after optimization.

The following section describes how the five mapping algorithms were evaluated.

5.5 Mapping Evaluation

Performance of the algorithms was tested using 10 cortical surfaces extracted by
the FreeSurfer software [7] from T1 weighted MRI scans (1.5 Tesla, 30°flip angle,
TR/TE=18/10 ms, isotropic 1 mm voxels) from young healthy subjects. FreeSurfer pro-
duces surfaces of the inner and outer boundary of the cortex for each hemisphere sepa-
rately. Surfaces of the outer cortical boundary of left hemispheres only were used in the
evaluation, as brain symmetri properties suggest that either hemisphere is representative
for the cortical variation, and the mapping algorithms are expected to perform equally
well on both hemispheric surfaces. Surfaces generated by FreeSurfer are triangular meshes
with spherical topology and have arbitrary number of vertices, thus they are well-suited
for testing the algorithms described here. The 10 extracted left cortical surfaces had on
average 148k+8k vertices. The distribution of vertices were assumed similar for the gen-
erated surfaces. All 10 cortical surfaces were in turn used as target for mapping the other
nine surfaces, thus resulting in 90 mappings in total used in the evaluation.

The optimal corresponding target vertex for any given source vertex can be sought even
though this means that two distinct vertices may map to the same vertex on the target
surface. It is desirable to map to as many vertices on the target surface as possible to retain
information, i.e. the image of the mapping must cover as much of the target surface as
possible. The higher coverage of the target surface the better approximation of a bijection
between the surfaces. Therefore, one criterion for a good mapping is the percentage of
vertices on the target surface that are used as correspondence points for vertices on the
source surface, i.e. the coverage of the target surface. If the source surface has less vertices
than the target surface full coverage is not possible. Therefore the coverage error, C, is
defined as:

| M|
min(|Vs|, [V4])’

where M, is the set of target vertices with a mapping, and V; and V; are the same as in
section 5.3. Thus a full coverage results in C' = 0 while mappings with less coverage have
higher values with a theoretical upper limit of C = 1.

Increasing the vertex count of the source surface provides better conditions for a good
coverage. However, a source surface with twice as many vertices as the target surface may

cC=1- (5.2)
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provide full coverage of the target surface without being considered a good mapping if
for instance a large portion of source vertices map to the same target vertex. Therefore,
another criterion for a good mapping is the mean square number of mappings per target
vertex normalized by the squared source/target vertex count ratio. The multiple mapping
error, M, is defined as:

wrm o Wl m
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where m; is the number of mappings to vertex j of the target surface. If M = 0 the
mapping is optimal with regard to the criterion, while higher values of M signal worse
mappings with a theoretical upper limit of M = |V;| — 1.

When mapping between surfaces we expect that patches of the source surface are
mapped to patches of similar size on the target surface. We introduce a third criterion
aiming at evaluating this property. For each vertex i on the source surface we determine
the geodesic distances to the neighbors along the target surface after applying the map,
where the geodesic distance is calculated as the minimum edge length between vertices
(Dijkstra’s algorithm [8]). Optimally, this distance should be the same as on the source
surface when surfaces have equally distributed vertices. We calculate the geodesic error
at vertex ¢ as:

¢(i) = Wﬂ_;@ lg(m (i), m(j)) — g(i, j)| (5.4)

where N (i) is the set of neighboring vertices to vertex ¢ on the source surface, g(i,j) is
the geodesic distance between i and neighbor j, while g(m(i), m(j)) the geodesic distance
between these vertices after the mapping. The density evaluation criteria, D, is defined
as the average of the geodesic errors:

D=5 40 (5.5)

vl &

A mapping with good preservation of source surface patches has a small D with a theoret-
ical minimum of D = 0 for the perfect preservation. This metric is affected if the vertex
distributions of the two surfaces are highly irregular. For this reason, similar distributions
of the surfaces are assumed.

Finally, we wanted to evaluate if vertices are mapped between similar topographical
areas. To quantify this we define a topography criterion, T', as the average difference in
mean curvature before and after mapping to the target surface:

1
=9 > In(i) = p(m(i))] (5.6)
Sliev,
where p(i) is the mean curvature at vertex ¢ and m(¢) is the mapping of vertex i (the target
vertex). Curvature values are normalized to the interval [—1 : 1], thus the topography
criterion has values in [0 : 2] with theoretical extrema.

The four criteria described above are all quantitative approaches to evaluating the
mapping between cortical surfaces. To add a more qualitative approach we performed a
landmark test to evaluate the algorithms’ performance in mapping to the same anatomical
landmarks between different cortical surfaces. Six landmarks were identified manually on
all 10 cortical surfaces of the left hemisphere. Landmarks were placed by labeling vertices
spanning areas of 1-5 mm?. The selected anatomical landmarks were the temporal pole
(TP) at the anterior end of the superior temporal gyrus, the supramarginal gyrus (SG) at
the posterior end of the lateral sulcus, the cuneus (Cun) where the parieto-occipital sulcus
meets the calcarine sulcus, the posterior part of gyrus rectus (GR), the most superior
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Avg. difference (mm) | Paired t-test (p-val)
ICP -0.10£0.05 <0.01
Feature 0.02+0.03 0.11
ICF -0.01£0.02 0.06
Spherical 0.00+£0.03 0.64
Warp 0.01+0.01 0.13

Table 5.1: Average difference in mean cortical thickness after mapping.

part of the post central gyrus (PCQ), and the cingulate gyrus (CG) at the anterior end of
the cingulate sulcus. These anatomical locations were used as they are relatively easy to
recognize on the cortical surface, but are still subject of morphological variation. For each
mapping the geodesic distances between the mapped landmarks and the manually labeled
landmarks were measured and averages over all 90 mappings were calculated.

Finally, we wanted to evaluate the effect of different mapping algorithms on statisti-
cal maps, which are often used when measuring cortical thickness. We wanted to test if
choice of mapping algorithm would change the conclusions drawn from cortical thickness
statistics. The cortical thicknesses of the 10 subjects were therefore mapped to a ran-
dom target surface and the non-parametric Kruskal-Wallis test [3] was performed at each
vertex to test for equality among the mapped values. Furthermore, at each vertex the algo-
rithms were tested against each other using the non-parametric Mann-Whitney-Wilcoxon
(MWW) test [3] to evaluate differences between them.

5.6 Results

The four quantitative evaluation criteria as defined in section 5.5 were calculated for all
90 mappings. Figure 5.2 shows the average errors calculated for each algorithm by the
evaluation criteria. The results from the landmark test are shown in figure 5.3. Table 5.1
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Figure 5.2: Average errors of mapping with the five tested algorithms between permuta-
tions of the 10 cortical surfaces (n=90).

shows the average difference in mean cortical thickness before and after mapping the nine
cortices to the randomly selected reference surface. The Kruskal-Wallis test showed that
31% of the vertices were dependent on the mapping algorithm, and the subsequent MWW
test revealed that the feature and ICF algorithms were providing similar statistical results,
while specifically the spherical rigid approach had areas with conclusions different from
the other algorithms (table 5.2). Figure 5.4 shows the statistical maps when comparing
the ICF algorithm with each of the other four mapping algorithms using the MWW test.
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Figure 5.3: Average distances in mm from mapped landmark to manually labeled landmark
of 90 mappings. Landmarks are temporal pole (TP), supramarginal gyrus (SG), cuneus
(Cun), gyrus rectus (GR), post central gyrus (PCG), and anterior cingulate gyrus (CG).
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Figure 5.4: ICF compared vertex by vertex to the other four mapping algorithms visualized
on an inflated reference surface. White areas indicate significant difference (p<0.05) in
the cortical thicknesses mapped to a vertex.

5.7 Discussion

Evaluation Metrics

The four evaluation criteria in section 5.5 were designed to evaluate the behavior of the
examined mapping algorithms. Even though the criteria should optimally result in as low
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Feature | ICF | Spherical | Warp
ICP 6% 3% 24% 14%
Feature - 0% 22% 6%
ICF - - 22% 6%
Spherical - - - 22%

Table 5.2: Percent vertices of reference surface where the MWW test rejects the hypothesis
that the cortical thicknesses come from the same population (o = 0.05) for the different
mapping algorithms, which means that the mappings influence the conclusion.

values as possible, all criteria cannot be expected to be low because of the highly diverse
folding patterns in the surfaces. For example, a low density error, i.e. a good preservation
of the intrinsic vertex configurations, will inevitably result in a high topography error, as
some vertices are mapped from convexities to concavities and vice versa. Nevertheless,
the four criteria are useful for evaluating the algorithms’ strengths and weaknesses.

From figure 5.2 it can be seen that the algorithms behave more or less as expected.
The ICP algorithm not surprisingly has relatively high coverage, multiple mapping, and
topography errors, while the density error is kept low. This is to be expected as no
constraints on multiple mappings or topography preservation are applied, and vertices are
kept very compact as only the Euclidean distance is optimized. The feature algorithm
as proposed by Spjuth et al. [30] has almost as bad a coverage as the ICP algorithm,
but performs better in both the multiple mapping and topography criteria. As expected
the density error for the feature algorithm is high, as neighboring vertices are allowed
to jump between gyri resulting in long geodesic distances between the mapped vertices.
The proposed ICF algorithm behaves approximately similar to the feature algorithm with
regard to the density and topography criteria. However, when evaluating the coverage and
multiple mapping, it can be seen that this algorithm has the lowest errors among the five
evaluated algorithms. This was expected as constraints are enforced to prevent multiple
mappings and optimize the coverage.

The two mapping approaches that use an intermediate step in form of mapping to
a sphere have a similar behavior. As expected these algorithms have the lowest density
errors among the algorithms, and the multiple mapping errors are also relatively low.
This is because the intrinsic vertex configurations are retained during the spherical fitting
process. However, the coverage errors are relatively high, and the topography errors are
highest among the evaluated algorithms for the rigid spherical approach, while a little
lower for the warp approach. This is interesting as the fitting process should minimize the
topographical differences between the surfaces. This is a tangible sign of the high diversity
of the folding patterns, and that maintaining the intrinsic vertex configurations result in
mapping between different topographies. The spherical warp approach which non-linearly
should compensate for the highly diverse folding patterns still has high topography errors.
This may be explained by the fact that the non-linear fitting is done to an average model
instead of the actual target surface. It seems that a combination of the ICF and the
spherical approach may provide a nice trade-off between the four mapping criteria.

