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A B S T R A C T   

Background: Resting-state fMRI is increasingly used to study the effects of gliomas on the functional organization 
of the brain. A variety of preprocessing techniques and functional connectivity analyses are represented in the 
literature. However, there so far has been no systematic comparison of how alternative methods impact observed 
results. 
New method: We first surveyed current literature and identified alternative analytical approaches commonly used 
in the field. Following, we systematically compared alternative approaches to atlas registration, parcellation 
scheme, and choice of graph-theoretical measure as regards differentiating glioma patients (N = 59) from age- 
matched reference subjects (N = 163). 
Results: Our results suggest that non-linear, as opposed to affine registration, improves structural match to an 
atlas, as well as measures of functional connectivity. Functionally- as opposed to anatomically-derived parcel-
lation schemes maximized the contrast between glioma patients and reference subjects. We also demonstrate that 
graph-theoretic measures strongly depend on parcellation granularity, parcellation scheme, and graph density. 
Comparison with existing methods and conclusions: Our current work primarily focuses on technical optimization of 
rs-fMRI analysis in glioma patients and, therefore, is fundamentally different from the bulk of papers discussing 
glioma-induced functional network changes. We report that the evaluation of glioma-induced alterations in the 
functional connectome strongly depends on analytical approaches including atlas registration, choice of par-
cellation scheme, and graph-theoretical measures.  

Abbreviations: AAL, Automated Anatomical Labelling; AFF, 12-parameter affine registration with no masking; ANTs, The Advanced Normalization Tools dif-
feomorphic algorithm (https://www.nitrc.org/projects/ants); BOLD, Blood-Oxygenated-Level-Dependent; CFM, Cost-function masking; DVARS, D refers to temporal 
derivative of timeseries; VARS refer to RMS, variance over voxels; FC, Functional Connectivity; FWHM, full width at half maximum; NL+M, Non-linear registration 
with cost function masking; NL-M, Non-linear registration with no masking; OASIS3, Open Access Series of Imaging Studies; rs-fMRI, Resting-state functional 
Magnetic Resonance Imaging; RSNs, Resting State Networks. 
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1. Introduction 

Functional magnetic resonance imaging (fMRI) is increasingly used 
to study patients with gliomas (Lv et al., 2022; Sighinolfi et al., 2022). 
Analysis of resting state fMRI (rs-fMRI) data involves evaluation of 
statistical features of spontaneous fluctuations in blood-oxygenated- 
level-dependent (BOLD) signals observed in the task-free state. Spon-
taneous fluctuations of BOLD signals are correlated over widely 
distributed regions of the brain. This phenomenon is referred to as 
functional connectivity (FC). The associated topographies are known as 
resting state networks (RSNs) (Beckmann et al., 2005) or intrinsic con-
nectivity networks (Seeley et al., 2007). 

The primary applications of rs-fMRI in glioma patients are presur-
gical functional mapping (Dierker et al., 2017; Leuthardt et al., 2018; 
Park et al., 2020) and the study of tumor-induced functional reorgani-
zation of the brain (Daniel et al., 2021; Fox and King, 2018; Ghinda 
et al., 2018). Although task-based fMRI has frequently been used in this 
context, rs-fMRI offers the advantage that it does not rely on patient 
compliance with a task paradigm. Further, a rich array of analysis 
strategies can be applied to rs-fMRI data (Hacker et al., 2013; Zang et al., 
2007; Zou et al., 2008). Although much has been learned from prior 
work, e.g., (Fox and King, 2018; Ghinda et al., 2018), the functional 
neuroimaging literature on patients with gliomas is highly diverse as 
regards techniques. So far, there has been no systematic assessment of 
how methodological choices impact observed results. 

Methodological choices arise at multiple stages of fMRI data analysis. 
First, a primary focus of FC investigations in glioma patients concerns 
potential reorganization of RSNs (Lv et al., 2022). Accurate assessment 
of RSN topography depends on accurate registration of the functional 
data to an atlas template, e.g., MNI152 (Fonov et al., 2009). This is 
achieved via a sequence of steps, beginning with atlas registration of the 
patient’s structural data. Although recent results show that non-linear 
registration of structural data to the atlas is preferred in patients with 
gliomas (Chen et al., 2021), the downstream effects of alternative atlas 
registration strategies on measures of FC remain incompletely 
addressed. Second, once the functional data are accurately registered to 
the atlas template, FC is computed by correlation analysis of time series 
extracted from regions of interest distributed throughout the brain. For 
this analysis to be maximally informative, the parcels from which the 
time series are extracted should match the functional organization of the 
brain. The influence of alternative parcellation schemes on the in-
ferences derivable from rs-fMRI has not so far been examined. Third, it is 
well established that RSNs are hierarchically organized (Doucet et al., 
2011; Gotts et al., 2020). The distinction between unimodal vs. 
trans-modal (alternatively, task-positive vs. task-negative) functional 
systems defines the top of the hierarchy (Doucet et al., 2011; Fox et al., 
2005; Huntenburg et al., 2018; Lee et al., 2012). This dichotomy can be 
further subdivided into progressively finer parcels according to a variety 
of schemes (Gordon et al., 2016; Schaefer et al., 2018; Yeo et al., 2011). 
Consequently, the degree to which RSN organization is abnormal in 
glioma patients theoretically depends on the granularity of the parcel-
lation. This issue has never before been investigated. Lastly, the 
glioma-dependent changes in RSN structure have been investigated 
using a variety of graph-theoretic measures (Bullmore and Sporns, 2009; 
Rubinov and Sporns, 2010). Which of these measures best captures the 
characteristic abnormality in glioma patients, as well as the downstream 
effects of the above-mentioned methodological choices remains 
uncertain. 

