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The over image is a rendering of surfaes extrated from a T1 weighted magneti reso-nane san using the methods dislosed in the thesis.ISBN: 978-87-7094-011-5



AbstratThis Ph.D. thesis investigates morphologial quanti�ation of the human erebral or-tex from magneti resonane images (MRI). Morphologial quanti�ation of the erebralortex is important for understanding the manifestation and progression of neurodegenera-tive diseases suh as Alzheimer's disease and suh quanti�ation are onsidered importantdisease markers and may aid in early diagnosis. The �rst part of the thesis deals withreonstrution of the ortex from T1 weighted MRI. The seond part is onerned withusing the ortial morphologial measurements from the reonstrutions to ompare dif-ferent orties, and applying the quanti�ation methods in a study of a neurodegenerativedisease. The thesis is based on �ve papers; three papers overing the �rst part and twopapers on the seond part.In paper I, the method for reonstruting the ortial boundaries as parametri sur-faes is presented. The entire proess from sanner images to ortial thikness results isdesribed and test of the method on simulated MRI data, several young healthy individ-uals and a single Alzheimer's patient sanned with an interval of six months is presented.The paper presents a novel ombination of a pressure fore with a gradient vetor �ow ina deformable surfae model for modeling the outer ortial boundary.In paper II, an improved surfae deformation proess is presented. The energy fun-tional desribed in the �rst paper is altered to express vetor fores, and a loal weightingof fores is introdued to better adapt to the highly folded ortial sheet. Test of themethod on simulated MRI is reported and it is shown to be more aurate than ap-proahes without the loal weighting strategy. The main ontribution of the paper is adeformation approah free of searh spaes and a novel urvature in�uened weighting ofthe terms in the energy funtional.Paper III desribes the omparison of the developed method with the ortex extrationmethod used the most in the literature. The omparison is based on phantom MRI imagesonstruted from ortial surfaes extrated from real MRI images. In this way, groundtruth ortial boundaries are reated and the geometrial error of the ortex reonstru-tions an be quanti�ed. The paper reports that the developed method is reonstruting theortial surfaes with a subvoxel auray and that it performs better than the ompetingmethod in most of the tests while being muh faster.In paper IV, the problem of omparing di�erent orties is addressed. A proposed fea-ture driven ortial mapping algorithm is presented together with tests of it and four othermapping algorithms: a feature driven approah, two spherial mapping approahes, anda basi iterative losest point algorithm. The algorithms are evaluated with onstrutedriteria for a good mapping, a landmark test using manually plaed landmarks and ananalysis of statistial maps generated by the results of the algorithms. It is demonstratedthat eah method has its strengths and weaknesses and no single method performs betteron all riteria and for all purposes. However, it is indiated that a ombination of someof the evaluated algorithms ould be a promising approah.Paper V reports the results of applying the developed methods to identify ortialstrutural hanges in individuals with a familial variant of frontotemporal dementia. Ninepresymptomati individuals arrying the disease mutation are ompared to seven individ-uals from the same family without the mutation. The study is based on two serial MRIiii



sans of eah individual and annualized atrophy rates are alulated. Both volumetriand thikness measurements show that the presymptomati mutation arriers degeneratefaster than the healthy ontrols. The thikness measurements have a higher sensitivitythan the volumetri measurements and they are able to detet the foal di�erenes be-tween the two groups. Furthermore, the involved ortial areas are linked to symptomsobserved in linial frontotemporal dementia patients and support the pathogeniity ofthe mutation.The work presented in the thesis demonstrate that it is possible to detet subtle mor-phologial hanges in the human erebral ortex with MRI, and suggest that the goal ofusing morphologial disease markers in improving diagnosis of neurodegenerative diseasesis attainable.
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Dansk Resumé (Danish Abstrat)Denne Ph.D. afhandling omhandler morfologisk kvanti�ering af den menneskelige hjerne-bark fra magnetisk resonans skanning (MRS). Morfologisk kvanti�ering af hjernebarkener vigtig for forståelsen af hvordan neurodegenerative sygdomme som Alzheimers syg-dom manifesterer sig og udbredes i hjernen. Det vurderes at sådan kvanti�ering kanidenti�ere sygdomsmarkører og kan bidrage til tidligere diagnose af neurodegenerativesygdomme. Første del af afhandlingen omhandler rekonstruktion af hjernebarken fra T1vægtet MRS. Anden del fokuserer på at anvende rekonstruktionerne af hjernebarken tilat kvanti�ere morfologien og sammenligne forskellige hjernebarker, og kvanti�eringsme-toderne anvendes i et studie af en neurodegenerativ sygdom. Afhandlingen er baseret påfem artikler; tre artikler dækker første del og to omhandler anden del.I artikel I præsenteres metoden til rekonstruktion af hjernebarkens vævsgrænser somparametriske over�ader. Hele proessen fra skannerbilleder til måling af hjernebarkenstykkelse er beskrevet og metoden testes på simuleret MRS data, unge raske individer ogen enkelt Alzheimers patient skannet med seks måneders mellemrum. Artiklen præsentereren tryk kraft kombineret med en gradient vektor kraft i en deformérbar over�ademodel tilmodellering af hjernebarkens ydre vævsgrænse.I artikel II præsenteres en forbedret deformeringsproes. Energifunktionen beskreveti artikel I er forandret så der udtrykkes vektorkræfter, og en lokal vægtning af kræfterneintrodueres for bedre tilpasning til hjernebarkens meget foldede struktur. Metoden testespå simulerede MRS og det vises at den er mere nøjagtig end metoder uden lokal vægtningaf kræfterne. Hoved-bidraget i artiklen er en deformeringsmetode uden søgerum og enunik vægtning af termerne i energifunktionen baseret på over�adens krumning.I artikel III sammenlignes den udviklede metode med den i litteraturen mest benyttederekonstruktionsmetode. Sammenligningen er baseret på fantom MRS billeder konstrueretfra over�ader af hjernebarken udtrukket fra rigtige skanninger. På denne måde genereresder data hvor den sande hjernebark er kendt og geometriske fejl i rekonstruktionerne kanmåles. Artiklen viser at den udviklede metode har en nøjagtighed bedre end opløsningenaf billederne, og at metoden er mere nøjagtig og hurtigere end den konkurrerende metode.Artikel IV tager sig af problemet med at sammenligne forskellige hjernebarker. Enmetode til at referere mellem hjernebarker, som er baseret på sammenligning af ge-ometriske features, præsenteres og testes sammen med �re andre referenemetoder; enanden feature baseret algoritme, to algoritmer der refererer til en kugle, og en simple it-erativ nærmeste punkt algoritme. Algoritmerne evalueres med opstillede kriterier for engod referene, en test med manuelt plaerede �kspunkter, samt en analyse af statistiskeover�adekort genereret på baggrund af algoritmernes resultater. Det demonstreres at hvermetode har sine styrker og svagheder, og at en enkelt metode ikke kan foretrækkes fremfor en anden til alle formål på baggrund af de opstillede kriterier. Det antydes at enkombination af nogle af metoderne synes at være en lovende løsning på problemet.Artikel V rapporterer resultaterne af at anvende de udviklede kvanti�eringsmetodertil at identi�ere strukturelle forandringer i hjernebarken i individer fra en familie meden nedarvet variant af frontotemporal demens. Ni præsymptomatiske bærere af sygdoms-genet er sammenlignet med syv individer uden sygdommen fra samme familie. Studiet erbaseret på to serielle skanninger af hvert individ, og atro�rater kan dermed beregnes. Bådev



volumetriske målinger og målinger af hjernebarkens tykkelse viser at de præsymptomatiskesygdomsbærere degenererer hurtigere end de raske kontrolpersoner. Tykkelsesmålingernehar en højere sensitivitet end de volumetriske målinger, og disse muliggør detektering affokale forskelle de to grupper imellem. De involverede områder i hjernebarken kan henførestil symptomer observeret i kliniske patienter med frontotemporal demens og understøtterdermed patogeniiteten af sygdomsmutationen.Forskningen præsenteret i denne afhandling demonstrerer at det er muligt at detek-tere små morfologiske forandringer i den menneskelige hjernebark fra strukturel MRS, ogsandsynliggør at morfologiske sygdomsmarkører kan benyttes til at forbedre diagnosen afneurodegenerative sygdomme.
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PrefaeThe ontent of this Ph.D. thesis is based on �ve papers written during the period ofJanuary 2005 to June 2008. Four papers were aepted for presentation at the followingonferenes:
• SPIE Medial Imaging 2005 - International Soiety for Optial Engineering, MedialImaging onferene in San Diego, USA, February 2005. Full papers (12 pages) wereaepted on the basis of peer reviewed extended abstrats (4 pages).
• MICCAI 2006 - Medial Image Computing and Computer-Assisted Intervention on-ferene in Copenhagen, Denmark, Otober 2006. 232 full papers (8 pages) wereseleted from 578 submissions based on peer reviews, aeptane rate: 40.1%. Pro-eedings are published in Leture Notes on Computer Siene.
• MICCAI 2007 - Medial Image Computing and Computer-Assisted Intervention on-ferene in Brisbane, Australia, Otober-November 2007. 237 full papers (8 pages)were seleted from 637 submissions based on peer reviews, aeptane rate: 37.2%.Proeedings are published in Leture Notes on Computer Siene.
• SIBGRAPI 2008 - The XXI Brazilian Symposium on Computer Graphis and ImageProessing in Campo Grande, Mato Grosso do Sul, Brazil, Otober 2008. 38 full pa-pers (8 pages) were seleted from 107 submissions based on peer reviews, aeptanerate: 35.5%. Proeedings are published by IEEE CS Press.The last paper has been aepted by the journal NeuroImage and is urrently in press.NeuroImage ommuniates �important advanes, using imaging and modelling tehniquesto study struture-funtion relationships in the brain.� NeuroImage has an impat fatorof 5.5 (2007).Eah paper is inserted into the thesis as a hapter only hanging the layout and remov-ing the abstrat ompared to the publiation/submission. In addition to the �ve papers,the thesis ontains a general introdution and disussion of the subjet going into detailsnot overed by the papers. Referene listings are ontained within eah hapter.The algorithms developed and presented during the thesis have been implementedusing the freely available software and programmer's interfae MINC, whih is availablefrom http://www.bi.mni.mgill.a/software/ Simon Fristed EskildsenAalborg, July 2008
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Chapter 1Introdution1.1 BakgroundMagneti resonane imaging (MRI) emerged in the seventies [68, 80℄ and in the eightiesthe tehnology was introdued for linial purposes [33℄. Today, MRI is widely used forstrutural and funtional imaging as well as for spetrosopy. Unlike other tehnologiesbased on x-rays or ultra-sound, MRI has the ability to distinguish soft tissues based onmagneti properties of atomi nulei and this has revolutionized the �eld of struturalmedial imaging of the inner organs. Continuing improvement of MRI regarding imageresolution and ontrast has pushed the level of detail for visualization of the anatomy andimages with sub-millimeter resolution are now ommon. Espeially within the �eld of neu-rology, MRI has brought important new perspetives into understanding and diagnosingvarious diseases and disorders of the entral nervous system as detailed visualization ofthe brain tissues is possible. Many neurologial diseases and disorders are manifested inMRI visible pathologies of the erebral anatomy.Sine the introdution of strutural MRI in the �eld of neurology, inreasing e�orthas been put into quanti�ation of the imaged anatomial strutures. In addition tophysiians' qualitative and subjetive assessments in linial pratie, researh has pushedthe need for standardized quantitative data to ompare brain images aross patients andimaging equipment, understand disease e�ets and progression and formalize diagnostiriteria based on the imaging data. One way to quantify an anatomial struture is bydelineation of its boundaries. Protools for manual delineations of anatomial strutureboundaries are widely used [101, 116℄ and sine the early nineties spei� attention hasbeen given to omputerization and automation of strutural quanti�ation for onsistenyand preision improvement and human workload minimization.Pathologial onditions of both the erebral gray matter (GM) and the erebral whitematter (WM) have been intensively investigated. The GM is primarily omposed of neu-rons and holds funtional areas ontrary to the erebral WM whih is omposed of signaltransmitting myelinated axons. Many neurologial disorders are linked to degenerationof the neurons, while others are due to hroni damage to the brain tissues. Importanthroni neurologial disorders a�eting the erebral tissues inlude epilepsy and mentaldisorders suh as shizophrenia. Some neurodegenerative diseases suh as multiple sle-rosis primarily a�et the WM while most neurodegenerative diseases primarily a�et theGM. An important lass of neurodegenerative diseases a�eting the GM is dementias suhas Alzheimer's disease (AD) whih is reognized as one of the major health hallengesof this entury beause of the growing elderly population [11℄. Pathologial GM regionsare mainly found in the erebral ortex, the largest part of the human brain. Regions ofextensive researh are the hippoampal formation and neoortial regions.Hippoampus is part of the limbi system and primarily involves memory formations.It is a�eted in diseases suh as shizophrenia, temporal lobe epilepsy (TLE) and various1



Chapter 1: Introdution 2neurodegenerative diseases. In TLE, the hippoampal size and shape play ritial rolesin the diagnosis and assessment of need for surgial intervention and for these reasonsmeasurement of the hippoampus is used in linial pratie. Beause of the struturalompatness and limited size of the hippoampus, it is possible to quantify the strutureby manual delineation of the boundaries diretly on the images. Various neurodegenera-tive diseases suh as AD, vasular dementia, and Parkinson's disease ause hippoampalatrophy [12, 65, 67℄. However, hippoampal volume estimates are not used in the lini-al diagnosis of these patients despite existing evidene that hippoampal volume is animportant linial marker in these diseases and may aid in earlier diagnosis omparedto diagnosti riteria only based on neuropsyhologial tests [18℄. A reason for this isthat, ontrary to TLE, hanges in the hippoampal struture are not spei� for theseneurodegenerative diseases as more information is needed to di�erentiate between the di-agnoses. Studies indiate that a ombination of hanges found in the hippoampus andthe neoortex may provide better di�erentiation [18℄. Despite the small and on�ned sizeof the hippoampus, no globally aepted onsensus on the manual delineation yet ex-ists [78℄. Even if operators follow the same segmentation protool, signi�ant inter- andintra-operator variability in the resulting hippoampal volume is observed [55℄. This makeshippoampal measurements di�ult to ompare aross studies and ompliates statistisbased on suh measurements.The neoortex is a tightly folded sheet of tissue overing the erebral hemispheres.Neoortex is relatively thin (2-3 mm) ompared to its area (2000-2500 m2) and holds themajority of the brain's funtional areas suh as visual, sensory and auditory proessingand interpretation, motor ontrol and ognition [44℄. In some diseases, e.g. frontotemporaldementia, the primary strutural hanges are found in the neoortex, thus rendering thisanatomial struture an important linial marker [96℄. The assoiation neoortex is alsoinvolved in early AD and this involvement of neoortex di�erentiates AD from normalaging aording to histopathologial studies [18℄. However, as with the hippoampus,neoortial strutural hanges are rarely used in the diagnosis of neurodegenerative diseasesand MRI sans are usually only aquired to rule out di�erential diagnoses suh as tumorsor other brain damage when diagnosing a suspeted dementia [100℄.Many of the neurodegenerative diseases a�eting the erebral ortex are di�ult todiagnose beause of their overlapping symptoms and insidious onset. This is the aseespeially for dementias and as only symptomati and disease stalling treatment an beo�ered, early and orret diagnosis is ritial [45℄. Cortial atrophy is seen as one pos-sible marker in early dementia [93℄. Widespread ortial atrophy an be observed fromMRI images, often manifested in enlarged ventriles, but it is not learly present in theearly stages of neurodegenerative diseases. The subtle foal hanges related to the earlystages of neurodegenerative diseases, as revealed by detailed strutural MRI, have beenextensively researhed for the purpose of early detetion, thus aiding in early diagno-sis [3, 7, 12, 15, 16, 18, 37, 46, 56�58, 65, 67, 92, 96, 100, 117℄. Detetion of suh foal ortialhanges ourring in larger ortial areas seems highly impratial in the lini using on-ventional manual delineations when onsidering the limited linial use of hippoampalquanti�ation. Therefore, robust, automati delineations or segmentations of the erebralortex may be the only way to integrate knowledge of subtle strutural hanges in theearly diagnosis of neurodegenerative diseases.In addition to aiding in patient diagnosis, automati methods for quantifying erebralstrutures bring the possibility of performing large sale ohort studies when investigat-ing the strutural manifestations of various brain diseases. Furthermore, standardizedquanti�ations may aid in validating pharmaeutials targeted to stop or redue erebralatrophy and may even speed up the proess of linial trials. In reognition of these impor-tant perspetives, numerous automati or semi-automati methods have been developedfor quantifying the strutures of the human erebral ortex.



3 1.2 Quanti�ation of Cortial Strutures1.2 Quanti�ation of Cortial StruturesTraditionally, strutural brain imaging has been applied to detet pathologies readily vis-ible in the images. Pathologial onditions suh as tumors, hemorrhages and ishaemiaare usually disovered by a single MR san while tissue in the proess of neurodegen-eration may not be detetable from a single san. Beause of the large variability ofthe normal brain, the subtle hanges ourring in the early stages of neurodegenerativediseases require serial sans to follow the progression and detet the pathologial tissue.However, with the inreasing knowledge of the alterations to the brain tissues aused byvarious neurodegenerative diseases, disease spei� atrophy patterns or signatures may berevealed in the future whih enables detetion of early atrophy from a single san [118℄.Therefore, researhers are working toward a goal of di�erentiating between di�erent neu-rodegenerative diseases by ortial atrophy patterns and identifying linial markers to aidin early diagnosis. Reahing this goal involves aurately measuring subtle morphologialhanges, identifying similar patterns of atrophy in population groups, and �nally applyingthe quanti�ation methods in linial studies.To e�etively measure subtle morphologial hanges and di�erenes in the erebralortex, 3D T1 weighted high resolution images are needed [4℄ and are usually aquired bygradient eho sequenes. Voxel sizes around one ubi millimeter are ommon and imageswith high tissue ontrast are generated with at least 1.5 Tesla sanners. 3 Tesla sannersare inreasingly beoming available in hospitals [90℄.Even though MRI an apture the erebral anatomy in high detail and with exel-lent ontrast, the morphologial quanti�ation is ompliated by fators related to noise,distortion and other artifats found in MRI [119℄. Cortial morphologial quanti�ationis further ompliated by the omplex struture and proximate objets with overlappingimage intensities suh as the dura mater and larger veins.A proliferation of methods to quantify di�erenes and hanges in the erebral ortexhas been seen during the last twenty years. The methods apply a variety of tehniquesand a taxonomy of the methods an be onstruted based on these tehniques [107℄. Herethe fous is on three main ategories in whih most work on ortial quanti�ation fall:1) methods that perform segmentation of the ortex by labeling the image voxels (regionbased), 2) methods that quantify hanges in intensity between sans (morphometry based)and 3) methods that integrate knowledge of the underlying anatomy to reonstrut thetissue boundaries (surfae based).1.2.1 Region Based ApproahesA lassial way of quantifying strutures in images is segmentation of the objet of inter-est. Region based approahes operate in the image domain analyzing the intensity valuesand perform disrete morphologial operations to identify strutures. Segmentation isperformed by labeling eah pixel or voxel in the image as belonging to di�erent lasses(di�erent objets of interest). Strutural quanti�ations are usually based on voxel ounts(volumetri measurements).Conventional image segmentation tehniques inlude thresholding, region growing andlustering algorithms. However, when analyzing biologial images suh simple approahesare rarely su�ient. Within the �eld of neuro imaging, more omplex segmentation so-lutions have therefore been proposed. Here three ategories of segmentation approahesare overed: region of interest segmentation, atlas based methods and segmentation ap-proahes based on tissue lassi�ation.Region of InterestRegion of interest (ROI) methods ompute an overall size for eah brain struture basedon segmentations. Conventional segmentations involve manual delineations of tissueboundaries in onseutive slies of an MRI san [56�58℄. Suh delineations of tissue



Chapter 1: Introdution 4boundaries are laborious and subjet to inter-operator variability [30℄. However, semi-automated [92,125℄ and fully automated [51�53,89℄ methods have been proposed, but theseare not widely used [3℄. Other ROI methods use stereology to quantify the struture [26℄.Volume estimates from ROI analysis an provide valuable insight into neurodegenerativediseases, but in the early stages of neurodegenerative diseases, hanges in overall volumeare minimal [4℄ and the subtle hanges in subregions of the ROI may be overlooked. ROIanalysis is mainly applied in quanti�ation of relatively small on�ned strutures suh asthe hippoampus, the audate nuleus and the entorhinal ortex as these are of a manage-able size but still reognized as important surrogate markers for several neurodegenerativediseases [92℄.Apart from human interation related problems of manual or semi-automated methods,the fous on a single struture ignores hanges in other strutures and may forestall newinsight into the pathology of neurodegenerative diseases [3℄.Atlas BasedAtlas based approahes o-register the subjet image with a template ontaining prede-�ned target regions of interest (atlas) so that segmentation of the target regions an beobtained by mapping atlas regions to the subjet image. Suh an approah is depen-dent on the registration tehnique used, the template seleted and the atlas applied forthe segmentation. Numerous registration methods exist [77, 128℄, as image registration isintensively researhed and driven by a wide range of appliation areas.Usually a brain template is the average of a large sample of spatially aligned images.Suh an average has well-de�ned image edges of morphologially invariant strutures whilestrutures with greater variation, suh as the ortial regions, are usually blurred in thetemplate image. Morphologial variations an be redued by generating templates basedon high dimensional non-linear registrations, thus resulting in averages with more well-de�ned image edges. However, removing morphologial variations may lead to alignmentswhere the images no longer are anatomially onsistent. Several groups have developedand re�ned MRI brain templates and atlases [32, 34, 39℄.Choie of template is important for the subsequent segmentation [95℄. If the subjetsunder study are homogeneous with respet to fators suh as age and disease stage, itmay be preferred to use an image from the target population as template instead of anaverage template from a broader population [16℄. In suh ases, manual intervention isneeded to de�ne the regions of interest in the template. Problems with artifats and poorsignal-to-noise of a single image an be solved by repeated imaging and averaging of thesame subjet [54℄.Atlas based approahes are well-suited for quanti�ation of regions with little mor-phologial variation. However, in the ase of the erebral ortex it is di�ult, if notinoneivable, to reate a template representative of the great variation in ortial foldingpatterns.Tissue Classi�ationTissue lassi�ation of the ortial GM provides means for measuring the ortial volume.Usually, a lassi�ation into WM, GM, and erebrospinal �uid (CSF) is performed. Inorder to aomplish suh lassi�ation, non-erebral tissues are usually removed prior tolassi�ation. A variety of lassi�ation methods have been proposed based on Bayesiananalysis [81℄, lustering [86℄, fuzzy lassi�ation [112℄, neural networks [114℄, deterministiannealing [40℄, Markov Random Fields [98℄ and ombinations [8℄.Other methods for ortial GM lassi�ation have been proposed. Bazin and Phamproposed a method that enfores a given topology on the target struture whih preventsholes and handles from ourring in the segmentation [10℄. Suh topologial inonsisteniesare often seen in onventional lassi�ation methods due to image noise. Angelini et al.used a deformable model to segment the brain into WM, GM and CSF [2℄. As desribed