Landmark Test

Figure 5.3 reveals that the mapping algorithms are far from perfect when evaluating how
well they map between manually labeled landmarks. The error is measured as the geodesic
distance to the manually labeled landmark, which means that mapping to a gyrus or sulcus
adjacent to the correct results in a large error. From the figure it can be seen that some
landmarks are generally more accurately mapped than others no matter the choice of
algorithm. The cingulate gyrus are in most cases mapped with a precision of less than 1
cm, and gyrus rectus is also in most cases mapped more accurately than the remaining
four landmarks. These two landmarks are both located medially close to the midbrain
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where cortical variations are less pronounced. The supramarginal gyrus, which is located
in an area of deep sulci and great cortical variability, generally has high errors in all five
algorithms. This emphasize the fact that highly convoluted and variable areas are harder
to map than less folded areas. The ICP, feature, and ICF algorithms all have similar
patterns of landmark errors not significantly (0.21<p<0.40) different from each other,
which may be due to the similar nature of these algorithms. The spherical approach with
the rigid optimization seems to have a more uniform distribution of errors, except for the
cingulate gyrus. This can be explained by the rigid optimization. The spherical approach
with the non-linear optimization is able to compensate for the high cortical variability, and
it results in errors similar to landmarks in areas without great cortical variability, such
as the cingulate gyrus and gyrus rectus. Because of the high standard deviations in the
landmark errors, it is hard to confidently determine the best mapping algorithm, however,
when averaging all landmark errors within each algorithm the spherical warp approach
performs significantly (p<0.001) better than the other algorithms with an average error
of 9.5+9.0 mm, while the spherical rigid approach performs significantly (p<0.001) worse
with an average error of 19.04+23.4 mm. Further tests should include more subjects and
landmarks in concave regions in addition to the convexly located landmarks used here to
get a more representative quantification of mapping accuracy.

Statistical Maps

The averaged cortical thickness after mapping to the random reference surface did not
change significantly except when using the ICP algorithm (see table 5.1). However, the
generated statistical maps revealed that almost one third of the vertices on the reference
surface are dependent on which mapping algorithm is used to map the cortical thickness to
the reference. Testing each algorithm against the others revealed that the spherical rigid
approach is the algorithm with the largest areas (22% - 24%) of deviating conclusions
based on the MWW test (see figure 5.4 and table 5.2). Almost no difference is seen
between the ICF and feature algorithms while smaller differences is seen between ICF and
ICP (3%) and ICF and the spherical warp (6%). As it can be seen from figure 5.4, 3% is
a noticeable portion of a cortex, and may lead to wrong conclusions. This suggests that
the impact of the mapping algorithm on the statistical maps is high, and it must be taken
into consideration when drawing conclusions from the statistical maps.

Proposed Algorithm

The ICF algorithm extends the simple feature based approach by iteratively approximat-
ing a bijection. This is reflected in the quantitative measures of coverage and multiple
mapping, where ICF has the lowest errors. However, the algorithm is not more accurate
when measuring the distance to the manually placed landmarks, and the statistical maps
show no difference between the simple feature based method and the ICF. Though pre-
serving more information, the ICF algorithm does not seem to improve accuracy or change
the produced statistical maps.

Both approaches use mean curvature, normal direction, and Eucledian distance for
matching vertices. These features do not distinguish between large convex areas, such
as the sylvian fissure, and the smaller convexities, such as most of the sulci. Additional
features could be included in the cost functional to better map areas of similar sized
convexity, e.g. the average convexity as used by FreeSurfer could be used [11,12]. Also,
a term punishing large geodesic distances between vertex neighbors after mapping could
be included to compensate for the high density errors. Furthermore, the weights in the
cost functional were optimized by a simple phantom surface, and better accuracy may be
achieved by optimizing using realistic cortical surfaces.
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5.8 Conclusion

This paper presented a new algorithm for solving the cortical mapping problem and tested
it along with four other algorithms. The tests of the five mapping algorithms leave a
mixed result, where no algorithm can be singled out as the best. The four evaluation
criteria showed that the algorithms generally behave expectedly, while the landmark test
indicated that the spherical warp approach is more accurate than the rest of the tested
algorithms. Choice of algorithm should depend on the study. Dependent on whether
the preservation of intrinsic vertex configuration or the comparison of similar topographic
areas is important, either the spherical warp or the ICF algorithm should be chosen, as
these are respectively more accurate and preserve the most information. A combination
of these algorithms could be a promising mapping method and should be investigated in
the future. We showed that choice of mapping algorithm impacts the results drawn from
statistical maps. However, considering the small number of subjects used here further
testing should be carried out to confirm this. Finally, the number of different types of
mapping algorithms tested is limited. Other types of mapping methods, such as methods
based on diffeomorphic mapping, should also be compared in a future evaluation.

References

[1] L. Ahlfors. Complex Analysis. McGraw-Hill Science/Engineering/Math, 3rd edition,
1979.

[2] A. Almhdie, C. Léger, M. Deriche, and R. Lédée. 3d registration using a new imple-
mentation of the icp algorithm based on a comprehensive lookup matrix: Application
to medical imaging. Pattern Recognition Letters, 28(12):1523-1533, 2007.

[3] D. R. Anderson, D. J. Sweeney, and T. A. Williams. Statistics for business and eco-
nomics. South-Western College Publ., 8th edition, 2002.

[4] M. A. Audette, F. P. Ferrie, and T. M. Peters. An algorithmic overview of surface
registration techniques for medical imaging. Medical Image Analysis, 4(3):201-217,
2000.

[5] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 14(2):239-256, 1992.

[6] G. Chetelat and J. . Baron. Early diagnosis of alzheimer’s disease: Contribution of
structural neuroimaging. NeurolImage, 18(2):525-541, 2003.

[7] A. M. Dale, B. Fischl, and M. I. Sereno. Cortical surface-based analysis: I. segmenta-
tion and surface reconstruction. NeuroImage, 9(2):179-194, 1999.

[8] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269-271, 1959.

[9] S. F. Eskildsen and L. R. Ostergaard. Active surface approach for extraction of the
human cerebral cortex from mri. Lecture notes in Computer Science, 4191 LNCS -
11:823-830, 2006.

[10] J. Feldmar and N. Ayache. Rigid, affine and locally affine registration of free-form
surfaces. International Journal of Computer Vision, 18(2):99-119, 1996.

[11] B. Fischl and A. M. Dale. Measuring the thickness of the human cerebral cortex from
magnetic resonance images. Proceedings of the National Academy of Sciences of the
United States of America, 97(20):11050-11055, 2000.

[12] B. Fischl, M. I. Sereno, and A. M. Dale. Cortical surface-based analysis: II. Inflation,
flattening, and a surface-based coordinate system. NeuroImage, 9(2):195-207, 1999.

[13] B. Fischl, M. L. Sereno, R. B. H. Tootell, and A. M. Dale. High-resolution intersubject

averaging and a coordinate system for the cortical surface. Human Brain Mapping,
8(4):272-284, 1999.



61 REFERENCES

[14] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzky. Cortex segmentation: A fast
variational geometric approach. IEEE Transactions on Medical Imaging, 21(12):1544—
1551, 2002.

[15] G. L. Goualher, E. Procyk, D. Louis Collins, R. Venugopal, C. Barillot, and A. C.
Evans. Automated extraction and variability analysis of sulcal neuroanatomy. IEEE
Transactions on Medical Imaging, 18(3):206-217, 1999.

[16] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S. . Yau. Genus zero surface

conformal mapping and its application to brain surface mapping. IEEE Transactions
on Medical Imaging, 23(8):949-958, 2004.

[17] X. Han, D. L. Pham, D. Tosun, M. E. Rettmann, C. Xu, and J. L. Prince. Cruise:
Cortical reconstruction using implicit surface evolution. NeuroImage, 23(3):997-1012,
2004.

[18] P. J. Harrison. The neuropathology of schizophrenia. a critical review of the data and
their interpretation. Brain, 122(4):593-624, 1999.

[19] M. K. Hurdal and K. Stephenson. Cortical cartography using the discrete conformal
approach of circle packings. NeuroImage, 23(SUPPL. 1), 2004.

[20] L. Ju, M. K. Hurdal, J. Stern, K. Rehm, K. Schaper, and D. Rottenberg. Quantitative

evaluation of three cortical surface flattening methods. NeuroImage, 28(4):869-880,
2005.

[21] S. K. June, V. Singh, K. L. Jun, J. Lerch, Y. Ad-Dab’bagh, D. MacDonald, M. L.
Jong, S. I. Kim, and A. C. Evans. Automated 3-d extraction and evaluation of the
inner and outer cortical surfaces using a laplacian map and partial volume effect clas-
sification. NeuroImage, 27(1):210-221, 2005.

[22] C. . Kao, M. Hofer, G. Sapiro, J. Stern, K. Rehm, and D. A. Rottenberg. A geomet-
ric method for automatic extraction of sulcal fundi. IEEFE Transactions on Medical
Imaging, 26(4):530-540, 2007.

[23] F. Kruggel. Robust parametrization of brain surface meshes. Medical Image Analysis,
12(3):291-299, 2008.

[24] J. P. Lerch and A. C. Evans. Cortical thickness analysis examined through power
analysis and a population simulation. NeuroImage, 24(1):163-173, 2005.

[25] L. M. Lui, Y. Wang, T. F. Chan, and P. Thompson. Landmark constrained genus

zero surface conformal mapping and its application to brain mapping research. Applied
Numerical Mathematics, 57(5-7 SPEC. ISS.):847-858, 2007.

[26] J. Nie, T. Liu, G. Li, G. Young, A. Tarokh, L. Guo, and S. T. C. Wong. Least-
square conformal brain mapping with spring energy. Computerized Medical Imaging
and Graphics, 31(8):656—664, 2007.

[27] A. Rangarajan, H. Chui, E. Mjolsness, S. Pappu, L. Davachi, P. Goldman-Rakic, and
J. Duncan. A robust point-matching algorithm for autoradiograph alignment. Medical
Image Analysis, 1(4):379-398, 1997. Cited By (since 1996): 45.

[28] M. E. Rettmann, X. Han, C. Xu, and J. L. Prince. Automated sulcal segmentation
using watersheds on the cortical surface. NeuroImage, 15(2):329-344, 2002.

[29] Y. Shi, P. M. Thompson, I. Dinov, S. Osher, and A. W. Toga. Direct cortical mapping
via solving partial differential equations on implicit surfaces. Medical Image Analysis,
11(3):207—223, 2007.