Thus, our current work primarily focuses on technical optimization 
of rs-fMRI analysis in glioma patients and is fundamentally different 
from the bulk of papers relating glioma-induced functional network 
changes to clinical outcomes. We begin this work by conducting a sys-
tematic review of the literature (presented in Supplemental Materials, 
Table S1). Importantly, we focus on the following aspects of FC analysis 
in glioma patients: (1) atlas registration; (2) parcellation scheme; (3) 
parcel granularity; and (4) graph-theoretic measures. Specifically, we 

perform group-level analyses of data representing 163 healthy adults 
from the Open Access Series of Imaging Studies (OASIS3) dataset 
(LaMontagne et al., 2019) and 59 glioma patients from Washington 
University School of Medicine (WUSM) neurosurgery brain tumor 
database. First, we compare affine vs. non-linear atlas registration with 
and without tumor masking and evaluate the impact of these alterna-
tives on the quality of structural normalization. Next, we assess the in-
fluence of different parcellation schemes (AAL vs. Brainnetome vs. 
Schaefer) on several measures of FC. We then evaluate how parcel 
granularity impacts the differentiation of patients from reference sub-
jects on the basis of whole-brain FC measures and graph-theoretic 
measures. Finally, we analyze the impact of different atlas registration 
options on parcel-based measures of FC abnormalities in glioma pa-
tients. In the Discussion, we relate our review of the current literature to 
the present findings. 

2. Methods 

An overview of the entire analytic scheme used in this work is rep-
resented in Fig. 1 and Fig. S5. 

2.1. fMRI Datasets 

2.1.1. Glioma dataset 
The patient dataset comprised 59 glioma patients aged 22 – 82 years 

(average 58 years), retrospectively identified in the Washington Uni-
versity School of Medicine (WUSM) neurosurgery brain tumor database 
(dates acquired: 10/2012 – 5/2017). Inclusion criteria included: a new 
diagnosis of primary glioblastoma; age above 18 years; MRI at WUSM 
including fMRI for presurgical planning; and adequate tumor segmen-
tation (i.e., no false labeling of normal tissue as tumors) (Section 2.2.1). 
Exclusion criteria included: prior brain surgery or inability to have an 
MRI scan. All analyses were conducted retrospectively using preopera-
tive data. Owing to the retrospective nature of the study, informed 
consent was waived by the Washington University Institutional Review 
Board. Patients were scanned with either a 3 T Trio or Skyra scanner 
(Siemens, Erlangen, Germany) using a standard clinical presurgical 

Fig. 1. Analysis pipeline. A. Structural/Functional Atlas Registration. The 
BOLD fMRI data are resampled in atlas space using the transform obtained via 
the sequence: EPI → T2 → T1 → MNI152. B. Functional Connectivity Anal-
ysis. A functional connectivity matrix is computed using fMRI time series 
extracted from the parcels. The illustrated matrix was obtained using the 
Schaefer parcellation (left most panel). Graph-theoretic measures of FC are 
applied to the obtained FC matrix results. Detailed information regarding 
structural and functional registration is included in Supplemental Materials. 
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tumor protocol. Anatomical imaging included a T1w magnetization 
prepared rapid acquisition (MP-RAGE), a T2w fast spin echo, and a 
FLAIR (Fluid-attenuated inversion recovery) image, all with a voxel size 
of (1 mm)3 were used for tumor segmentation. rs-fMRI was acquired 
using a BOLD-sensitized EPI (Echo-planar imaging) sequence (voxel size 
(3 mm)3 isotropic; echo time = 27 ms; repetition time = 2.2 – 2.9 s; field 
of view = 256 mm; flip angle = 90◦). Two rs-fMRI runs were obtained in 
each patient (320 frames total); each run included 160 frames. All as-
pects of this study were overseen by the Washington University Insti-
tutional Review Board to ensure appropriate patient confidentiality. 

2.1.2. Reference dataset 
The reference group comprised 163 individuals (43 – 93 years, 

average 67 years) selected from among 1098 participants in the OASIS-3 
dataset (LaMontagne et al., 2019) to achieve age-matching with the 
patient group. Inclusion criteria were: first scan of the participants who 
had Clinical Dementia Rating (CDR) score of zero at every assessment; 
MRI acquired with Siemens TIM Trio 3 T scanner; presence of at least 
two rs-fMRI runs plus T1-weighted (T1w) and T2-weighted (T2w) 
structural images. The resting state fMRI data included two 6-minute 
runs (328 frames) acquired while participants were asked to remain 
still with their eyes open (voxel size (3 mm)3 isotropic; echo time 
= 27 ms; repetition time = 2.2 or 2.5 s). 

2.2. Atlas registration 

2.2.1. Tumor segmentation for cost-function masking 
Automated tumor segmentation was performed by a pre-trained 3D 

convolutional neural network (CNN) (Isensee et al., 2017) using 
post-contrast T1-weighted (T1w), T2w, and FLAIR images (details in 
Supplemental Materials S2.1.). The T2w and FLAIR images were rigid 
body registered to the T1w. All images were resampled in atlas space 
after composition of transforms: T2w → T1w → atlas template. Tumor 
segmentation was carried out in atlas space. The algorithm produces a 
multi-class tumor segmentation distinguishing between vasogenic 
edema, necrotic/non-enhancing core, and enhancing core. Tumor seg-
mentations were visually inspected to verify accurate delineation of the 
tumor and transformed back into the patient space. Adequate tumor 
segmentation was an inclusion criterion (Section 2.1.1). In subsequent 
atlas registration of both anatomical and functional data, the 
cost-function mask included all three tumor classes. 

2.2.2. Atlas registration with cost-function masking 
We systemically compared three alternative atlas registration stra-

tegies: (i) 12-parameter affine registration with no masking (AFF); (ii) 
Non-linear registration with no masking (NL-M); (Dobelbower et al.) 
Non-linear registration with cost function masking (NL+M). Preliminary 
investigations demonstrated that skull stripping did not improve atlas 
registration and so was omitted in this analysis. All atlas transformations 
were initialized by 12-parameter affine transformation of the patient’s 
T1w to the MNI152 template (Fonov et al., 2009). The Advanced 
Normalization Tools (ANTs) diffeomorphic algorithm (https://www. 
nitrc.org/projects/ants) with symmetric normalization (Lindner et al.) 
was applied in conjunction with either no masking (NL-M) or whole 
tumor masking (NL+M). We used mutual information as the optimiza-
tion metric. The transformation matrix and deformation fields obtained 
from the affine and non-linear registration steps were composed to 
obtain the transformation of structural images to atlas space (Fig. S5A, 
B). 