5 1.2 Quanti�ation of Cortial Strutureslater on, deformable models are often used to reonstrut the ortial surfae; however,this approah uses a level set frame work solely for voxel lassi�ation.Tissue lassi�ation of voxels in the image is limited by the image resolution so partialvolume e�ets in�uene the segmentation. Furthermore, lassi�ation of the ortial GMonly provides global measures of di�erenes in the ortial volume. For measuring foale�ets regional subdivisions are needed. This involves manual delineations or ombinationwith an atlas tehnique.Disussion of Region Based ApproahesRegion based approahes for quanti�ation of the erebral ortex all have problems at-tahed: ROI analysis requires human interation whih is laborious and prone to errorsand variability. Model and atlas based approahes have di�ulties apturing the wide mor-phologial variety of the human ortex. Tissue lassi�ation only provides global measuresof ortial volume di�erenes.Generally, methods resulting in voxel based segmentation su�er a number of problemsregardingmorphologial quanti�ation. Firstly, the segmentations are limited by the imageresolution so only strutural hanges of voxel size proportions an be deteted. Seondly,morphologial harateristis suh as urvature and thikness are di�ult to apture fromsimple onneted segmentations. This is even more ompliated for the ortial struturebeause of its tightly folded appearane. Cortial thikness estimates have been proposedusing a segmentation method propagating out distane values from the WM omponentuntil the GM/CSF interfae is reahed [73℄. However, partial volume e�ets ompliatethe detetion of GM/CSF image edges and often subvoxel auray is needed to identifysubtle tissue di�erenes.1.2.2 Morphometry Based ApproahesMorphometry based approahes analyze the intensity di�erene between serial images orbetween an image and a template. Suh approahes rely on registration tehniques tospatially align images. Three types of intensity di�erene based methods have been devel-oped for quanti�ation of erebral strutures. Two approahes diretly measure di�erenesin intensity while one analyzes the deformation �eld involved in the spatial alignment ofimages.Intensity Shift ApproahesIntensity shift approahes ompute brain volume hange by quantifying the di�erene inimage intensity between spatially aligned serial MRI sans in longitudinal studies. Usuallyonly whole brain volume hange is measured automatially; regional atrophy is determinedby manually de�ned regions. Two intensity shift methods are popular, namely the bound-ary shift integral (BSI) [38℄ and strutural image evaluation using normalization of atrophy(SIENA) [103℄.BSI uses a rigid transformation in the alignment and intensities are normalized toompare follow-up sans with the baseline san. The method quanti�es the shift in tissueboundaries by integrating over the di�erene in image intensities.SIENA orrets for skull size in the registration proedure whih results in a full a�netransformation and resamples both baseline and follow-up sans to obtain images withsimilar interpolation-related blurring. SIENA identi�es edge points in both images andestimates the motion of eah point perpendiularly to the loal edge. This redues thesensitivity to intensity normalization.Both BSI and SIENA have been shown to provide reasonably aurate measures ofbrain atrophy [14℄ and to be apable of separating AD patients from healthy ontrols[46℄. However, whole brain measures are insu�ient for determining subtle hanges in theearly stages of neurodegenerative diseases and regional measures using these methods are



Chapter 1: Introdution 6dependent on manual intervention. Furthermore, these methods are dependent on serialsans whih indue diagnosis delay [4℄.Intensity shift approahes are highly dependent on the registration and normaliza-tion of intensities whih is ompliated by ommon intensity non-uniformities aused byinhomogeneities in the radio frequeny �eld oil [127℄ and other artifats [119℄.Voxel Based MorphometryVoxel based morphometry (VBM) performs voxel-wise omparisons between spatiallyaligned MRI sans of subjet groups enabling identi�ation of inreased or dereasedGM density throughout the entire brain [5, 120℄. The spatial alignment involves lassi�-ation of GM, WM and CSF. The GM map is non-linearly registered to a template andgroup averages are alulated and spatially smoothed with a �lter. Group di�erenes andorrelations with linial parameters are estimated by �tting a statistial model at eahvoxel [3℄.The auray of VBM depends on the registration tehnique used and anatomialdi�erenes may be inferred by systemati registration errors or by systemati shifts inuna�eted regions aused by hanges in a�eted regions [13,110℄. To address these issues,information of the deformations (expansions or ontrations) involved in the registrationis enoded in the aligned GM map [43℄. This approah is alled optimized VBM.A similar approah, alled regional analysis of volumes examined in normalized spae(RAVENS), has been proposed [29,30,42℄. RAVENS use a high-dimensional elasti trans-formation driven by point orrespondenes in the spatial normalization proess while opti-mized VBM relies on relatively smoother parametri transformations [4,30℄. The informa-tion of the deformation �eld is enoded in the aligned map thus preserving tissue volumesof the original image similar to optimized VBM [30℄.VBM analysis has been applied in numerous studies of erebral disorders [62, 117℄,normal brain development and aging [104℄ and other non-pathologial investigations [25,82, 88℄.VBM tehniques are ritiized for being too reliant on a perfet registration and doubt-ful assumptions in the statistial model [110℄. Another issue is that VBM does not aountfor the ortial folds whih means that small e�ets of opposing sulal walls may give riseto an aumulated signi�ant e�et when averaging the GM maps [3, 36℄.Tensor Based MorphometryTensor based morphometry (TBM) analyzes the deformation �eld involved in high-dimensional non-linear mapping of serial intra-subjet images [6, 19℄. Using the determi-nant of the Jaobian matrix assoiated with the deformation �eld, loal tissue expansionand shrinkage an be identi�ed and the Jaobian maps an be used to quantify intra-subjet longitudinal e�ets and di�erenes between subjet groups. Expressing the tissueexpansion and shrinkage by the Jaobian maps removes diretional information of atrophywhih may be non-isotropi. New methods use the full dimensionality of the deformationtensors and an better detet and visualize foal areas of atrophy [3℄.TBM has been used in di�erent areas suh as studying the developing human brain [21℄,visualizing the atrophy pattern in patients with AIDS [19℄ and measuring degeneration inAlzheimer's disease [37℄ and fronto-temporal lobar degeneration [7, 15, 105℄.The auray of TBM depends on the applied registration method and ortial foldingpatterns are not aounted for.Disussion of Morphometry Based ApproahesMorphometry based approahes address the problem of the limited resolution as sub-voxel hanges of the strutures an be seen as hanges in voxel intensity. However, suh



7 1.2 Quanti�ation of Cortial Struturesapproahes have other problems attahed regarding the morphologial quanti�ation. In-tensity shift analysis measures whole brain hanges whih is insensitive to subtle ortialhanges found in the early stages of many neurodegenerative diseases. Furthermore, thesemethods are very reliant on intensity normalization and registration performane whihmay introdue unertainties in the measurements. Also VBM and TBM are relying on thequality of image registration and they further lak the ability to distinguish e�ets fromopposing walls of tight suli.1.2.3 Surfae Based ApproahesSurfae based approahes model the ortial sheet with 2D manifold surfaes embeddedin 3D, thus aiming at modeling the underlying anatomy. This relaxes the restritions im-posed by the limited image resolution and enables inorporation of anatomial knowledge.Furthermore, surfae based approahes are potentially independent of image registrationand intensity normalization. Finally, suh approahes allow for distinguishing opposingwalls of suli due to the expliit reonstrution of the ortial sheet.Apart from morphologial quanti�ation purposes, surfae based reonstrution of theerebral ortex has appliation within funtional brain imaging for mapping ativity ontothe ortial surfae [109℄ and within neuro-surgery for preoperative planning, postoperativeevaluation and surgery simulation. Also, visualizations of the buried ortial regions arepossible by ortial unfolding [36℄, as well as assignment of anatomial labels to the ortialGM [99℄. In addition to visualization purposes, surfae reonstrutions provide the meansfor reating surfae based atlases where anatomial and funtional regions an be de�nedin a anonial spae, thus omplementing the widely aepted volumetri oordinate spaesand atlases [36℄.As the human erebral ortex is a omplex, highly onvolved sheet-like struture, themodeling of the struture using surfaes is hallenging. In MRI, the ortial boundariesare often obsured or partly missing beause of noise, inhomogeneity artifats and partialvolume e�ets originating from the aquisition [119℄. Opposite banks of tight suli on theouter boundary may meet inside the sulal folds and appear as onneted in MRI. Surfaemodeling an ompensate for obsured and inomplete image edges. However, in MRI,information on the outer ortial boundary may be ompletely missing in several tightsuli and at the top of gyri the boundary may be obsured by meninges and dura materlose to the ortex. Furthermore, issues onerning the topology of the ortial sheet areunavoidable beause of the inherent noise in MR images.The ideal surfae modeling of the erebral ortex must align with the true underly-ing anatomial boundaries of the ortex and respet the true ortial topology whih isspherial if losed at the brain stem [48℄. To ahieve these properties, a proliferation ofmethods for modeling the erebral ortex with surfaes has been proposed during the lastdeade. One way of reonstruting the ortex is using deformable models where a on-tour or surfae is manipulated to �t target image boundaries. Usually, approahes basedon deformable models implement either a variant of the lassial ative ontours [23, 61℄;parametri deformable models or a variant based on geometri deformable models [87,97℄.Other approahes for ortial reonstrution by surfaes usually apply voxel based teh-niques in ombination with iso-surfae algorithms suh as Marhing Cubes [74℄.A ommon trait of deformable models is that an initial ontour or surfae is evolvedtoward target boundaries. In parametri deformable models, the initial ontour or surfaekeeps the same topology during deformation. This is espeially useful when the targetstruture has a known topology. Geometri deformable models have the ability to hangetopology and adapt to the topology of the target struture. This is advantageous in manysegmentation problems, however, when the target struture has a known topology it is adistint disadvantage not having a �xed topology during surfae evolution. This drawbakis espeially pronouned when geometri deformable models are applied to noisy imagesas found in MRI.



Chapter 1: Introdution 8Usually the ontour or surfae is initialized ompletely inside or ompletely outside thetarget boundary and uses in�ation or ontration to approah the target boundary in aniterative manner. The main di�ulty in ortial reonstrution lies in orretly modelingthe tightly folded suli. Methods initializing a surfae outside the ortex have problemspenetrating the suli and reahing their fundi. The GM/WM boundary is easier to disernin MRI beause these image edges, ontrary to the GM/CSF boundary, are una�eted bythe tight folds and proximate dura mater. Therefore, several methods utilize information ofthe GM/WM boundary to detet the GM/CSF boundary as the ortex an be onsideredas a ontinuous laminar struture with smoothly varying thikness.Methods for surfae reonstrution of the erebral ortex have been developed sinethe early nineties and many researh groups have ontributed to the �eld. The followingdesribe a seletion of these ontributions using parametri and geometri deformablemodels as well as other surfae based approahes for reonstruting or quantifying theerebral ortex.Parametri Deformable ModelsParametri deformable models are originating from the so-alled snake formulation by Kasset al. [61℄. The basi method desribes a parametri 2D ontour in�uened by internalspline fores and external image and onstraint fores. A funtional expressing the energyof the snake was iteratively minimized to obtain the loation of the ontour with the lowestenergy, thus resulting in a segmentation of the image. Cohen and Cohen introdued anin�ation fore to the ative ontour [22℄ and extended it to 3D and so named it a balloonmodel [23℄.Davatzikos and Prine proposed to model the ortial sheet by a ribbon model where a2D ontour was �tted to the enter of the ortial sheet using the homogeneity of intensitylevels within the GM [31℄. Davatzikos and Bryan extended the ribbon model to 3D withinitialization outside the brain [28℄. Vaillant and Davatzikos further re�ned the methodand obtained parametrizations of the sulal folds using separate ative ontours for eahfold [113℄. This approah relies on lose initialization of the ontour and manual interationin order to model the sulal folds. Furthermore, the use of separate ative ontours tomodel the suli alters the topology of the reonstrution.MInerney and Terzopoulos added a reparametrization step to the ative ontour byde�ning a grid of nodes as either inside or outside the ontour [83, 85℄. This way, theontour an dynamially hange the topology and easily grow from a small initializationontour. These so-alled T-snakes were extended to 3D (T-surfaes), and it was demon-strated that a T-surfae an be �tted to the GM/CSF boundary by initializing it outsidethe ortex [84℄. This strategy, however, fails to grow into the suli.MaDonald et al. used a sphere as the initial surfae and deformed it to the GM/WMboundary in a multisale fashion. Subsequently, a oupled surfae approah was applied.In this approah, two surfaes simultaneously are deformed under proximity onstraintsmaintaining a prede�ned minimum and maximum distane between the GM/WM andGM/CSF boundary [75℄. This way the GM/CSF surfae is dragged towards the fundi ofsuli and spherial topology is enfored due to the spherial initial surfae. The proximityonstraints prevent the oupled surfaes model from aurately delineating ortial areaswith a thikness outside the prede�ned distane interval. Furthermore, suh an approahis more omputational expensive as the model beomes more omplex by the surfaeoupling.An approah by Dale et al. identi�es the GM/WM boundary using voxel lassi�ations,iso-surfae extration and a deformable model. This surfae is subsequently expandedtowards the GM/CSF boundary [27℄. This has the advantage that all suli are present inthe initial state and enables the preservation of the suli during deformation even thoughevidene of the GM/CSF boundary may be missing in the MRI data. The tight sulal foldsare modeled by preventing self-intersetions in the deforming surfae, thus the delineationof the folds are plaed equidistantly from the sulal walls of the GM/WM boundary.



9 1.2 Quanti�ation of Cortial StruturesClearly, the diretion of in�ation is important to the resulting outer surfae. Dale et al.used the diretions of the surfae normals. This single surfae approah is faster thanthe oupled surfae approah by MaDonald et al. and it aptures all the tight suli.However, the expansion of the surfae towards the outer boundary is sensitive to smallerrors or irregularities in the initial surfae whih may lead to modeling of non-existentfolds.Xu et al. also used a GM/WM surfae as the initialization of a deformable model [121℄.They used a gradient vetor �ow (GVF) to de�ne diretions toward the entral layer ofthe ortex. This solution provides a fast and onsistent onvergene of the surfae, buttight suli with no evidene of the outer boundary are not aptured by this method. Theirapproah does not impose self-intersetion onstraints whih is neessary when segmentingthe outer boundary and the approah requires manual interation.Another approah using a WM/GM boundary representation for subsequent GM/CSFdelineation was proposed by Kriegeskorte and Goebel [66℄. They extrat the WM voxelsin eah hemisphere of the erebrum using a ombination of atlas masking, intensity inho-mogeneity orretion, anisotropi �ltering and region growing. The hemispheri WM om-ponents are modi�ed to obtain spherial topology and are tessellated to polygon meshes.Verties of the polygon meshes are shifted along surfae normals to delineate the GM/WMboundary and the GM/CSF boundary. Unfortunately, it is not lear from the doumen-tation how the boundaries are deteted during the deformation proess.Kim et al. [64℄ proposed a method where the WM surfae is obtained by deforminga spherial polygon model to the GM/WM boundary as done by MaDonald et al. [75℄.The GM/CSF boundary is found by expanding the WM surfae along a Laplaian �eldgenerated between the WM surfae and a skeletonized CSF image while preventing self-intersetions. While ahieving relatively robust and onsistent onvergene, this method ishighly dependent on lassi�ation of CSF and the assumption that CSF is at least partlyvisible between all sulal folds.Xu et al. initialized an ellipsoidal mesh outside the ortex and used a GVF �eldombined with an inward pressure fore to deform the mesh to the ortial boundaries[122℄. They used a reproduing kernel partile method as the deformation model whihprovides e�ient reparametrization proedures and self-intersetions are avoided by usingfast marhing methods. Though this approah is novel in the way the deformations areimplemented, the shrink-wrapping strategy still su�ers from inability to reah deep intotight sulal folds.Geometri Deformable ModelsGeometri deformable models are variants of the propagating fronts methods [17,20,87,97℄,where the surfae is impliitly represented as the zero isovalue of a level set funtion. Be-ause of the impliit representation, no self-intersetions an our in geometri deformablemodels. After propagation of the level set funtion, a parametri surfae an be obtainedby omputing an iso-surfae at the zero isovalue of the level set funtion. Level set methodsare numerially stable and faster than algorithms deforming parametri models [50℄.Zeng et al. used a oupled surfaes approah in a level set framework [126℄. Goldenberget al. adopted the oupled surfaes approah and formulated the segmentation as a mini-mization problem [41℄. Coupled surfaes approahes enable modeling of tight sulal foldsbeause of an inter-surfae distane onstraint. However, these methods su�er the sameproblems as the approah by MaDonald et al. [75℄. Furthermore, in both approahes theresulting surfaes have arbitrary topologies due to the level set evolution tehnique.Han et al. proposed a topology preserving geometri deformable model (TGDM) wherethe evolving surfae is kept homeomorphi to the boundary of a digital objet delineatedby the level set funtion on an underlying grid [47, 50℄. The surfae is only allowed tohange sign at simple points of the underlying grid, thus preserving the topology of thedigital objet and the surfae. A GM/WM surfae is obtained by WM lassi�ationfollowed by a TGDM with a regularizing fore and a signed pressure fore based on fuzzy



Chapter 1: Introdution 10tissue lassi�ations. The entral ortial layer are delineated by evolving the GM/WMsurfae using a TGDM with a GVF fore similar to the parametri approah by Xu etal. [121℄. Finally, the GM/CSF boundary is obtained by propagating the entral ortialsurfae using a TGDM with ombined pressure and GVF fores. This approah overomesa number of the problems related to ortial surfae reonstrution by enforing orrettopology while maintaining fast and onsistent onvergene. However, manual interationis required in the preproessing steps of the method.Xue et al. used the framework of Han et al. [47℄ to reonstrut the ortial surfaes ofneonates [124℄. Cortial reonstrution of neonate brains is partiularly di�ult beauseof inverted GM/WM ontrast in MRI images ompared to adults, lower ontrast-to-noiseratio, the maturation proess whih ontinuously hanges the GM/WM ontrast and thedi�erent folding patterns at di�erent stages of the developing brain. Therefore, the maindi�erenes between the methods by Xue et al. and Han et al. are the tissue lassi�ationproess and a relaxation of the spherial topology onstraint as the topology of neonateorties are not well-established. In ontrast to the method by Han et al., the reon-strution of neonatal orties is fully automati, suggesting that reonstrutions of adultorties also ould be done fully automati.Li et al. proposed a very fast method based on dual front ative ontours [71℄. Dualfront ative ontours iteratively �nd the global minimum within an ative region basedon minimal path tehniques [24℄ where the ative region is de�ned on both sides of theontour, typially by simple dilations with a struturing element. For the purpose ofortex segmentation, Li et al. used histogram analysis to de�ne the ative region insteadof simple dilations. The approah requires manual adjustment of histogram parameters.Furthermore, in pathologial brains tissue intensities may not have distint peaks in thehistogram whih ompliates the estimation of a proper threshold. Finally, the topologyproblem was not addressed in the proposed method.Other Surfae ReonstrutionsThough most approahes to ortial reonstrution are variants of parametri or geometrideformable models, other tehniques have also been suggested. In addition to low levelmethods suh as edge detetion [63℄ and region growing [123℄, a variety of algorithms havebeen proposed. For example Mangin et al. used a 3D skeletonization of the GM/CSFinterfae to generate a surfae and extrat sulal patterns [79℄. Van Essen et al. useda ombination of Gaussian intensity transformations, gradient information and manualguidane with subsequent iso-surfae extration and topology orretion to obtain a surfaerepresentation of the enter of the ortex [115℄. Shattuk and Leahy segmented the WM ofeah hemisphere, modi�ed the WM omponent to obtain spherial topology, and extratedthe GM/WM boundary using an iso-surfae algorithm [102℄. A similar approah with aBayesian segmentation was used by Joshi et al. on digitized ryosetions of maaquemonkey brains [60℄. However, suh methods are not well suited for generating aurateand topologially orret representations of the outer ortial boundary whih is whydeformable models have gained popularity within the �eld over the reent years.Some methods quantify the ortial morphology by ombining a surfae representationwith analysis of the image intensity. Barta et al. used a stohasti model of the intensitydistane histogram relative to the GM/WM surfae to measure the ortial thikness [9℄.Others alulate the ortial thikness using voxel segmentation and only use the or-tial surfae for projetion of the thikness, thus enabling visualization and mapping ofthe ortial thikness [111℄. It is argued that voxel based ortial thikness estimations,though less aurate, are more robust than approahes expliitly modeling the outer or-tial boundary [9, 111℄. Suh hybrid methods may be useful. However, to quantify themorphology of the ortial sheet to its full extent, omplete surfae reonstrutions stillseem to be the best solution.



11 1.2 Quanti�ation of Cortial StruturesDisussion of Surfae Based ApproahesSurfae based approahes applying deformable models have problems attahed to surfaeinitialization, topology of target struture and robust detetion of image boundaries duringsurfae evolution. As desribed above several solutions to overome these problems havebeen proposed.Several researhers suggest the use of oupled surfaes [41, 75, 126℄. Coupled surfaesapproahes have the advantage of expliitly using information of both ortial boundariesto detet the outer boundary. This enables the GM/CSF surfae to model the deep, narrowsuli. The oupling is ahieved by speifying a minimum and a maximum distane betweenthe surfaes. Suh onstraints, however, prelude the modeling of anatomy deviating fromthe norm as de�ned by the distane limits. When modeling abnormal anatomy found inneurodegenerative diseases and other neurologial disorders or normal neonatal anatomy,restritions on the ortial thikness render suh approahes inapt to aurately quantifythe true morphology [124℄. Furthermore, even in normal adult orties, a bias betweenthe hosen prede�ned distane and a measured ortial thikness may be inferred by therestritions [75℄.Reent methods seem to develop in similar diretions. The most promising meth-ods, whether based on parametri or geometri deformable models, for reonstruting theGM/CSF boundary use a GM/WM boundary representation to �t the surfae to the outerortial boundary. These methods follow roughly the steps of 1) erebrum WM lassi�a-tion, 2) topology orretion, 3) WM tessellation and 4) expansion of WM surfae towardsthe GM/CSF boundary [27, 47, 64, 66℄, where step 2 and 3 may be omitted if a spherialsurfae is deformed to the WM/GM boundary [64℄. The methods proposed by Dale etal. [27℄, Xu et al. [121℄, Han et al. [47℄, and Kim et al. [64℄ all use similar strategies forexpanding the WM surfae towards the entral/GM surfae; all four methods use a vetor�eld for guiding the surfae towards the target boundary. Dale et al. use surfae normals,Xu et al. and Han et al. use a GVF �eld, and Kim et al. use a Laplaian �eld. Suhvetor �elds provide better and more onsistent onvergene than using variants of thebasi image gradient.Developers expanding the WM surfae to the entral ortial layer instead of the outerortial boundary argue that this representation of the ortex provides better geometriinformation than both the inner and outer boundaries [72, 121℄. However, expliit rep-resentations of the tissue boundaries better support measurements of ortial thikness.Furthermore, altered morphology aused by pathologies may be easier detetable at thetissue boundaries than at the enter-line of the struture.The di�erent image fores proposed for evolving the deformable models towards the or-tial boundaries an all be applied in both parametri and geometri frameworks. Choieof framework seems to be dependent on what property the individual developer �nds mostimportant. One property that is emphasized repeatedly is the ability to onstrain topologyof the �nal ontour. With the lassial deformable models this ould only be ahieved byparametri models. However, with the development of topology preserving level sets [49℄,the use of geometri models for ortial reonstrution have beome more popular. Re-ently, Ségonne developed a level set method where the topology an be ontrolled withoutloosing the ability of ontours to merge, split and vanish during evolution whih usuallyadvoates a strong advantage over parametri deformable models [108℄. Others are alsoworking on variants of topology preserving level sets [1, 69, 94, 106℄.Hybrid methods ombining surfae reonstrution with voxel based analysis are po-tentially very robust. However, full ortial surfae reonstrutions provide information ofthe morphology whih annot be quanti�ed by hybrid methods. So far, the most promis-ing methods to obtain omplete ortial reonstrutions rely on deformable models. Eventhough problems related to deformable models, suh as robustness, are evident in today'ssurfae solutions, the goal is still aurate reonstrutions of the erebral ortex for thedetetion of subtle, foal morphologial hanges as found in neurodegenerative diseases.



