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SUMMARY

During adolescence, the brain undergoes extensive changes in whitematter structure that support cognition.
Data-driven approaches applied to cortical surface properties have led the field to understand brain devel-
opment as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients
of change. Although white matter development also appears asynchronous, previous studies have relied
largely on anatomical tract-based atlases, precluding a direct assessment of how white matter structure is
spatially and temporally coordinated. Harnessing advances in diffusion modeling and machine learning,
we identified 14 data-driven patterns of covarying white matter structure in a large sample of youth. Fiber
covariance networks aligned with knownmajor tracts, while also capturing distinct patterns of spatial covari-
ance across distributed white matter locations. Most networks showed age-related increases in fiber
network properties, which were also related to developmental changes in executive function. This study de-
lineates data-driven patterns of white matter development that support cognition.

INTRODUCTION

Throughout childhood and adolescence, cerebral white matter

expands dramatically and is extensively remodeled.1,2 In tandem

with this macrostructural expansion, microstructural properties

of white matter also undergo substantial change, including in-

creases in myelination, axonal density, and axonal caliber.3,4

Cognition also develops rapidly during this period, with execu-

tive function undergoing a particularly protracted improvement

throughout adolescence and young adulthood.5–7 The matura-

tion of white matter architecture is thought to facilitate the effi-

cient and coordinated relay of information between brain regions

and to support the development of executive function.8 Quanti-

fying how development of white matter structure supports exec-

utive function is a critical prerequisite for normative accounts of

brain development as well as for studies of youth-onset psychi-

atric disorders that are characterized by both deficits in execu-

tive functions9,10 and differences within white matter.11

Increasingly, we understand brain development as a spatially

and temporally coordinated mechanism that progresses along

major axes of brain organization.12–14 For example, cortical

development has been shown to follow a continuous sensori-

motor-to-association (S-A) gradient during childhood and adoles-

cence, whereby lower-order sensory areas mature earliest and

transmodal association areas show more prolonged age-related

changes.12 These synchronized maturational processes across

Cell Reports 42, 113487, December 26, 2023 ª 2023 The Author(s). 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ll
OPEN ACCESS

mailto:sattertt@pennmedicine.upenn.edu
https://doi.org/10.1016/j.celrep.2023.113487
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2023.113487&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


hierarchically similar cortical regions are thought to contribute to

the appearanceof large-scale spatial covarianceof brain structure

in adulthood,15,16 whereby regions that grow simultaneously will

havesimilar cortical properties, likelydue tosharedunderlyingbio-

logical mechanisms. Evidence for these hierarchical and hetero-

chronous developmental gradients has now been observed using

various cortical measures derived from neuroimaging, including

cortical thickness, functional connectivity, intracortical myelina-

tion, and intrinsic activity amplitude.12,17,18More important, the ex-

istence of fundamental gradients of cortical organization has been

discovered by shifting toward data-driven approaches, as

opposed to conventional region of interest analyses investigating

predetermined sets of anatomically defined brain regions.

In contrast to research on cortical surface properties, work on

whitematter development has relied largely on anatomical atlases

to characterize white matter tracts. Interestingly, findings suggest

that, similar to cortical surface organization, white matter tracts

exhibit asynchronous maturational timing, with projection and

commissural tracts maturing earlier than association tracts.19

Although inconsistencies exist, the available data suggest simul-

taneous inferior-to-superior and posterior-to-anterior patterns of

whitemattermaturation.20 Notably, whitemattermaturation along

these two anatomical axes could mirror the maturation of gray

matter along the S-A axis.12 Findings thus point to a hierarchically

organized developmental program, possibly driven by common

underlying biological mechanisms that orchestrate the rate of

maturation in distant white matter regions. Analogous to cortical

properties, such synchronized maturational processes should ul-

timately also contribute to generating spatial covariance in white

matter structure. However, tract-of-interest–based approaches

do not directly capture the spatial covariance that may exist

across distributed white matter locations.

Understanding the ways in which white matter connections

spatially covary is particularly important, given that covariance in

brain structure is thought to result from coordinated maturational

processes.15,16 Characterizing the spatial and developmental

covariance of white matter structure would provide a new

perspective on white matter structure that may capture biologi-

cally meaningful organizational principles of white matter and

overcomepurelyanatomicallydefinedstructures.Given thatwhite

matter tracts connect widespread and spatially distant brain

areas, it is likely that certain white matter areas display similar

microstructural profiles, even though they belong to anatomically

distinct tracts. Conversely, microstructural properties of subre-

gions within the same anatomically defined white matter tract

may vary significantly. Given that spatial organization is likely

driven by synchronized maturational processes, it is likely that

structurally similar white matter regions follow the same develop-

mental trajectories. Data-drivenmachine learning approaches are

well suited to detect the intrinsic spatial organization of the brain,

because they can accurately capture the covariance that exists

across large-scale networks of structurally covarying areas.