2.3. fMRI preprocessing 

Initial fMRI preprocessing followed conventional practice (Shulman 
et al., 2010). Briefly, this included compensation for slice-dependent 
time shifts, elimination of systematic odd-even slice intensity differ-
ences due to interleaved acquisition and rigid body correction of head 

movement within and across runs (Power et al., 2012). The fMRI data 
were resampled in atlas space using composition of affine transforms, i. 
e., functional data average → T2w → T1w → atlas template (Fig. 1). The 
warping maps (Section 2.2.2.) then were applied to the previously ob-
tained affine transformed fMRI data and resampled in (3 mm)3 atlas 
space (Fig. S5B). 

Additional preprocessing in preparation for FC analysis included 
voxel-wise removal of linear trends over each fMRI run, temporal low- 
pass filtering retaining frequencies below 0.1 Hz, and regression of 
nuisance waveforms. Nuisance regressors were derived from the 6 head 
motion correction timeseries, timeseries extracted from regions in white 
matter and CSF (Behzadi et al., 2007), and the signal evaluated over the 
whole-brain. Finally, spatial smoothing was applied (6 mm full width at 
half maximum (FWHM) Gaussian blur in each direction) (Fig. S5B). 

Frame censoring was implemented using the DVARS (D refers to 
temporal derivative of timeseries; VARS refer to RMS variance over 
voxels) measure, which quantitates the root mean squared variance of 
the temporally differentiated fMRI data evaluated over the whole brain 
(Power et al., 2012; Smyser et al., 2010). The DVARS baseline exhibits 
subject-to-subject variability that currently is unexplained but may 
reflect fluctuating arterial pCO2 (Power et al., 2019). The present frame 
censoring strategy accommodates DVARS baseline variability. A 
detailed description of the algorithm is given in Supplemental Materials 
(S2.2.). 

2.4. Resting state networks and parcellations 

2.4.1. Schaefer parcellation 
Resting state networks (RSNs) are hierarchically organized at mul-

tiple levels of granularity (Doucet et al., 2011; Felleman and Van Essen, 
1991; Gotts et al., 2020; Kaas, 1987; Lee et al., 2012; Yeo et al., 2011). 
This organization theoretically affects the degree to which gliomas 
induce FC abnormalities. Accordingly, we systematically varied the 
coarseness of parcellations. The coarsest level corresponded to the 7 RSN 
solution reported by Yeo et al. (2011). Finer RSN parcellations were as 
reported by Schaefer and colleagues (Schaefer et al., 2018), comprising 
a variable number of parcels ranging from 100 to 1000 (Schaefer et al., 
2018). 

2.4.2. Alternative parcellation schemes 
We conducted a comparative analysis of alternative parcellation 

schemes commonly used in glioma neuroimaging research. The AAL 
parcellation (83 parcels) is based on anatomical features, primarily 
sulci, as imaged on T1w scans (Tzourio-Mazoyer et al., 2002). The 
Brainnetome parcellation (210 parcels) is based on the combination of 
automatic parcellation, tractography, and functional connectivity 
analysis (Fan et al., 2016). Only cortical regions in Brainnetome par-
cellation were used in the present analysis. We conducted several ana-
lyses to evaluate the impact of parcellation granularity on measures of 
FC. In those analyses, AAL and Brainnetome granularities comparable to 
the Schaefer scheme were based on parcel count. 

2.5. Functional connectivity 

At each level of RSN granularity, resting state FC was computed from 
the preprocessed data in atlas space (affine or non-linearly registered) 
resampled to (3 mm)3 voxels. In greater detail, FC was computed as the 
Fisher z-transformed Pearson temporal correlation between timeseries 
extracted from individual parcels. Thus, FC was evaluated in terms of 
L × L symmetric matrices, where L is number of parcels corresponding to 
a particular level of granularity (see Section 2.4. for details). 

2.6. Evaluation of Atlas Registration – structural similarity 

Each patient’s atlas transformed T1w image was compared to the 
MNI152 template. Quality of structural normalization was assessed 
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using the structural similarity (SSIM) index (ssim function in Matlab) 
between the transformed individual T1w images and the MNI152 tem-
plate, excluding voxels in the tumor mask. The SSIM index is a multi-
plicative combination of three separate comparisons: average pixel 
intensities, standard deviations in the images, and the cross-covariance 
structure in the images (Wang et al., 2004). 

2.7. Graph-theoretic measures 

We evaluated the impact of parcellation scheme and parcellation 
granularity on graph-theoretic measures. Prior analyses had established 
that affine atlas registration failed to achieve adequate matching of 
structural data to the atlas (Fig. 2B). Accordingly, we evaluated par-
cellation schemes using functional data preprocessed with non-linear 
registration and cost-function masking (NL+M). For each parcellation 
scheme and parcellation granularity, we evaluated graph-theoretic 
measures on binarized graphs derived from FC matrices as a function 
of graph density (10–30% at 2% intervals). In accordance with current 
conventional practice (Bullmore and Sporns, 2009; Rubinov and Sporns, 
2010), graph edges were defined only for positive correlations. We 
assessed three graph-theoretic measures commonly evaluated in the 
rs-fMRI literature using the Brain Connectivity Toolbox [http://www. 
brain-connectivity-toolbox.net]: 

1. Modularity. Modularity is a whole-graph measure that quantifies 
the degree to which the network can be segregated into discrete groups 
(Newman, 2004). 

2. Global Efficiency. Global Efficiency is a whole-graph measure that 
evaluates the average inverse shortest path length (Rubinov and Sporns, 
2010). 

3. Mean Clustering Coefficient. Clustering coefficient measure is based 
on the number of triangles present in the network (Rubinov and Sporns, 
2010). A large number of triangles suggest segregation, as the fraction of 
triangles around a node is known as the Clustering Coefficient (CC) and 
is equivalent to the fraction of the node’s neighbors that are also mutual 
neighbors. The mean CC for the global network reflects, on average, the 
prevalence of clustered connectivity around individual nodes. 

2.8. Statistical analysis 

2.8.1. Full-width Half Maximum (FWHM) analysis as a measure of FC 
robustness 

The distribution of FC values following global signal regression is 
approximately zero-centered (Fox et al., 2009). Thus, robust FC is 
characterized by the presence of both strong positive and strong nega-
tive correlations evaluated over all parcel pairs. Accordingly, the width 
of FC distributions compiled over all parcel pairs is a measure of FC 
robustness. We evaluated the width of FC distributions as the Full Width 
at Half Maximum (FWHM). 