Chapter 1: Introdution 121.3 Aim of the Ph.D. StudyA main goal within the �eld of strutural brain imaging and brain morphometry is todi�erentiate between di�erent neurodegenerative diseases by ortial atrophy patterns.This thesis addresses the initial steps toward this goal. The aim is to develop methodsfor quantifying strutural hanges in the human erebral ortex from MRI images. Toaomplish this, a method based on deformable models is developed to automatiallydelineate the ortial boundaries. Spei�ally, parametri deformable surfaes are used todelineate the GM/WM and GM/CSF boundaries of the ortex. From surfaes representingthe ortial boundaries several measures desribing the ortial struture an be obtained.The ortial thikness is an important measure, but quantities suh as the ortial areaand urvature may also be involved in desribing the hanging ortex as well as ortialvolume for omparison purposes with volumetri methods.Measuring the ortial thikness from surfaes of the ortial boundaries is not a sim-ple matter due to the omplex morphology. Several methods for measuring the thiknessfrom ortial reonstrutions have been proposed [35,59,70,76℄. Also morphologial quan-ti�ation by other measures exists [91℄, but it is outside the sope of this Ph.D. study todevelop new methods for suh quanti�ation.The ability to quantify the ortial struture from MRI provides a mean for quantifyinghanges over time or di�erenes between subjets for the entire ortial struture. However,suh global quantities are not sensitive to small ortial hanges and this raises a need forquantifying foal hanges and di�erenes. This an be aomplished by subdividing theortial sheet by means of an atlas whih may be based on anatomial, funtional or othertypes of regions. However, applying �xed ortial regions wherein the measurements areaveraged, also limits the sensitivity of the quanti�ation as foal hanges may be presentaross regions. Therefore, a point orrespondene between ortial surfaes is needed tofully bene�t from the measurements ortial surfaes provide and part of the study isonerned with the searh for a suitable method for obtaining suh a ortial mapping.Finally, the Ph.D. study investigates the appliation of the methods developed duringthe study within the �eld of neurodegenerative diseases. This is done by applying themethods to quantify ortial strutural hanges in individuals from a large Danish familywith an inherited variant of frontotemporal dementia.1.4 Outline and Contents of ThesisThe thesis is based on �ve papers. Two papers desribe the fundamental method forextrating the ortial boundaries from MRI using deformable surfaes. The third pa-per ompares the developed method with a well-known and widely used method. Thefourth paper deals with the mapping between di�erent ortial surfaes to ompare sim-ilar anatomial regions over groups of subjets. Finally, in the last paper, the methodsdeveloped during the Ph.D. study are applied in a study of prelinial individuals with afamilial neurodegenerative disease.Paper I: Extration of the Cerebral Cortial Boundaries from MRIfor Measurement of Cortial Thikness (Chapter 2)In this paper the fundamental idea of extrating the ortial boundaries is presented. Theentire proess from sanner images to ortial thikness results is desribed and test of themethod on simulated MRI data, several young healthy individuals and a single AD patientsanned with an interval of six months is presented. The surfae deformation proessdesribed in the paper is based on a parametri deformable model and uses a disretesearh spae to minimize an energy funtional. The method is related to the approah byMInerney and Terzopoulos [84℄ in the sense that reparametrizations are performed during



13 1.4 Outline and Contents of Thesissurfae evolution. The main ontribution of the paper is the ombination of a pressurefore with a gradient vetor �ow in the deformation of the outer ortial boundary.Paper II: Ative Surfae Approah for Extration of the HumanCerebral Cortex from MRI (Chapter 3)In this paper an improved surfae deformation proess is presented. Instead of minimizingan energy funtional in a disrete searh spae, the optimal deformation diretions areexpressed as vetors leading to a fore balaning sheme. The energy funtional desribedin the �rst paper is altered to express vetor fores and a loal weighting of fores isintrodued to better adapt to the highly folded ortial sheet. Test of the method onsimulated MRI is reported and the resulting ortial surfaes are shown to better modelthe folded struture than surfaes obtained by a pressure fore or a gradient vetor �owfore alone. The main ontribution of the paper is a deformation approah free of searhspaes and a novel weighting of the terms in the energy funtional in�uened by surfaeurvature.Paper III: Quantitative Comparison of Two Cortial Surfae Ex-tration Methods Using MRI Phantoms (Chapter 4)This paper desribes the omparison of the developed method with the ortex extrationmethod used the most in the literature, namely FreeSurfer, whih is developed at Harvardand based on the method by Dale et al. [27℄. The omparison is based on phantomMRI images onstruted from ortial surfaes extrated from real MRI images. In thisway, ground truth ortial boundaries are reated and the geometrial error of the ortexreonstrutions an be quanti�ed. The paper's onlusion is that the developed method isreonstruting the ortial surfaes with a subvoxel auray and that it performs betterthan FreeSurfer in most of the tests as well as being muh faster.Paper IV: Evaluation of Five Algorithms for Mapping Brain Cor-tial Surfaes (Chapter 5)In this paper �ve di�erent algorithms for mapping between surfaes of the erebral ortexare evaluated. The fous is on algorithms for mapping between verties of disrete surfaeswhih is ompliated by the possibly arbitrary vertex ount of the ortial surfaes. Aproposed feature driven mapping algorithm is presented together with tests of it and fourother mapping algorithms onsisting of a feature driven approah, two spherial mappingapproahes and a basi iterative losest point algorithm. The algorithms are evaluatedwith onstruted riteria for a good mapping, a landmark test using manually plaedlandmarks and an analysis of onstruted statistial maps. The paper onludes that noalgorithm an be singled out as the best hoie of mapping between ortial surfaes; eahmethod has its strengths and weaknesses. However, it is indiated that a ombination ofa spherial warp approah with an iterative feature based algorithm ould be a promisinghoie.Paper V: Cortial Volumes and Atrophy Rates in FTD-3 CHMP2BMutation Carriers and Related Non-arriers (Chapter 6)This paper reports the results of applying the developed methods to identify ortialstrutural hanges in individuals with a familial variant of frontotemporal dementia. Ninepresymptomati individuals arrying the disease mutation are ompared to seven individ-uals from the same family without the mutation. The study is based on two serial MRIsans of eah individual and annualized atrophy rates are alulated. Both volumetriand thikness measurements show that the presymptomati mutation arriers degenerate
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Chapter 2Extration of the CerebralCortial Boundaries from MRIfor Measurement of CortialThiknessAdapted from: S. F. Eskildsen, M. Uldahl and L. R. Østergaard: Extration of the Cere-bral Cortial Boundaries from MRI for Measurement of Cortial Thikness, Progress inBiomedial Optis and Imaging, vol. 5747, issue II, 2005, p. 1400-10.2.1 IntrodutionSeveral diseases degenerate the human erebral ortex. One of the most ommon and fastdeveloping neurodegenerative diseases is Alzheimer's disease (AD). Subtle, spatially loal-ized atrophy may our before the �rst linial signs [2℄. Knowledge on the earliest signsof atrophy and its initiating site in AD patients may aompany earlier and more auratediagnosis of AD. Atrophy of the erebral ortex may be quanti�ed in vivo by measuringthe volume or thikness of the ortex from a magneti resonane imaging (MRI) san,ontaining a series of ross-setional images. Knowledge of ortial volume may indiateatrophy, but annot reveal the exat site of atrophy as loal thikness measurements an.Measurements of ortial thikness from a series of MRI images is ompliated as it re-quires the images to be orthogonal onto the measured struture in order to avoid under- orover-estimates. In addition to this, the relatively low resolution and partial volume e�ets(PVE) may ompliate an aurate de�nition of the ortial boundaries. Manual measure-ment of the ortial thikness is a tedious and time onsuming proess, and the manualmeasurements are likely to be biased to the operator due to the di�ulty of de�ning theortial boundaries. Hene, there is a need for fully automati and objetive methods.Automati measurements of the ortex requires an automati delineation of the ortialboundaries. The erebral ortex is a thin sheet of gray matter (GM), surrounding theerebrum white matter (WM), and surrounded by erebrospinal �uid (CSF). In this paperthe WM/GM and GM/CSF rossings are referred to as the inner and outer boundary ofthe ortex respetively. The ortex is isomorph to a sphere, if losed at the brain stem [1℄.Thus, advantageously, the boundaries may be represented as simple surfaes, isomorph toa sphere.Segmentation algorithms based on deformable surfaes rely on a ombination of high-and low-level information, whih enables delineation of the boundary in areas where imageedges are obsured or missing. Opposite banks of tight suli may meet inside the sulal23



Chapter 2: Extration of the Cerebral Cortial Boundaries from MRI for Measurementof Cortial Thikness 24folds and appear as onneted in MRI due to undersampling and artifats. The maindi�ulty in ortial segmentation lies in orretly penetrating suh suli and reahingtheir fundi, as the true ortial thikness otherwise will be overestimated. MaDonald etal. [9℄ addressed this problem by deforming the inner and outer surfae simultaneouslyunder in�uene of intersetion onstraints and an inter-surfae distane onstraint, whihdrags the outer surfae towards the fundi of suli. However, a bias between the hosenprede�ned distane and the measured ortial thikness may exist [9℄.A di�erent approah to modeling the ortex without a distane onstraint is taken byDale et al. [5℄ In this approah, Dale et al. �t a surfae to the inner boundary of theortex, and in�ates it towards the outer boundary of the ortex. The approah ausesthe surfae to settle at approximately the midpoints of tight suli when no CSF is evi-dent between the sulal banks, and onstraints prevent the surfae from self-interseting.Clearly, the diretion of in�ation is important to the resulting outer surfae. Dale et al.use the diretions of the surfae normals. However, suh an approah requires the use ofexessive smoothing to avoid the formation of non-existent folds, in the presene of smallonavities, or noise in the in�ating surfae. Xu et al. [16℄ introdued an alternative tothe diretion of the surfae normals with a generalized gradient vetor �ow (GGVF) fore,whih provides vetors pointing towards the nearest image boundary. Xu et al. used thisfore for extending the inner surfae towards the entral layer of the ortex. Xu et al.noted that their approah ould be tailored to segmenting the GM/CSF boundary insteadof the entral layer. However, their approah does not impose self-intersetion onstraints,whih is neessary when segmenting the outer boundary, nor is it fully automati.This paper presents a new method inspired by the work of Dale et al. [5℄ and Xu etal. [16℄ The method is apable of fully automatially extrating measurements of ortialthikness, volume and area from a T1-weighted MRI san. The details of the method isdesribed in the following setion, and preliminary test results are presented in setion2.3.2.2 MethodsThe data used as input to the method are T1-weighted MRI sans enompassing theentire erebrum. Tissue inhomogeneity artifats in the MRI volumes are redued usinga method by Sled et al. [12℄, and the volumes are registered into a ommon referenespae using a method by Collins et al. [4℄ The steps in the ortex extration method isillustrated in �gure 2.1. An initial surfae is extrated from the T1-weighted MRI san,and deformed to �t the inner ortial boundary. The resulting surfae is then deformedto �t the outer ortial boundary. From these surfae representations of the inner andouter ortial boundary, anatomial properties of the ortex, suh as the thikness, an beobtained.
Generation

Initial Inner Surface
Deformation

Inner Surface
Deformation

Outer Surface
Cortex ModelMRI Volume MeasurementsFigure 2.1: Pipeline of the method. Rounded boxes indiate proessing steps. Gray boxesindiate data.2.2.1 Initial Inner Surfae GenerationA surfae of the inner boundary of the erebral ortex is generated by extrating the WMomponent of the erebrum, and then performing a tessellation of this omponent. Thesteps are illustrated in �gure 2.2.The brain is extrated from the MRI volume using a brain extration tool [13℄. Theresult after applying the brain extration tool is a volume onsisting of the erebrum,
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Brain Extraction

Cerebrum WM
Isolation of

Cerebrum WM Segmentation Surface Generation

Tessellation
Correction
Topology Initial Inner

Surface
Fuzzy SegmentationMRI VolumeFigure 2.2: Proess of generating the initial surfae. Rounded boxes indiate proessingsteps. Gray boxes indiate data.the erebellum and the brain stem. To identify the WM voxels in the volume, the fuzzy-means algorithm is applied [14℄. The volume is divided into WM, GM, CSF and bak-ground, and the output of the algorithm is a membership volume for eah lass. TheWM membership volume is used in the further proedure of generating the initial sur-fae. To �nd the WM inside the erebrum, the erebrum is automatially separated fromthe erebellum and brain stem, using morphologial operations on the WM membershipvolume.A tessellation of the erebrumWM is performed using a simple iso-surfaing algorithm.The tessellation of the erebrum WM may inlude handles or holes. To ensure that thetessellated surfae is isomorph to a sphere, a topology orretion algorithm by Han etal. [6℄ is applied to the tessellated surfae of the erebrum WM.2.2.2 Inner Surfae DeformationThe initial estimate of the inner boundary of the erebral ortex is a surfae lose tothe true WM/GM boundary. The purpose of the surfae deformation is to smoothenthe surfae and adjust it to the orret tissue boundary. An ative ontour frameworkoriginally desribed by Kass et al. [8℄ is used to deform the surfae. The deformation ismade by iteratively moving the verties to the positions, in a spherial searh spae, whihresult in the lowest energy level expressed by an energy funtion. The energy funtion mustensure that the energy minimum is situated where the surfae �ts the orret WM/GMboundary.Internal and external energies are used to ontrol the behavior of the deformable sur-fae. The internal energies are applied to ahieve a smooth harateristi of the surfaeand help keeping the verties uniformly distributed on the surfae. For this purpose atension term and a �exural term are used. The tension term is an approximation of theLaplaian [10℄:

ELaplacian = ‖~L(~v)‖, where ~L(~v) =
1

n

n
∑

i=0

~vi − ~v , (2.1)where ~v is a vertex in the surfae, ~vi is the ith neighbor to ~v, and n is the number ofneighboring verties to ~v. The �exural term is an approximation to the squared Laplaian[10℄:
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(2.2)External energies are used to guide the surfae towards the WM/GM boundary. Threedi�erent external energies are used, namely gradient, in�ation and initial energy.The gradient energy attrats the deforming surfae to the WM/GM boundary whenlose to image edges of this boundary:
Egradient = −‖~∇I(~v)‖ , (2.3)where ~∇I is the �rst derivative of the intensities in the MRI volume. The magnitude of



Chapter 2: Extration of the Cerebral Cortial Boundaries from MRI for Measurementof Cortial Thikness 26the gradient is used, as the energy funtion must return an energy level at a given position,not a vetor.The fuzzy membership values and the diretions of the surfae normals are used todisplae the surfae towards the orret tissue boundary. If a vertex in the surfae isplaed in WM, the vertex is displaed in the diretion of the surfae normal. Contrary,if the vertex is plaed outside WM, the vertex is displaed in the opposite diretion ofthe surfae normal. The WM membership is assumed to equal or to be lose to theGM membership when exatly on the GM/WM boundary, but to di�er signi�antly fromthe GM membership when far from the boundary. The in�ation energy has no in�uenewhenever the di�erene between the WM and GM memberships is between the thresholds
−T and T :

Einflation =







−(~n(~v) · ~D), if µWM (~v) − µGM (~v) > T (In WM)
−(−~n(~v) · ~D), if µWM (~v) − µGM (~v) < −T (In GM)
0, otherwise (Border region),where ~n(~v) is the unit surfae normal at vertex ~v, ~D desribes the diretion of the move-ment of ~v, and µ is the membership values from the fuzzy segmentation. The expressionis negated to yield a low energy whenever the inner produt between ±~n and ~D is high.The initial surfae is generally a good estimate of the WM/GM boundary. Therefore,an energy penalizing large deviations from the initial surfae is introdued:

Einitial = g(|~vinitial − ~vdeforming|), (2.4)where ~vinitial is a vertex in the initial surfae and ~vdeforming is the orresponding vertexin the deforming surfae. g is a weighting funtion ontrolling the extent of a range Rwhere the energy has no in�uene. This range is neessary as the initial surfae is only anapproximation. g is de�ned as:
g(x) =

{

|x − R|2 , if x > R
0 , otherwise (2.5)The omplete energy funtion used for the deformation of the inner surfae is:

Einner = c1ELaplacian + c2Esquared Laplacian

+c3Egradient + c4Einflation + c5Einitial,
(2.6)where c1...c5 are weights. This funtion is an expression of the energy level of a singleposition in the searh spae of a vertex. The greedy algorithm by Williams et al. [15℄is used to �nd the minimum energy position in the searh spae of eah vertex. Theverties are moved in this way until the number of verties moved during an iteration isbelow a given threshold, where equilibrium is assumed. The used searh spae is spherialontaining 26 di�erent positions.Two hard onstraints are applied to the surfae during deformation; one that ensures aertain minimum distane between neighboring verties, and one that prevents the surfaefrom self-interseting.2.2.3 Outer Surfae DeformationThe inner surfae is used as the initial estimate of the outer ortial boundary. As men-tioned in the introdution, the image edges of the outer boundary in tight sulal foldsannot always be observed in MRI sans. As the ortex has approximately the same on-vexity and onavity as the WM, tight sulal folds an be modeled by displaing the innersurfae in the diretion of the surfae normals. This is done using an in�ation energysimilar to the one used in the inner surfae deformation. If a vertex is loated in WM orGM, the vertex is displaed in the diretion of the surfae normal, otherwise it is displaed



27 2.2 Methodsin the opposite diretion:
Einflation =

{

−(~n(~v) · ~D), if µGM (~v) + µWM (~v) ≥ µCSF (In WM or GM)
−(−~n(~v) · ~D), otherwise (In CSF)A hard onstraint prevents the surfae from self-interseting in suli where no CSF isevident in-between the sulal banks. This auses the in�ation energy to ollapse walls oftight sulal folds at a position approximately equidistant to the inner surfae, when noCSF is evident (see �gure 2.3). However, the in�ation energy may erroneously ollapse

(a) Initial (b) Deforming () FinalFigure 2.3: Example of how the in�ation fore enables modeling of narrow suli with noCSF evident. The gray solid line indiates the deformable surfae, whih approahes theGM/CSF boundary from the WM/GM boundary. As the deformable surfae is pushed inthe diretion of the loal surfae normals, it will eventually meet itself inside deep narrowsuli.the surfae in small onavities, and for example model non-existent folds on top of gyri.Inreasing the in�uene of the internal energies resolves these problems, but also impairsthe ability of the surfae to onform to urved regions on the outer boundary. To overomethis tradeo�, an energy displaing the surfae diretly towards the GM/CSF image edge isinluded in the energy funtion. This energy has the e�et of unfolding onavities on thedeforming surfae when no outer surfae onavities is evident in the image data, and thusavoids forming non-existent folds in the surfae. A proper weighting between this energyand the in�ation energy auses tight sulal folds to ollapse and small onavities to beunfolded, while apturing the GM/CSF image edge. The energy uses a GGVF �eld by Xuet al. [16℄ The omponents of the GGVF �eld point towards edges in a given edge map. Inorder to ensure that the GGVF �eld points towards the outer boundary, the edge map isalulated by taking the �rst derivative of the sum of the WM and GM fuzzy memberships(see �gure 2.4). The GGVF energy is the inner produt between the normalized GGVF�eld vetor ~G and the normalized diretion vetor ~D:
EGGV F = −~G(~v) · ~D (2.7)When lose to the edge de�ned by the edge map, the GGVF energy is swithed to agradient energy alulated from the MRI data. This swith is made when the di�erenebetween the CSF and GM membership value goes below a given threshold ρ:

EGGV F =

{

−~G(~v) · ~D , if |µCSF − µGM | ≥ ρ

−‖~∇I(~v)‖ , otherwise (2.8)The same internal energies is used for the deformation of the outer surfae as thoseused for the inner surfae. The omplete energy funtion used for the deformation of theouter surfae is:
Eouter = c6ELaplacian + c7Esquared Laplacian + c8Einflation + c9EGGV F , (2.9)
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Figure 2.4: Example of a GGVF �eld based on an edge map alulated from the sum ofthe WM and GM memberships using the �rst order derivative.where c6...c9 are weights.2.2.4 MeasurementsHaving the inner and outer boundary of the ortex represented as losed surfaes, it ispossible to obtain a variety of measurements, suh as volume, area and thikness. However,in this paper the fous is on the ortial thikness. The thikness is measured as theshortest distane from a given vertex on the outer surfae to the fae of the inner surfae(not neessarily being a vertex). A thikness measurement is obtained at eah vertex ofthe outer surfae.2.3 ResultsThe generated surfaes ontain approximately 200.000 verties eah. The entire extrationof the ortial boundaries requires less than one hour on a 2.8GHz Pentium 4 proessor,although the deformation proess alone is done in less than 10 minutes.The method was tested on six simulated MRI sans of a brain phantom [3℄ with respe-tively 0%, 1%, 3%, 5%, 7% and 9% of noise added, and an isotropi voxel size of 1.00mm.Surfaes representing the GM/CSF tissue boundary were extrated for all datasets, andthe surfae of the dataset without noise was used as a referene in order to failitate aomparison. The omparison was made by alulating the distane to the nearest vertexon the referene surfae for all verties on eah of the remaining surfaes. The mean dis-tanes and standard deviations are reported in table 2.1. Only a small inrease in error,measured as mean distane, is the result when the noise level is inreased from 1% to 9%.



29 2.3 Results1% 3% 5% 7% 9%0.27mm (0.22) 0.31mm (0.26) 0.34mm (0.27) 0.37mm (0.30) 0.41mm (0.33)Table 2.1: Mean distane to nearest vertex on referene surfae and standard deviations.To assess the robustness of the method, thikness measurements of the same subjet,sanned at two di�erent sessions on the same sanner were ompared. First session voxelsize was 0.89x0.89x2.00mm, and the seond session voxel size was 0.86x0.86x2.00mm. Thedi�erene in mean ortial thikness between the �rst and seond san was 0.01mm. To in-vestigate these subtle deviations, a vertex to vertex omparison of the ortial thikness forthe two sans was done by alulating the deviation in ortial thikness for orrespondingverties (using nearest point orrespondene) on the GM/CSF surfaes of the two sans.The mean deviation was found to 0.33mm with a standard deviation of 0.27mm.