[30] M. Spjuth, F. Gravesen, S. F. Eskildsen, and L. R. Ostergaard. Early detection of
ad using cortical thickness measurements. Progress in Biomedical Optics and Imaging
- Proceedings of SPIE, 6512, 2007.

[31] D. Tosun, M. E. Rettmann, and J. L. Prince. Mapping techniques for aligning sulci
across multiple brains. Medical Image Analysis, 8(3):295-309, 2004.



REFERENCES 62

[32] M. Vaillant, A. Qiu, J. Glaunés, and M. I. Miller. Diffeomorphic metric surface
mapping in subregion of the superior temporal gyrus. NeuroImage, 34(3):1149-1159,
2007.

[33] D. C. Van Essen, H. A. Drury, S. Joshi, and M. I. Miller. Functional and structural
mapping of human cerebral cortex: Solutions are in the surfaces. Proceedings of the
National Academy of Sciences of the United States of America, 95(3):788-795, 1998.

[34] H. Xue, L. Srinivasan, S. Jiang, M. Rutherford, A. D. Edwards, D. Rueckert, and
J. V. Hajnal. Automatic segmentation and reconstruction of the cortex from neonatal
mri. NeuroImage, 38(3):461-477, 2007.

[35] G.Zou, J. Hua, and O. Muzik. Non-rigid surface registration using spherical thin-plate
splines, volume 4791 LNCS. 2007.



Chapter 6

Cortical Volumes and Atrophy
Rates in FTD-3 CHMP2B
Mutation Carriers and Related
Non-carriers

Adapted from: Simon F. Eskildsen, Lasse R. Ostergaard, Anders B. Rodell, Leif Oster-
gaard, Jorgen E. Nielsen, Adrian M. Isaacs, and Peter Johannsen: Cortical Volumes and
Atrophy Rates in FTD-8 CHMP2B Mutation Carriers and Related Non-carriers, Neu-
rolmage, In press

6.1 Introduction

Frontotemporal dementia (FTD) is a syndromic clinical variant of frontotemporal lobar
degeneration (FTLD) which constitutes the third most prevalent group of neurodegenera-
tive diseases with cognitive impairment [28,43]. Within recent years the clinical, molecular
genetic and pathological classifications of FTD have evolved [8,16]. Up to 40% of FTD
cases are considered autosomal dominantly inherited. One of the rarer causes of famil-
ial FTD is CHMP2B-mutation related FTD with a pathogenic G-to-C transition in the
acceptor splice site of CHMP2B exon 6 (c.532-1G>C) on chromosome 3 (FTD-3) [47].
The CHMP2B protein is a part of the Escort-3 complex involved in trafficking proteins
destined for degradation in the Golgi apparatus. The molecular disease mechanism is not
yet fully known. The disease was primarily described in a large Danish family [26,36],
but a novel nonsense mutation in the CHMP2B gene was recently identified in a Belgian
familial FTD patient further supporting the gene to be involved in FTD [53].

The Danish FTD-3 family is very large with 33 identified patients and another 250
at risk for developing the disease within the next 60 years. The average FTD-3 clinical
onset is 57 years with a broad range from 43 to 65. As the symptom onset is insidious the
exact time of onset can be difficult to determine. Patients present with primarily a clin-
ical syndrome of frontotemporal dementia with behavioural changes, apathy, sometimes
aggression and/or changed eating behaviour. During the early course they rarely have
language disturbances, but when neuropsychologically tested they often have impairment
of more posteriorly cortically located functions such as memory and visuospatial problems.
Urinary incontinence and gait disturbances are normally late features although they some-
times can be seen during the early years of the disease. Disease duration from diagnosis
to death ranges from 2 to over 20 years.

In FTD cortical structural changes are per se primarily found in the frontal and tem-
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poral lobes [7]. However, studies have also reported changes in the parietal lobes [4,25,55].
The aim of the present study is to assess cortical structural changes in preclinical FTD-3
CHMP2B mutation positive cases compared to mutation negative family members, and
furthermore to assess a possible progression of cortical changes. A secondary aim has been
to try to identify possible preclinical focal cortical abnormalities.

In vivo investigation of brain cortical structural changes using magnetic resonance
imaging (MRI) has primarily employed manual or semi-automatic tracing of tissue bound-
aries to quantify anatomical structures [29,42]. Such approaches are time consuming and
subject to inter-rater variability. Therefore, automatic unbiased computational approaches
have gained popularity when studying cohorts of subjects.

A variety of studies [54] have used voxel-based morphometry (VBM) to detect brain
changes in diseases with FTLD and differences between disease FTLD sub-types and
healthy controls since the introduction of the method [2,60]. VBM performs voxel-wise
comparisons between spatially aligned MRI scans of subject groups enabling identification
of tissue growth and tissue loss throughout the entire brain. A related method is tensor-
based morphometry (TBM) [3], analyzing the deformation field involved in non-linear
mapping of images, such as mapping of intra-subject serial scans and mapping of subject
to group average. This way, local expansions and contractions can be identified, and the
tensor maps can be used to quantify longitudinal effects and differences between subjects
and groups. TBM has been used in different areas, such as studying the developing human
brain [12] and measuring degeneration in Alzheimer’s disease [23]. TBM has been used
less extensively than VBM within the field of FTLD, but recently more studies using TBM
have been reported [4,9,52].

A third type of method for measuring cortical changes is the explicit segmentation
of the cerebral cortex for measurements of cortical thickness using parametric or geo-
metric deformable models [15,21,27,31-33,62,64]. The cortex is explicitly or implicitly
represented as surfaces of the white matter/gray matter boundary and the gray mat-
ter /cerebrospinal fluid boundary fitted to the images with subvoxel precision. This en-
ables measurements of cortical thickness throughout the entire cortex with the advantage
of standardized thickness measures, which is unavailable through VBM or TBM. In addi-
tion, VBM does not consider the cortical geometry, and cannot differentiate the cortical
thickness of opposing walls in sulci. The drawback of surface based methods is the lack of
quantification of subcortical regions, such as the thalamus, and basal ganglia. However,
in studies where cortical structures are the objective and subcortical structures are less
relevant, surface based methods are preferable. Surface based methods have been used
to quantify changes in a variety of diseases, such as schizophrenia [34, 40, 63|, obsessive-
compulsive disorder [46], and Alzheimer’s disease [35]. In diseases with FTLD surface
based methods are apt, as degeneration is expected in the cortical lobes.

In this study we applied a surface based cortical segmentation method to serial MRI
scans of preclinical individuals with CHMP2B-mutation related FTD and individuals with-
out the mutation from the same family. Global volume measurements and local cortical
thicknesses were determined from the cortical surfaces. Longitudinal and cross-sectional
differences in cortical thickness were evaluated by lobe averages and by construction of
statistical parametric maps.

6.2 Materials and Methods

The study adhered to the Helsinki IT declaration, and was approved by The County Ethics
Committees in the Counties of Aarhus, Viborg-Nordjylland and Copenhagen, Denmark.
Subjects were recruited via a family contact group that distributes information within the
Danish FTD-3 family. All participants signed the ethics approved informed consent form.
All subjects had previously participated in genetic studies where they had been genetically
tested for the CHMP2B mutation. The participating individuals and clinicians involved
in scanning or with any direct contact to the participants have been and still are blinded
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Mutation carriers | Non-carriers
N 9 7
Male:female ratio 7:2 4:3
Age at baseline (years, mean+SD) 55.8+5.6 54.3+6.0
Inter-scan interval (years, mean+SD) 1.3+0.2 1.3+0.1

Table 6.1: Subject demographic information.

to the genetic status of the subjects.

6.2.1 Subjects

Nine individuals carrying the CHMP2B mutation and seven age-matched 1.-degree rela-
tives without the mutation (non-carriers) from the third and fourth generation of the large
Danish FTD-3 family were included in the study. All individuals were pre-symptomatic
at the follow-up scan without any subjective complaints and working full time or recently
retired due to age. Subjects and close relatives (usually the spouse) were interviewed in
a semi-structured manner by an experienced clinician, used to assess FTD patients in
general and the FTD-3 patients specifically. For all participants, neither the subject nor
the informant described any changes in behaviour or personality. Some of the partici-
pants had previously agreed to neuropsychological screening where no abnormalities were
found. There were no comorbidities affecting cerebral structure. Screening with standard
instruments, such as the MMSE, is not valid for the present disease, as MMSE is known
to be normal even though the patients have gross behavioural and personality changes.
None of the participants showed any sign of insidious symptoms on neither the clinical
interview nor the behavioural observation. Table 6.1 lists the demographic information of
the subjects. The age range at baseline scan was from 45 to 65 years of age.

6.2.2 Image Acquisition

T1 MRI data were obtained on a 3T GE Signa Excite using a 3D inversion recovery
fast spoiled gradient recalled sequence with TR/TE/TI = 6.3/2.9/750 ms, 14° flip angle,
0.94x0.94 mm? in-plane resolution (256 x256 pixels), and a slice thickness of 1.2 mm. Full
head images were acquired with 126 - 148 axial slices using a standard head coil. Stan-
dard non-volumetric T2 weighted (22 axial slices, TR/TE=4000/102 ms) images were also
acquired. All images were checked for obvious acquisition artefacts such as motion and
susceptibility artefacts which can affect the image processing and subsequent quantifica-
tion.

6.2.3 Image Processing

The MRI data were linearly and nonlinearly registered to a common model using the
ICBM152 [38]dasdtarget space. This was done using an automatic iterativeamultiresolu-
tion approach similar toaCollins et al. [14] and Janke et al. [30]. The common model was
based on 85 subjects non-linearly registered, which resulted in an average with more well-
defined image gradients than averages based on affine registrations, thus enabling more
accurate registration of the target MRI data. Intensity non-uniformities originating from
inhomogeneities in the magnetic field were corrected by the N3 algorithm [48]. A brain
mask was created by iteratively fitting a deformable surface to the brain meninges using
an algorithm similar to the brain extraction tool (BET) by Smith [50] (figure 6.1.a). The
voxels inside the brain mask were classified into white matter (WM), gray matter (GM),
and cerebrospinal fluid (CSF) using a fuzzy clustering algorithm (figure 6.1.b). Stereo-
taxic masks of the brain stem and cerebellum were applied to isolate the cerebral WM with
an axial cut of separation approximately at lamina tecti. The ventricles and subcortical
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Figure 6.1: Extraction of the cortical boundaries. a) Spatially aligned MRI data with
initial (red contour) and final (yellow contour) brain extraction contour superimposed. b)
Brain tissue classified as WM, GM, and CSF. c) Ventricles and subcortical regions labelled
as WM, and WM separated into hemispheres by a sagittal cut through corpus callosum.
d) Edge map calculated from the fuzzy classifications. e) WM surface superimposed on
the MRI data. f) GM surface superimposed on the MRI data.

regions were labelled WM to obtain a solid WM component for the following surface gener-
ation and cortical segmentation. The cerebrum WM was separated into two hemispheres
by a mid-sagittal cut, and spherical topology of each hemisphere was obtained using a
topology correction algorithm [11] (figure 6.1.c). An edge map of the GM/CSF interface
was created using the membership volumes obtained by the previous fuzzy classification
(figure 6.1.d). The edge map was used in the cortical boundary extraction as explained
below. All processing steps were fully automatic.