2.8.2. Permutation testing of graph-theoretic differences across groups 
We assessed the impact of parcellation scheme and parcellation 

granularity on group differences (glioma patients vs. reference subjects) 
evaluated in terms of graph-theoretic measures (see Section 2.7). We 
evaluated differences in group means and assessed statistical signifi-
cance using permutation resampling (N = 2000) as previously described 
(Alexander-Bloch et al., 2012). Thus, the p-value is computed as the 
number of instances in which the actual group difference exceeds that in 
the null distribution obtained by permuting group assignments over 
subjects, divided by the number of permutations. Multiple comparisons 
correction was conducted as previously described (Alexander-Bloch 
et al., 2012) depending on the context of the comparison. Specifically, 
the combination of parcellation granularity options and graph density 
options were used as multiple comparisons to correct for false positives 
(i.e., N granularity options × M graph density options yield N × M 
multiple comparisons, p < 1/(N × M)). 

Fig. 2. T1w structural normalization. A. MNI152 template. B. Result obtained 
using affine only (AFF) registration. C. NL-M: Non-linear registration without 
masking. Note tumor shrinkage. D. NL+M: Non-linear registration with mask-
ing. Note absence of tumor shrinkage. E. Friedman rank-sum and Nemenyi 
posthoc test results for structural registration quality (see Supplemental section 
S3.1). Structural similarity to the MNI152 is evaluated using methods described 
in Section 2.6. For each patient, the similarities using three methods (AFF vs. 
NL-M vs. NL+M) are ranked from 1 to 3, with a lower rank corresponding to 
better quality. In all patients, the lowest similarity was observed with AFF, as 
demonstrated by 100% of patients showing rank = 3 for AFF. NL-M achieved 
the best results in 36% of patients. NL+M achieved the best results in 64% of 
patients. * * Nemenyi score > 0.43 (see Section 2.8.5 and Supplemental S3.1). 

K.Y. Park et al.                                                                                                                                                                                                                                  



Journal of Neuroscience Methods 402 (2024) 110011

5

2.8.3. Similarity index 
Resting state networks (RSNs) are hierarchically organized at mul-

tiple levels of granularity (Doucet et al., 2011; Felleman and Van Essen, 
1991; Gotts et al., 2020; Kaas, 1987; Lee et al., 2012; Yeo et al., 2011). 
Thus, apparent FC variability across healthy individuals depends on 
parcel granularity. Specifically, FC differences across normal as well as 
abnormal individuals are expected to be most apparent at fine parcel 
granularities. We define the Similarity Index as a measure of 
inter-subject FC variability and evaluate this measure parametric in 
parcellation granularity (Fig. 4). FC similarity was evaluated in terms of 
inner products of vectorized FC matrices. Additional algebraic details 
concerning the Similarity Index and the analytic rationale are provided 
in Supplemental Materials (S3.2. and S3.2.1.). 

2.8.4. Patient vs. reference group dissimilarity index 
The Dissimilarity Index is a quantitative measure at the group level 

that represents the degree to which whole-brain FC differences between 
glioma patients and the reference subjects exceeds normal variability in 
the reference dataset. We anticipate that the Dissimilarity Index strongly 
depends on parcellation granularity. To evaluate the Dissimilarity Index, 
we first compute FC matrices for all subjects and patients. We then 
evaluate FC similarity across all subject pairs in the reference group vs. 
all ways of pairing a patient with all subjects in the reference group. This 
computation gives rise to two histograms, illustrated in Fig. 4A. Addi-
tional analytic details are given in Supplemental section S3.3. We 
quantify the Dissimilarity Index as the D-statistic from the two-sample 
Kolmogorov-Smirnov test (used descriptively), which reflects the de-
gree to which two distributions differ (Fig. 4C). The Dissimilarity Index 
was evaluated across all levels of the Schaefer parcellation granularity 
(7, 100–1000 with 100 intervals). Additional algebraic details con-
cerning the Dissimilarity Index and the logical reasoning are provided in 
Supplemental Materials (S3.2., S3.2.2., Fig. S4). 

2.8.5. Rank-based non-parametric test: Statistical Comparison of Atlas 
Registration and Parcellation Scheme 

Three registration options – AFF, NL-M, and NL+M – were system-
atically compared. Quality of spatial normalization (Section 2.6.1) was 
evaluated separately from quality of functional registration (Section 
2.8.6). As the patient dataset was markedly heterogeneous with respect 
to tumor size and location, the three registration options were compared 
using the Friedman non-parametric test (Eisinga et al., 2017), which 
measures the consistency of registration option rank across patients and 
returns a test statistic, Q, distributed approximately as chi-squared. The 
Friedman test was used to evaluate the dependence on registration op-
tion of both structural and functional data. The Nemenyi posthoc test 
(Nemenyi, 1963) was used to assess the significance of differences be-
tween the 3 options taken pairwise. 

We also systematically compared 6 parcellation schemes (AAL, 
Brainnetome, and 4 Schaefer parcellations at differing granularity 
levels) using FWHM analysis (see Section 2.8.1). Given the marked 
heterogeneity of tumors, the same Friedman non-parametric test was 
used, with the Nemenyi posthoc test to ascertain significance between 
pairwise differences. Further details concerning the Friedman non- 
parametric and Nemenyi posthoc tests are provided in Supplemental 
Materials (S3.1). 

2.8.6. Evaluation of atlas registration options based on measures of 
functional connectivity 

2.8.6.1. Parcel homogeneity. If parcel boundaries are well-aligned with 
the functional organization of the brain, all voxels in a given parcel 
should exhibit similar functional connectivity. A measure of this simi-
larity is referred to as parcel homogeneity (Gordon et al., 2016). We 
evaluated parcel homogeneity as previously described (Gordon et al., 
2016). In brief, this entails computing the whole-brain connectivity 

pattern for each voxel in a parcel. Parcel homogeneity is defined as 
fraction of variance in the first eigenvector derived by principal 
component analysis (PCA) of whole-brain FC computed for all voxels in 
the parcel. Thus, if the parcel contains n voxels, PCA is applied to the n 
FC maps corresponding to each voxel. Parcel homogeneity was 
computed for all atlas registration options (AFF, NL-M and NL+M). 