(a) Rendering of the outer ortial surfae. (b) Intersetions of inner and outer ortialsurfaes with MRI data.Figure 2.5: Visualization of the extrated inner and outer ortial surfaes of an ICBMsubjet.The method was applied to 38 T1-weighted MRI sans of healthy subjets aquiredfrom the ICBM database [7℄. These data have an isotropi voxel size of 1.00mm. A visualinspetion of surfae/data intersetions for all 38 datasets revealed few visible errors (see�gures 2.5 and 2.6). The mean ortial thikness for the 38 subjets was measured to2.59mm (0.15mm). This is within the range of what was measured in a post-mortem studyby Pakkenberg et al. [11℄, where the mean thikness in the four main lobes were measuredto be in the range 2.16mm to 2.88mm. The ortial thikness of the 38 subjets was olormapped onto the outer ortial surfae. An example of this, onverted to graysale, isshown in �gure 2.7. As it an be observed from the �gure, the ortex is measured to bethikest in the frontal and temporal regions, and thinnest in the oipital and parietalregions. This was the ase of all 38 subjets, and is onsistent with normal anatomial�ndings. Even though the pattern of thik frontal and temporal lobes, and thin parietaland oipital lobes an be reognized in all subjets, inter-subjet variations exist in theortial thikness. Figure 2.8 illustrates this by the thikness map of 16 healthy subjetsseen from the top.To evaluate the method on a brain with an abnormal morphology, ortial thiknessmeasurements were obtained from two MRI sans of an Alzheimer's patient with severeatrophy aquired six months apart. These data have an isotropi voxels size of 0.9 mm,however, the ontrast is lower than the ICBM data. The method sueeded in apturingthe inner and outer ortial surfaes of the brain with abnormal morphology, and thethikness measurements indiated a small derease in mean ortial thikness from 2.02
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Figure 2.6: Intersetions of inner and outer surfaes with MRI data of an ICBM subjet.Top row: Inner surfae. Bottom row: Outer surfae. A few errors are visible in theimages of seond olumn, where the surfaes are penetrating both ventriles. These errorsoriginate from the topology orretion algorithm, that enfores a losed genus zero surfae.

(a) Top view (b) Left viewFigure 2.7: Cortial thikness mapped onto the outer ortial surfae as gray levels. Darkregions are thin, while bright regions are thik, ranging from 0 mm to 6 mm.mm to 1.89 mm. Figure 2.9 shows the ortial thikness measurements extrated fromthe two sans, mapped onto the outer ortial surfaes as gray levels. The small dereasein ortial thikness an be observed from the surfaes by a faintly darker texture on theseond surfae.



31 2.3 Results

Figure 2.8: The thikness pattern of 16 ICBM subjets seen from the top.
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(a) Time point 1 (b) Time point 2Figure 2.9: Cortial thikness at two time points (The olor sale ranges from 0 mm(blak) to 6 mm (white)).2.4 ConlusionThis paper presented a new fully automati method for segmenting the inner and outerboundaries of the human erebral ortex from MRI data. The method is based on adeformable surfae framework, and inorporates a new ombination of energies in theenergy funtion. The aurate initial surfae speeds up the overall extration proess, asfewer iterations are neessary in the deformation proess, and inreases the probability ofloating the orret minimum of the energy funtion.The tests onduted on a simulated brain phantom with various degrees of noise added,showed that inreased image noise only in�uenes the sub-voxel auray of the method.This, along with the test/retest experiment, suggests that the method is robust to hangesin image noise and other image artifats.Preliminary tests have been onduted on neuroanatomial data of normal brains andbrains with severe atrophy at di�erent time points. Results of these tests show that themethod is fast, robust and aurate for segmenting the ortial boundaries. The thiknessmeasurements onduted on normal subjets are lose to post-mortem measurements, andthe relative thikness between the major lobes are in aordane with the known anatomyof the brain. The inter-subjet variability in the ortial thikness patterns, found amongthe normal subjets (illustrated in �gure 2.8), indiates that knowledge of this variabilitymust be obtained in order to disern normal and abnormal anatomy. The results obtainedfrom the Alzheimer's subjet indiate that the method is apable of traking progressionof atrophy in Alzheimer's patients.In the near future, we intend to apply the method on a large olletion of MRI sansof Alzheimer's patients, and a olletion of longitudinal data from Alzheimer's patients.This data material give us the opportunity to investigate the possibility of traking theprogression of ortial atrophy. Furthermore, we intend to reate statistial models ofboth Alzheimer's and normal brains based on the data material. With this, we hopeto get indiations of whih anatomial markers ould be relevant in the identi�ation ofAlzheimer's patients.AknowledgementsThe data material of normal healthy subjets was provided with ourtesy of the Inter-national Consortium of Brain Mapping. The data material of the Alzheimer's subjetwas provided with ourtesy of Centre for Magneti Resonane, University of Queensland,
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Chapter 3Ative Surfae Approah forExtration of the HumanCerebral Cortex from MRIAdapted from: Simon F. Eskildsen and Lasse R. Østergaard: Ative Surfae Approahfor Extration of the Human Cerebral Cortex from MRI, MICCAI 2006, Leture Notes inComputer Siene, 4191, pp. 823-830, Otober, 2006.3.1 IntrodutionDuring the last deade, several methods for extrating the boundaries of the human ere-bral ortex from magneti resonane imaging (MRI) have been proposed [1,3,5�8,10,11℄.The segmentation of the erebral ortex may failitate extration of important anatomialfeatures, suh as the ortial thikness, whih may be utilised in studying the progress ofa long list of neurodegenerative diseases, and in turn may aid in diagnosing these diseases.Furthermore, anatomial models of the ortex may be useful in onnetion with surgerysimulation, preoperative planning, and postoperative evaluation.The human erebral ortex is a omplex, highly onvolved sheet-like struture. InMRI the ortial boundaries are often obsured or partly missing beause of poor on-trast, noise, inhomogeneity artifats and partial volume averaging originating from theaquisition. Opposite banks of tight suli on the outer boundary may meet inside the sul-al folds and appear as onneted in MRI. Ative surfaes have the ability to ompensatefor obsured and inomplete image edges. However, in brain MRI, information of the outerortial boundary may be ompletely missing in several tight suli. The most promisingmethods for delineating the outer boundary use information of the white matter/greymatter (WM/GM) boundary to �t the surfae to the outer ortial boundary. MaDonaldet al. used a oupled surfae approah, where the inner and outer surfae simultaneouslywere deformed under proximity onstraints maintaining a prede�ned minimum and maxi-mum distane between the inner and outer boundary [7℄. Zeng et al. also used the oupledsurfaes approah in a level set framework [11℄. The oupled surfaes approah has theadvantage of expliitly using information of both ortial boundaries to detet the outerboundary. This solves the problem of penetrating the deep narrow suli. The drawbaksare the omputational expense, and the onstraints of a prede�ned distane, whih mayprevent the detetion of abnormal thin or thik areas of the ortex. Kim et al. proposed amodi�ation to the method by MaDonald et al. whih does not ontain a oupled surfaeonstraint [6℄. This method has shown promising results.Another approah by Dale et al. identi�ed the inner ortial boundary, and expandedthis surfae towards the outer boundary [3℄. This has the advantage that all suli are35



Chapter 3: Ative Surfae Approah for Extration of the Human Cerebral Cortex fromMRI 36present in the initial state, and enables the preservation of the suli during deformation,even though the evidene of the outer boundary may be missing in the MRI data. Thetight sulal folds are modelled by preventing self-intersetions in the deforming surfae,thus the delineation of the folds is plaed equidistant from the sulal walls of the innerboundary. This single surfae approah is fast and aptures all the tight suli. However,the expansion of the surfae towards the outer boundary is sensitive to small errors orirregularities in the initial surfae, whih may lead to modelling of non-existent suli. Xuet al. used a Generalised Gradient Vetor Flow (GGVF) to de�ne a diretion toward theentral layer of the ortex [10℄. This solution provided a fast and onsistently onvergeneof the surfae, but tight suli with no evidene of the outer boundary were not apturedby this method. Reent work by Han et al. expands the surfae from the entral layertoward the outer boundary using a topology-preserving geometri deformable model [5℄.In this approah the GGVF is only inluded in the model when reonstruting the entralortial layer.This paper presents an ative surfae approah for ortex extration haraterised bythe inlusion of a GGVF in the extration of the outer ortial boundary and the use ofa loal weighting strategy based on the intrinsi properties of the deforming surfae.3.2 MethodsThe strategy for reonstruting the erebral ortex is to �rst extrat the inner boundary,and then displae this surfae towards the outer boundary under the in�uene of internaland external fores. The inner boundary is extrated using the method dislosed in ourearlier work [4℄ ensuring a surfae topology of a sphere. The following explains the defor-mation that �ts a surfae to the outer ortial boundary using a surfae estimating theinner boundary.3.2.1 Deformation ProessThe ative surfae is a non-parametri triangular mesh. The surfae is deformed by it-eratively updating eah vertex with a vetor de�ned as the sum of deformation fores.This deformation sheme has the advantage of being fast (O(n)) and eliminates problemsregarding granularity, whih is found in disrete methods. Even though onvergene maybe fast, absolute equilibrium is never reahed, due to the iterative nature of the algorithm.Therefore, a threshold for the update vetor is given that de�nes whether or not a vertexhas moved during an iteration. The stop riterion is met when a su�iently small numberverties are displaed during an iteration.During surfae deformation the surfae is remeshed at prespei�ed intervals using asimple mesh adaption algorithm. The remeshing is based on the vertex density of thesurfae. This is done to avoid lustering of verties and allowing the surfae to expandwhere neessary, i.e. the distribution of verties are kept uniform throughout the surfae.The surfae remeshing algorithm does not hange the topology of the surfae, but is allowedto alter the surfae geometry. Finally, the surfae is prevented from self-interseting duringdeformation using the same priniple as desribed in [3℄.3.2.2 Internal ForesInternal fores are applied to keep the verties well-distributed and ahieve a smoothharateristi of the surfae. The internal fores used in this paper are similar to onven-tional smoothing fores [1, 8℄ in form of a tensile and a �exural fore. The tensile fore isalulated by an approximation of the Laplaian [8℄:
~L(i) =

1

m

∑

j∈N(i)

~x(j) − ~x(i) , (3.1)



37 3.2 Methodswhere ~x(i) is the position of vertex i, N(i) are the neighbour verties to i, ~x(j) is theposition of i's neighbour j, and m is the number of verties in N(i). The �exural fore isalulated by an approximation of the squared Laplaian [8℄:
~L2(i) =

1

m

∑

j∈N(i)

~L(~x(j)) − ~L(~x(i)) (3.2)Both ~L and ~L2 are deomposed into a tangential and a normal omponent of the forevetor as in the method of Dale et al. [3℄. This enables adjustment of the ontrative e�etof the internal fores by weighting eah omponent.The internal fores have the e�et of smoothing and �attening the surfae, however,as the target boundary is highly onvolved with both peaked and �at areas, the internalfores should be relaxed in ertain areas of the surfae and inreased in others. Thedeforming surfae is used as a referene for the urvature of the target boundary to obtainloal urvature weighting of the internal fores. To enable the surfae to ompensate forerrors in the initial surfae, and failitate some degree of surfae urvature alteration, theurvature values are realulated at prespei�ed intervals during the deformation proess.The urvature is estimated at eah vertex of the deforming surfae using the expression:
ρ(i) =

{

σ(i) , if ~w(i) · ~n(i) ≤ 0
−σ(i) , otherwise

(3.3)
σ(i) =

1

m

∑

j∈Ng(i)

π − 2cos−1

(

~x(j) − ~x(i)

|~x(j) − ~x(i)|
· ~w(i)

)

, (3.4)where Ng(i) is a geodesi neighbourhood around vertex i, ~w(i) is a unit vetor pointingfrom i towards the entre of gravity of Ng(i), ~n(i) is the unit vetor normal at i, and m isthe number of verties in Ng(i). Curvature values of zero are found in �at areas, positivevalues in onvex areas and negative values in onave areas. Note that the size of Nghas great in�uene on the urvature values and should be hosen arefully. The urvaturevalues are Gaussian �ltered (σ = 1), normalised, and in this form used to weight theinternal fores:
~̂uint(i) = f(ρ(i))~uint(i), (3.5)where f is a weighting funtion de�ned as

f(x) = 1 −
1

2
tan(|x|), x ∈ [−1; 1] (3.6)3.2.3 External ForesThe outer boundary of the erebral ortex follows approximately the same onvexities andonavities as the inner ortial boundary. Hene, a surfae delineating the inner ortialboundary is used as an initial estimate of the outer ortial boundary. This inner surfaeis displaed in the diretion of the loal surfae normals until the surfae meets itself (see�gure 3.1), and thereby model suli, even though only little or no image information isavailable. For this purpose a pressure fore [1℄ is used. The fore is similar to the externalfore used in [3, 8℄, but based on fuzzy memberships of the tissue lasses as desribedin [10℄. The fuzzy memberships are alulated using the fuzzy -means algorithm [9℄. Thepressure fore is expressed as:

~p(i) = ∆µ(i)~n(i)
∆µ(i) = µWM (i) + µGM (i) − µCSF (i),

(3.7)where µ is the membership values (trilinearly interpolated) and ~n(i) is the unit vetornormal at vertex i. A weighting funtion is applied to the membership di�erene to
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(a) Initial (b) Deforming () FinalFigure 3.1: Illustration of how the pressure fore enables modelling of narrow suli withno CSF evident. As the deformable surfae (grey line) is pushed away from the WM/GMboundary in the diretion of the loal surfae normals, it will eventually meet itself insidenarrow suli.ensure a degree of freedom at membership di�erenes lose to zero:

~̂p(i) = c1g(∆µ(i))~n(i), (3.8)where c1 is a weighting onstant and
g(x) = x(2 − 2cos(x)), x ∈ [−1 : 1] (3.9)Surfae normals, approximated from a disrete mesh, may be misleading, as they anbe perturbed by noise in the surfae. This may erroneously ause modelling of non-existingfeatures, when the surfae is displaed over larger distanes. Inreasing the in�uene ofthe internal fores resolves this problem, but also prevents the surfae from reahing smallonavities, whih are truly evident in the MRI. To solve the problem, the pressure foreis ombined with a GGVF fore similar to the one used by Xu et al. [10℄, but with anedge map of the outer ortial boundary instead of the entral ortial layer. This edgemap is the �rst order derivative of the sum of the WM and GM fuzzy memberships.The GGVF fore performs best at the gyri where information of the GM/CSF boundaryis evident in the MRI, thus the normal vetor is ombined with the GGVF vetor so theGGVF vetor dominates the normal vetor at the rown and ridges of gyri, and the normalvetor dominates the GGVF vetor along the fundi, and walls of suli. The loal surfaeurvature, alulated in a geodesi neighbourhood, is used for balaning the in�uene ofthe GGVF vetor and the normal vetor:

~uext(i) = c2

(

~̂p(i)
1 − ρ(i)

2
+ ~g(i)

1 + ρ(i)

2

)

, (3.10)where ~̂p(i) is the pressure fore vetor at vertex i, ~g(i) is the GGVF vetor at vertex i,
ρ(i) is the urvature value at i given in (3.3), and c2 is a onstant.Gradient information is used to sale the update vetor ~u, so the magnitude of theupdate vetor is redued when the magnitude of the gradient inreases. This is done bymapping the normalised gradient magnitudes with the funtion:

h(x) = cos(
π

2
x), x ∈ [0 : 1] (3.11)and saling the update vetor ~u by the result. The update vetor is unhanged whenthere is no gradient and greatly shortened when a strong gradient is present at the givenvertex position. Information of the gradient is used only when lose to the GM/CSFboundary and suppressed when far from the boundary. The weighted membership di�er-ene g(∆µ(i)) in (3.8), that provides an estimate for the spatial position of the GM/CSF



39 3.3 Resultsboundary, is therefore utilised to weight the in�uene of the gradient. The resulting up-date vetor is given as a weighted sum of a gradient weighted term and a non-gradientweighted term:
~u(i) = ((1 − τ)cos

(

π
2 |

~∇(i)|
)

+ τ)(~̂uint(i) + ~uext(i)),

τ = |g(∆µ(i))|,
(3.12)where ~∇(i) is the image gradient trilinearly interpolated at vertex i, ~̂uint(i) is the weightedsum of the internal fores given in (3.5), and ∆µ(i) is given in (3.7).3.3 ResultsSimulated MRI sans of a brain phantom1 [2℄ and 36 T1 weighted MRI datasets of youngnormal subjets from the International Consortium for Brain Mapping (ICBM) databasewere used for testing the general behaviour of the deformation. The same weightingonstants were used in all test ases. Initial surfaes isomorph to a sphere were generatedand �tted to the inner ortial boundary. The initial surfaes onsisted of approximately

1.5 · 105 verties. During deformation this number was inreased to approximately 2.0 ·
105. The deformation proess onverged after 30-40 iterations with the stop riterion of(#moved verties) < (1% of total verties). The deformation of the outer surfae requiredapproximately 20 minutes on a 3 GHz Pentium 4 proessor. The self-intersetion testsperformed throughout the deformation of the inner and outer surfae were responsible forthe majority of the proessing time.Figure 3.2 shows three di�erent modes of the deformation proess in a seleted partof the simulated MRI. The three modes di�er in their external fores, the internal foresare the same for all three modes. In the �rst mode, only the pressure fore is enabled,simulating the method by Dale et al. [3℄. This learly shows that the use of the pressurefore alone result in irregularities in the surfae. This is espeially evident at top of gyri.In the seond mode, only the GGVF fore is enabled, simulating the method by Xu etal. [10℄. In this ase the surfae does not reah the fundus of suli without evidene ofCSF. There is also an undesirable behaviour in some of the suli, beause the surfae isattrated to the nearest visible GM/CSF image edge. The last mode shows deformationwith both the pressure fore and the GGVF fore enabled, balaned using the urvatureweighting funtion. Now the tight suli are being modelled orretly while avoiding surfaeirregularities on top of gyri.All 36 orties from the ICBM database were automatially reonstruted and quali-tatively assessed by visual inspetion. An example of an extrated outer surfae is shownin �gure 3.3. As it an be seen from the �gure, the extrated surfae appears smooth,realisti and major gyri and suli are easily reognised. The qualitative assessment of theauray of the extrated surfaes was made by superimposing the surfaes onto the MRIand visually inspeting the ontours (�gure 3.3, right). As it an be observed from the�gure the outer ortial boundary is aurately delineated. Tight suli are modelled evenwhen the rowns of adjaent gyri are not separated in the image data, and the surfaetend to be plaed at a position equidistant to the WM walls when no CSF is evident insuli. This indiates that the method follows the intended behaviour.3.4 Summary and ConlusionThis paper presented a new method for extrating the outer boundary of the human ere-bral ortex from MRI. The ative surfae approah ombines a onventional pressure forewith fuzzy tissue lassi�ations, and a generalised gradient vetor �ow fore, while loally1The brain phantom was provided by the MConnel Brain Imaging Centre at the Montreal NeurologialInstitute, http://www.bi.mni.mgill.a
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Figure 3.2: Outer surfae deformation proess using di�erent external fores at di�erentstages in the proess. Left to right: Deformation proess at iterations 0,5,15 and 30.Top: Only pressure fore is enabled. Middle: Only GGVF fore is enabled. Bottom:Combination of both fores balaned by the urvature weighting funtion.

Figure 3.3: Example of a generated ortex from ICBM data. Left: Rendering of outersurfae. Right: Inner (blak) and outer (white) surfaes superimposed onto MRI.weighting the fores based on the surfae urvature. Preliminary tests were ondutedon both simulated data and real data of young normal subjets. The primary results of
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Chapter 4Quantitative Comparison of TwoCortial Surfae ExtrationMethods Using MRI PhantomsAdapted from: Simon F. Eskildsen and Lasse R. Østergaard: Quantitative Comparison ofTwo Cortial Surfae Extration Methods Using MRI Phantoms, MICCAI 2007, LetureNotes in Computer Siene, 4791, pp. 409-416, Otober, 2007.4.1 IntrodutionReonstrution of the human erebral ortex from magneti resonane (MR) images fa-ilitates morphometri studies and brain mapping, and provides intuitive visualisation ofthe human brain for the use in e.g. surgial planning. Sine the nineties a number ofalgorithms has been developed for extrating the boundaries of the ortex from MR im-ages [2, 4, 8, 9, 12, 13, 15℄. FreeSurfer has been around for more than seven years, and has,due to the fat that it is freely available, beome widespread in the sienti� ommunity.We have reently published a method (heneforth designated Fast Aurate Cortex Extra-tion (FACE)), whih resembles FreeSurfer in many aspets, but is signi�antly improvedin terms of omputational speed [5, 6℄.When performing morphometri studies the auray of the ortex reonstrutions isvery important. Therefore, it is of interest to investigate how well FACE performs interms of auray ompared to FreeSurfer. Quanti�ation of the auray is di�ult asthe ground truth is rarely available. A means to measure the auray is using phantomsresembling real neuroanatomial data. Lee et al. [11℄ ompared FreeSurfer [4℄, CLASP[9℄ and BrainVISA [12℄ using generated phantoms. They found that CLASP was moreaurate than BrainVISA and FreeSurfer. However, CLASP is not publily available,while the two other methods are. FreeSurfer performed seond best in the study. In thisstudy we ompare our method, FACE, to FreeSurfer using realisti phantoms generatedfrom real MR sans.4.2 MethodsTo evaluate the two ortex extration methods, eight healthy young subjets (age: 32±7.4)and eight healthy middle-aged subjets (age: 54.3±6.0) were seleted , and a omparisonmethod similar to the method desribed by Lee et al. was used [11℄. For eah subjetboth methods were used to extrat the ortial boundaries. The surfaes extrated byeah method were used as referene for the generation of simulated MR sans as desribed43



Chapter 4: Quantitative Comparison of Two Cortial Surfae Extration Methods UsingMRI Phantoms 44below. The ortex of these ustomised phantoms were extrated by eah method and theresulting surfaes were ompared to the referene surfaes (see �gure 4.1).