6.2.4 Cortical Boundary Extraction

Cortical boundaries were identified using deformable surfaces and a force balancing scheme
[39]. Each hemisphere was processed separately. An initial surface was obtained by apply-
ing an iso-surface algorithm on the topological correct WM component creating a closed
triangulated surface [37]. The initial surface was deformed iteratively to the WM/GM
boundary under influence of forces derived from the fuzzy classifications and the gradient
image (6.1.e) [17]. The GM/CSF boundary was found by expanding the initial surface
under influence of deformation forces derived from the surface normals, a gradient vector
field [61], and the GM/CSF edge map shown in figure 6.1.d [18,19]. The resulting sur-
faces accurately delineated the cerebral cortex reaching into the deep narrow sulci (figure
6.1.f). The cortex extraction method has been validated on healthy subjects and phantom
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data [17-19], but has not yet been validated on neuropathological data. Therefore, corti-
cal surfaces were visually inspected for segmentation errors, both using a 3D visualization
tool and by superimposing the surfaces onto the original MR images.

6.2.5 Cortical Measurements

The surfaces generated for each hemisphere were triangular meshes each consisting of
approximately 9x 10* vertices uniformly distributed over the cortex. The cortical thickness
was measured at each vertex as the distance between the WM and GM surface orthogonal
to the GM surface using a combination of the surface normals and the nearest point
(Euclidian) on the opposite surface. The nearest point distances between the surfaces
were used to restrain how far along the surface normals to search for intersections of the
opposite surface, thus preventing gross overestimation of the thickness where the lines
defined by the GM surface normals do not intersect the WM surface within the same local
topography. To increase the signal-to-noise ratio (SNR), cortical thickness measurements
were blurred with a surface-based diffusion smoothing approximating a Gaussian kernel
smoothing with 10 mm full-width half maximum (FWHM) [13]. Each hemisphere was
divided into the main lobes based on an atlas in stereotaxic space that accompany the
MRIcro software package [44], thus enabling regional based analysis. The atlas is defined
as a labelled 3D image in stereotaxic space, and the subdivision of the surfaces was done
by assigning a label to each vertex with the closest image label measured by Euclidian
distance.

Tissue compartment volumes were estimated by utilizing the volumes enclosed by the
GM and WM surfaces. The surfaces enclose the ventricles and subcortical regions from
the lamina tecti and rostrally. Therefore, cerebrum volume was estimated by the volume
enclosed by the GM surface minus the volume of the ventricles and subcortical regions,
which were calculated from non-linearly aligned masks. WM volume was calculated simi-
larly using the WM surface. Cortical volume was calculated as the difference between the
cerebrum and WM volume. Compartment volumes were normalized by estimated total
intracranial volume (eTTV) obtained from an intracranial mask non-linearly fitted to the
images.

The acquired T2 images were visually checked for changes in WM lesions in order to
ensure that WM lesions could not be an explanation for the results. We did not find any
changes in the number of WM lesions over the course of the study. Only one subject had
minor age-consistent WM-lesions. Thus there was not a clinically relevant difference in
the number of WM-lesions between the two groups.

6.2.6 Surface Mapping

Surface mapping was applied to obtain vertex to vertex correspondence between intra-
subject, surfaces at baseline and follow-up, thus enabling point-wise differences in cortical
thickness. After an initial rigid alignment of the surfaces using the ICP algorithm [5],
vertex correspondence was calculated by minimizing a cost function expressing differences
in mean curvature, orientation, and spatial position of the surface vertices [20,51]. To
facilitate the construction of statistical parametric maps of cortical differences between the
groups, baseline surfaces were mapped to a reference surface chosen among the subjects.
Surfaces at baseline were geometrically smoothed using a Laplace operator and mapped
to the reference surface using the mapping method [20,51]. The smoothing was performed
to reduce geometrical distortion and obtain more well-defined sulcal patterns.

6.2.7 Statistical Analysis

Distributions of cortical thickness across subjects were assumed to follow normal distribu-
tions, both with regard to regional averages and single point measurements. Differences
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across groups were evaluated using t-tests with assumptions of unequal variance. Longi-
tudinal differences within each group were evaluated using paired #-tests.

Statistical parametric maps were constructed to identify point-wise differences over
time and between the groups. The maps were constructed by performing hypothesis
testing at each vertex (approximately 10° vertices) of the reference surface testing change
in cortical thickness or differences in cortical thickness between the groups. Problems
with false positives related to multiple comparisons were addressed by calculating False
Discovery Rate (FDR) corrected significance thresholds [24]. The statistical maps were
blurred in the same way as the cortical thickness measurements to increase SNR and
enhance focal effects. The blurring, which approximated a Gaussian kernel smoothing with
10 mm FWHM, had the effect of removing areas with scattered significance (diffuse effects)
leaving only focal effects (clusters of significance). Focal effects were determined where
significant different contiguous areas (clusters) exceeded an area of 20 mm? calculated
as the surface area spanned by clusters of connected vertices with p-values below the
significance threshold. Anatomical labels were assigned to the focal differences in the
statistical parametric map by mapping labels from the stereotaxic atlas onto the reference
surface as described above [44]. The area of the significant contiguous areas was summed
within each region to report regional involvement.

To limit the intra-subject variability and increase statistical power to the group com-
parison, differences in cortical thickness and volume between groups were determined by
comparing pooled data from mutation carriers (baseline and follow-up) with pooled data
from non-carriers. This was done as subjects at a given time (baseline or follow-up) not
necessarily are homogeneous, e.g. the disease stage in a mutation carrier at baseline may
correspond to the disease stage in another mutation carrier at follow-up.

Annualized cortical atrophy rates in each lobe were calculated as percent decline of
baseline lobe average thickness. To avoid magnifying noise in cortical thickness the atrophy
rate per vertex was calculated as a ratio (r) as

ma i — M,

== 6.1
At(mgﬁi + mu) ( )

T
where m, ; and mo; are measurements at vertex ¢ at respectively baseline and follow-
up, and At is the subject scan interval. By normalizing with the summed thickness for
baseline and follow-up unrealistically high atrophy rates, caused by baseline measurements
close to zero, were avoided.
Asymmetry was evaluated by the left to right ratio between thickness measurements
and atrophy rates averaged within the hemispheres and within the main lobes.

6.3 Results

6.3.1 Cortical Boundary Extraction and Compartment Segmen-
tations

All generated cortical surfaces were found to be free of obvious segmentation errors by
visually checking 3D rendered images as well as images of the original MR data with
the surface contours superimposed. The masks fitted to the intra-cranial cavity, the ven-
tricles, and subcortical regions were visually examined by superimposing them onto the
original MR data. Intracranial and subcortical masks were found to accurately fit the
images. However, examining the ventricular masks revealed problems of fitting to the pos-
terior part of the lateral ventricles in two subjects of both groups. In these subjects the
ventricular volume is underestimated. The inaccurate ventricular segmentations lead to
overestimations of the WM and cerebrum volume while the cortical volume is unaffected
by the ventricular segmentation. The segmentation accuracy was visually estimated to be
similar for baseline and follow-up why it was assumed that longitudinal differences in WM
and cerebrum volumes are unaffected by the segmentation errors.
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p-value

Figure 6.2: Statistical parametric map of differences in cortical thickness showing areas
with p < 0.01 for one-sided t-test testing significant thinner cortex in mutation carriers
compared to non-carriers. Map generated from pooled (baseline and follow-up) measure-
ments and blurred with a diffusion smoothing approximating a Gaussian kernel smoothing
with 10 mm FWHM.

6.3.2 Cross-sectional Differences

All lobes were significantly thinner in mutation carriers compared to non-carriers (table
6.2). For an FDR of 5% the statistical parametric maps implied an appropriate threshold
of significance at appr = 0.011 for the left and appr = 0.010 for the right hemisphere.
We chose a threshold of appr = 0.01 for both hemispheres. Figure 6.2 shows the blurred
statistical parametric map of group differences in cortical thickness. Blurring the statis-
tical map removed 85% of the significant points leaving highly significant clusters. Table
6.3 lists the anatomical regions that include the largest areas of significant difference. Sig-
nificantly different regions were primarily found in the parietal lobes (24.8 cm?) and the
right temporal lobe (10.9 cm?). Occipital lobes displayed less difference (6.2 cm?), while
only small significant differences were found in the left frontal lobe (2.4 cm?). No part of
the cortex was significantly thinner in non-carriers compared to the mutation group.

6.3.3 Longitudinal Effects

Analysis of group lobe averages revealed that in mutation carriers all lobes except the
parietal lobes and the right temporal lobe were significantly thinner at follow-up compared
to baseline (table 6.2). In non-carriers only the left occipital lobe was significantly thinner
at follow-up.

None of the p-values in the statistical parametric maps of the longitudinal differences
of cortical thickness was below a/N (a = 0.05, N = 10°), which resulted in no valid
FDR adjusted significance threshold. Setting the threshold to o = 0.01 showed no focal
differences for either mutation carriers or non-carriers. Analyses of the unblurred statistical
maps revealed scattered areas of significance in both frontal and temporal lobes in mutation
carriers with more significance in the left lobes. Also, scattered areas of significance were
found in the left occipital and left medial frontal lobes. In non-carriers scattered areas of
significance were observed in the left occipital lobe. Lowering the significance threshold
to a = 0.05 revealed significant contiguous areas (1.4 cm?) in the left temporal lobe of
mutation carriers (see figure 6.3).