2.8.6.2. Parcel aberrancy. We define Parcel Aberrancy for each parcel 
as the FC differences in the patient group relative to the reference group 
in excess of (normal) variability in the reference group. The computation 
of Parcel Aberrancy follows a similar approach to computing the 
Dissimilarity Index, as outlined in Section 2.8.4. The key difference is 
that we evaluate parcel-specific FC as opposed to the FC over the entire 
matrix (details included in Supplemental Materials, S3.3). Moreover, we 
quantify the Parcel Aberrancy score using Kolmogorov-Smirnov D sta-
tistic, which provides a measure of the extent to which the two distri-
butions differ. Parcel Aberrancy was evaluated for all atlas registration 
options, but only for the Schaefer parcellation at the finest granularity 
(1000 parcels). 

Ideally, Parcel Aberrancy should reflect true FC differences attrib-
utable to the glioma. However, Parcel Aberrancy can arise on the basis of 
suboptimal atlas registration. To disambiguate the origin of observed 
Parcel Aberrancy, we compare Parcel Aberrancy vs. parcel homogeneity 
under alternative atlas registration options (Fig. 5C). A detailed 
description of these computations is given in Supplemental Materials 
(S3.3 and Fig. S4). 

3. Results 

3.1. Spatial normalization with different atlas registration options 

The impact of alternative atlas registration strategies is illustrated in 
Fig. 2. Visual inspection of spatial normalization results obtained with 
the different methods revealed differences in proximity to the lesion (see 
Fig. 2; arrows). Specifically, AFF (affine registration) (Fig. 2B) preserves 
tumor proportions relative to the rest of the brain. NL-M (non-linear 
registration without masking) (Fig. 2C) shrinks the lesion, distorts 
nearby regions, and blurs the tumor boundary. Using NL+M (non-linear 
registration with masking) (Fig. 2D) preserves the relative proportions 
of the tumor, as in the AFF result, while warping the rest of the brain to 
match the template more closely than affine registration. Panel E reports 
a significant effect of atlas registration option on structural normaliza-
tion (Friedman rank test, p = 1.31e-20). Tumor voxels were excluded in 
this evaluation. Additionally, the Nemenyi posthoc test results high-
lighted that using non-linear registration significantly improves struc-
tural similarity compared to using affine registration (asterisks in 
Fig. 2E). The impact of masking was not significant. 

3.2. Impact of parcellation scheme on FC matrices and graph-theoretic 
network measures 

Fig. 3 represents the effects of parcellation scheme and parcellation 
granularity on the width of FC distributions and graph-theoretic mea-
sures. Fig. 3A illustrates the AAL, Brainnetome, and Schaefer parcella-
tion schemes overlaid on the atlas template. We compared the 
robustness of FC evaluated using 6 different parcellation schemes (AAL 
vs. Brainnetome vs. Schaefer schemes at varying granularities). FWHM 
was used as a measure of FC robustness (Fig. 3B). The FWHM analysis 
shows that parcellation schemes that are well matched to the functional 
organization of the brain give rise to robust FC (i.e., large FWHM). 
Conversely, parcellation schemes that are poorly matched to the func-
tional organization of the brain generate weaker FC (i.e., low FWHM). 
The rank order of each of the schemes is represented as box plots (lower 
rank indicates greater FWHM value). All of the results are plotted as a 
function of parcel count. At equivalent levels of parcellation granularity, 
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Fig. 3. Impact of parcellation scheme on functional connectivity matrices and graph theoretic network measures. A. Parcellation examples illustrating AAL, 
Brainnetome, and Schaefer 200. B left. Full Width at Half Maximum (FWHM) of correlation matrix value distributions obtained with different parcellation schemes. 
B right. Rank order of FWHM values across six parcellations. The boxplots represent rank distributions compiled over 163 reference subjects. Low rank signifies 
comparatively greater FWHM. The height of each boxplot represents the standard deviation of ranks across subjects. Rank mean is represented as a circle. Note 
systematically decreasing FWHM (higher rank) with increasing granularity of Schaefer parcels (black boxplots). Both AAL and Brainnetome show higher rank 
(narrower FWHM) than comparably sized Schaefer parcellations. C. Impact of parcellation scheme on significance of group differences evaluated using graph 
theoretical measures. The display illustrates the effects of both graph density and parcellation granularity. Red and blue rows show results obtained using the AAL3 
and Brainnetome parcellations, respectively. Black rows correspond to graded Shaefer parcellations. Note complete absence of significant group differences in 
Modularity as assessed with any parcellation. Note absence of significant group differences in any measure assessed with the AAL parcellation (red row). Note 
significant Brainnetome differences only for Efficiency and only at sparse graph densities. Significant group differences in Efficiency and Clustering Coefficient were 
obtained with Schaefer parcellations at low graph densities and finer granularities. 
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the Schaefer scheme consistently yielded more robust FC in comparison 
to AAL and Brainnetome (Fig. 3B). This result suggests that the Schaefer 
parcellation scheme most closely conforms to the functional organiza-
tion of the human brain. As a generality, the robustness of FC is greater 
at coarser parcellations, although this relation is most systematic with 
the Schaefer scheme. 

Fig. 3 C shows the impact of parcellation scheme and parcellation 
granularity on the difference between patients and reference subjects 
evaluated using three graph-theoretic measures: Modularity, Global 
Efficiency, and Mean Clustering Coefficient. The significance of the 
contrast between the two groups was evaluated parametric in graph 
density and parcel granularity. Inspection of Fig. 3C shows that the 
contrast between patients and reference subjects was greatest at sparse 
graph densities and finer parcellation granularities. Of the three graph- 
theoretic measures examined, group differences were most apparent in 
the Global Efficiency measure. Finer Schaefer parcellations and the 
Brainnetome scheme both yielded significant group differences in 
Global Efficiency at sparse graph densities. The Mean Clustering Coef-
ficient also yielded significant group differences, but only with the 
Schaefer scheme. The Brainnetome scheme was inferior to the Schaefer 
scheme at the comparable granularity (Fig. 3C, blue box, middle panel). 
Specifically, significant Brainnetome differences were apparent only in 
efficiency and only at sparse graph densities. Notably, the AAL parcel-
lation yielded no significant group differences using any graph-theoretic 
measure at any graph density (Fig. 3C, red box). Fig. S7 extends these 
results, focusing on the Schaefer parcellation scheme in greater detail. 