Figure 4.1: Flow hart illustration of the omparison method.The following brie�y desribes the two ortex extration methods, the generation ofthe test phantoms, and how the error between the referene surfaes and the test surfaeswas quanti�ed.4.2.1 FreeSurfer MethodFreeSurfer [4, 7℄ �rst registers the input MR volume to Talairah spae [3℄. Non-uniformities originating from inhomogeneities in the magneti �eld are orreted, andthe intensities are normalised. The resulting volume is skull stripped using an approahsimilar to BET [14℄. The WM voxels inside the skull stripped volume is labelled using atwo-step segmentation algorithm based on intensities and prior knowledge of the GM/WMinterfae. The ventriles and subortial matter inside the WM omponent is �lled, andthe WM is separated into the two hemispheres by a sagittal ut through the orpus al-losum and an axial ut through the pons. A onneted omponent algorithm is used toisolate the main body of WM voxels, i.e. the erebrum WM voxels.From the WM voxels a surfae mesh is onstruted by generating onneted triangleson the faes of the voxels. The resulting surfae for eah hemisphere is topology orretedto be isomorph to a sphere, and a deformation proess smoothes the surfae while main-taining it at the WM/GM interfae. The pial, or GM surfae is found by displaing theWM surfae toward the GM/CSF interfae using the loal surfae normals and intensitygradients.4.2.2 Fast Aurate Cortex Extration MethodFACE performs similar preproessing steps as FreeSurfer. The registered, intensity or-reted, and skull stripped volume is segmented into WM, GM, and CSF using a fuzzylustering algorithm solely based on the intensities, and a WM labelling is performed bymaximum membership lassi�ation. Cerebellum and the brain stem is removed usingatlas information, and the hemispheres are separated by a sagittal ut through the orpusallosum. After a onneted omponent analysis spherial topology of eah hemisphere



45 4.2 Methodsis obtained using a topology orretion algorithm [1℄, and the WM hemispheres an betessellated by an iso-surfae algorithm yielding surfaes with Euler harateristis of asphere (genus=0).The iso-surfae generated from the WM erebrum voxels are deformed to �t theWM/GM interfae under the in�uene of smoothing fores and fores derived from thesurfae normals, the fuzzy voxel lassi�ation, and gradient information of the originalimage.The GM surfae is found using the method desribed in [6℄. The WM surfae isdisplaed towards the GM/CSF interfae using a ombination of the loal surfae normalsand a gradient vetor �eld alulated from an edge map of the voxel segmentation. Thein�uene of the two vetor fore �elds on eah vertex in the surfae is weighted by theurvature of the surfae, whih enables di�erent deformation behaviour aording theposition on the surfae (sulus or gyrus). The deformation is not minimising an objetivefuntion, whih means that the omplexity is low ompared to the deformation proess inFreeSurfer.4.2.3 Phantom GenerationMembership volumes of WM, GM, and CSF were generated diretly from the extratedsurfaes. This was aomplished by labelling eah voxel ompletely inside the WM surfaeas WM, and alulating the inside fration of eah voxel interseted by the surfae. Thiswas also done for the GM surfae, and the memberships for the three tissue lasses werealulated from the fuzzy labelled volumes (see �gure 4.2). The three membership volumes

Figure 4.2: Fuzzy membership volumes generated from the extrated surfaes. Left toright: WM, GM, and CSF.were used as input to an MRI simulator [10℄ with the same aquisition parameters as theoriginal MR sans (TR=18ms, TE=10ms, 1mm slies). The intensities of the resultingvolume were normalised to the range of the original san. Finally, subortex, ventriles,erebellum, brain stem, and extra-erebral tissue were added from the original san bysuperimposing the simulated brain san onto the original (�gure 4.3).4.2.4 Auray AssessmentTo test the auray of eah method, reonstrutions of the ortial boundaries weregenerated from the 32 phantoms. The reonstrutions were then ompared to the reon-strutions of the original MR sans. Both methods ensures orret topology by volume-or surfae-orretion. Thus the omparison was based solely on geometrial fators. Fourfators were onsidered, namely volume di�erene, surfae area di�erene, over/under seg-
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Figure 4.3: Phantom produed by the MRI simulator (left), and �nal phantom afternormalisation and added original tissue (right).mentation ratio, and the expliit geometrial error. Also the vertex density was takinginto onsideration in the omparison.
• Volume Di�erene: The enlosing volume of the surfaes was alulated and thedi�erene (in perent) from the referene surfaes was measured.
• Surfae Area Di�erene: Surfae areas were alulated and the di�erene (inperent) from the referene surfaes was measured.
• Over/under segmentation ratio: Tissue membership volumes of WM, GM andCSF were reated from the test surfaes similar to the proedure used in the phantomgeneration. The resulting fuzzy maps were ompared to the maps generated fromthe referene surfaes, and the perentages of voxels respetively missing inside (falsenegatives) and added outside (false positives) the referene map were alulated.
• Expliit Geometrial Error: The Eulidean distane from eah vertex in thereferene surfae to the losest fae on the test surfae was measured. The rootmean square error of these distanes was alulated for both the WM surfae andthe GM surfae. Similarly, the distane was measured from the test surfae to thereferene surfae. The latter was done to avoid that simply adding verties to thesurfae did not neessarily redue the error.4.3 ResultsThe ortial extrations were performed on an AMD Opteron 2.6 GHz proessor with 12GB memory. The average extration time from native san to �nal surfaes for FreeSurferwas 20.1 hours, while it was 0.8 hours for FACE. The following presents the results onhow well the methods reonstruted the original surfaes from the generated phantoms.When omparing the reonstruted surfaes visually, only small di�erenes an bediserned. Figure 4.4 shows the original GM surfae along with the reonstrutions bythe two methods. The number of verties in the surfaes generated by the two methods



47 4.4 Disussion

Figure 4.4: Left: Surfae extrated from original san by FACE. Middle: Reonstrutionfrom phantom by FreeSurfer. Right: Reonstrution from phantom by FACE.FreeSurfer Phantom FACE PhantomMetri FreeSurfer FACE P-value FreeSurfer FACE P-valueWM ∆vol (%) 1.2±1.1 5.4±2.6 0.00 1.7±1.9 4.9±2.3 0.00WM ∆area (%) 7.6±1.9 3.1±1.5 0.00 15.4±3.4 9.4±1.9 0.00Brain ∆vol (%) 4.4±1.2 4.0±1.0 0.36 5.5±2.0 3.7±0.8 0.01GM ∆area (%) 5.4±1.4 5.0±3.1 0.54 2.5±2.4 1.6±1.5 0.22WM FN (%) 8.5±1.3 4.2±0.6 0.00 10.0±2.1 3.2±0.6 0.00WM FP (%) 7.8±0.8 9.1±2.3 0.01 8.7±0.8 7.4±1.8 0.00GM FN (%) 23.4±1.3 21.9±2.0 0.01 26.4±3.7 19.9±1.9 0.00GM FP (%) 15.7±1.4 7.3±1.4 0.00 17.6±3.1 6.9±1.3 0.00WM ref2test (mm) 0.95±0.64 1.14±0.11 0.20 1.47±0.90 0.63±0.07 0.00WM test2ref (mm) 0.75±0.14 0.84±0.17 0.13 1.28±0.17 0.46±0.05 0.00GM ref2test (mm) 0.86±0.50 1.07±0.11 0.08 1.26±0.92 0.64±0.08 0.02GM test2ref (mm) 0.83±0.14 0.63±0.13 0.00 1.39±0.19 0.59±0.06 0.00Table 4.1: Errors measured by the four metris on both WM and GM surfaes. Errors aredeviation from the referene surfaes. For eah metri the performane on both FreeSurferand FACE phantoms is ompared for the two methods (two-tailed paired t-test). Signi�-ant smaller errors are marked by bold font.vary. FreeSurfer generates surfaes with almost twie the number of verties ompared toFACE (310,415±18,628 vs. 169,218±9,755).Table 4.1 lists the results for eah error metri averaged for the 16 subjets. The errorsof the two methods for eah metri was ompared and tested by two-tailed paired t-test(the p-values are listed in the right hand olumn of eah phantom). Signi�ant smallererrors are marked by bold font. The volume and area errors are absolute perent hangeompared the to referene surfaes. The under/over segmentation error is measured byperent outside referene surfae volume (false positives (FP)) and perent missing insidereferene surfae (false negatives (FN)). The expliit geometrial di�erene is measuredby the RMS error in mm.4.4 DisussionFrom table 4.1 it an be observed that FACE has signi�antly fewer WM false negativesand GM false positives when testing on both groups of phantoms. The two metris are



REFERENCES 48related in that missing WM voxels most likely are lassi�ed as GM voxels. Generally,both methods seem to over-expand the surfaes when ompared to the phantoms. Thisespeially inreases the GM false negatives perentage, as the GM tissue lass is smallerthan the WM tissue lass.The geometrial error rates show that the average distane between the test and ref-erene surfaes is at subvoxel level when testing the auray of FACE. Reproduibilityerrors of FACE are onsistently around half a voxel size, while FreeSurfer reproduibilityerrors are between 0.75 - 0.95 voxel size. For purposes of omparison the di�erene for thereferene surfaes of the two methods was measured to 1.48±0.31 mm (average for bothWM and GM surfaes).When looking at the volume and area errors for the GM surfaes, i.e. erebrum vol-ume and area, there is little di�erene between the two methods, and the error is fairlysmall (1.6% - 5.5%). Also, the WM volume errors are low. However, higher error ratesare found in the WM area. Looking at the area hange per subjet, it was found thatall reonstruted WM surfaes had a smaller area than the referene, while the volumeremained more or less the same. This ould point to the fat that the WM voxels inthe phantoms do not exatly resemble the original MR WM voxels leading to less deepsuli. Improvements of the phantoms ould solve this bias. Also, visual inspetion of thesurfaes revealed signi�ant di�erenes in the surfaes at the base of the brain due to thedi�erent brain stem utting strategies in the two methods. The inspetion also revealedthat FreeSurfer in a few surfaes missed part of the oipital lobe. This ould be ausedby registration errors whih again ould be aused by tissue voxels not resembling realMR data.Generally, the tests show that the auray of FACE is omparable to Free-Surfer.In most ases FACE has a signi�antly better auray. FACE is on average more than25 times faster than FreeSurfer. The longer extration time in FreeSurfer an partly beexplained by the high number of verties in the surfaes. FreeSurfer generates surfaeswith almost twie the number of verties ompared to FACE. Another reason for the speeddi�erene is a very fast onvergene of the deformation in FACE due to refraining fromminimising an objetive funtion.Even though FACE in the omparison proved to be more aurate, results from some ofthe error metris and visual inspetions suggested that the phantoms ould be improved toresemble real anatomial MR data. However, the results indiate that FACE is omparableto FreeSurfer in terms of auray.The subjets used in this study were healthy without altered ortial morphology.Further studies must examine the auray of the two methods when analysing subjetswith altered morphology (e.g. Alzheimer's patients), whih is often the ase in linialtrials.AknowledgementsTest data were provided ourtesy of Dr. Peter Johannsen, Rigshospitalet, under grantnumber 22-04-0458 Danish Medial Researh Counsil, and the International Consortiumof Brain Mapping, MConnell Brain Imaging Centre, Montreal Neurologial Institute,MGill University.Referenes[1℄ L. Chen and G. Wagenkneht. Automated topology orretion for human brain seg-mentation. Leture Notes in Computer Siene, 4191(LNCS):316�323, 2006.[2℄ L. D. Cohen and I. Cohen. Finite-element methods for ative ontour models and bal-loons for 2D and 3D images. IEEE Trans. Pattern Analysis and Mahine Intelligene,1993.
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Chapter 5Evaluation of Five Algorithms forMapping Brain Cortial SurfaesAdapted from: S. F. Eskildsen and L. R. Østergaard: Evaluation of Five Algorithms forMapping Brain Cortial Surfaes, SIBGRAPI, pp. 137-144, 2008 XXI Brazilian Sympo-sium on Computer Graphis and Image Proessing, 20085.1 IntrodutionMorphologial analysis of the human erebral ortex from in-vivo medial images plays animportant role in the investigation of various neurologial disorders, suh as shizophreniaand dementia [6, 18℄. Inreasing e�ort is being put into measuring ortial morphologi-al hanges over time and di�erenes between populations. Magneti resonane imaging(MRI) provides exellent strutural information of the erebral tissues, and surfae reon-strutions of the ortex from MRI have grown popular for studying morphologial features,suh as ortial thikness, area, and patterns of the ortial folds. During the last deadeseveral surfae reonstrution algorithms have been proposed [7,9,14,17,21,34℄, and severalways to obtain ortial thikness measurements and other features from ortial surfaeshave been developed [24, 28℄. Usually the ortial surfaes are approximated by disretepolygonal meshes, and ortial features are alulated at eah vertex provided a reasonablyuniform distribution of verties aross the surfae. To measure morphologial di�erenesbetween subjets one an average the measurements over the entire ortex or within spe-i�ed regions, but to exploit the detailed map of measurements provided by high resolutionsurfaes and be able to detet foal di�erenes a point orrespondene between ortialsurfaes is required. Suh a mapping must preserve anatomial landmarks aross subjetsin order to reliably ompare measurements, i.e. it does not make sense to ompare thetop of a fold (gyrus) on one surfae with the bottom of a fold (sulus) on another surfae.Beause of the high diversity of folding patterns aross individual orties, suh a mappingis far from trivial.5.2 BakgroundSeveral methods to solve the ortial mapping problem have been proposed. A popularapproah is to parameterize the ortial surfae by mapping the surfae into a anonialspae and solve the orrespondene problem in this spae. Often the unit sphere is used,as it is topologially equivalent to the ortial surfae and provides an attrative oor-dinate system for easy parameterization [13℄. Utilizing the Riemann mapping theoremon manifold surfaes [1℄ several approahes have been proposed to onformally map theortial surfae to a sphere [16, 19, 23, 25, 26, 31℄. Also other anonial spaes have been51



Chapter 5: Evaluation of Five Algorithms for Mapping Brain Cortial Surfaes 52used for parameterization, suh as an ellipsoid and the 2D plane [33℄. The latter, so-alled�at maps, require uts in the losed surfae to be able to map the surfae to the plane.Consistent uts are hard to automate, thus requiring manual intervention.After parameterization of ortial surfaes the orrespondene between verties anbe obtained by registration of the surfaes in the anonial spae using the preservedgeometrial features as similarity measure. This registration is usually a non-linear warpbeause of the highly irregular folding patterns [12, 35℄.The mapping onto a anonial spae introdues geometrial distortion in the surfae,and even though work has been foused on minimizing the distortion in the onformalmapping [23℄ it remains a problem for the subsequent parameterization and registration.Creating �at maps introdues more geometrial distortion than the spherial approahand alters the topology thus partly destroying geodesi relations between verties [12℄.Several methods onstrain the mapping using landmark urves [16, 25, 29, 33℄. These areoften manually de�ned, but methods have been proposed to automate identi�ation oflandmark urves [15, 22, 28℄, though it is hard to do onsistently [4℄.Another group of methods try to solve the orrespondene problem without the in-termediate step of mapping to a anonial spae. One family of suh methods is derivedfrom the iterative losest point method (ICP) [2,5℄. Apart from variations over the simplelosest point method, several methods ombine ICP with point feature registration [10,27℄.Others approah the problem by �nding a diret mapping using partial di�erential equa-tions (PDE) [29℄ or di�eomorphisms [32℄.Common for the mapping approahes desribed above is the preservation of intrinsivertex on�guration, exept from the uts introdued when reating �at maps. This mayseem important, as these geometri properties re�et the underlying ytoarhiteture ofthe ortex. However, when mapping between orties with very di�erent ortial foldingpatterns, this onstraint an be relaxed to better math morphologial features. A featurebased method disregarding the intrinsi vertex on�gurations was proposed by Spjuth etal. [30℄. They used a similarity funtional based on mean urvature, surfae normals,and Eulidean distane to �nd orresponding verties between surfaes after an initial,global, a�ne registration. The method allows several verties to map to the same targetvertex while other verties are left without mapping. Thereby information is lost. Toretain information, the optimal solution is a bijetion between the surfaes only mappingbetween similar anatomial points. When a vertex to vertex orrespondene is needed themapping annot be a bijetion if the two ortex surfaes have di�erent number of verties.However, one an try to approximate a bijetion by having unique projetions for as manyverties as possible.As desribed above a variety of algorithms for solving the ortial mapping problemhave been proposed. However, to the best of our knowledge, omparisons of the di�erentapproahes have not been arried out. In this paper we propose a new algorithm for theproblem of �nding vertex orrespondene between surfaes with di�erent vertex ountsand evaluate the performane of the proposed algorithm along with a seletion of othermapping algorithms.5.3 Proposed Mapping AlgorithmThe proposed algorithm for mapping a soure surfae to a target surfae is inspired bySpjuth et al. [30℄, and it uses the same similarity features, but seeks to optimize thenumber of unique mappings, thereby approximating a bijetion as lose as possible. Thealgorithm initially aligns the two surfaes with a rigid transformation found by enter ofmass normalization followed by ICP optimization [5℄. The method for �nding a vertex tovertex orrespondene from soure to target surfae uses a ost funtional J . The ost ofmapping between soure vertex i and target vertex j is given by
J(i, j) = αec(i,j) + βen(i,j) + γed(i,j) (5.1)



53 5.4 Algorithms Seleted for Comparisonwhere c is the absolute di�erene in normalized mean urvature at the verties, n isthe normalized angle between the vertex normals, d is the normalized Eulidean distanebetween the verties, and α, β and γ are weights. This ost funtional is sought minimizedper soure vertex by the following algorithm:De�nitions:
Vs is the set of soure verties.
Vt is the set of target verties.
tc is the ost threshold any mapping must be below.
tm is the maximum number of mappings allowed to the same target vertex.
Ns is the set of soure verties without a mapping.
Nt is the set of target verties with number of mappings < tm.Initial onditions : Ns = Vs, Nt = Vt, and tm = 1.1. For eah vertex in Ns �nd the vertex in Nt with the lowest mapping ost de�ned by

J .2. For eah vertex in Vt where number of mappings > tm remove highest ost mappingsuntil number of mappings = tm. Update Ns and Nt.3. Repeat from 1 until no mappings are found with a ost < tc, or either Ns or Nt isempty.4. If Ns is non-empty, set Nt = Vt, tm = tm + 1 and repeat from 1.We designate the algorithm iterative losest feature (ICF), beause of its use of pointfeatures and iterative behavior. The weights in the ost funtional were found by repeatedtrials of mapping between two simple phantom surfaes where the true mapping wasknown. The found weights were α = 3.7, β = 1.1, and γ = 2.7.5.4 Algorithms Seleted for ComparisonApart from the proposed mapping algorithm we wanted to evaluate a handful of typialalgorithms to �nd their strengths and weaknesses. The following algorithms were inludedin the evaluation:
• Iterative losest point (ICP). The basi ICP algorithm [5℄ to ompare with a simpleand �naive� approah.
• Feature. The method by Spjuth et al. [30℄ was inluded as this method is similarto the proposed algorithm but without the iterative behavior.
• Iterative losest feature (ICF). The proposed method as desribed in setion 5.3.
• SpherialWarp. This is the method used in FreeSurfer to register a ortial surfaeto a �anonial� surfae [12, 13℄. Soure and target surfaes are mapped to the unitsphere (�gure 5.1) and the folding patterns are aligned using a warp minimizing themean squared di�erene between the average onvexity [13℄. This method is inludedas the algorithm is freely available and the spherial mapping introdues less metridistortion than other mapping methods [20℄. To obtain a vertex orrespondenemap, the geodesi losest points are used between two surfaes registered to theanonial surfae provided by FreeSurfer.
• Spherial. A method where soure and target surfaes are mapped to a sphereand orresponding points are found by rotations of the soure surfae optimizingurvature orrelation. The method is similar to the approah desribed by Fishl etal. [12℄, but instead of the �nal non-linear warp a rigid optimization is performediteratively in a multi-sale manner. The spherial mapping was done using FreeSurfer
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Figure 5.1: From ortex surfae to sphere. Left: Original ortial surfae. Middle: In�atedsurfae with urvature values superimposed. Right: Surfae mapped to a sphere withurvature values superimposed.[7℄, while the subsequent optimization was implemented loally. As in the warpapproah desribed above, a vertex orrespondene map is obtained by the geodesilosest points between the two surfaes after optimization.The following setion desribes how the �ve mapping algorithms were evaluated.5.5 Mapping EvaluationPerformane of the algorithms was tested using 10 ortial surfaes extrated bythe FreeSurfer software [7℄ from T1 weighted MRI sans (1.5 Tesla, 30◦�ip angle,TR/TE=18/10 ms, isotropi 1 mm voxels) from young healthy subjets. FreeSurfer pro-dues surfaes of the inner and outer boundary of the ortex for eah hemisphere sepa-rately. Surfaes of the outer ortial boundary of left hemispheres only were used in theevaluation, as brain symmetri properties suggest that either hemisphere is representativefor the ortial variation, and the mapping algorithms are expeted to perform equallywell on both hemispheri surfaes. Surfaes generated by FreeSurfer are triangular mesheswith spherial topology and have arbitrary number of verties, thus they are well-suitedfor testing the algorithms desribed here. The 10 extrated left ortial surfaes had onaverage 148k±8k verties. The distribution of verties were assumed similar for the gen-erated surfaes. All 10 ortial surfaes were in turn used as target for mapping the othernine surfaes, thus resulting in 90 mappings in total used in the evaluation.The optimal orresponding target vertex for any given soure vertex an be sought eventhough this means that two distint verties may map to the same vertex on the targetsurfae. It is desirable to map to as many verties on the target surfae as possible to retaininformation, i.e. the image of the mapping must over as muh of the target surfae aspossible. The higher overage of the target surfae the better approximation of a bijetionbetween the surfaes. Therefore, one riterion for a good mapping is the perentage ofverties on the target surfae that are used as orrespondene points for verties on thesoure surfae, i.e. the overage of the target surfae. If the soure surfae has less vertiesthan the target surfae full overage is not possible. Therefore the overage error, C, isde�ned as:
C = 1 −

|Mt|

min(|Vs|, |Vt|)
, (5.2)where Mt is the set of target verties with a mapping, and Vs and Vt are the same as insetion 5.3. Thus a full overage results in C = 0 while mappings with less overage havehigher values with a theoretial upper limit of C = 1.Inreasing the vertex ount of the soure surfae provides better onditions for a goodoverage. However, a soure surfae with twie as many verties as the target surfae may



55 5.5 Mapping Evaluationprovide full overage of the target surfae without being onsidered a good mapping iffor instane a large portion of soure verties map to the same target vertex. Therefore,another riterion for a good mapping is the mean square number of mappings per targetvertex normalized by the squared soure/target vertex ount ratio. The multiple mappingerror, M , is de�ned as:
M =

1
|Vt|

∑

j∈Vt

m2
j

( |Vs|
|Vt|

)2
− 1 =

|Vt|
∑

j∈Vt

m2
j

|Vs|2
− 1 (5.3)where mj is the number of mappings to vertex j of the target surfae. If M = 0 themapping is optimal with regard to the riterion, while higher values of M signal worsemappings with a theoretial upper limit of M = |Vt| − 1.When mapping between surfaes we expet that pathes of the soure surfae aremapped to pathes of similar size on the target surfae. We introdue a third riterionaiming at evaluating this property. For eah vertex i on the soure surfae we determinethe geodesi distanes to the neighbors along the target surfae after applying the map,where the geodesi distane is alulated as the minimum edge length between verties(Dijkstra's algorithm [8℄). Optimally, this distane should be the same as on the souresurfae when surfaes have equally distributed verties. We alulate the geodesi errorat vertex i as:

φ(i) =
1

|N(i)|

∑

j∈N(i)

|g(m(i), m(j)) − g(i, j)| (5.4)where N(i) is the set of neighboring verties to vertex i on the soure surfae, g(i, j) isthe geodesi distane between i and neighbor j, while g(m(i), m(j)) the geodesi distanebetween these verties after the mapping. The density evaluation riteria, D, is de�nedas the average of the geodesi errors:
D =

1

|Vs|

∑

i∈Vs

φ(i) (5.5)A mapping with good preservation of soure surfae pathes has a small D with a theoret-ial minimum of D = 0 for the perfet preservation. This metri is a�eted if the vertexdistributions of the two surfaes are highly irregular. For this reason, similar distributionsof the surfaes are assumed.Finally, we wanted to evaluate if verties are mapped between similar topographialareas. To quantify this we de�ne a topography riterion, T , as the average di�erene inmean urvature before and after mapping to the target surfae:
T =

1

|Vs|

∑

i∈Vs

|ρ(i) − ρ(m(i))| (5.6)where ρ(i) is the mean urvature at vertex i and m(i) is the mapping of vertex i (the targetvertex). Curvature values are normalized to the interval [−1 : 1], thus the topographyriterion has values in [0 : 2] with theoretial extrema.The four riteria desribed above are all quantitative approahes to evaluating themapping between ortial surfaes. To add a more qualitative approah we performed alandmark test to evaluate the algorithms' performane in mapping to the same anatomiallandmarks between di�erent ortial surfaes. Six landmarks were identi�ed manually onall 10 ortial surfaes of the left hemisphere. Landmarks were plaed by labeling vertiesspanning areas of 1-5 mm2. The seleted anatomial landmarks were the temporal pole(TP) at the anterior end of the superior temporal gyrus, the supramarginal gyrus (SG) atthe posterior end of the lateral sulus, the uneus (Cun) where the parieto-oipital sulusmeets the alarine sulus, the posterior part of gyrus retus (GR), the most superior