One recently developed approach for identifying covariance

networks within high-dimensional neuroimaging data is non-

negative matrix factorization (NMF), an unsupervised machine

learning approach.21–23 NMF has been used to define data-driven

covariance networks across the cortex using graymatter features

such as cortical thickness and volume.24–26 NMF has also been

used to identify partitions of single anatomical regions.27–29 How-

ever, applications to white matter specifically remain quite rare.30

Here, we leveraged NMF to uncover how structurally covary-

ing areas of white matter cooperatively develop to support exec-

utive function in a large sample of youth from the Philadelphia

Neurodevelopmental Cohort.31 Specifically, we delineated white

matter fiber covariance networks based on bothmacrostructural

and microstructural fiber properties. We identified 14 fiber

covariance networks that mapped well onto the known architec-

ture of white matter while additionally capturing distinct spatial

and temporal patterns of coordinated maturation in structurally

similar brain regions. Most fiber covariance networks showed

age-related increases in fiber micro- and macrostructure, which

were further related to normative developmental improvements

in executive function. Together, our findings provide insight

into how development unfolds across the brain’s white matter

and contributes to the maturation of cognition in youth.

RESULTS

We identified fiber covariance networks to study how structural

properties of the white matter of the brain are related across

spatially distributed areas and are refined in an age-dependent

manner. To delineate these covariance networks, we applied the

fixel-based analysis (FBA) pipeline4 with single-shell three-tissue

constrainedspherical deconvolution32 todiffusion-weightedmag-

netic resonance imaging (DWI) data from 939 youth aged 8–22

years (see Figure S1 for sample selection). This approach mini-

mizes extra-axonal signal contributions from gray matter and ce-

rebrospinal fluid, resulting in more accurate estimations of white

matter structure for single-shelled data. Moreover, unlike voxel-

baseddiffusionmodeling approaches, FBAgives amoreaccurate

description of the underlying white matter geometry because it

can identify multiple fiber populations within a voxel. These indi-

vidual fiber populations in each voxel are referred to as fixels.4,33

For each fixel, a fiber density and cross-section (FDC) measure

was calculated that quantifies both microscopic (intraaxonal vol-

ume) and macroscopic (morphology differences in fiber bundle

size) properties of white matter.4 We then applied orthonormal

projective NMF (opNMF),23 a data-driven unsupervised machine

learning method, to fixel-wise FDC data to identify spatial net-

works in which FDC covaries consistently across participants.

The combination of a fixel-based approach withmachine learning

enabledus tobothaccount formultiplecrossingfiberswithina sin-

gle voxel and allow different fiber populations at a single voxel to

be assigned to distinct covariance networks, resulting in an accu-

rate representation of white matter maturation. opNMF produces

a network matrix, containing the networks and their respective

loadings on each fixel, and a participant-specificmatrix, reflecting

the average FDC value of each participant in a given covariance

network (Figure 1). Theseparticipant-specific average FDCvalues

for eachnetworkwere thenusedas thedependent variable in sub-

sequent group-level analyses.

opNMF identifies anatomically meaningful fiber
covariance networks
We applied opNMF to segment whole-brain white matter into a

low-dimensional number of networks, each comprising white
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matter areaswherein FDCcovaries in an organized fashion across