3.3. Whole-brain group contrast in FC parametric in parcellation 
granularity 

Fig. 4A represents histograms of FC similarity evaluated within and 
across groups. The grey histograms represent all pairs of reference 
subjects. The red histograms represent all ways of pairing patients with 

reference subjects. At parcellation granularities greater than 100, FC 
matrix similarity was greater within group (reference subjects only) as 
compared to across groups (two-sample Kolmogorov-Smirnov test, as-
terisks graded based on D-statistic; Fig. 4B). This is represented in 
Fig. 4A as a shift of the grey histogram relative to the red histogram. 
Note that the FC difference between the patient and the reference group 
was not significant at the coarsest parcellation (7 parcels) but became 
progressively more pronounced with increasing parcel count. 

Fig. 4C shows both within reference group similarity (black bars) and 
across group dissimilarity (red bars) parametric in parcellation granu-
larity. Within reference group similarity was greatest at the coarsest 
parcellation and systematically declined with increasing granularity 
(black bars). Across group dissimilarity showed the inverse dependence 
on parcel count (red bars) but leveled off at a parcel count of ~400. 
Thus, this result suggests that differentiating glioma patients from 
reference subjects on the basis of whole brain FC improves with 
increasing granularity up to a certain level. 

3.4. Parcel homogeneity and aberrancy computed with different atlas 
registration options 

The current results indicate that FC dissimilarity becomes increas-
ingly apparent with finer parcellation granularities (Fig. 4). In view of 
this finding, we extended our analysis to contrast the two groups at the 
finest parcellation level, identifying functionally altered brain regions in 
patients. Accurate quantitation of FC abnormalities at the parcel level 
depends on precise alignment of parcel boundaries with the true func-
tional organization of the brain, which is evaluated in Fig. 5A as Parcel 
homogeneity (see Section 2.8.6.1. for details). 

Fig. 5A illustrates the impact of alternative atlas registration strate-
gies on parcel homogeneity in the patient group. Parcel homogeneity is 
parcel-dependent and tends to be greatest in primary sensory/motor 
areas of the brain, and least in multimodal regions such as prefrontal 

Fig. 4. Impact of Parcellation Granularity on Functional Connectivity Consistency and Group Separation. A, B. Pairwise FC matrix similarities within the 163 
reference subjects (grey) and between these reference subjects and the 59 patients (red). * p < 0.01, * * p < 0.005 (see Supplemental Materials 3, Fig. S4 for details). 
In the inset illustrating histogram overlap, the “:” notation indicates matrix:matrix similarity computed as Pearson correlation over vectorized FC matrices. C. 
Similarity Index is measured as the average of pairwise FC similarity values within reference subjects divided by the standard deviation of these values (grey dis-
tribution shown in the top panel). Dissimilarity Index is evaluated as the D-statistic from a two-sample Kolmogorov-Smirnov test, contrasting pairwise similarity 
values within reference subjects (grey distribution in the top panel) and those between reference subjects and patients (red distribution in the top panel). Additional 
algebraic details concerning both indices and the logical reasoning are provided in Supplemental Materials (S3.2. and Fig. S4). 

K.Y. Park et al.                                                                                                                                                                                                                                  



Journal of Neuroscience Methods 402 (2024) 110011

8

cortex (left two panels in Fig. 5A). The rightmost panel displays the 
difference in parcel homogeneity. Non-linear atlas registration generally 
improves parcel homogeneity in all parcels (cooler hues). This qualita-
tive assessment was quantitatively verified using the Friedman rank test 
(p = 6.14e-13) and Nemenyi posthoc test (asterisks in Fig. 5C). 

Parcel Aberrancy is equivalent to the Dissimilarity Index (see Section 
2.8.6.2) restricted to one row of FC matrices (see Supplemental section 
S3.3). The above discussed results concerning the impact of atlas 
registration on parcel homogeneity imply that the ability to detect true 
parcel FC aberrancy depends on accurate atlas registration. Inaccurate 

atlas registration can lead to the false appearance of FC abnormalities. 
This result is illustrated in Fig. 5B. Specifically, affine atlas registration 
led to inflated Parcel Aberrancy scores, especially in the cingulate cortex 
(red hues on the rightmost panel). This effect most likely reflects the 
inability of affine registration to correct for midline shift, which is 
common in glioma patients. The inverse (AFF < NL+M) result was 
observed in the left temporal lobe (green parcels on the rightmost 
panel). Tumor frequency was left-lateralized in our patient sample 
(Fig. S7). Thus, hypothetically, increased sensitivity for the detection of 
FC aberrancy in the left temporal lobe with NL+M atlas registration 

Fig. 5. Impact of atlas registration option on parcel homogeneity and parcel aberrancy. A. Parcel homogeneity. Results using affine registration (AFF) and non-linear 
registration with masking (NL+M) are displayed (left of the solid bar), along with their differences (right of the solid bar). Blue/green regions show greater ho-
mogeneity with NL+M; red/yellow regions indicate greater homogeneity with AFF. B. Parcel aberrancy. Results using affine registration (AFF) and non-linear 
registration with masking (NL+M) are displayed (left of the solid bar), along with their differences (right of the solid bar). Blue/green regions show greater 
aberrancy evaluated with NL+M; red/yellow regions indicate more aberrancy evaluated with AFF. C. Friedman rank-sum and Nemenyi posthoc test results. Lower 
ranks represent higher parcel homogeneity and less parcel aberrancy. Most patients showed the least homogeneity and most aberrancy with AFF. Highest homo-
geneity and least aberrancy were found comparably with non-linear registration with and without masking (NL-M, NL+M). * * Nemenyi score > 0.43 (see Sup-
plemental Materials S3.1.). 
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reflects true aberrancy in parts of the brain immediately adjacent to the 
tumor. This hypothesis could be verified in future work. 

The link between parcel homogeneity and Parcel Aberrancy is 
illustrated in the leftmost panel of Fig. 5C, which shows a scatter plot 
across patients. Non-linear atlas registration generally improved parcel 
homogeneity (most patients positioned left of the vertical line) and 
reduced Parcel Aberrancy (most patients positioned above the hori-
zontal line). This result reinforces the result shown in Fig. 5B, as 
improved atlas registration increases parcel homogeneity and decreases 
Parcel Aberrancy. 