Chapter 5: Evaluation of Five Algorithms for Mapping Brain Cortial Surfaes 56Avg. di�erene (mm) Paired t-test (p-val)ICP -0.10±0.05 <0.01Feature 0.02±0.03 0.11ICF -0.01±0.02 0.06Spherial 0.00±0.03 0.64Warp 0.01±0.01 0.13Table 5.1: Average di�erene in mean ortial thikness after mapping.part of the post entral gyrus (PCG), and the ingulate gyrus (CG) at the anterior end ofthe ingulate sulus. These anatomial loations were used as they are relatively easy toreognize on the ortial surfae, but are still subjet of morphologial variation. For eahmapping the geodesi distanes between the mapped landmarks and the manually labeledlandmarks were measured and averages over all 90 mappings were alulated.Finally, we wanted to evaluate the e�et of di�erent mapping algorithms on statisti-al maps, whih are often used when measuring ortial thikness. We wanted to test ifhoie of mapping algorithm would hange the onlusions drawn from ortial thiknessstatistis. The ortial thiknesses of the 10 subjets were therefore mapped to a ran-dom target surfae and the non-parametri Kruskal-Wallis test [3℄ was performed at eahvertex to test for equality among the mapped values. Furthermore, at eah vertex the algo-rithms were tested against eah other using the non-parametri Mann-Whitney-Wiloxon(MWW) test [3℄ to evaluate di�erenes between them.5.6 ResultsThe four quantitative evaluation riteria as de�ned in setion 5.5 were alulated for all90 mappings. Figure 5.2 shows the average errors alulated for eah algorithm by theevaluation riteria. The results from the landmark test are shown in �gure 5.3. Table 5.1
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ICP Feature ICF Spherical WarpFigure 5.2: Average errors of mapping with the �ve tested algorithms between permuta-tions of the 10 ortial surfaes (n=90).shows the average di�erene in mean ortial thikness before and after mapping the nineorties to the randomly seleted referene surfae. The Kruskal-Wallis test showed that31% of the verties were dependent on the mapping algorithm, and the subsequent MWWtest revealed that the feature and ICF algorithms were providing similar statistial results,while spei�ally the spherial rigid approah had areas with onlusions di�erent fromthe other algorithms (table 5.2). Figure 5.4 shows the statistial maps when omparingthe ICF algorithm with eah of the other four mapping algorithms using the MWW test.
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Figure 5.3: Average distanes in mm from mapped landmark to manually labeled landmarkof 90 mappings. Landmarks are temporal pole (TP), supramarginal gyrus (SG), uneus(Cun), gyrus retus (GR), post entral gyrus (PCG), and anterior ingulate gyrus (CG).
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(b) Medial viewsFigure 5.4: ICF ompared vertex by vertex to the other four mapping algorithms visualizedon an in�ated referene surfae. White areas indiate signi�ant di�erene (p<0.05) inthe ortial thiknesses mapped to a vertex.5.7 DisussionEvaluation MetrisThe four evaluation riteria in setion 5.5 were designed to evaluate the behavior of theexamined mapping algorithms. Even though the riteria should optimally result in as low



Chapter 5: Evaluation of Five Algorithms for Mapping Brain Cortial Surfaes 58Feature ICF Spherial WarpICP 6% 3% 24% 14%Feature - 0% 22% 6%ICF - - 22% 6%Spherial - - - 22%Table 5.2: Perent verties of referene surfae where the MWW test rejets the hypothesisthat the ortial thiknesses ome from the same population (α = 0.05) for the di�erentmapping algorithms, whih means that the mappings in�uene the onlusion.values as possible, all riteria annot be expeted to be low beause of the highly diversefolding patterns in the surfaes. For example, a low density error, i.e. a good preservationof the intrinsi vertex on�gurations, will inevitably result in a high topography error, assome verties are mapped from onvexities to onavities and vie versa. Nevertheless,the four riteria are useful for evaluating the algorithms' strengths and weaknesses.From �gure 5.2 it an be seen that the algorithms behave more or less as expeted.The ICP algorithm not surprisingly has relatively high overage, multiple mapping, andtopography errors, while the density error is kept low. This is to be expeted as noonstraints on multiple mappings or topography preservation are applied, and verties arekept very ompat as only the Eulidean distane is optimized. The feature algorithmas proposed by Spjuth et al. [30℄ has almost as bad a overage as the ICP algorithm,but performs better in both the multiple mapping and topography riteria. As expetedthe density error for the feature algorithm is high, as neighboring verties are allowedto jump between gyri resulting in long geodesi distanes between the mapped verties.The proposed ICF algorithm behaves approximately similar to the feature algorithm withregard to the density and topography riteria. However, when evaluating the overage andmultiple mapping, it an be seen that this algorithm has the lowest errors among the �veevaluated algorithms. This was expeted as onstraints are enfored to prevent multiplemappings and optimize the overage.The two mapping approahes that use an intermediate step in form of mapping toa sphere have a similar behavior. As expeted these algorithms have the lowest densityerrors among the algorithms, and the multiple mapping errors are also relatively low.This is beause the intrinsi vertex on�gurations are retained during the spherial �ttingproess. However, the overage errors are relatively high, and the topography errors arehighest among the evaluated algorithms for the rigid spherial approah, while a littlelower for the warp approah. This is interesting as the �tting proess should minimize thetopographial di�erenes between the surfaes. This is a tangible sign of the high diversityof the folding patterns, and that maintaining the intrinsi vertex on�gurations result inmapping between di�erent topographies. The spherial warp approah whih non-linearlyshould ompensate for the highly diverse folding patterns still has high topography errors.This may be explained by the fat that the non-linear �tting is done to an average modelinstead of the atual target surfae. It seems that a ombination of the ICF and thespherial approah may provide a nie trade-o� between the four mapping riteria.Landmark TestFigure 5.3 reveals that the mapping algorithms are far from perfet when evaluating howwell they map between manually labeled landmarks. The error is measured as the geodesidistane to the manually labeled landmark, whih means that mapping to a gyrus or sulusadjaent to the orret results in a large error. From the �gure it an be seen that somelandmarks are generally more aurately mapped than others no matter the hoie ofalgorithm. The ingulate gyrus are in most ases mapped with a preision of less than 1m, and gyrus retus is also in most ases mapped more aurately than the remainingfour landmarks. These two landmarks are both loated medially lose to the midbrain



59 5.7 Disussionwhere ortial variations are less pronouned. The supramarginal gyrus, whih is loatedin an area of deep suli and great ortial variability, generally has high errors in all �vealgorithms. This emphasize the fat that highly onvoluted and variable areas are harderto map than less folded areas. The ICP, feature, and ICF algorithms all have similarpatterns of landmark errors not signi�antly (0.21<p<0.40) di�erent from eah other,whih may be due to the similar nature of these algorithms. The spherial approah withthe rigid optimization seems to have a more uniform distribution of errors, exept for theingulate gyrus. This an be explained by the rigid optimization. The spherial approahwith the non-linear optimization is able to ompensate for the high ortial variability, andit results in errors similar to landmarks in areas without great ortial variability, suhas the ingulate gyrus and gyrus retus. Beause of the high standard deviations in thelandmark errors, it is hard to on�dently determine the best mapping algorithm, however,when averaging all landmark errors within eah algorithm the spherial warp approahperforms signi�antly (p<0.001) better than the other algorithms with an average errorof 9.5±9.0 mm, while the spherial rigid approah performs signi�antly (p<0.001) worsewith an average error of 19.0±23.4 mm. Further tests should inlude more subjets andlandmarks in onave regions in addition to the onvexly loated landmarks used here toget a more representative quanti�ation of mapping auray.Statistial MapsThe averaged ortial thikness after mapping to the random referene surfae did nothange signi�antly exept when using the ICP algorithm (see table 5.1). However, thegenerated statistial maps revealed that almost one third of the verties on the referenesurfae are dependent on whih mapping algorithm is used to map the ortial thikness tothe referene. Testing eah algorithm against the others revealed that the spherial rigidapproah is the algorithm with the largest areas (22% - 24%) of deviating onlusionsbased on the MWW test (see �gure 5.4 and table 5.2). Almost no di�erene is seenbetween the ICF and feature algorithms while smaller di�erenes is seen between ICF andICP (3%) and ICF and the spherial warp (6%). As it an be seen from �gure 5.4, 3% isa notieable portion of a ortex, and may lead to wrong onlusions. This suggests thatthe impat of the mapping algorithm on the statistial maps is high, and it must be takeninto onsideration when drawing onlusions from the statistial maps.Proposed AlgorithmThe ICF algorithm extends the simple feature based approah by iteratively approximat-ing a bijetion. This is re�eted in the quantitative measures of overage and multiplemapping, where ICF has the lowest errors. However, the algorithm is not more auratewhen measuring the distane to the manually plaed landmarks, and the statistial mapsshow no di�erene between the simple feature based method and the ICF. Though pre-serving more information, the ICF algorithm does not seem to improve auray or hangethe produed statistial maps.Both approahes use mean urvature, normal diretion, and Euledian distane formathing verties. These features do not distinguish between large onvex areas, suhas the sylvian �ssure, and the smaller onvexities, suh as most of the suli. Additionalfeatures ould be inluded in the ost funtional to better map areas of similar sizedonvexity, e.g. the average onvexity as used by FreeSurfer ould be used [11, 12℄. Also,a term punishing large geodesi distanes between vertex neighbors after mapping ouldbe inluded to ompensate for the high density errors. Furthermore, the weights in theost funtional were optimized by a simple phantom surfae, and better auray may beahieved by optimizing using realisti ortial surfaes.
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Chapter 6Cortial Volumes and AtrophyRates in FTD-3 CHMP2BMutation Carriers and RelatedNon-arriersAdapted from: Simon F. Eskildsen, Lasse R. Østergaard, Anders B. Rodell, Leif Øster-gaard, Jørgen E. Nielsen, Adrian M. Isaas, and Peter Johannsen: Cortial Volumes andAtrophy Rates in FTD-3 CHMP2B Mutation Carriers and Related Non-arriers, Neu-roImage, In press6.1 IntrodutionFrontotemporal dementia (FTD) is a syndromi linial variant of frontotemporal lobardegeneration (FTLD) whih onstitutes the third most prevalent group of neurodegenera-tive diseases with ognitive impairment [28,43℄. Within reent years the linial, moleulargeneti and pathologial lassi�ations of FTD have evolved [8, 16℄. Up to 40% of FTDases are onsidered autosomal dominantly inherited. One of the rarer auses of famil-ial FTD is CHMP2B -mutation related FTD with a pathogeni G-to-C transition in theaeptor splie site of CHMP2B exon 6 (.532-1G>C) on hromosome 3 (FTD-3) [47℄.The CHMP2B protein is a part of the Esort-3 omplex involved in tra�king proteinsdestined for degradation in the Golgi apparatus. The moleular disease mehanism is notyet fully known. The disease was primarily desribed in a large Danish family [26, 36℄,but a novel nonsense mutation in the CHMP2B gene was reently identi�ed in a Belgianfamilial FTD patient further supporting the gene to be involved in FTD [53℄.The Danish FTD-3 family is very large with 33 identi�ed patients and another 250at risk for developing the disease within the next 60 years. The average FTD-3 linialonset is 57 years with a broad range from 43 to 65. As the symptom onset is insidious theexat time of onset an be di�ult to determine. Patients present with primarily a lin-ial syndrome of frontotemporal dementia with behavioural hanges, apathy, sometimesaggression and/or hanged eating behaviour. During the early ourse they rarely havelanguage disturbanes, but when neuropsyhologially tested they often have impairmentof more posteriorly ortially loated funtions suh as memory and visuospatial problems.Urinary inontinene and gait disturbanes are normally late features although they some-times an be seen during the early years of the disease. Disease duration from diagnosisto death ranges from 2 to over 20 years.In FTD ortial strutural hanges are per se primarily found in the frontal and tem-63



Chapter 6: Cortial Volumes and Atrophy Rates in FTD-3 CHMP2B Mutation Carriersand Related Non-arriers 64poral lobes [7℄. However, studies have also reported hanges in the parietal lobes [4,25,55℄.The aim of the present study is to assess ortial strutural hanges in prelinial FTD-3CHMP2B mutation positive ases ompared to mutation negative family members, andfurthermore to assess a possible progression of ortial hanges. A seondary aim has beento try to identify possible prelinial foal ortial abnormalities.In vivo investigation of brain ortial strutural hanges using magneti resonaneimaging (MRI) has primarily employed manual or semi-automati traing of tissue bound-aries to quantify anatomial strutures [29,42℄. Suh approahes are time onsuming andsubjet to inter-rater variability. Therefore, automati unbiased omputational approaheshave gained popularity when studying ohorts of subjets.A variety of studies [54℄ have used voxel-based morphometry (VBM) to detet brainhanges in diseases with FTLD and di�erenes between disease FTLD sub-types andhealthy ontrols sine the introdution of the method [2, 60℄. VBM performs voxel-wiseomparisons between spatially aligned MRI sans of subjet groups enabling identi�ationof tissue growth and tissue loss throughout the entire brain. A related method is tensor-based morphometry (TBM) [3℄, analyzing the deformation �eld involved in non-linearmapping of images, suh as mapping of intra-subjet serial sans and mapping of subjetto group average. This way, loal expansions and ontrations an be identi�ed, and thetensor maps an be used to quantify longitudinal e�ets and di�erenes between subjetsand groups. TBM has been used in di�erent areas, suh as studying the developing humanbrain [12℄ and measuring degeneration in Alzheimer's disease [23℄. TBM has been usedless extensively than VBM within the �eld of FTLD, but reently more studies using TBMhave been reported [4, 9, 52℄.A third type of method for measuring ortial hanges is the expliit segmentationof the erebral ortex for measurements of ortial thikness using parametri or geo-metri deformable models [15, 21, 27, 31�33, 62, 64℄. The ortex is expliitly or impliitlyrepresented as surfaes of the white matter/gray matter boundary and the gray mat-ter/erebrospinal �uid boundary �tted to the images with subvoxel preision. This en-ables measurements of ortial thikness throughout the entire ortex with the advantageof standardized thikness measures, whih is unavailable through VBM or TBM. In addi-tion, VBM does not onsider the ortial geometry, and annot di�erentiate the ortialthikness of opposing walls in suli. The drawbak of surfae based methods is the lak ofquanti�ation of subortial regions, suh as the thalamus, and basal ganglia. However,in studies where ortial strutures are the objetive and subortial strutures are lessrelevant, surfae based methods are preferable. Surfae based methods have been usedto quantify hanges in a variety of diseases, suh as shizophrenia [34, 40, 63℄, obsessive-ompulsive disorder [46℄, and Alzheimer's disease [35℄. In diseases with FTLD surfaebased methods are apt, as degeneration is expeted in the ortial lobes.In this study we applied a surfae based ortial segmentation method to serial MRIsans of prelinial individuals with CHMP2B -mutation related FTD and individuals with-out the mutation from the same family. Global volume measurements and loal ortialthiknesses were determined from the ortial surfaes. Longitudinal and ross-setionaldi�erenes in ortial thikness were evaluated by lobe averages and by onstrution ofstatistial parametri maps.6.2 Materials and MethodsThe study adhered to the Helsinki II delaration, and was approved by The County EthisCommittees in the Counties of Aarhus, Viborg-Nordjylland and Copenhagen, Denmark.Subjets were reruited via a family ontat group that distributes information within theDanish FTD-3 family. All partiipants signed the ethis approved informed onsent form.All subjets had previously partiipated in geneti studies where they had been genetiallytested for the CHMP2B mutation. The partiipating individuals and liniians involvedin sanning or with any diret ontat to the partiipants have been and still are blinded



65 6.2 Materials and MethodsMutation arriers Non-arriersN 9 7Male:female ratio 7:2 4:3Age at baseline (years, mean±SD) 55.8±5.6 54.3±6.0Inter-san interval (years, mean±SD) 1.3±0.2 1.3±0.1Table 6.1: Subjet demographi information.to the geneti status of the subjets.6.2.1 SubjetsNine individuals arrying the CHMP2B mutation and seven age-mathed 1.-degree rela-tives without the mutation (non-arriers) from the third and fourth generation of the largeDanish FTD-3 family were inluded in the study. All individuals were pre-symptomatiat the follow-up san without any subjetive omplaints and working full time or reentlyretired due to age. Subjets and lose relatives (usually the spouse) were interviewed ina semi-strutured manner by an experiened liniian, used to assess FTD patients ingeneral and the FTD-3 patients spei�ally. For all partiipants, neither the subjet northe informant desribed any hanges in behaviour or personality. Some of the partii-pants had previously agreed to neuropsyhologial sreening where no abnormalities werefound. There were no omorbidities a�eting erebral struture. Sreening with standardinstruments, suh as the MMSE, is not valid for the present disease, as MMSE is knownto be normal even though the patients have gross behavioural and personality hanges.None of the partiipants showed any sign of insidious symptoms on neither the linialinterview nor the behavioural observation. Table 6.1 lists the demographi information ofthe subjets. The age range at baseline san was from 45 to 65 years of age.6.2.2 Image AquisitionT1 MRI data were obtained on a 3T GE Signa Exite using a 3D inversion reoveryfast spoiled gradient realled sequene with TR/TE/TI = 6.3/2.9/750 ms, 14◦ �ip angle,0.94×0.94 mm2 in-plane resolution (256×256 pixels), and a slie thikness of 1.2 mm. Fullhead images were aquired with 126 - 148 axial slies using a standard head oil. Stan-dard non-volumetri T2 weighted (22 axial slies, TR/TE=4000/102 ms) images were alsoaquired. All images were heked for obvious aquisition artefats suh as motion andsuseptibility artefats whih an a�et the image proessing and subsequent quanti�a-tion.6.2.3 Image ProessingThe MRI data were linearly and nonlinearly registered to a ommon model using theICBM152 [38℄ as target spae. This was done using an automati iterative multiresolu-tion approah similar to Collins et al. [14℄ and Janke et al. [30℄. The ommon model wasbased on 85 subjets non-linearly registered, whih resulted in an average with more well-de�ned image gradients than averages based on a�ne registrations, thus enabling moreaurate registration of the target MRI data. Intensity non-uniformities originating frominhomogeneities in the magneti �eld were orreted by the N3 algorithm [48℄. A brainmask was reated by iteratively �tting a deformable surfae to the brain meninges usingan algorithm similar to the brain extration tool (BET) by Smith [50℄ (�gure 6.1.a). Thevoxels inside the brain mask were lassi�ed into white matter (WM), gray matter (GM),and erebrospinal �uid (CSF) using a fuzzy lustering algorithm (�gure 6.1.b). Stereo-taxi masks of the brain stem and erebellum were applied to isolate the erebral WM withan axial ut of separation approximately at lamina teti. The ventriles and subortial
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Figure 6.1: Extration of the ortial boundaries. a) Spatially aligned MRI data withinitial (red ontour) and �nal (yellow ontour) brain extration ontour superimposed. b)Brain tissue lassi�ed as WM, GM, and CSF. ) Ventriles and subortial regions labelledas WM, and WM separated into hemispheres by a sagittal ut through orpus allosum.d) Edge map alulated from the fuzzy lassi�ations. e) WM surfae superimposed onthe MRI data. f) GM surfae superimposed on the MRI data.regions were labelled WM to obtain a solid WM omponent for the following surfae gener-ation and ortial segmentation. The erebrum WM was separated into two hemispheresby a mid-sagittal ut, and spherial topology of eah hemisphere was obtained using atopology orretion algorithm [11℄ (�gure 6.1.). An edge map of the GM/CSF interfaewas reated using the membership volumes obtained by the previous fuzzy lassi�ation(�gure 6.1.d). The edge map was used in the ortial boundary extration as explainedbelow. All proessing steps were fully automati.6.2.4 Cortial Boundary ExtrationCortial boundaries were identi�ed using deformable surfaes and a fore balaning sheme[39℄. Eah hemisphere was proessed separately. An initial surfae was obtained by apply-ing an iso-surfae algorithm on the topologial orret WM omponent reating a losedtriangulated surfae [37℄. The initial surfae was deformed iteratively to the WM/GMboundary under in�uene of fores derived from the fuzzy lassi�ations and the gradientimage (6.1.e) [17℄. The GM/CSF boundary was found by expanding the initial surfaeunder in�uene of deformation fores derived from the surfae normals, a gradient vetor�eld [61℄, and the GM/CSF edge map shown in �gure 6.1.d [18, 19℄. The resulting sur-faes aurately delineated the erebral ortex reahing into the deep narrow suli (�gure6.1.f). The ortex extration method has been validated on healthy subjets and phantom



67 6.2 Materials and Methodsdata [17�19℄, but has not yet been validated on neuropathologial data. Therefore, orti-al surfaes were visually inspeted for segmentation errors, both using a 3D visualizationtool and by superimposing the surfaes onto the original MR images.6.2.5 Cortial MeasurementsThe surfaes generated for eah hemisphere were triangular meshes eah onsisting ofapproximately 9×104 verties uniformly distributed over the ortex. The ortial thiknesswas measured at eah vertex as the distane between the WM and GM surfae orthogonalto the GM surfae using a ombination of the surfae normals and the nearest point(Eulidian) on the opposite surfae. The nearest point distanes between the surfaeswere used to restrain how far along the surfae normals to searh for intersetions of theopposite surfae, thus preventing gross overestimation of the thikness where the linesde�ned by the GM surfae normals do not interset the WM surfae within the same loaltopography. To inrease the signal-to-noise ratio (SNR), ortial thikness measurementswere blurred with a surfae-based di�usion smoothing approximating a Gaussian kernelsmoothing with 10 mm full-width half maximum (FWHM) [13℄. Eah hemisphere wasdivided into the main lobes based on an atlas in stereotaxi spae that aompany theMRIro software pakage [44℄, thus enabling regional based analysis. The atlas is de�nedas a labelled 3D image in stereotaxi spae, and the subdivision of the surfaes was doneby assigning a label to eah vertex with the losest image label measured by Eulidiandistane.Tissue ompartment volumes were estimated by utilizing the volumes enlosed by theGM and WM surfaes. The surfaes enlose the ventriles and subortial regions fromthe lamina teti and rostrally. Therefore, erebrum volume was estimated by the volumeenlosed by the GM surfae minus the volume of the ventriles and subortial regions,whih were alulated from non-linearly aligned masks. WM volume was alulated simi-larly using the WM surfae. Cortial volume was alulated as the di�erene between theerebrum and WM volume. Compartment volumes were normalized by estimated totalintraranial volume (eTIV) obtained from an intraranial mask non-linearly �tted to theimages.The aquired T2 images were visually heked for hanges in WM lesions in order toensure that WM lesions ould not be an explanation for the results. We did not �nd anyhanges in the number of WM lesions over the ourse of the study. Only one subjet hadminor age-onsistent WM-lesions. Thus there was not a linially relevant di�erene inthe number of WM-lesions between the two groups.6.2.6 Surfae MappingSurfae mapping was applied to obtain vertex to vertex orrespondene between intra-subjet surfaes at baseline and follow-up, thus enabling point-wise di�erenes in ortialthikness. After an initial rigid alignment of the surfaes using the ICP algorithm [5℄,vertex orrespondene was alulated by minimizing a ost funtion expressing di�erenesin mean urvature, orientation, and spatial position of the surfae verties [20, 51℄. Tofailitate the onstrution of statistial parametri maps of ortial di�erenes between thegroups, baseline surfaes were mapped to a referene surfae hosen among the subjets.Surfaes at baseline were geometrially smoothed using a Laplae operator and mappedto the referene surfae using the mapping method [20,51℄. The smoothing was performedto redue geometrial distortion and obtain more well-de�ned sulal patterns.6.2.7 Statistial AnalysisDistributions of ortial thikness aross subjets were assumed to follow normal distribu-tions, both with regard to regional averages and single point measurements. Di�erenes