6.3.4 Atrophy Rates

Table 6.4 lists the annualized cortical atrophy rates within the main lobes for both groups.
The cortical atrophy rate was significantly higher in the left frontal and left temporal lobe
in mutation carriers compared to non-carriers. FDR analysis of the statistical parametric
map of group differences in annualized cortical atrophy ratios (calculated by Eq. 6.1)
provided no valid significance threshold for the same reason as described above. Setting
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Frontal lobe

Temporal lobe

Parietal lobe

Occipital lobe

Left Right Left Right Left Right Left Right
Baseline (mean+SD) | 2.24+£0.26 2.2040.23 | 2.62£0.24 2.5240.21 | 1.574£0.25 1.5620.25 | 1.90+0.17 1.8840.17
MC | Follow-up (mean+SD) | 2.13£0.31 2.11+0.28 | 2.50£0.28 2.4840.27 | 1.54£0.26 1.5040.25 | 1.75+0.14 1.7940.17
Longitudinal difference | ) 0 0.015 0.007 0.335 0.440 0.193 0.002 0.003
(p-value)
Baseline (mean+SD) | 2.48+0.17 2.4440.18 | 2.84:£0.08 2.8040.13 | 1.94+0.12 1.8840.16 | 2.15+£0.20 2.1040.21
NC | Follow-up (mean+SD) | 2.46£0.12 2.40+0.16 | 2.78+0.05 2.814+0.06 | 1.924£0.06 1.8440.09 | 2.00+£0.13 2.0740.18
Longitudinal difference | o0 0.312 0.112 0.736 0.614 0.348 0.030 0.496
(p-value)
Pooled group difference 0.011 0.012 0.010 0.002 0.001 0.002 0.003 0.008
(p-value)

Table 6.2: Cortical thickness measurements (mm) averaged within main lobes at baseline and follow-up for mutation carriers (MC) and non-carriers
(NC). Longitudinal differences evaluated by two-tailed paired t-test. Group differences evaluated by one-sided ¢-test with assumption of unequal

variance on pooled measurements.
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Anatomical region Involved area, LH | Involved area, RH
Angular gyrus 655 mm? 456 mm?
Supramarginal gyrus 479 mm? 463 mm?
Middle temporal gyrus 221 mm? 987 mm?
Middle occipital gyrus 251 mm? 221 mm?
Superior temporal gyrus 158 mm? 76 mm?
Inferior parietal gyrus 226 mm? 22 mm?
Superior parietal gyrus 106 mm? No effect

Table 6.3: Anatomical regions with significantly (p < 0.01) thinner cortex in mutation
carriers compared to non-carriers after smoothing. Only regions with an involved area
of more than 1 cm? of either the left (LH) or right (RH) hemisphere are reported. The
significant areas are visualized in figure 6.2.

p-value

Figure 6.3: Statistical parametric map of longitudinal differences in cortical thickness
in mutation carriers showing areas with p < 0.05 for paired t-test testing significant
thinner cortex. Map blurred with a diffusion smoothing approximating a Gaussian kernel
smoothing with 10 mm FWHM.
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Figure 6.4: Statistical parametric map of significantly (p<0.01) higher atrophy ratios in
mutation carriers. Map blurred with a diffusion smoothing approximating a Gaussian
kernel smoothing with 10 mm FWHM. Surface parts have been removed for better visu-
alization of regions buried by the lateral fissures. Labels correspond to the clusters listed
in table 6.5. Cluster sizes may appear smaller than they are due to visualization on a
partially flattened surface.

the significance threshold to o = 0.01 on the blurred map revealed several focal effects
(figure 6.4). Blurring the statistical map removed 78% of the statistically significant points
leaving only highly focal effects. Clusters of significantly higher atrophy ratios with an
area >20 mm? are listed in table 6.3 along with the involved anatomical regions. Higher
atrophy ratios were found in both left and right frontal and temporal lobes. Especially
the left insular cortex had a higher atrophy ratio in the mutation group (1.61 cm?), but
also the right inferio-temporal region (0.58 cm?) and the right superior frontal gyrus (0.42
cm?) showed focal differences.

6.3.5 Volume Measurements

Table 6.6 lists the measured cerebrum, WM, and cortical volumes, p-values for longi-
tudinal differences within each group, and p-values for differences between the groups.
Mutation carriers had significantly smaller cortical volume at follow-up compared to base-
line (p=0.007). The cortical volume of non-carriers decreased, but the volume loss was
not significant (p=0.142). Cerebrum and WM volumes were not significantly different at
follow-up in either group. All cerebral volumes were significantly smaller in mutation car-
riers compared to non-carriers. The annualized percentage volume loss corrected for e TTV
was 0.3 & 1.4% cerebrum, -1.4 4+ 2.2% WM, and 2.6 & 2.2% cortex for mutation carriers.
Annualized volume loss for non-carriers was 0.1 + 1.4% cerebrum, -0.9 + 2.0% WM, and
1.1 + 1.8% cortex. Rates of volume loss were not significantly different between groups,
however there was a trend for higher cortical volume loss in mutation carriers (p=0.17).



Frontal lobe
Left Right

Temporal lobe
Left Right

Parietal lobe
Left Right

Occipital lobe
Left Right

MC (mean+SD) 4.18+3.73 3.42£3.51

3.74+3.16  1.37£3.75

1.52£5.30 3.144+6.87

6.15+4.03 3.91+£2.97

NC (mean+SD) 0.50+3.51 1.15+2.86

1.444+1.96 0.48+2.86

0.81£4.57 1.59+4.89

4.77+£5.53 0.84+3.78

Difference (p-value) 0.032 0.088

0.048 0.141

0.388 0.303

0.295 0.052

Table 6.4: Annualized atrophy rates as percent decline of baseline thickness for mutation carriers (MC) and non-carriers (NC). Difference between

groups evaluated as one-sided ¢-test with assumption of unequal variance.
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Cluster | Area (mm?) | Lobe Main involved anatomical regions
L1 120.4 Left frontal Insula (109.5 mm?)
Rolandic operculum (74.8 mm?)
L2 119.2 Left frontal Tnsula (41.8 mm?)
L3 22.4 Left temporal Inferior temporal gyrus (22.4 mm?)
. Fusiform gyrus (29.7 mm?)
Rl 53.4 Right temporal Inferior temporal gyrus (23.7 mm?)
R2 46.5 Right temporal | Transverse temporal gyrus (44.3 mm?)
R3 35.3 Right frontal Superior frontal gyrus (31.8 mm?)
R4 22.6 Right temporal | Middle temporal gyrus (21.0 mm?)

Table 6.5: Clusters of statistically significant higher atrophy ratios in mutation carriers

compared with non-carriers.

Clusters with significant contiguous areas >20 mm

reported. Clusters are visualized in figure 6.4.

2

Cerebrum | White matter | Cortex

Baseline (mean+SD) 980152 570+31 409142

MC Follow-up (mean+SD) 969448 575130 394449
Longitudinal diff (p-value) 0.161 0.348 0.005

Baseline (mean+SD) 1048+42 585132 463135

NC Follow-up (mean+SD) 1041+26 589427 453130
Longitudinal diff (p-value) 0.420 0.501 0.086
Group differences (p-value) 0.002 0.175 0.005

are

Table 6.6: Compartment volumes (ml) corrected by eTIV for mutation carriers (MC)
and non-carriers (NC) at baseline and follow-up. Longitudinal differences were adjusted
for inter-scan interval and evaluated by two-tailed paired ¢-test. Group differences were
evaluated by two-tailed ¢-test with assumption of unequal variance on pooled group mea-

surements.
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6.3.6 Asymmetry

Asymmetry ratios between hemispheres revealed a trend towards a thinner cortex in the
right hemisphere in both mutation carriers (p=0.121) and non-carriers (p=0.061). By
evaluating the averaged cortical thicknesses within lobes significant asymmetry was found
in the frontal lobes (MC: p—0.046, NC: p—0.013) and parietal lobes (MC: p—0.033, NC:
p—0.007) with right lobes being thinner in both groups. No asymmetry was found in
the occipital lobes in either group, while mutation carriers had significantly thinner right
temporal lobes (p=0.002). Evaluating the cortical atrophy rates, no asymmetry between
hemispheres was found in either group.

6.4 Discussion

6.4.1 Cortical Thickness

After a 16 month follow-up, presymptomatic CHMP2B mutation carriers showed a signif-
icantly thinner cortex in the occipital and frontal lobes and the left temporal lobe. This
is consistent with findings of other longitudinal studies of other types of symptomatic
FTD patients [4, 10]; however, to our knowledge this is the first study describing cortical
thinning in premanifest FTD disease.

Even though the statistical parametric maps with FDR adjusted significance threshold
did not show significant focal atrophy in either group, the unblurred maps revealed scat-
tered areas of atrophy in the same lobes, which were significantly thinner when averaging
within the lobar measurements. Lowering the significance threshold to o = 0.05 showed
focal effects in the left middle temporal gyrus (figure 6.3)

When comparing the two groups (with and without the CHMP2B mutation) the overall
lobe averages were significantly thinner in mutation carriers, whereas the statistical para-
metric maps revealed more focal differences (figure 6.2). Focal differences were mainly
found in the parietal and temporal gyri, while almost no differences were found in the
frontal lobes. However, due to the small number of subjects in both groups and preclin-
ical stage of mutation carriers these differences may simply reflect normal variations in
cortical thickness; and not necessarily a pathological effect. This is supported by the focal
differences in atrophy ratio, which displayed a different pattern (figure 6.4). We consider
change in cortical thickness a statistically stronger metric than the absolute cortical thick-
ness when dealing with such small number of subjects. When examining the statistical
parametric map of focal differences of the atrophy ratio, the right frontal lobe was also
involved, while the occipital lobes had no focal effects. The atrophy ratio map reported
more symmetrically distributed focal differences than the direct cortical thickness cross-
sectional comparison. Specifically, the insular cortex (primarily left), the inferio-temporal
regions, and the superior frontal gyri were those with the most pronounced focal effects
(figure 6.4).

The anterior insula have been reported to be involved in several types of FTLD, mostly
bilateral [6,45,58], but also in some cases in the left anterior insula [25,59] and associ-
ated with progressive non-fluent aphasia [41]. Earlier examinations of patients with the
CHMP2B mutation have shown varying degree of aphasia [26], though it is not a primary
symptom of the disease. Hyperorality and changed eating behaviour has been observed
in FTD-3 patients [26], and the atrophy patterns involving the insula areas found here
share overlapping patterns with those found in FTLD types with abnormal eating be-
haviour [58]. Thus several of the symptoms observed in patients can be related to the
preclinical structural changes found in this study. The two distinct patterns expressed by
the group thickness differences and the group atrophy differences indicate that patterns of
cortical thickness may not alone reveal the affected anatomical regions. Thus using only
one MRI scan to establish a “clinical” FTD-3 diagnosis in a single CHMP2B mutation
positive subject seems impossible at the preclinical stage studied here. A follow-up scan
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is necessary to assess the atrophy pattern.