4. Discussion 

4.1. Results overview 

We evaluated the impact of atlas registration option, parcellation 
granularity, and parcellation scheme in the context of contrasting FC in 
glioma patients vs. a group of age-matched reference subjects. Differ-
ences between the two groups strongly depended on these methodo-
logical choices. Our key findings are as follows: (1) Non-linear atlas 
registration is required to compensate for anatomical distortions in 
glioma-bearing brains. Use of affine atlas registration leads to the false 
appearance of FC abnormalities. Theoretically, cost function masking 
could impact the results. However, in our results, the impact of cost 
function masking was not significant. (2) Functional parcellation 
schemes, e.g., (Schaefer et al., 2018), as opposed to anatomical parcel-
lation schemes (AAL/Brainnetome) maximize sensitivity for the detec-
tion of glioma-induced FC abnormalities (Fig. 3). (3) FC variability in 
normal subjects must be considered when assessing FC abnormalities in 
glioma patients. This point is implicit in our Parcel Aberrancy mapping 
strategy. FC abnormalities in glioma patients are most evident in ana-
lyses based on fine parcellations (Fig. 4). (4) Much prior work evaluates 
FC in glioma patients using graph-theoretic measures (see Literature 
Review in Supplemental Material S1, Table S1). As previously noted, not 
all such measures are equally sensitive to FC abnormalities in glioma 
patients. In particular, Modularity appears to be unchanged in glioma 
patients. Importantly, the differences between patients and the refer-
ence subjects as assessed with graph-theoretic measures were only 
evident at fine parcellation granularities. 

4.2. Present results in relation to the extant literature 

Many studies have suggested optimal fMRI analyses for studying 
subjects without brain tumors. However, to our knowledge, no extant 
study has comprehensively addressed this issue in the context of rs-fMRI 
analysis in glioma patients. Moreover, there has been no systematic 
comparison of how alternative methods impact observed results. To 
address this gap, the present work focuses on technical optimization of 
rs-fMRI analysis in glioma patients. We began this work by conducting a 
systematic review of the literature (presented in Supplemental Material 
1, Table S1). We found that prior work used a variety of atlas registration 
strategies, seed-based FC or Independent Component Analysis, a variety 
of parcellation schemes at differing levels of parcellation granularity, 
and a wide variety of graph-theoretic measures. The majority of studies 
that implemented seed-based FC approaches used anatomically derived 
parcellation schemes, e.g., AAL. Parcellation granularity varied from 7 
network parcellations to voxel-level analyses. Additional details con-
cerning the extant literature are discussed in Supplemental Materials. In 
what follows, we discuss the extant literature in light of the present 
findings. Importantly, we report that alternative technical approaches 
have major effects on observed results. 

4.2.1. Non-linear Atlas registration improves structural normalization and 
parcel homogeneity 

Structural normalization (i.e., matching individual brains to an atlas 
representative template) in glioma patients is a non-trivial challenge 

owing to destruction of normal tissue and anatomical distortions 
consequent to mass effects. Non-linear registration with cost-function 
masking (CFM) and Glioma Image SegmenTation and Registration 
(GLISTR) (Gooya et al., 2012) have been suggested as a means of 
improving spatial normalization in patients with brain tumors. How-
ever, as noted in several review papers and in our own review (see 
Supplementary Materials 1, Table S1), the extant literature on FC in 
glioma patients is characterized by substantial heterogeneity in atlas 
registration methodology (Fox and King, 2018; Ghinda et al., 2018) 
(Table S1). Prior work (not in Table S1) has compared atlas registration 
methods but only as regards structural normalization (Brett et al., 2001; 
Crinion et al., 2007; Ripolles et al., 2012). In our review of the literature, 
we found only one report that systematically discusses the impact of 
atlas registration on FC measures (Chen et al., 2021). We concur with 
Chen and colleagues that non-linear atlas registration should be used 
when studying glioma patients and that cost function masking does not 
significantly impact the results. Importantly, Chen and colleagues used 
graph-theoretic measures derived from AAL-based FC (coarse anatom-
ical parcellation) as the primary metric to evaluate the quality of atlas 
registration, which we have shown is suboptimal. 

Functionally-based parcellation schemes, e.g., (Schaefer et al., 
2018), conform to the intrinsic functional organization of the brain, 
whereas anatomically-based schemes, e.g., AAL (Tzourio-Mazoyer et al., 
2002), do not (Craddock et al., 2012; Shen et al., 2013). As shown with 
our FWHM measure, non-functionally-based schemes lead to less robust 
FC estimates and reduce the sensitivity of FC analyses for detecting 
differences between patients vs. controls (Fig. 3). Accordingly, we 
assessed the quality of atlas registration in terms of parcel homogeneity 
(Gordon et al., 2016), which directly assesses parcellation match to the 
functional organization of the brain. In contrast, graph-theoretic mea-
sures do so only indirectly via degraded FC. Moreover, fine, as opposed 
to coarse parcellations, are more sensitive to misregistration and 
inter-subject variability (Fig. 4). 

4.2.2. Functionally-based parcellation schemes improve the robustness of 
FC 

Prior work in healthy participants suggests that functionally-based as 
opposed to anatomically-based parcellation schemes (e.g., AAL) are 
better matched to the functional organization of the brain (Craddock 
et al., 2012; Gordon et al., 2016; Shen et al., 2013). This basic finding is 
replicated here (Fig. 3). Parcellation scheme strongly impacts the value of 
graph-theoretic measures, which potentially are of interest in the com-
parison of glioma patients vs. controls. However, to effectively realize this 
comparison, it is essential that the parcellation scheme be matched to the 
functional organization of the brain. In this context, anatomically-based 
parcellation schemes perform poorly, even after controlling for equiva-
lent parcellation granularity (Fig. 3C). We note that 27 of 58 prior studies 
of FC in glioma patients used anatomically-based parcels 
(AAL/Brainnetome/Harvard-Oxford/Brodmann). 