Chapter 6: Cortial Volumes and Atrophy Rates in FTD-3 CHMP2B Mutation Carriersand Related Non-arriers 68aross groups were evaluated using t-tests with assumptions of unequal variane. Longi-tudinal di�erenes within eah group were evaluated using paired t-tests.Statistial parametri maps were onstruted to identify point-wise di�erenes overtime and between the groups. The maps were onstruted by performing hypothesistesting at eah vertex (approximately 105 verties) of the referene surfae testing hangein ortial thikness or di�erenes in ortial thikness between the groups. Problemswith false positives related to multiple omparisons were addressed by alulating FalseDisovery Rate (FDR) orreted signi�ane thresholds [24℄. The statistial maps wereblurred in the same way as the ortial thikness measurements to inrease SNR andenhane foal e�ets. The blurring, whih approximated a Gaussian kernel smoothing with10 mm FWHM, had the e�et of removing areas with sattered signi�ane (di�use e�ets)leaving only foal e�ets (lusters of signi�ane). Foal e�ets were determined wheresigni�ant di�erent ontiguous areas (lusters) exeeded an area of 20 mm2 alulatedas the surfae area spanned by lusters of onneted verties with p-values below thesigni�ane threshold. Anatomial labels were assigned to the foal di�erenes in thestatistial parametri map by mapping labels from the stereotaxi atlas onto the referenesurfae as desribed above [44℄. The area of the signi�ant ontiguous areas was summedwithin eah region to report regional involvement.To limit the intra-subjet variability and inrease statistial power to the group om-parison, di�erenes in ortial thikness and volume between groups were determined byomparing pooled data from mutation arriers (baseline and follow-up) with pooled datafrom non-arriers. This was done as subjets at a given time (baseline or follow-up) notneessarily are homogeneous, e.g. the disease stage in a mutation arrier at baseline mayorrespond to the disease stage in another mutation arrier at follow-up.Annualized ortial atrophy rates in eah lobe were alulated as perent deline ofbaseline lobe average thikness. To avoid magnifying noise in ortial thikness the atrophyrate per vertex was alulated as a ratio (r) as
ri =

m2,i − m1,i

∆t(m2,i + m1,i)
(6.1)where m1,i and m2,i are measurements at vertex i at respetively baseline and follow-up, and ∆t is the subjet san interval. By normalizing with the summed thikness forbaseline and follow-up unrealistially high atrophy rates, aused by baseline measurementslose to zero, were avoided.Asymmetry was evaluated by the left to right ratio between thikness measurementsand atrophy rates averaged within the hemispheres and within the main lobes.6.3 Results6.3.1 Cortial Boundary Extration and Compartment Segmen-tationsAll generated ortial surfaes were found to be free of obvious segmentation errors byvisually heking 3D rendered images as well as images of the original MR data withthe surfae ontours superimposed. The masks �tted to the intra-ranial avity, the ven-triles, and subortial regions were visually examined by superimposing them onto theoriginal MR data. Intraranial and subortial masks were found to aurately �t theimages. However, examining the ventriular masks revealed problems of �tting to the pos-terior part of the lateral ventriles in two subjets of both groups. In these subjets theventriular volume is underestimated. The inaurate ventriular segmentations lead tooverestimations of the WM and erebrum volume while the ortial volume is una�etedby the ventriular segmentation. The segmentation auray was visually estimated to besimilar for baseline and follow-up why it was assumed that longitudinal di�erenes in WMand erebrum volumes are una�eted by the segmentation errors.
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Figure 6.2: Statistial parametri map of di�erenes in ortial thikness showing areaswith p < 0.01 for one-sided t-test testing signi�ant thinner ortex in mutation arriersompared to non-arriers. Map generated from pooled (baseline and follow-up) measure-ments and blurred with a di�usion smoothing approximating a Gaussian kernel smoothingwith 10 mm FWHM.6.3.2 Cross-setional Di�erenesAll lobes were signi�antly thinner in mutation arriers ompared to non-arriers (table6.2). For an FDR of 5% the statistial parametri maps implied an appropriate thresholdof signi�ane at αFDR = 0.011 for the left and αFDR = 0.010 for the right hemisphere.We hose a threshold of αFDR = 0.01 for both hemispheres. Figure 6.2 shows the blurredstatistial parametri map of group di�erenes in ortial thikness. Blurring the statis-tial map removed 85% of the signi�ant points leaving highly signi�ant lusters. Table6.3 lists the anatomial regions that inlude the largest areas of signi�ant di�erene. Sig-ni�antly di�erent regions were primarily found in the parietal lobes (24.8 m2) and theright temporal lobe (10.9 m2). Oipital lobes displayed less di�erene (6.2 m2), whileonly small signi�ant di�erenes were found in the left frontal lobe (2.4 m2). No part ofthe ortex was signi�antly thinner in non-arriers ompared to the mutation group.6.3.3 Longitudinal E�etsAnalysis of group lobe averages revealed that in mutation arriers all lobes exept theparietal lobes and the right temporal lobe were signi�antly thinner at follow-up omparedto baseline (table 6.2). In non-arriers only the left oipital lobe was signi�antly thinnerat follow-up.None of the p-values in the statistial parametri maps of the longitudinal di�erenesof ortial thikness was below α/N (α = 0.05, N = 105), whih resulted in no validFDR adjusted signi�ane threshold. Setting the threshold to α = 0.01 showed no foaldi�erenes for either mutation arriers or non-arriers. Analyses of the unblurred statistialmaps revealed sattered areas of signi�ane in both frontal and temporal lobes in mutationarriers with more signi�ane in the left lobes. Also, sattered areas of signi�ane werefound in the left oipital and left medial frontal lobes. In non-arriers sattered areas ofsigni�ane were observed in the left oipital lobe. Lowering the signi�ane thresholdto α = 0.05 revealed signi�ant ontiguous areas (1.4 m2) in the left temporal lobe ofmutation arriers (see �gure 6.3).6.3.4 Atrophy RatesTable 6.4 lists the annualized ortial atrophy rates within the main lobes for both groups.The ortial atrophy rate was signi�antly higher in the left frontal and left temporal lobein mutation arriers ompared to non-arriers. FDR analysis of the statistial parametrimap of group di�erenes in annualized ortial atrophy ratios (alulated by Eq. 6.1)provided no valid signi�ane threshold for the same reason as desribed above. Setting
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Frontal lobe Temporal lobe Parietal lobe Oipital lobeLeft Right Left Right Left Right Left RightMC Baseline (mean±SD) 2.24±0.26 2.20±0.23 2.62±0.24 2.52±0.21 1.57±0.25 1.56±0.25 1.90±0.17 1.88±0.17Follow-up (mean±SD) 2.13±0.31 2.11±0.28 2.50±0.28 2.48±0.27 1.54±0.26 1.50±0.25 1.75±0.14 1.79±0.17Longitudinal di�erene 0.005 0.015 0.007 0.335 0.440 0.193 0.002 0.003(p-value)NC Baseline (mean±SD) 2.48±0.17 2.44±0.18 2.84±0.08 2.80±0.13 1.94±0.12 1.88±0.16 2.15±0.20 2.10±0.21Follow-up (mean±SD) 2.46±0.12 2.40±0.16 2.78±0.05 2.81±0.06 1.92±0.06 1.84±0.09 2.00±0.13 2.07±0.18Longitudinal di�erene 0.629 0.312 0.112 0.736 0.614 0.348 0.030 0.496(p-value)Pooled group di�erene 0.011 0.012 0.010 0.002 0.001 0.002 0.003 0.008(p-value)Table 6.2: Cortial thikness measurements (mm) averaged within main lobes at baseline and follow-up for mutation arriers (MC) and non-arriers(NC). Longitudinal di�erenes evaluated by two-tailed paired t-test. Group di�erenes evaluated by one-sided t-test with assumption of unequalvariane on pooled measurements.
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Anatomial region Involved area, LH Involved area, RHAngular gyrus 655 mm2 456 mm2Supramarginal gyrus 479 mm2 463 mm2Middle temporal gyrus 221 mm2 987 mm2Middle oipital gyrus 251 mm2 221 mm2Superior temporal gyrus 158 mm2 76 mm2Inferior parietal gyrus 226 mm2 22 mm2Superior parietal gyrus 106 mm2 No e�etTable 6.3: Anatomial regions with signi�antly (p < 0.01) thinner ortex in mutationarriers ompared to non-arriers after smoothing. Only regions with an involved areaof more than 1 m2 of either the left (LH) or right (RH) hemisphere are reported. Thesigni�ant areas are visualized in �gure 6.2.

Figure 6.3: Statistial parametri map of longitudinal di�erenes in ortial thiknessin mutation arriers showing areas with p < 0.05 for paired t-test testing signi�antthinner ortex. Map blurred with a di�usion smoothing approximating a Gaussian kernelsmoothing with 10 mm FWHM.
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Figure 6.4: Statistial parametri map of signi�antly (p<0.01) higher atrophy ratios inmutation arriers. Map blurred with a di�usion smoothing approximating a Gaussiankernel smoothing with 10 mm FWHM. Surfae parts have been removed for better visu-alization of regions buried by the lateral �ssures. Labels orrespond to the lusters listedin table 6.5. Cluster sizes may appear smaller than they are due to visualization on apartially �attened surfae.the signi�ane threshold to α = 0.01 on the blurred map revealed several foal e�ets(�gure 6.4). Blurring the statistial map removed 78% of the statistially signi�ant pointsleaving only highly foal e�ets. Clusters of signi�antly higher atrophy ratios with anarea >20 mm2 are listed in table 6.3 along with the involved anatomial regions. Higheratrophy ratios were found in both left and right frontal and temporal lobes. Espeiallythe left insular ortex had a higher atrophy ratio in the mutation group (1.61 m2), butalso the right inferio-temporal region (0.58 m2) and the right superior frontal gyrus (0.42m2) showed foal di�erenes.6.3.5 Volume MeasurementsTable 6.6 lists the measured erebrum, WM, and ortial volumes, p-values for longi-tudinal di�erenes within eah group, and p-values for di�erenes between the groups.Mutation arriers had signi�antly smaller ortial volume at follow-up ompared to base-line (p=0.007). The ortial volume of non-arriers dereased, but the volume loss wasnot signi�ant (p=0.142). Cerebrum and WM volumes were not signi�antly di�erent atfollow-up in either group. All erebral volumes were signi�antly smaller in mutation ar-riers ompared to non-arriers. The annualized perentage volume loss orreted for eTIVwas 0.3 ± 1.4% erebrum, -1.4 ± 2.2% WM, and 2.6 ± 2.2% ortex for mutation arriers.Annualized volume loss for non-arriers was 0.1 ± 1.4% erebrum, -0.9 ± 2.0% WM, and1.1 ± 1.8% ortex. Rates of volume loss were not signi�antly di�erent between groups,however there was a trend for higher ortial volume loss in mutation arriers (p=0.17).
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Frontal lobe Temporal lobe Parietal lobe Oipital lobeLeft Right Left Right Left Right Left RightMC (mean±SD) 4.18±3.73 3.42±3.51 3.74±3.16 1.37±3.75 1.52±5.30 3.14±6.87 6.15±4.03 3.91±2.97NC (mean±SD) 0.50±3.51 1.15±2.86 1.44±1.96 0.48±2.86 0.81±4.57 1.59±4.89 4.77±5.53 0.84±3.78Di�erene (p-value) 0.032 0.088 0.048 0.141 0.388 0.303 0.295 0.052Table 6.4: Annualized atrophy rates as perent deline of baseline thikness for mutation arriers (MC) and non-arriers (NC). Di�erene betweengroups evaluated as one-sided t-test with assumption of unequal variane.



Chapter 6: Cortial Volumes and Atrophy Rates in FTD-3 CHMP2B Mutation Carriersand Related Non-arriers 74
Cluster Area (mm2) Lobe Main involved anatomial regionsL1 120.4 Left frontal Insula (109.5 mm2)L2 119.2 Left frontal Rolandi operulum (74.8 mm2)Insula (41.8 mm2)L3 22.4 Left temporal Inferior temporal gyrus (22.4 mm2)R1 53.4 Right temporal Fusiform gyrus (29.7 mm2)Inferior temporal gyrus (23.7 mm2)R2 46.5 Right temporal Transverse temporal gyrus (44.3 mm2)R3 35.3 Right frontal Superior frontal gyrus (31.8 mm2)R4 22.6 Right temporal Middle temporal gyrus (21.0 mm2)Table 6.5: Clusters of statistially signi�ant higher atrophy ratios in mutation arriersompared with non-arriers. Clusters with signi�ant ontiguous areas >20 mm2 arereported. Clusters are visualized in �gure 6.4.

Cerebrum White matter CortexMC Baseline (mean±SD) 980±52 570±31 409±42Follow-up (mean±SD) 969±48 575±30 394±49Longitudinal di� (p-value) 0.161 0.348 0.005NC Baseline (mean±SD) 1048±42 585±32 463±35Follow-up (mean±SD) 1041±26 589±27 453±30Longitudinal di� (p-value) 0.420 0.501 0.086Group di�erenes (p-value) 0.002 0.175 0.005Table 6.6: Compartment volumes (ml) orreted by eTIV for mutation arriers (MC)and non-arriers (NC) at baseline and follow-up. Longitudinal di�erenes were adjustedfor inter-san interval and evaluated by two-tailed paired t-test. Group di�erenes wereevaluated by two-tailed t-test with assumption of unequal variane on pooled group mea-surements.



75 6.4 Disussion6.3.6 AsymmetryAsymmetry ratios between hemispheres revealed a trend towards a thinner ortex in theright hemisphere in both mutation arriers (p=0.121) and non-arriers (p=0.061). Byevaluating the averaged ortial thiknesses within lobes signi�ant asymmetry was foundin the frontal lobes (MC: p=0.046, NC: p=0.013) and parietal lobes (MC: p=0.033, NC:p=0.007) with right lobes being thinner in both groups. No asymmetry was found inthe oipital lobes in either group, while mutation arriers had signi�antly thinner righttemporal lobes (p=0.002). Evaluating the ortial atrophy rates, no asymmetry betweenhemispheres was found in either group.6.4 Disussion6.4.1 Cortial ThiknessAfter a 16 month follow-up, presymptomati CHMP2B mutation arriers showed a signif-iantly thinner ortex in the oipital and frontal lobes and the left temporal lobe. Thisis onsistent with �ndings of other longitudinal studies of other types of symptomatiFTD patients [4, 10℄; however, to our knowledge this is the �rst study desribing ortialthinning in premanifest FTD disease.Even though the statistial parametri maps with FDR adjusted signi�ane thresholddid not show signi�ant foal atrophy in either group, the unblurred maps revealed sat-tered areas of atrophy in the same lobes, whih were signi�antly thinner when averagingwithin the lobar measurements. Lowering the signi�ane threshold to α = 0.05 showedfoal e�ets in the left middle temporal gyrus (�gure 6.3)When omparing the two groups (with and without the CHMP2B mutation) the overalllobe averages were signi�antly thinner in mutation arriers, whereas the statistial para-metri maps revealed more foal di�erenes (�gure 6.2). Foal di�erenes were mainlyfound in the parietal and temporal gyri, while almost no di�erenes were found in thefrontal lobes. However, due to the small number of subjets in both groups and prelin-ial stage of mutation arriers these di�erenes may simply re�et normal variations inortial thikness; and not neessarily a pathologial e�et. This is supported by the foaldi�erenes in atrophy ratio, whih displayed a di�erent pattern (�gure 6.4). We onsiderhange in ortial thikness a statistially stronger metri than the absolute ortial thik-ness when dealing with suh small number of subjets. When examining the statistialparametri map of foal di�erenes of the atrophy ratio, the right frontal lobe was alsoinvolved, while the oipital lobes had no foal e�ets. The atrophy ratio map reportedmore symmetrially distributed foal di�erenes than the diret ortial thikness ross-setional omparison. Spei�ally, the insular ortex (primarily left), the inferio-temporalregions, and the superior frontal gyri were those with the most pronouned foal e�ets(�gure 6.4).The anterior insula have been reported to be involved in several types of FTLD, mostlybilateral [6, 45, 58℄, but also in some ases in the left anterior insula [25, 59℄ and assoi-ated with progressive non-�uent aphasia [41℄. Earlier examinations of patients with theCHMP2B mutation have shown varying degree of aphasia [26℄, though it is not a primarysymptom of the disease. Hyperorality and hanged eating behaviour has been observedin FTD-3 patients [26℄, and the atrophy patterns involving the insula areas found hereshare overlapping patterns with those found in FTLD types with abnormal eating be-haviour [58℄. Thus several of the symptoms observed in patients an be related to theprelinial strutural hanges found in this study. The two distint patterns expressed bythe group thikness di�erenes and the group atrophy di�erenes indiate that patterns ofortial thikness may not alone reveal the a�eted anatomial regions. Thus using onlyone MRI san to establish a �linial� FTD-3 diagnosis in a single CHMP2B mutationpositive subjet seems impossible at the prelinial stage studied here. A follow-up san



Chapter 6: Cortial Volumes and Atrophy Rates in FTD-3 CHMP2B Mutation Carriersand Related Non-arriers 76is neessary to assess the atrophy pattern.Results of ortial thikness based on the present method may not be diretly om-parable with results obtained by VBM analyses. VBM reports statistially signi�antlusters of GM hange without onsidering the sulal geometry. Small lusters in oppos-ing parts of a sulus may be insigni�ant when measuring ortial thikness beause ofthe relatively large geodesi distane between the lusters, while in VBM they ould on-verge into one large signi�ant luster beause of the relatively small Eulidian distanebetween the lusters. Thus it is important to onsider sulal geometry when measuringfoal e�ets [22℄. Therefore, we inluded volumetri measurements to better ompare our�ndings with results from previous studies, whih used volumetri or VBM measurements,and to evaluate the sensitivity of volumetri measurements ompared to ortial thikness.6.4.2 Cerebral VolumesThe mutation arriers showed on average an annualized hange in volume of approximatelytwie the magnitude of the non-arriers. Studies have reported annualized GM volume lossin healthy middle-aged and elderly persons of approximately 0.2% without WM loss [1,49℄.Our measurements of average ortial volume loss (1.1%), though not signi�ant (p=0.14),are in the high end ompared to previous �ndings in healthy subjets. The small numberof subjets (n=7) and signi�ant normal variation may explain the di�erene. Unlikemutation arriers, both inrease and derease of ortial volume was measured in non-arriers, but rates of ortial volume loss were not signi�antly (p=0.17) higher in mutationarriers.The averaged annualized erebrum volume loss of 0.3% in mutation arriers was in-signi�ant and suggested no hange in whole-brain volume. Reent �ndings in ubiquitinpositive FTLD reported whole-brain volume loss of 1.7%/year [56, 57℄. These studies in-volved linially diagnosed FTD patients above age 55 (average ages of 72/73 years) inontrast to the asymptomati subjets in the present study. The whole-brain volume lossfound by Whitwell et al. indiates an aelerated atrophy rate ompared to the youngerasymptomati mutation arriers studied here, where the loss of tissue seems too subtleto be deteted by whole-brain measures. However, ortial volume dereased signi�antlywith 2.6% per year on average while a trend (p=0.08) for inreased WM volume wasobserved (1.4%).The inrease of WM volume in both mutation arriers (1.4%) and non-arriers (0.9%),though not signi�ant (p=0.08, p=0.26), was unexpeted. Other studies have shown noWM volume hange in aged healthy subjets [49℄ and only a slight inrease in WM volumein non-aged healthy subjets [1℄. The WM volume was alulated as the volume enlosedby the WM surfae minus an estimated volume of the ventriles and subortial regions.Ventriular and subortial volumes were estimated using atlas masks non-linearly alignedto the images. Examining the auray of these masks revealed problems of �tting to theposterior part of the lateral ventriles in some subjets, why the ventriular volumes may beregarded as rude estimates a�eting the auray of the alulatedWM volume. Similarly,inaurate ventriular volumes also a�et the erebrum volume estimates. To improvethe WM and erebrum volume estimates the ventriles ould be expliitly segmented,e.g. by the use of deformable surfaes, whih would also provide measures of ventriularenlargement.The study did not show signi�ant di�erenes between mutation arriers and non-arriers when testing for global volumetri longitudinal e�ets. Nevertheless, using ortialthikness measurements we were able to determine higher atrophy rates in lobes, and evenidenti�ed foal di�erenes between the groups. This indiates that regional and foalortial thikness measurements are more sensitive than global brain volume or tissueompartment measurements when quantifying ortial strutural hanges.