individuals. Segmenting the white matter of the brain into 14

covariance networks parsimoniously captured FDC variability in

a reproducible manner with low reconstruction error (see Fig-

ure S2A for reconstruction errors of all network solutions). As in

prior work using NMF on gray matter,21,24 the 14 networks were

sparse and highly symmetric bilaterally (Figure 2). Moreover, the

networks were stable in a split-half reliability analysis (based on

cosine similarity; Figures S2B and S2C), and each network ex-

plained similar levels of variance in the data (Figure S2D), confirm-

ing the generalizability and broad utility of data-driven opNMF so-

lutions to unseen data. Furthermore, they corresponded to known

fiber bundles, including commissural fibers (networks 1, 6, and 7),

association fibers (5, 9, 10, and 14), projection fibers (3, 4, and 8),

and cerebellar white matter (11, 12, and 13); one network included

a mix of association and projection fibers (network 2). These

covariance networks, however, also differed from known white

matter bundle atlases in certain aspects. For example, different fi-

ber bundles were in some cases aggregated into one network,

such as the superior longitudinal and arcuate fasciculi that form

one covariance network (network 5). Moreover, in some compo-

nents, thedata-driven covariancenetworksalso split different por-

tions of a canonical fiber bundle into different networks, such as

the inferior and superior/anterior corticospinal tract (CST; net-

works 3 and 8). Thus, while covariance networks efficiently map-

ped major white matter bundles, they simultaneously revealed

distinct patterns of shared structural properties. To facilitate their

identification in subsequent sections, we labeled the 14 networks

based on the tracts that are most strongly represented in them

(Figure 2).

Fiber covariance networks show widespread
development
A primary goal of this study was to characterize howmacro- and

microstructural properties cooperatively develop across

different white matter areas. Therefore, we investigated whether

the identified fiber covariance networks displayed any develop-

mental changes throughout childhood and adolescence.

Because brain maturation is a nonlinear process, we modeled

age associations using generalized additive models (GAMs)

with penalized splines, which rigorously capture nonlinear ef-

fects while avoiding overfitting. All of the models included sex

and in-scanner head motion as covariates. Our developmental

models revealed that 12 of the 14 fiber covariance networks ex-

hibited significant age-related changes in FDC (Figures 3A and

3B), indicative of widespread white matter development. To

determine the magnitude of the age effect in each covariance

network, we computed effect sizes as the partial R2, the propor-

tion of variance explained by age. The largest effect sizes (partial

R2 > 0.10) were found in networks encompassing the body of the

corpus callosum (CC), the superior longitudinal fasciculus and

arcuate fasciculus (SLF), the splenium of the CC, and the inferior

CST. These results indicate that most fiber covariance networks

undergo maturational changes throughout adolescence, with

the strongest age-related changes generally observed in net-

works connecting unimodal sensorimotor regions (with the

exception of the network containing the superior longitudinal

and arcuate fasciculi, which connects frontoparietal regions).

The above quantified themagnitude of the relationshipwith age

of each individual fiber covariance network. As a next step, we

sought todetermine thedegree towhich themultivariate signature

of fiber covariance networks encoded development. We used a

linear model to test whether participants’ covariance network

scores, representing participants’ network-specific FDC, could

predict age above and beyond demographic and diffusion data

quality measures. We found a significant difference between a

reducedcovariate-onlymodel (i.e., sex,motion, and imagequality)

and a full model that included both the fiber covariance networks

and covariates (F=76.3,df=14, p <0.001). The proportion of vari-

ance in age explained by the 14 covariance networks was R2 =

0.543 (Figure 3C). These results demonstrate that fiber covariance

networks effectively predicted the age of a participant, and indi-

cate that childhood and adolescence are a time frame of robust

refinement of fiber covariance network properties.

Having established that age effects were robust, we sought to

obtain a more fine-grained representation of the maturational

Figure 1. Identifying fiber covariance net-

works using NMF

In this schematic, the original whole-brain FDC data

for each fixel (rows) and for all individuals (columns)

are fed into opNMF, which then decomposes the

data into a matrix of network components and a

matrix of individual loadings in each network. The

network components matrix contains the loadings

of each fixel in each of the 14 networks. Above the

network components matrix is one example of fixel

loadings onto an opNMF network. The individual

loadings matrix contains the participant-specific

scores for each network. The histogram above

shows a sample row of the matrix with scores for all

of the participants in one network. More important,

both output matrices are R0 (e.g., elements of

the factorization are nonnegative). The individual

network loadings were used as the dependent var-

iable in group-level analyses.
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profile of each covariance network. We thus plotted network-

specific developmental trajectories and quantified the direction

and magnitude of maturational changes in FDC (Figure 4). The

age-related changes were characterized by increasing FDC in

most of the networks, with the exception of the fornix/cingulum

(hippocampus), vermis, and superior cerebellum, where FDC

decreased with age. To identify the developmental windows of

significant white matter maturation, we quantified the first deriv-

ative of the age smooth term, which represents the change in

FDC at a given age. Age fit derivatives revealed distinct timings

of developmental changes in different covariance networks.