4.2.3. FC abnormalities in glioma patients are apparent only at fine 
parcellation granularities 

Resting State Networks (RSNs) are hierarchically organized (Doucet 
et al., 2011; Gotts et al., 2020). Accordingly, inferences drawn on the 
basis of FC analyses may depend on parcellation granularity. Various 
schemes incorporating progressively finer RSN subdivisions have been 
proposed (Schaefer et al., 2018; Yeo et al., 2011), but it is generally 
agreed that the distinction between unimodal vs. trans-modal (alterna-
tively, task-positive vs. task-negative) systems defines the top of the 
hierarchy (Doucet et al., 2011; Fox et al., 2005; Huntenburg et al., 2018; 
Lee et al., 2012). In normal subjects, inter-individual differences in the 
functional organization of the brain are apparent predominantly at a 
fine spatial scale, i.e., on the order of several mm (Gordon et al., 2017). 
Our results suggest that a similar principle applies to FC abnormalities in 
glioma patients. Specifically, FC abnormalities are relatively inapparent 
at coarse parcellation granularities and become progressively more 

K.Y. Park et al.                                                                                                                                                                                                                                  



Journal of Neuroscience Methods 402 (2024) 110011

10

apparent with increasing parcellation granularity (up to a point, 
Fig. 4C). However, we note that only 8 of 36 prior studies used a par-
cellation involving at least 200 parcels (Table S1). 

4.2.4. Graph-theoretic measures strongly depend on parcellation scheme 
and parcellation granularity 

Approximately one-quarter of studies listed in Table S1 assessed the 
effects of glioma on the basis of graph-theoretic measures. Among these, 
all but one used anatomical parcellations (e.g., 7 used AAL atlas, 4 used 
Brainnetome atlas, and one defined ROIs based on anatomical land-
marks); one defined ROIs based on mixed criteria. Our results, however, 
suggest that in the context of graph-theoretic analysis, anatomically- 
based parcellation schemes perform poorly compared to functionally- 
based parcellation schemes, even after controlling for equivalent par-
cellation granularity (Fig. 3C). Moreover, graph-theoretic measures 
strongly depend on atlas registration strategy (Chen et al., 2021). 
Additionally, we concur with the issues raised by Hallquist and col-
leagues regarding the use of graph-theoretic measures of FC in the 
evaluation of group differences (Hallquist and Hillary, 2019). Specif-
ically, methodological heterogeneity across studies undermines the po-
tential replicability of published findings (Hallquist and Hillary, 2019). 

Here, we did not conduct an exhaustive comparison of all graph 
theoretic measures used in the literature (see Table S1). We did evaluate 
three commonly used measures, including Global Efficiency, a measure 
ubiquitous in glioma FC research (Section 2.7, Table S1). Importantly, 
we focus on evaluating graph-theoretic measures parametric in both 
parcellation granularity and graph density (Figs. 3C and S7). As far as we 
are aware, this experimental design is novel, as prior work has not 
systematically examined the impact of parcellation granularity. Our 
results support the use of Global Efficiency and Mean Clustering Coef-
ficient as measures sensitive to the effects of glioma, provided the 
analysis is conducted using fine functional parcellations and at sparse 
graph densities (Fig. 3C and Fig. S7). The present observations open up 
new questions regarding how gliomas might induce functional reorga-
nization. Answering those questions will require larger sample sizes to 
account for heterogeneity in grade of glioma and location of tumors. 

4.2.5. Non-linear Atlas registration reduces parcel aberrancy 
Perhaps the most salient finding in the present work is that non- 

linear atlas registration generally reduces the appearance of FC abnor-
malities in glioma patients (Fig. 5). In contrast, affine atlas registration 
can lead to the false appearance of FC abnormalities attributable to 
misregistration. We note that 16 out of 58 studies contrasted glioma 
patients vs. controls using affine (or unspecified) atlas registration 
(Table S1). True FC abnormalities may arise from the destruction of 
normally functioning parenchyma or white matter, impaired neuro-
vascular coupling (Ulmer et al., 2003), vasomotion (Rayshubskiy et al., 
2014), and potentially, functional remapping (Lv et al., 2022). The 
present work does not distinguish between these possibilities. 

4.2.6. Limitations and caveats 
Regarding non-linear atlas registration, it is possible that alternatives 

to ANTs, e.g., DARTEL, DRAMMS, or GLISTR may offer advantages 
(Ashburner, 2007; Gooya et al., 2012; Ou et al., 2011). Clinical imaging 
at our institution does not (at least at present) include field mapping or 
advanced methodologies designed to facilitate distortion correction. 
Thus, correction for susceptibility inhomogeneity was not possible in 
this work. Tumor frequency was left lateralized in our dataset, which is 
uncharacteristic of the glioblastoma population generally. Thus, our 
patient sample does not support a general examination of how tumors in 
different parts of the brain impact FC. For graph-theoretic analyses, we 
applied global thresholding to generate binarized FC matrices; future 
work could consider comparing global and local thresholding, as well as 
exploring other methods of graph construction. We compared one 
functionally-based parcellation scheme (Schaefer et al., 2018) to two 
anatomically-based schemes. Other functional parcellation schemes 

(Gordon et al., 2016; Power et al., 2011; Shen et al., 2013) may 
potentially enhance our understanding of tumor-induced FC changes. 
Lastly, unlike most prior work on FC abnormalities in glioma patients 
(Table S1), this work focuses on the technical aspects of this type of 
investigation with the objective of maximizing patient vs. control dif-
ferences. We make no claims regarding specific FC abnormalities or 
functional reorganization in glioma patients. Such claims are deferred to 
future work with larger datasets. 

5. Conclusion 

Assessment of glioma-induced alterations in the functional con-
nectome depends on methodological choices concerning structural 
normalization, parcellation scheme, and parcellation granularity. We 
reviewed commonly used approaches in rs-fMRI glioma literature and 
systematically assessed the impact of these choices on the observation of 
FC abnormalities in a group of glioma patients. Based on our findings, 
we offer several recommendations concerning the use of rs-fMRI to 
study patients with gliomas. First, non-linear atlas registration is 
required to compensate for anatomical distortions, which in turn, re-
duces the false appearance of FC abnormalities. Second, we recommend 
functional parcellation schemes over anatomical parcellation schemes to 
enhance sensitivity for the detection of true glioma-induced FC abnor-
malities. Third, measured FC variability in all subjects depends on par-
cellation granularity; this point should be considered when studying FC 
abnormalities in glioma patients. Importantly, FC abnormalities in gli-
oma patients, as assessed with graph-theoretic measures, are most 
apparent at finer parcellation granularities. 
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