77 6.4 Disussion6.4.3 Limitations of the StudyThe main limitation of the study is the low number of subjets examined. This a�etsthe statistial power of the measured di�erenes and ompliates the assessment of howmeasurements are distributed. The assumption of normally distributed measurements,whih was made on the grounds of biologial variations tend to be normally distributed,may therefore be inorret. It was not possible to reruit more subjets, as they had tobe 1.-degree relatives of the same family.The results may be a�eted by the within subjet variability between the two sans.A third serial san would provide more on�dent longitudinal measurements. An addi-tional soure of error ould arise from the surfae mapping used aross subjets. Spei�anatomial loations may be inaurate, as a point on a ortial surfae may be assigned adi�erent anatomial label before mapping to the referene surfae, if it was to be labelledby an expert anatomist. However, the mapping method used ensures that gyral pointsare mapped to a referene gyrus and sulal points are mapped to a referene sulus, thusortial thikness omparisons are kept within the same ortial topography. Addition-ally, surfae based registration has been shown to be more aurate aross subjets thantraditional image registrations [22℄.Controlling the rate of falsely rejeting the null hypothesis in multiple omparison asused to onstrut the statistial parametri maps was attempted with the FDR method[24℄. However, only the map alulated for the di�erenes in absolute ortial thiknessof pooled group data provided FDR orreted signi�ane thresholds. Other statistialmaps had no p-values less than α/N (α = 0.05, N = 105) thus the FDR method removedall signi�ane. This is an e�et of the low number of subjets used in the study. Still, toenable interpretations of the results, it was deided to report the statistial maps withoutthe FDR orreted thresholds. The blurring of the statistial maps removed between 78%and 100% of the statistially signi�ant points (p<0.01), leaving lusters of signi�ane inthe map. Thus it an be argued that suh blurring removes most of the false positives inthe statistial parametri maps. Furthermore, most of the found foal e�ets are bilateral,whih seems unlikely if they were aused by spurious results.The atlas used for assigning anatomial labels to the surfaes is de�ned as a 3D image,and the proedure of assigning labels by Eulidian distane may lead to unertainties inthe exat anatomial designation of the signi�ant pathologial e�ets. However, as theanatomial regions used in the study are relatively large, unertainties are limited to e�etsin the border regions and are onsidered not to a�et the interpretation.Finally, the rude estimates of ventriular volume a�et the measures of WM anderebrum volume. Therefore, the reported volumetri hanges and di�erenes of theseompartments should be taken lightly. However, the volume measurements of the or-tex are onsidered aurate, as these measurements are not in�uened by the ventriularvolume estimations.6.4.4 ConlusionWe have shown that global and foal ortial hanges an be measured in asymptomatiFTD-3 CHMP2B mutation positive subjets by using automati ortial delineation.Global ortial volumetri hanges were statistially signi�ant, but whole-brain hangeswere of a lower rate than rates previously reported in other types of linially manifestFTD patients. Foal ortial hanges were identi�ed by ortial thikness measurements,and the results indiated that suh loal measures have higher sensitivity for detetingsmall hanges than global volumetri measures. Beause of normal variations in ortialthikness and the low number of subjets studied annualized atrophy rates were onsid-ered the most reliant features desribing di�erenes between mutation arriers and non-arriers. Symptoms previously reported from patients with the CHMP2B mutation ouldbe assoiated with the a�eted anatomial regions and our results further support thepathogeniity of the CHMP2B .532-1G>C mutation. Comparing presymptomati FTD-
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Chapter 7Disussion and ConlusionThis thesis ontributes to the �eld of morphometry of the human erebral ortex fromMRI. The objetive is to develop methods for quantifying ortial strutural hangesas found in neurodegenerative diseases and to investigate the ability of suh methods tomeasure hanges in prelinial individuals. A main goal is to di�erentiate between di�erentneurodegenerative diseases by ortial atrophy patterns and identify linial markers to aidin early diagnosis. The �rst step to this goal is to aurately measure the size and shapeof the erebral ortex. In this thesis, it is proposed to reonstrut the ortial strutureby manifold surfaes. The next step towards the goal is to measure atrophy and identifysimilar patterns of atrophy in population groups. For this purpose, ortial mapping isproposed and mapping tehniques are investigated. The last steps toward the goal ofdi�erentiating between neurodegenerative diseases by atrophy patterns involve applyingthe quanti�ation methods in linial studies. A �rst step is taken in that diretion byapplying the developed methods to individuals from a family with an inherited variantof frontotemporal dementia. The following disusses the ortial reonstrution, ortialmapping and appliation of quanti�ation methods presented in this thesis.7.1 Cortial ReonstrutionSuessful ortial reonstrutions use a ombination of voxel based methods and de-formable models. Voxel based methods are typially applied as preproessing steps priorto a deformable model for the purpose of enhaning information of tissue boundaries andreduing manual interation. The main fous of the thesis is on deformable models whilepreproessing steps neessary for automati ortex reonstrution has been implementedby use of existing methodologies. The following disusses the deformable surfae algorithmas proposed during the thesis, followed by a disussion of the steps neessary for auto-mati and robust ortial reonstrution and �nally re�etions on omputational expenseis presented.7.1.1 Deformable Surfae AlgorithmAs stated in the introdution, two riteria are important for surfae reonstrutions of theerebral ortex. First, the surfaes must aurately model the underlying true anatomialboundaries. Seond, the topology of the ortex must be preserved. To meet these riteria,a solution based on parametri deformable surfaes is suggested. By using parametrimodels, the topology riterion an be met if the initial surfae has the orret topologyand self-intersetions are avoided during deformation. Methods for orreting surfaetopology [5,25℄ and methods to avoid self-intersetions of parametri surfaes [21,39℄ havebeen proposed. By seleting proper algorithms to solve these problems, the fous of thestudy is to obtain as aurate ortial reonstrutions as possible using deformable models.83



Chapter 7: Disussion and Conlusion 84In Paper I [12℄, it is demonstrated that a parametri deformable surfae based on thelassi balloon model [7℄ ombined with a gradient vetor �ow fore [53℄ is able to delineateeven the tight sulal folds. The deformation is based on a greedy algorithm [49℄ whihis fast but prone to be trapped in loal minima. However, by initializing the deformablesurfae lose to the target boundaries, the probability of loal minima is redued and fastonvergene is enabled. It is demonstrated that the proposed method is robust to imagenoise; inreasing the noise level in the image to 9% only results in average errors less thanhalf a voxel size ompared to surfaes extrated from noiseless data. Finally, the paperreports that thikness measurements obtained from the reonstruted ortial surfaes arerealisti ompared to measurements found in post mortem studies.The algorithm proposed in Paper I [12℄ has a few drawbaks. The surfae positionwith lowest energy is searhed for in a disrete searh spae, thus limiting the auray ofthe solution even if multisale tehniques are used. Furthermore, the method for enforingspherial topology on the initial surfae may produe anatomial inonsistenies in thesurfae. The initial surfae is a tessellation of the WM of both erebral hemispheres on-neted by orpus allosum. A tessellation of an unmodi�ed WM voxel omponent usuallyresults in a surfae with several handles, where larger handles an be aused by addi-tional inter-hemispheri onnetions suh as the ommissures. In addition, lassi�ationof subortial regions often results in a mixture of WM and GM voxels whih give rise tonumerous topologial errors. Therefore, the applied topology orretion algorithm basedon graph utting [25℄ has di�ulties produing surfaes with anatomially onsistent ap-pearane. In fat, in �gure 2.6 on page 30 suh anatomial inonsistenies an be observedas bridges aross the ventriles.In Paper II [13℄, the granularity problem is addressed by altering the deformation ap-proah to alulate displaement vetors diretly by the sum of fore vetors. Furthermore,a loal weighting strategy of the deformation fores is implemented to improve the au-ray and onvergene of surfaes. Exploiting the lose initial surfae, normalized surfaeurvature is used to relax regularizing fores in urved regions and balane the use of thetwo external image fores for optimal modeling of tight suli. The paper demonstratesthat suh a ombination and weighting of fores is superior to approahes using only apressure fore [10℄ or only a gradient vetor �ow fore [52℄.In Paper III [14℄, the topology orretion method is hanged to a more robust andonsistent approah [5℄. The hemispheres are separated and ventriles and subortialregions �lled and thereby further optimizing the possibility for topologially orret andonsistent surfaes of the neoortex. The paper demonstrates that the proposed algo-rithm is geometrially more aurate and faster than the widely used and freely availablereonstrution algorithm FreeSurfer [10℄.A Note on NoveltyThe �eld of ortial morphometry is rapidly expanding and the progression is fast. At thetime of publiation of Paper I, several of the surfae reonstrution methods referened inthe introdution of this thesis were not published. Several researhers around the worldwork on ortial surfae reonstrution from MRI and this is re�eted in the amount ofliterature on the subjet. As noted in the introdution, reent methods seem to onformto the same strategy of reonstruting the outer ortial boundary by in�ating a surfae ofthe inner ortial boundary. This is indeed the same strategy adopted in this thesis. Themain di�erene is how this deformation is performed. The ombination of external imagefores and weighting strategy presented in the papers of this thesis is onsidered unique.However, reent studies have pointed in similar diretions as proposed here.In a reent omparative study of eight deformable ontour methods, it is onluded thatnew methods ould ombine features from existing methods to handle spei� segmentationproblems [30℄. Spei�ally, a ombination of a balloon model with a gradient vetor�ow (GVF) is given as an example. This ombination is similar to what is presentedin this thesis for the reonstrution of the outer ortial boundary. Another reent paper



85 7.1 Cortial Reonstrutionpropose a method for reonstruting the entral layer of the ortex by ombining a pressurefore with a GVF fore in the deformation proess [37℄. Again, this is similar to theapproah desribed in this thesis with the di�erene that the target here is the outerortial boundary. These studies on�rm the novelty and performane of the ortialreonstrution approah suggested in this thesis.7.1.2 Automation and RobustnessLarge sale ohort studies all for automati proedures to limit tedious and laboriousmanual interation and to optimize onsisteny. A goal for the ortial reonstrutionalgorithm developed during the Ph.D. study is full automation. However, when dealingwith biologial images and omplex target strutures, this is not an easy task when robust-ness to image and objet variation is also prioritized. Apart from the deformable surfaealgorithm, several other proessing steps are involved in an automati reonstrution pro-edure. These steps are performed to ful�ll the preonditions and improve the aurayof the deformable surfae algorithm. The main preondition of the used deformable sur-fae approah is initialization lose to the target boundary. This is ahieved by a goodlassi�ation of the erebral WM.The steps taken to perform lassi�ation of the erebrum WM inlude intensity non-uniformity orretion, image registration to a stereotaxi spae, brain extration, intensitybased lassi�ation into WM, GM and CSF and �nally removal of brain stem and erebel-lum as outlined in Paper I [12℄. Suh preproessing steps are ommon for several ortialreonstrution algorithms [10,24,33,35℄. The performane, robustness and automation ofortial reonstrutions depend on hoies of algorithms to perform eah step. For the or-tial reonstrution presented in this thesis, these hoies have remained more or less thesame throughout the ourse of the Ph.D. study and are in the following brie�y disussedin onnetion with automation and robustness.Corretion of intensity non-uniformities aused by inhomogeneities in the radio fre-queny �eld is usually needed for improving intensity based lassi�ations. The inhomo-geneity inreases with �eld strength and is very pronouned at 3 Tesla. Various algorithmsto orret the intensity non-uniformities in the images have been proposed and a numberof these are publily available [31℄. In this thesis, the freely available N3 algorithm isused [43℄. This algorithm is automati and performs well on images generated by both 1.5and 3 Tesla sanners [3℄.Automati image registration to a stereotaxi spae is a ruial step involved in almostall strutural studies as well as many funtional studies. For this reason, enormous ef-fort has been put into developing robust registration and freely available, well-performingmethods exists [9, 11, 18, 34, 51℄ 1. In this thesis, registration is done using an automatiproedure [8, 9℄ whih is found to perform well for the purposes of the ortial reon-strution. The registration proedure need not be highly aurate, as the purpose forthe ortial reonstrution is gross loalization of the major anatomial parts. Thus, theregistration is used for the removal of brain stem and erebellum. A registration workingfor the wide variability of brain anatomy is usually not su�iently aurate to be used forbrain extration as well.Brain extration is neessary as several tissues in the human head have overlappingT1 intensities whih impairs the tissue lassi�ation. Suh an algorithm must be able torobustly extrat the brain tissues without removing parts of the brain and optimally with-out inluding proximate tissues suh as dura mater, exterior veins and artilage. Severalbrain extration methods have been proposed [40℄. None of the freely available meth-ods [10, 41, 44, 47℄ are found suitable for purposes of robust and automati ortial reon-strution. Therefore, in this Ph.D. study, a brain extration algorithm has been developedsimilar in spirit to the brain extration tool by Smith [44℄. Even though this algorithmworks well for most data, brain extration of elderly subjets has proved di�ult to perform1For a list of available software tools see http://www.ma.mgh.harvard.edu/iatr/



Chapter 7: Disussion and Conlusion 86robustly and aurately. The main problem is the inlusion of dura mater and superiorsagittal sinus whih may have intensities similar to WM, thus ompliating the erebrumWM lassi�ation. The problem is probably related to hange in MRI signal intensitywhih is an e�et of age [32℄.Classi�ation of the erebral tissues into WM, GM and CSF an be performed usingseveral of the lassi�ation approahes desribed in the introdution. Partiularly, in thisthesis a fuzzy lustering approah is used [23℄. This lassi�ation algorithm generally per-forms well; however, no formal omparisons with other algorithms were arried out duringthe Ph.D. study. The algorithm in�uenes the surfae onvergene and reonstrutionauray as the fuzzy membership images produed are used in the deformation proess.In Papers I and III the auray of the reonstruted surfaes is shown to be around halfa voxel size, whih is why the auray of the tissue lassi�ation is deemed aeptable.Generally, the ortial reonstrution proedure runs fully automati on most MRIsans. However, a small fration of sans of elderly individuals need manual interation toremove parts of the dura mater prior to tissue lassi�ation. This is aused by insu�ientbrain extration. It is my experiene that brain extration remains the main obstale toa fully automati and robust ortial surfae reonstrution method.7.1.3 Computational ExpenseThe time it takes to generate aurate ortial reonstrutions may be relevant in somesenarios. If ortial reonstrutions are to be used in diagnostis or preoperative planning,the omputational delay may be a nuisane at best and ritial at worst. However, in mostases the reonstrution time is not important though a fast reonstrution signi�antlyredues the time needed to obtain results in large sale studies. Espeially when repeatedtrials are neessary to tune parameters, high throughput is desirable. In any ase, opti-mization of omputational expense should be prioritized after auray, robustness andautomation.Traditionally, optimization of parametri deformable surfaes is very slow if onver-gene to a global minimum must be guaranteed. Global minimum solutions an be ob-tained by various minimization algorithms [2, 45℄. The deformation methods applied topropagate the deformable surfaes in this thesis do not guarantee onvergene to a globalminimum. This enables faster onvergene and beause of the lose initialization, themodels are less vulnerable to problems of loal minima. Applying a global minimizationalgorithm does not neessarily improve the auray as the global minimum may not bethe most aurate delineation of the ortial boundaries due to noise and artefatual ir-regularities found in MRI. Global minimum algorithms are suited for problems where theinitial guess is far from the solution. However, in ortial reonstrutions, the initial guessan be determined lose to the solution as robust lassi�ation of the erebrum WM anbe ahieved. Therefore, the need for onvergene of surfaes initialized far from the targetboundary seems arti�ial and omputational expensive optimization algorithms guaran-teeing a global minimum appear super�uous for the purpose of ortial reonstrution.Geometri deformable models have beome popular solutions to the ortial reonstru-tion problem sine the introdution of topology preservation to the level set method bythe use of digital topology [26℄. An argument for these models are the low omputationalexpense ompared to parametri models. Authors laim that self-intersetion preventionis very omputational intensive in parametri deformable surfae models [24, 27℄. The so-lution to ortial reonstrutions with self-intersetion avoidane presented in this thesisis reasonably fast. Deformation of the GM/CSF surfae is done in approximately 5 min.per hemisphere on a 2.8 GHz Opteron CPU. But ompared to new level set methods,where the deformation proess is measured in seonds [42℄, the parametri high resolutionmodels are outperformed. However, seen in the perspetive of the entire proess neededfor ortial reonstrution, the deformation proess is only a fration of the omputationaltime used. Intensity orretion and lassi�ation algorithms often demand similar ompu-



87 7.2 Cortial Surfae Mappingtational resoures and if high-dimensional non-linear registration methods are used, thepreproessing steps may be a fator ten more time onsuming than the parametri de-formable models. Thus, in pratial ortex reonstrution, the deformation algorithm isnot the omputational bottle nek if a suitable minimization method is hosen.7.2 Cortial Surfae MappingThe ortial reonstrutions enable detailed morphologial quanti�ations of the entireneoortex. To fully utilize these high resolution measurements and identify di�erenes overtime and between subjets, point orrespondene between ortial surfaes is neessary. Inthis thesis the subjet of ortial surfae mapping for the purpose of point orrespondeneis brie�y investigated in paper IV [15℄.The main problem when omparing di�erent ortial surfaes is the great variationin folding patterns. Usually omparison is enabled by mapping the manifold surfaes toeah other or to a template. If the manifold properties of the surfaes are maintainedby a mapping, it is hard, if not impossible, to math the ortial folding patterns andthereby mathing gyri to suli is unavoidable without loosing information. As the ortexgenerally is thiker at the top of gyri than at the bottom of suli, suh mathing may leadto unreliable measurements of di�erene in ortial thikness. By relaxing the manifoldproperties in the mapping, it is possible to only math areas of the surfaes with similartopography. A mapping method with this purpose is proposed in paper IV and evaluatedalong with methods that maintain the manifold properties when mapping. The evaluationon�rmed that if the manifold properties are maintained, high topographial errors our.The methods ahieving low topographial errors due to manifold relaxation result in neigh-boring verties jumping between gyri and suli leading to large geodesi distanes. This isalso undesirable as neighboring measurements are not independent and suh large geodesidistanes imposed by a mapping may render the measurements unreliable. Though theproposed algorithm maintains the most information (high overage) of the �ve evaluatedmethods, large geodesi errors are not aeptable.A solution to maintain manifold properties and limit the topographi errors ould beto develop di�erent brain templates eah re�eting a �type of brain� ategorized on thebasis of the ortial folding patterns. This way a subjet ortex ould be mathed to thebest template representing the type of ortial folding of the subjet. How many di�erenttemplates would be needed and to what detail the ategorization an be performed remainsto be investigated. Suh an approah would be feasible only if the number of di�erentlasses is limited.Another observation supporting the ategorization of brains aording to the ortialfolding pattern is the large errors and large standard deviations in the landmark testperformed in the paper. All mapping methods resulted in large average geodesi distanesto the manually plaed landmarks. However, it was observed that in some ases themapping was very lose to the landmarks while in others the geodesi errors were large asthe high standard deviations also suggest. This indiates that some orties are generallybetter mathes whih further support the ategorization of the brains for the purposeof brain mapping. By speializing the brain templates for spei� ortial patterns, thegeodesi landmark errors ould be redued.7.3 Appliation on Neurodegenerative DiseasesDemonstrating the use of the ortex reonstrution method on data from individuals witha neurodegenerative disease is ruial, as methods behaving well on simulated data anddata from non-pathologial brains may fail on pathologial brains. In this thesis, theortial reonstrution is applied to individuals from a family with an inherited variant offrontotemporal dementia where a pathogeni mutation has been identi�ed on hromosome



Chapter 7: Disussion and Conlusion 883 (FTD-3). Nine individuals with the mutation and seven without the mutation areinluded in the study.The study whih is doumented in Paper V [16℄ revealed that omparison of groupsusing absolute ortial thikness need more subjets than the 16 used in order to ompen-sate for the signi�ant normal variation in ortial thikness. However, when inludingthe temporal dimension, atrophy rates an be estimated whih are statistially strongerwhen omparing pathologial e�ets. This is re�eted in the di�erent statistial mapsgenerated by respetively absolute ortial thikness and annualized atrophy ratios. Theatrophy ratio statistial map seems more plausible as it shows bilateral e�ets ontraryto the statistial map of di�erenes in absolute ortial thikness. In the spei� vari-ant of frontotemporal dementia, bilateral e�ets are expeted although the degenerativemanifestations of the disease remain to be fully mapped.The ortial reonstrution provides means for measuring the erebral volumes. This isdone by alulating the interior volume of the losed surfaes of the WM and GM. Cortialvolume is determined by the di�erene in volume between the surfaes. In the FTD-3study, only the ortial volume in mutation arriers dereased signi�antly while trend forinreased WM volume was observed. By only modeling the neoortex, estimations of WMvolume annot be diretly obtained why volumes were adjusted by masks of ventriles andsubortial strutures. Ventriular enlargements are expeted over time and the inreasedWM volume may be due to inability of the masks to �t to the altered ventriles. Ventriularvolume an be measured more elegantly by modeling the ventriles expliitly by use ofdeformable or shape models.Cerebral volumes should generally be normalized as great inter-subjet variability ex-ists and the volume of the healthy mature brain is presumed to be orrelated with thevolume of the ranium avity [29, 50℄. In the study, the measurements were normalizedwith estimated total intra-ranial volume obtained by a �tted stereotaxi mask. The au-ray of suh an approah is highly dependent on the registration method and intra-ranialvolume estimations alulated without registration ould improve the auray and removeregistration bias.The rate of hange in erebral volumes was not signi�antly higher in mutation arriersompared to non-arriers while atrophy rates based on ortial thikness both averagedwithin the lobes and foally by the statistial maps showed signi�ant di�erene betweenthe groups. This indiates that ortial thikness is more sensitive than volume mea-sures. A formal study evaluating the sensitivity of the measures should be arried out todetermine the di�erene between the measures.The statistial maps used in the study were reated by hypothesis testing at eah vertexof a referene surfae. In hypothesis testing, there is a probability for inorretly rejetingthe null hypothesis; the false positive rate. When performing thousands of tests as inthe generation of the statistial maps, there is bound to be inorret test outomes, thusleading to false positives. In the study, this problem is addressed by alulating orretedsigni�ane thresholds based on ontrolling the false disovery rate (FDR) [20℄. However,the FDR method eliminated all signi�ant foal e�ets in some of the statistial maps.Controversy exists whether to apply methods for ontrolling the false positive rate at therisk of not reporting important �ndings [19, 38℄. In the FTD-3 study, large smoothingkernels were applied to the maps so only lusters of verties where the null hypothesis arerejeted remain. The probability that a single test is wrong is at the level of determination;however, the probability that several verties in the same neighborhood all have wrongoutomes is signi�antly redued. Therefore, it is argued that problems with multipleomparisons are insigni�ant after smoothing the maps. Even though these argumentsseem to hold, the arguments should be supported by studies investigating the impat ofthe di�erent parameters involved in reating ortial statistial maps, e.g. the e�et ofspatial inter-dependeny of the measurements on the statistial model. Suh investigationsmay lead to a theoretial foundation of the statistial maps generated for ortial features.



89 7.4 Future Diretions7.4 Future DiretionsThe subjets overed in this thesis lead to a range of questions and reognition of problemsstill unresolved in quanti�ation of erebral ortial strutures by use of surfae models.These questions and problems should be addressed in future studies.Firstly, the auray of the proposed parametri deformable model must be furtherinvestigated and omparisons with geometri deformable models should be arried out asthese models have beome popular during reent years. The auray of the reonstrutedsurfaes have been evaluated on the basis of young healthy subjets and phantom MRIsans. Studies of the performane on old and pathologial brains should be onduted. Re-ent initiatives of olleting data from neurodegenerative diseases, suh as the Alzheimer'sDisease Neuroimaging Initiative2, provide means for evaluations on old and pathologialbrains. Validation by omparison to manual delineations, histologial measures and ani-mal studies are also possible diretions for determining the auray and reliability of theortial reonstrution.Seondly, for the purpose of high throughput in large sale studies, automation androbustness is essential. For the ortial reonstrution method presented here, the brainextration step is identi�ed as the weakest link. Future e�ort should be put into improvingthis step with the purpose of developing methods robust to the altered MRI signal intensitydue to age. Robust brain extration is ontinuously being researhed by other groups[1,4,17,28℄ and progress in the �eld may advantageously be inorporated into the ortialreonstrution pipeline.Thirdly, the investigation of di�erent ortial mapping algorithms revealed a need forimprovements within the �eld whih was mainly aused by the high variations of ortialfolding patterns between individuals. Future studies should look into the possibility ofategorizing orties on the basis of folding patterns and the onstrution of speializedortial templates.Fourthly, evaluations of the measures alulated from the ortial surfaes have notbeen the subjet of this thesis and work within this �eld ould improve the reliability ofthe results obtained. Others have evaluated di�erent measures of ortial thikness [36℄ andit should be investigated whether the onlusions drawn by this study apply to the surfaesgenerated by the ortial reonstrution method presented in the present thesis. Apartfrom ortial thikness, volume estimates are also derived from the surfaes. When usingthe ortial surfaes to alulate volume measurements of the erebral tissues two problemsarise: 1) absolute volumes must be normalized by an invariant fator orrelated to themaximum matured brain size and 2) WM volume estimates are orrupted by enlargementsof the ventriles as the WM surfae enompasses these avities. As done in the FTD-3study, normalization an be performed by estimation of the intra-ranial volume as thismeasure is presumed to re�et the maximummatured brain volume and to remain onstantover time [50℄. Often the intra-ranial volume is estimated by a brain mask generated toremove the salp [22, 48, 54℄; however, suh masks may not re�et the true intra-ranialvolume. Therefore, work spei�ally direted toward estimating the intra-ranial volumeshould be arried out. The problem of enlarged ventriles in the WM volume estimationsan be addressed by expliitly modeling the ventriles. Several methods for ventrilesmodeling exist [6℄ and future improvement of the ortial reonstrution pipeline ouldinorporate a suitable method for modeling the ventriles. Inorporation of measures ofventrile size and shape may provide additional information of atrophy progression [46℄.Fifthly, the sensitivity of the ortial thikness ompared to traditional volume mea-sures should be investigated. The FTD-3 study [16℄ indiated that the ortial thiknessmeasurements are superior to volume estimates when deteting subtle ortial hanges.Further work should on�rm this observation and evaluate the sensitivity of the measures.This ould be done using the realisti brain phantoms generated from ortial surfaes asdesribed in Paper III [14℄.2For more information see http://www.loni.ula.edu/ADNI/
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