Specifically, the uncinate fasciculus, the parietal portion of the

SLF, the splenium of the CC, the inferior CST, and superficial

U-fibers showed increased FDC most significantly during child-

hood and the beginning of adolescence (i.e., from age 8 to before

age 16). Other networks, including the body of the CC, the SLF/

arcuate fasciculus, the superior CST, and the rostrum of the CC,

displayed protracted increases in FDC throughout childhood

and adolescence (i.e., until age 18). The FDC of the fornix/

cingulum (hippocampus) network continued declining from age

8 through early adulthood (i.e., age 22). Conversely, the vermis

and the superior cerebellum showed only brief windows of

declining FDC. Thus, covariance networks captured temporally

distinct patterns of coordinated white matter changes across

different brain areas.

Executive function is associated with variation in fiber
covariance networks linking limbic and association
cortex
Executive function is known to undergo considerable improve-

ments during adolescence and young adulthood,5–7 and evidence

from diffusion tensor imaging studies suggests that these im-

provements are linked to white matter microstructural develop-

ment.8 Based on these findings, we next examinedwhether varia-

tion in fiber covariance networks was related to differences in

executive function. We found that better executive function was

associatedwith higher FDC in 13 of 14 covariance networks while

controlling for age, sex,motion, and image quality (Figures 5A and

5B). Although significant, these univariate relationships showed

modest effect sizes (partial R2 < 0.06). The three covariance net-

works with the greatest effect sizes include bundles such as the

fornix/cingulum (hippocampus), the parietal section of the SLF,

and thecombinedSLFandarcuate fasciculusnetwork (Figure5D).

Thus, differences in executive function appear to bemost strongly

linked to limbic and association networks.

Having examined associations between executive function

and each individual fiber covariance network, we next evaluated

whether the multivariate pattern of covariance network FDC

could jointly predict executive function performance over and

above age, sex, and data quality. Of note, due to regression to

the mean, predicted executive function scores are expected to

be closer to the mean compared to the original variance of the

data. Nevertheless, we found that fiber covariance networks

could explain over 30% of the variance in executive function

beyond demographics and image quality (R2 = 0.327; F = 6.56,

df = 14, p < 0.001; see Figure 5C). Together, these findings sug-

gest that fiber covariance networks may support executive

function.

Sensitivity analyses provide convergent results
As a final step, we conducted sensitivity analyses to evaluate

potentially confounding variables. All of the associations between

Figure 2. Delineating fiber covariance networks with orthogonal projective NMF

opNMF yields a probabilistic parcellation such that each fixel receives a loading score onto each of the 14 networks quantifying the extent to which the fixel

belongs to each network. Here, the probabilistic parcellation was converted into discrete covariance network definitions for display by labeling each fixel ac-

cording to its highest loading. The coloring of fixels is based on the red-green-blue (RGB) convention, which encodes the left-right, anterior-posterior, and inferior-

superior directions, respectively. The networks identified include commissural bundles (1, 6, and 7), cerebellar white matter (11, 12, and 13), association bundles

(5, 9, 10, 14, and 2), and projection bundles (2, 3, 4, and 8). Network 2 is included both in the association and projection networks because it encompasses the

fornix and the cingulum (hippocampus). Network 10 refers to the parietal portion of the superior longitudinal fasciculus (SLF). CC, corpus callosum; CST, cor-

ticospinal tract.
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FDC and age remained significant following false discovery rate

correction after controlling for either total brain volume (TBV),

maternal education, or overall psychopathology (Figure S3). Simi-

larly, the majority of the associations between FDC and executive

function remained significant when TBV, maternal education, or

overall psychopathology were added as covariates (Figure S4).

Exceptions included the rostrum of the CC, the internal capsule,

the uncinate fasciculus, and the U-fibers. To further examine

the ability of fiber covariance networks to predict age above

and beyond TBV, we compared a full model that included all 14

fiber covariance networks and covariates (including TBV) to a

reduced model that included only TBV and covariates. We found

a significant difference between the reduced and the full model

(F = 77.5, df = 14, p < 0.001), and the 14 covariance networks

jointly explained over half of all of the variance in age above and

beyond covariates such as sex, mean FD, and TBV (R2 = 0.54).

Finally, we addressed the potential impact of outliers by excluding

individuals with executive function Z scores below �2. Fiber

covariance networks remained a highly significant predictor of ex-

ecutive function above and beyond covariates (F = 6.54, df = 14,

p < 0.001) and the proportion of explained variance (R2 = 0.307)

remained similar, indicating that the outliers did not exert undue

leverage on the model fit (Figure S5).’’