Results of cortical thickness based on the present method may not be directly com-
parable with results obtained by VBM analyses. VBM reports statistically significant
clusters of GM change without considering the sulcal geometry. Small clusters in oppos-
ing parts of a sulcus may be insignificant when measuring cortical thickness because of
the relatively large geodesic distance between the clusters, while in VBM they could con-
verge into one large significant cluster because of the relatively small Euclidian distance
between the clusters. Thus it is important to consider sulcal geometry when measuring
focal effects [22]. Therefore, we included volumetric measurements to better compare our
findings with results from previous studies, which used volumetric or VBM measurements,
and to evaluate the sensitivity of volumetric measurements compared to cortical thickness.

6.4.2 Cerebral Volumes

The mutation carriers showed on average an annualized change in volume of approximately
twice the magnitude of the non-carriers. Studies have reported annualized GM volume loss
in healthy middle-aged and elderly persons of approximately 0.2% without WM loss [1,49].
Our measurements of average cortical volume loss (1.1%), though not significant (p=0.14),
are in the high end compared to previous findings in healthy subjects. The small number
of subjects (n—=7) and significant normal variation may explain the difference. Unlike
mutation carriers, both increase and decrease of cortical volume was measured in non-
carriers, but rates of cortical volume loss were not significantly (p—0.17) higher in mutation
carriers.

The averaged annualized cerebrum volume loss of 0.3% in mutation carriers was in-
significant and suggested no change in whole-brain volume. Recent findings in ubiquitin
positive FTLD reported whole-brain volume loss of 1.7% /year [56,57]. These studies in-
volved clinically diagnosed FTD patients above age 55 (average ages of 72/73 years) in
contrast to the asymptomatic subjects in the present study. The whole-brain volume loss
found by Whitwell et al. indicates an accelerated atrophy rate compared to the younger
asymptomatic mutation carriers studied here, where the loss of tissue seems too subtle
to be detected by whole-brain measures. However, cortical volume decreased significantly
with 2.6% per year on average while a trend (p—0.08) for increased WM volume was
observed (1.4%).

The increase of WM volume in both mutation carriers (1.4%) and non-carriers (0.9%),
though not significant (p=0.08, p=0.26), was unexpected. Other studies have shown no
WM volume change in aged healthy subjects [49] and only a slight increase in WM volume
in non-aged healthy subjects [1]. The WM volume was calculated as the volume enclosed
by the WM surface minus an estimated volume of the ventricles and subcortical regions.
Ventricular and subcortical volumes were estimated using atlas masks non-linearly aligned
to the images. Examining the accuracy of these masks revealed problems of fitting to the
posterior part of the lateral ventricles in some subjects, why the ventricular volumes may be
regarded as crude estimates affecting the accuracy of the calculated WM volume. Similarly,
inaccurate ventricular volumes also affect the cerebrum volume estimates. To improve
the WM and cerebrum volume estimates the ventricles could be explicitly segmented,
e.g. by the use of deformable surfaces, which would also provide measures of ventricular
enlargement.

The study did not show significant differences between mutation carriers and non-
carriers when testing for global volumetric longitudinal effects. Nevertheless, using cortical
thickness measurements we were able to determine higher atrophy rates in lobes, and even
identified focal differences between the groups. This indicates that regional and focal
cortical thickness measurements are more sensitive than global brain volume or tissue
compartment measurements when quantifying cortical structural changes.



77 6.4 Discussion

6.4.3 Limitations of the Study

The main limitation of the study is the low number of subjects examined. This affects
the statistical power of the measured differences and complicates the assessment of how
measurements are distributed. The assumption of normally distributed measurements,
which was made on the grounds of biological variations tend to be normally distributed,
may therefore be incorrect. It was not possible to recruit more subjects, as they had to
be 1.-degree relatives of the same family.

The results may be affected by the within subject variability between the two scans.
A third serial scan would provide more confident longitudinal measurements. An addi-
tional source of error could arise from the surface mapping used across subjects. Specific
anatomical locations may be inaccurate, as a point on a cortical surface may be assigned a
different anatomical label before mapping to the reference surface, if it was to be labelled
by an expert anatomist. However, the mapping method used ensures that gyral points
are mapped to a reference gyrus and sulcal points are mapped to a reference sulcus, thus
cortical thickness comparisons are kept within the same cortical topography. Addition-
ally, surface based registration has been shown to be more accurate across subjects than
traditional image registrations [22].

Controlling the rate of falsely rejecting the null hypothesis in multiple comparison as
used to construct the statistical parametric maps was attempted with the FDR method
[24]. However, only the map calculated for the differences in absolute cortical thickness
of pooled group data provided FDR corrected significance thresholds. Other statistical
maps had no p-values less than /N (a = 0.05, N = 10°) thus the FDR method removed
all significance. This is an effect of the low number of subjects used in the study. Still, to
enable interpretations of the results, it was decided to report the statistical maps without
the FDR. corrected thresholds. The blurring of the statistical maps removed between 78%
and 100% of the statistically significant points (p<0.01), leaving clusters of significance in
the map. Thus it can be argued that such blurring removes most of the false positives in
the statistical parametric maps. Furthermore, most of the found focal effects are bilateral,
which seems unlikely if they were caused by spurious results.

The atlas used for assigning anatomical labels to the surfaces is defined as a 3D image,
and the procedure of assigning labels by Euclidian distance may lead to uncertainties in
the exact anatomical designation of the significant pathological effects. However, as the
anatomical regions used in the study are relatively large, uncertainties are limited to effects
in the border regions and are considered not to affect the interpretation.

Finally, the crude estimates of ventricular volume affect the measures of WM and
cerebrum volume. Therefore, the reported volumetric changes and differences of these
compartments should be taken lightly. However, the volume measurements of the cor-
tex are considered accurate, as these measurements are not influenced by the ventricular
volume estimations.

6.4.4 Conclusion

We have shown that global and focal cortical changes can be measured in asymptomatic
FTD-3 CHMP2B mutation positive subjects by using automatic cortical delineation.
Global cortical volumetric changes were statistically significant, but whole-brain changes
were of a lower rate than rates previously reported in other types of clinically manifest
FTD patients. Focal cortical changes were identified by cortical thickness measurements,
and the results indicated that such local measures have higher sensitivity for detecting
small changes than global volumetric measures. Because of normal variations in cortical
thickness and the low number of subjects studied annualized atrophy rates were consid-
ered the most reliant features describing differences between mutation carriers and non-
carriers. Symptoms previously reported from patients with the CHMP2B mutation could
be associated with the affected anatomical regions and our results further support the
pathogenicity of the CHMP2B ¢.532-1G>C mutation. Comparing presymptomatic FTD-
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3 CHMP2B mutation positive individuals with individuals from the same family without
the CHMP2B mutation revealed bilaterally increased atrophy rates in the inferio-temporal
cortex, the superior frontal cortex, and the insular cortex.
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Chapter 7

Discussion and Conclusion

This thesis contributes to the field of morphometry of the human cerebral cortex from
MRI. The objective is to develop methods for quantifying cortical structural changes
as found in neurodegenerative diseases and to investigate the ability of such methods to
measure changes in preclinical individuals. A main goal is to differentiate between different
neurodegenerative diseases by cortical atrophy patterns and identify clinical markers to aid
in early diagnosis. The first step to this goal is to accurately measure the size and shape
of the cerebral cortex. In this thesis, it is proposed to reconstruct the cortical structure
by manifold surfaces. The next step towards the goal is to measure atrophy and identify
similar patterns of atrophy in population groups. For this purpose, cortical mapping is
proposed and mapping techniques are investigated. The last steps toward the goal of
differentiating between neurodegenerative diseases by atrophy patterns involve applying
the quantification methods in clinical studies. A first step is taken in that direction by
applying the developed methods to individuals from a family with an inherited variant
of frontotemporal dementia. The following discusses the cortical reconstruction, cortical
mapping and application of quantification methods presented in this thesis.

7.1 Cortical Reconstruction

Successful cortical reconstructions use a combination of voxel based methods and de-
formable models. Voxel based methods are typically applied as preprocessing steps prior
to a deformable model for the purpose of enhancing information of tissue boundaries and
reducing manual interaction. The main focus of the thesis is on deformable models while
preprocessing steps necessary for automatic cortex reconstruction has been implemented
by use of existing methodologies. The following discusses the deformable surface algorithm
as proposed during the thesis, followed by a discussion of the steps necessary for auto-
matic and robust cortical reconstruction and finally reflections on computational expense
is presented.

7.1.1 Deformable Surface Algorithm

As stated in the introduction, two criteria are important for surface reconstructions of the
cerebral cortex. First, the surfaces must accurately model the underlying true anatomical
boundaries. Second, the topology of the cortex must be preserved. To meet these criteria,
a solution based on parametric deformable surfaces is suggested. By using parametric
models, the topology criterion can be met if the initial surface has the correct topology
and self-intersections are avoided during deformation. Methods for correcting surface
topology [5,25] and methods to avoid self-intersections of parametric surfaces [21,39] have
been proposed. By selecting proper algorithms to solve these problems, the focus of the
study is to obtain as accurate cortical reconstructions as possible using deformable models.

83
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In Paper I [12], it is demonstrated that a parametric deformable surface based on the
classic balloon model [7] combined with a gradient vector flow force [53] is able to delineate
even the tight sulcal folds. The deformation is based on a greedy algorithm [49] which
is fast but prone to be trapped in local minima. However, by initializing the deformable
surface close to the target boundaries, the probability of local minima is reduced and fast
convergence is enabled. It is demonstrated that the proposed method is robust to image
noise; increasing the noise level in the image to 9% only results in average errors less than
half a voxel size compared to surfaces extracted from noiseless data. Finally, the paper
reports that thickness measurements obtained from the reconstructed cortical surfaces are
realistic compared to measurements found in post mortem studies.