DISCUSSION

We uncovered how structurally covarying areas of white matter

cooperatively develop during childhood and adolescence to

support executive function. Specifically, we identified white mat-

ter structural networks based on covarying micro- and macro-

structural properties and delineated their age-dependent

changes. The majority of these structural covariance networks

showed age-related increases in FDC,whichwere further related

to normative developmental improvements in youth executive

function. Notably, themost pronounced developmental changes

were found in more superior and anterior fiber covariance net-

works. Furthermore, limbic and association networks were

most strongly associated with executive function. As described

below, these findings suggest that whitematter development fol-

lows inferior-to-superior and posterior-to-anterior axes that

could influence the hierarchical maturation of the cortex.

Networks derived from opNMF complement
anatomically defined white matter bundles
We derived data-driven fiber covariance networks using an

advanced machine learning technique, opNMF.23 In comparison

to the sparse, positively signed networks produced by opNMF,

principal-component analysis and other techniques produce

widely dispersed networks with a mix of positive and negative

weights, which often limit interpretability. Using a completely

data-driven approach that did not incorporate explicit spatial

constraints, opNMF revealed networks exhibiting both spatial

contiguity within hemispheres and high bilateral symmetry. The

identified 14 networks were stable, indicating that data-driven

white matter covariance networks generalize well to unseen

data. Our covariance networks aligned well with existing defini-

tions of major white matter pathways, while also differing in

certain aspects. First, because individual fiber populations

were modeled within each voxel using FBA, multiple fiber popu-

lations present within a given voxel could be assigned to distinct

networks. This contrasts withmost currently available whitemat-

ter tract atlases, wherein each voxel is assigned to a single white

matter bundle or network. Second, our hypothesis-free, data-

driven approach was able to capture distinct patterns of spatially

covarying white matter structure that have not been described

previously. For example, distinct white matter tracts were in

some cases aggregated into one network. This was observed

in network 5, which encompassed both the superior longitudinal

A B C

Figure 3. Developmental refinement of fiber covariance networks

(A) Mass-univariate analyses using GAMs revealed that age was associated with significant changes in FDC in 12 of 14 networks. The coloring of the fixels of the

covariance networks is based on the variance explained (partial R2). Multiple comparisons were accounted for using the FDR (q < 0.05).

(B) Bar graph depicting the effect size (partial R2) of the developmental effect for each network. The greatest effect sizes were seen in networks such as the body

of the corpus callosum (CC), the superior longitudinal (SLF) and arcuate fasciculi, and the splenium of the CC (networks 6 and 5 and 1). Nonsignificant asso-

ciations are marked by ‘‘ns.’’

(C)We tested whether themultivariate signature of fiber covariance networks could predict age above and beyond sex and data quality by comparing a full model

to a null model excluding the 14 covariance networks. We found a significant difference between a reduced covariate-only model (i.e., sex, motion, and image

quality) and a full model that included both the fiber covariance networks and covariates (F = 76.3, df = 14, p < 0.001). The proportion of variance in age explained

by the 14 covariance networks was R2 = 0.543, resulting in a good correspondence between age and predicted age. CST, corticospinal tract; CP, cerebellar

peduncle; Int, internal; Sup, superior.
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and arcuate fasciculi. Interestingly, this indicates that although

the superior longitudinal and arcuate fasciculi are analyzed inde-

pendently in atlas-based analyses, these tracts in fact display

similar white matter architecture and organizational features,

suggesting that they may be governed by common underlying

biological mechanisms. Conversely, other anatomical tracts

were split across different networks. For example, the CST

was divided into an inferior and superior/anterior portion, and

the SLF was divided into frontal and parietal connections, each

with unique developmental trajectories. This suggests that

although these tracts are conventionally studied as a whole,

certain subregions are in fact characterized by distinct patterns

of spatial and temporal organization that can be disambiguated.

Fiber covariance networks thus offer complementary informa-

tion to standard anatomically defined atlases.

Together, these findings suggest that relative to conventional

anatomical atlases, data-driven atlases derived from covariance

networks provide an efficient way to describe whitematter struc-

ture that aligns with organizational properties of the brain, which

may be shaped through shared developmental processes.15

Data-driven maps may be particularly useful to study brain orga-

nization from multimodal neuroimaging-derived microstructural

properties34 and from comparison across different species.35

Future research could leverage our white matter network data-

driven atlas to better understand how brain structural develop-

ment underlies the development of functional brain networks.