The algorithm proposed in Paper I [12] has a few drawbacks. The surface position
with lowest energy is searched for in a discrete search space, thus limiting the accuracy of
the solution even if multiscale techniques are used. Furthermore, the method for enforcing
spherical topology on the initial surface may produce anatomical inconsistencies in the
surface. The initial surface is a tessellation of the WM of both cerebral hemispheres con-
nected by corpus callosum. A tessellation of an unmodified WM voxel component usually
results in a surface with several handles, where larger handles can be caused by addi-
tional inter-hemispheric connections such as the commissures. In addition, classification
of subcortical regions often results in a mixture of WM and GM voxels which give rise to
numerous topological errors. Therefore, the applied topology correction algorithm based
on graph cutting [25] has difficulties producing surfaces with anatomically consistent ap-
pearance. In fact, in figure 2.6 on page 30 such anatomical inconsistencies can be observed
as bridges across the ventricles.

In Paper II [13], the granularity problem is addressed by altering the deformation ap-
proach to calculate displacement vectors directly by the sum of force vectors. Furthermore,
a local weighting strategy of the deformation forces is implemented to improve the accu-
racy and convergence of surfaces. Exploiting the close initial surface, normalized surface
curvature is used to relax regularizing forces in curved regions and balance the use of the
two external image forces for optimal modeling of tight sulci. The paper demonstrates
that such a combination and weighting of forces is superior to approaches using only a
pressure force [10] or only a gradient vector flow force [52].

In Paper III [14], the topology correction method is changed to a more robust and
consistent approach [5]. The hemispheres are separated and ventricles and subcortical
regions filled and thereby further optimizing the possibility for topologically correct and
consistent surfaces of the neocortex. The paper demonstrates that the proposed algo-
rithm is geometrically more accurate and faster than the widely used and freely available
reconstruction algorithm FreeSurfer [10].

A Note on Novelty

The field of cortical morphometry is rapidly expanding and the progression is fast. At the
time of publication of Paper I, several of the surface reconstruction methods referenced in
the introduction of this thesis were not published. Several researchers around the world
work on cortical surface reconstruction from MRI and this is reflected in the amount of
literature on the subject. As noted in the introduction, recent methods seem to conform
to the same strategy of reconstructing the outer cortical boundary by inflating a surface of
the inner cortical boundary. This is indeed the same strategy adopted in this thesis. The
main difference is how this deformation is performed. The combination of external image
forces and weighting strategy presented in the papers of this thesis is considered unique.
However, recent studies have pointed in similar directions as proposed here.

In a recent comparative study of eight deformable contour methods, it is concluded that
new methods could combine features from existing methods to handle specific segmentation
problems [30]. Specifically, a combination of a balloon model with a gradient vector
flow (GVF) is given as an example. This combination is similar to what is presented
in this thesis for the reconstruction of the outer cortical boundary. Another recent paper
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propose a method for reconstructing the central layer of the cortex by combining a pressure
force with a GVF force in the deformation process [37]. Again, this is similar to the
approach described in this thesis with the difference that the target here is the outer
cortical boundary. These studies confirm the novelty and performance of the cortical
reconstruction approach suggested in this thesis.

7.1.2 Automation and Robustness

Large scale cohort studies call for automatic procedures to limit tedious and laborious
manual interaction and to optimize consistency. A goal for the cortical reconstruction
algorithm developed during the Ph.D. study is full automation. However, when dealing
with biological images and complex target structures, this is not an easy task when robust-
ness to image and object variation is also prioritized. Apart from the deformable surface
algorithm, several other processing steps are involved in an automatic reconstruction pro-
cedure. These steps are performed to fulfill the preconditions and improve the accuracy
of the deformable surface algorithm. The main precondition of the used deformable sur-
face approach is initialization close to the target boundary. This is achieved by a good
classification of the cerebral WM.

The steps taken to perform classification of the cerebrum WM include intensity non-
uniformity correction, image registration to a stereotaxic space, brain extraction, intensity
based classification into WM, GM and CSF and finally removal of brain stem and cerebel-
lum as outlined in Paper I [12]. Such preprocessing steps are common for several cortical
reconstruction algorithms [10,24,33,35]. The performance, robustness and automation of
cortical reconstructions depend on choices of algorithms to perform each step. For the cor-
tical reconstruction presented in this thesis, these choices have remained more or less the
same throughout the course of the Ph.D. study and are in the following briefly discussed
in connection with automation and robustness.

Correction of intensity non-uniformities caused by inhomogeneities in the radio fre-
quency field is usually needed for improving intensity based classifications. The inhomo-
geneity increases with field strength and is very pronounced at 3 Tesla. Various algorithms
to correct the intensity non-uniformities in the images have been proposed and a number
of these are publicly available [31]. In this thesis, the freely available N3 algorithm is
used [43]. This algorithm is automatic and performs well on images generated by both 1.5
and 3 Tesla scanners [3].

Automatic image registration to a stereotaxic space is a crucial step involved in almost
all structural studies as well as many functional studies. For this reason, enormous ef-
fort has been put into developing robust registration and freely available, well-performing
methods exists [9,11,18,34,51] !. In this thesis, registration is done using an automatic
procedure [8,9] which is found to perform well for the purposes of the cortical recon-
struction. The registration procedure need not be highly accurate, as the purpose for
the cortical reconstruction is gross localization of the major anatomical parts. Thus, the
registration is used for the removal of brain stem and cerebellum. A registration working
for the wide variability of brain anatomy is usually not sufficiently accurate to be used for
brain extraction as well.

Brain extraction is necessary as several tissues in the human head have overlapping
T1 intensities which impairs the tissue classification. Such an algorithm must be able to
robustly extract the brain tissues without removing parts of the brain and optimally with-
out including proximate tissues such as dura mater, exterior veins and cartilage. Several
brain extraction methods have been proposed [40]. None of the freely available meth-
ods [10,41,44,47] are found suitable for purposes of robust and automatic cortical recon-
struction. Therefore, in this Ph.D. study, a brain extraction algorithm has been developed
similar in spirit to the brain extraction tool by Smith [44]. Even though this algorithm
works well for most data, brain extraction of elderly subjects has proved difficult to perform

IFor a list of available software tools see http://www.cma.mgh.harvard.edu/iatr/
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robustly and accurately. The main problem is the inclusion of dura mater and superior
sagittal sinus which may have intensities similar to WM, thus complicating the cerebrum
WM classification. The problem is probably related to change in MRI signal intensity
which is an effect of age [32].

Classification of the cerebral tissues into WM, GM and CSF can be performed using
several of the classification approaches described in the introduction. Particularly, in this
thesis a fuzzy clustering approach is used [23]. This classification algorithm generally per-
forms well; however, no formal comparisons with other algorithms were carried out during
the Ph.D. study. The algorithm influences the surface convergence and reconstruction
accuracy as the fuzzy membership images produced are used in the deformation process.
In Papers I and III the accuracy of the reconstructed surfaces is shown to be around half
a voxel size, which is why the accuracy of the tissue classification is deemed acceptable.

Generally, the cortical reconstruction procedure runs fully automatic on most MRI
scans. However, a small fraction of scans of elderly individuals need manual interaction to
remove parts of the dura mater prior to tissue classification. This is caused by insufficient
brain extraction. It is my experience that brain extraction remains the main obstacle to
a fully automatic and robust cortical surface reconstruction method.

7.1.3 Computational Expense

The time it takes to generate accurate cortical reconstructions may be relevant in some
scenarios. If cortical reconstructions are to be used in diagnostics or preoperative planning,
the computational delay may be a nuisance at best and critical at worst. However, in most
cases the reconstruction time is not important though a fast reconstruction significantly
reduces the time needed to obtain results in large scale studies. Especially when repeated
trials are necessary to tune parameters, high throughput is desirable. In any case, opti-
mization of computational expense should be prioritized after accuracy, robustness and
automation.

Traditionally, optimization of parametric deformable surfaces is very slow if conver-
gence to a global minimum must be guaranteed. Global minimum solutions can be ob-
tained by various minimization algorithms [2,45]. The deformation methods applied to
propagate the deformable surfaces in this thesis do not guarantee convergence to a global
minimum. This enables faster convergence and because of the close initialization, the
models are less vulnerable to problems of local minima. Applying a global minimization
algorithm does not necessarily improve the accuracy as the global minimum may not be
the most accurate delineation of the cortical boundaries due to noise and artefactual ir-
regularities found in MRI. Global minimum algorithms are suited for problems where the
initial guess is far from the solution. However, in cortical reconstructions, the initial guess
can be determined close to the solution as robust classification of the cerebrum WM can
be achieved. Therefore, the need for convergence of surfaces initialized far from the target
boundary seems artificial and computational expensive optimization algorithms guaran-
teeing a global minimum appear superfluous for the purpose of cortical reconstruction.

Geometric deformable models have become popular solutions to the cortical reconstruc-
tion problem since the introduction of topology preservation to the level set method by
the use of digital topology [26]. An argument for these models are the low computational
expense compared to parametric models. Authors claim that self-intersection prevention
is very computational intensive in parametric deformable surface models [24,27]. The so-
lution to cortical reconstructions with self-intersection avoidance presented in this thesis
is reasonably fast. Deformation of the GM/CSF surface is done in approximately 5 min.
per hemisphere on a 2.8 GHz Opteron CPU. But compared to new level set methods,
where the deformation process is measured in seconds [42], the parametric high resolution
models are outperformed. However, seen in the perspective of the entire process needed
for cortical reconstruction, the deformation process is only a fraction of the computational
time used. Intensity correction and classification algorithms often demand similar compu-
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tational resources and if high-dimensional non-linear registration methods are used, the
preprocessing steps may be a factor ten more time consuming than the parametric de-
formable models. Thus, in practical cortex reconstruction, the deformation algorithm is
not the computational bottle neck if a suitable minimization method is chosen.

7.2 Cortical Surface Mapping

The cortical reconstructions enable detailed morphological quantifications of the entire
neocortex. To fully utilize these high resolution measurements and identify differences over
time and between subjects, point correspondence between cortical surfaces is necessary. In
this thesis the subject of cortical surface mapping for the purpose of point correspondence
is briefly investigated in paper IV [15].

The main problem when comparing different cortical surfaces is the great variation
in folding patterns. Usually comparison is enabled by mapping the manifold surfaces to
each other or to a template. If the manifold properties of the surfaces are maintained
by a mapping, it is hard, if not impossible, to match the cortical folding patterns and
thereby matching gyri to sulci is unavoidable without loosing information. As the cortex
generally is thicker at the top of gyri than at the bottom of sulci, such matching may lead
to unreliable measurements of difference in cortical thickness. By relaxing the manifold
properties in the mapping, it is possible to only match areas of the surfaces with similar
topography. A mapping method with this purpose is proposed in paper IV and evaluated
along with methods that maintain the manifold properties when mapping. The evaluation
confirmed that if the manifold properties are maintained, high topographical errors occur.
The methods achieving low topographical errors due to manifold relaxation result in neigh-
boring vertices jumping between gyri and sulci leading to large geodesic distances. This is
also undesirable as neighboring measurements are not independent and such large geodesic
distances imposed by a mapping may render the measurements unreliable. Though the
proposed algorithm maintains the most information (high coverage) of the five evaluated
methods, large geodesic errors are not acceptable.

A solution to maintain manifold properties and limit the topographic errors could be
to develop different brain templates each reflecting a “type of brain” categorized on the
basis of the cortical folding patterns. This way a subject cortex could be matched to the
best template representing the type of cortical folding of the subject. How many different
templates would be needed and to what detail the categorization can be performed remains
to be investigated. Such an approach would be feasible only if the number of different
classes is limited.

Another observation supporting the categorization of brains according to the cortical
folding pattern is the large errors and large standard deviations in the landmark test
performed in the paper. All mapping methods resulted in large average geodesic distances
to the manually placed landmarks. However, it was observed that in some cases the
mapping was very close to the landmarks while in others the geodesic errors were large as
the high standard deviations also suggest. This indicates that some cortices are generally
better matches which further support the categorization of the brains for the purpose
of brain mapping. By specializing the brain templates for specific cortical patterns, the
geodesic landmark errors could be reduced.

7.3 Application on Neurodegenerative Diseases

Demonstrating the use of the cortex reconstruction method on data from individuals with
a neurodegenerative disease is crucial, as methods behaving well on simulated data and
data from non-pathological brains may fail on pathological brains. In this thesis, the
cortical reconstruction is applied to individuals from a family with an inherited variant of
frontotemporal dementia where a pathogenic mutation has been identified on chromosome
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3 (FTD-3). Nine individuals with the mutation and seven without the mutation are
included in the study.

The study which is documented in Paper V [16] revealed that comparison of groups
using absolute cortical thickness need more subjects than the 16 used in order to compen-
sate for the significant normal variation in cortical thickness. However, when including
the temporal dimension, atrophy rates can be estimated which are statistically stronger
when comparing pathological effects. This is reflected in the different statistical maps
generated by respectively absolute cortical thickness and annualized atrophy ratios. The
atrophy ratio statistical map seems more plausible as it shows bilateral effects contrary
to the statistical map of differences in absolute cortical thickness. In the specific vari-
ant of frontotemporal dementia, bilateral effects are expected although the degenerative
manifestations of the disease remain to be fully mapped.

The cortical reconstruction provides means for measuring the cerebral volumes. This is
done by calculating the interior volume of the closed surfaces of the WM and GM. Cortical
volume is determined by the difference in volume between the surfaces. In the FTD-3
study, only the cortical volume in mutation carriers decreased significantly while trend for
increased WM volume was observed. By only modeling the neocortex, estimations of WM
volume cannot be directly obtained why volumes were adjusted by masks of ventricles and
subcortical structures. Ventricular enlargements are expected over time and the increased
WM volume may be due to inability of the masks to fit to the altered ventricles. Ventricular
volume can be measured more elegantly by modeling the ventricles explicitly by use of
deformable or shape models.

Cerebral volumes should generally be normalized as great inter-subject variability ex-
ists and the volume of the healthy mature brain is presumed to be correlated with the
volume of the cranium cavity [29,50]. In the study, the measurements were normalized
with estimated total intra-cranial volume obtained by a fitted stereotaxic mask. The accu-
racy of such an approach is highly dependent on the registration method and intra-cranial
volume estimations calculated without registration could improve the accuracy and remove
registration bias.

The rate of change in cerebral volumes was not significantly higher in mutation carriers
compared to non-carriers while atrophy rates based on cortical thickness both averaged
within the lobes and focally by the statistical maps showed significant difference between
the groups. This indicates that cortical thickness is more sensitive than volume mea-
sures. A formal study evaluating the sensitivity of the measures should be carried out to
determine the difference between the measures.

The statistical maps used in the study were created by hypothesis testing at each vertex
of a reference surface. In hypothesis testing, there is a probability for incorrectly rejecting
the null hypothesis; the false positive rate. When performing thousands of tests as in
the generation of the statistical maps, there is bound to be incorrect test outcomes, thus
leading to false positives. In the study, this problem is addressed by calculating corrected
significance thresholds based on controlling the false discovery rate (FDR) [20]. However,
the FDR method eliminated all significant focal effects in some of the statistical maps.
Controversy exists whether to apply methods for controlling the false positive rate at the
risk of not reporting important findings [19, 38]. In the FTD-3 study, large smoothing
kernels were applied to the maps so only clusters of vertices where the null hypothesis are
rejected remain. The probability that a single test is wrong is at the level of determination;
however, the probability that several vertices in the same neighborhood all have wrong
outcomes is significantly reduced. Therefore, it is argued that problems with multiple
comparisons are insignificant after smoothing the maps. Even though these arguments
seem to hold, the arguments should be supported by studies investigating the impact of
the different parameters involved in creating cortical statistical maps, e.g. the effect of
spatial inter-dependency of the measurements on the statistical model. Such investigations
may lead to a theoretical foundation of the statistical maps generated for cortical features.
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7.4 Future Directions

The subjects covered in this thesis lead to a range of questions and recognition of problems
still unresolved in quantification of cerebral cortical structures by use of surface models.
These questions and problems should be addressed in future studies.

Firstly, the accuracy of the proposed parametric deformable model must be further
investigated and comparisons with geometric deformable models should be carried out as
these models have become popular during recent years. The accuracy of the reconstructed
surfaces have been evaluated on the basis of young healthy subjects and phantom MRI
scans. Studies of the performance on old and pathological brains should be conducted. Re-
cent initiatives of collecting data from neurodegenerative diseases, such as the Alzheimer’s
Disease Neuroimaging Initiative?, provide means for evaluations on old and pathological
brains. Validation by comparison to manual delineations, histological measures and ani-
mal studies are also possible directions for determining the accuracy and reliability of the
cortical reconstruction.

Secondly, for the purpose of high throughput in large scale studies, automation and
robustness is essential. For the cortical reconstruction method presented here, the brain
extraction step is identified as the weakest link. Future effort should be put into improving
this step with the purpose of developing methods robust to the altered MRI signal intensity
due to age. Robust brain extraction is continuously being researched by other groups
[1,4,17,28] and progress in the field may advantageously be incorporated into the cortical
reconstruction pipeline.

Thirdly, the investigation of different cortical mapping algorithms revealed a need for
improvements within the field which was mainly caused by the high variations of cortical
folding patterns between individuals. Future studies should look into the possibility of
categorizing cortices on the basis of folding patterns and the construction of specialized
cortical templates.

Fourthly, evaluations of the measures calculated from the cortical surfaces have not
been the subject of this thesis and work within this field could improve the reliability of
the results obtained. Others have evaluated different measures of cortical thickness [36] and
it should be investigated whether the conclusions drawn by this study apply to the surfaces
generated by the cortical reconstruction method presented in the present thesis. Apart
from cortical thickness, volume estimates are also derived from the surfaces. When using
the cortical surfaces to calculate volume measurements of the cerebral tissues two problems
arise: 1) absolute volumes must be normalized by an invariant factor correlated to the
maximum matured brain size and 2) WM volume estimates are corrupted by enlargements
of the ventricles as the WM surface encompasses these cavities. As done in the FTD-3
study, normalization can be performed by estimation of the intra-cranial volume as this
measure is presumed to reflect the maximum matured brain volume and to remain constant
over time [50]. Often the intra-cranial volume is estimated by a brain mask generated to
remove the scalp [22,48,54]; however, such masks may not reflect the true intra-cranial
volume. Therefore, work specifically directed toward estimating the intra-cranial volume
should be carried out. The problem of enlarged ventricles in the WM volume estimations
can be addressed by explicitly modeling the ventricles. Several methods for ventricles
modeling exist [6] and future improvement of the cortical reconstruction pipeline could
incorporate a suitable method for modeling the ventricles. Incorporation of measures of
ventricle size and shape may provide additional information of atrophy progression [46].

Fifthly, the sensitivity of the cortical thickness compared to traditional volume mea-
sures should be investigated. The FTD-3 study [16] indicated that the cortical thickness
measurements are superior to volume estimates when detecting subtle cortical changes.
Further work should confirm this observation and evaluate the sensitivity of the measures.
This could be done using the realistic brain phantoms generated from cortical surfaces as
described in Paper IIT [14].

2For more information see http://www.loni.ucla.edu/ADNI/
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Finally, further work on statistical parametric maps of morphological features, such
as the cortical thickness, should be carried out. Studies examining the reliability of the
evidence produced by statistical maps are important for the general acceptance of results
found by cortical surface reconstructions and subsequent mapping. In addition, the statis-
tical method for generating the maps should be evaluated and it should be investigated if
inclusion of the spatial inter-dependency of the measurements could improve the statistical
model.

7.5 Conclusion

This thesis has demonstrated that the human cerebral cortex can be reconstructed from
brain MRI by means of parametric deformable surfaces. The resulting high resolution
surfaces provide means for detailed measurements of the cortical morphology. The accu-
racy of the developed method has been shown to be at subvoxel level and the method is
geometrically more accurate than a widely used competing reconstruction method. The
topologically correct cortical surfaces are generated automatically and robustly by incor-
porating a series of preprocessing steps based on existing voxel based methods. Compared
to other parametric reconstruction methods, the developed algorithm is fast; complete
reconstructions are generated in less than one hour from native scanner images.

The problem of cortical mapping has been addressed and strengths and weaknesses of
different methods for solving the mapping problem have been uncovered in a comparative
study. The study indicates that more work needs to be done in this field to address the
wide morphological variability of human cortices.

Finally, the developed methods have been applied in a study of preclinical subjects with
an inherited neurodegenerative disease. It was demonstrated that atrophy is detectable
at this preclinical stage of the disease and that cortical thickness based measurements are
more sensitive than volume measures.

The work presented in this thesis is part of ongoing efforts toward the goal of diagnos-
ing and differentiating between neurodegenerative diseases by means of cortical atrophy
patterns. Future directions of technological improvements rendering this goal probable
have been pointed out. If these issues are addressed, the quantification methods are ready
to be deployed in large scale studies toward the goal of diagnosing and differentiating
between neurodegenerative diseases.
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