Covariance networks capture temporally distinct
patterns of coordinated white matter maturation
We found that fiber covariance networks underwent different

developmental patterns, with variations in both the magnitude

and the timing of maturation. In general, findings aligned with

recent white matter development studies using advanced diffu-

sion modeling strategies, which reported similar developmental

time frames.36,37

The greatest magnitudes of structural age-related change de-

tected in the present study were found in networks primarily

comprising the body and splenium of the CC, as well as the su-

perior longitudinal and arcuate fasciculi. Interestingly, it appears

that these networks are located at intermediate stages along

Figure 4. Development is associated with increased FDC in most fiber covariance networks

Plots display relationships quantified by GAMs between FDC and age for each covariance network. Significant age-related changes were characterized by

increasing FDC in most networks, with the exception of the fornix/cingulum (network 2), vermis (network 12), and superior cerebellum (network 13). Bars below

the x axis depict the derivative of the fitted GAM smooth function and correspond to developmental windows of significant white matter maturation. The filled

portion of the bar indicates periods in which the magnitude of the derivative is significant. A gray bar color indicates significant FDC increases (i.e., a positive

derivative), and a red bar color indicates significant FDC decreases (negative derivative). CC, corpus callosum; CST, corticospinal tract; SLF, superior longitudinal

fasciculus.
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known inferior-to-superior and posterior-to-anterior axes of

cortical organization. This is to be expected, given that the pre-

sent study encompasses late childhood, adolescence, and early

adulthood, as opposed to early childhood (most inferior/poste-

rior changes) and mid-adulthood (most superior/anterior

changes). These major axes of brain organization have been

highlighted from a lifespan developmental perspective of both

gray and white matter1,38–40 and from specific developmental

periods such as infancy41 and youth.42,43

The timing of maturation varied considerably across fiber

covariance networks, with some networks maturing in early

childhood, some plateauing in adolescence, and some plateau-

ing only by the end of adolescence. More specifically, fiber net-

works encompassing the cerebellum, fornix, and parahippo-

campal cingulum showed either no change or decreasing FDC

during adolescence. Early maturation of the cerebellum and

fornix aligns with prior lifespan studies44–48 and suggests that

these regions mature early. Interestingly, the cingulum is most

commonly studied as a whole (including both cingulate gyrus

and parahippocampal sections) and has typically been related

to prolongedmaturation. However, in line with our results, recent

fixel-based findings indicate that only the cingulate portion of the

cingulum shows age-related increases.36 This suggests that the

more inferior, parahippocampal regions of the cingulum may

mature earlier. In contrast to these early maturing networks,

the uncinate fasciculus, the parietal portion of the SLF, the sple-

niumof theCC, the inferior CST, and superficial U-fibersmatured

until mid-adolescence (i.e., from age 8 to before age 16). Finally,

some of the most prolonged age-related changes were

observed in more superior and anterior fiber covariance net-

works, including the rostrum of the CC, the superior longitudinal

and arcuate fasciculi, the body of the CC, and the superior CST,

all of which continuedmaturing throughout adolescence (i.e., un-

til age 18). Interestingly, the identified patterns of maturation

across different covariance networks are again suggestive of a

hierarchical patterning of development, whereby inferior and

posterior white matter regions tend to mature earlier than supe-

rior and anterior areas. Of note, the S-A axis has been proposed

as a more parsimonious way to capture the combination of infe-

rior-to-superior and posterior-to-anterior developmental pat-

terns.12 Although further studies are needed to directly assess

this, the data-driven networks identified in this study suggest

A B C

D

Figure 5. Fiber covariance network features are associated with executive function in youth

(A) Univariate analyses using GAMs that controlled for sex, motion, and image quality revealed that executive function was associated with higher FDC in 13 of 14

networks. The coloring of the fixels of the covariance networks is based on the partial R2 scores of executive function. Multiple comparisons were accounted for

using the FDR (q < 0.05).

(B) Bar graph depicting the effect size of executive function for each network (partial R2). These partial R2 magnitudes were highest in association networks such

as the fornix/cingulum (hippocampus), the parietal part of the superior longitudinal fasciculus (SLF), and the superior longitudinal and arcuate fasciculi (networks

2, 5, and 10).

(C) We tested whether the multivariate signature of the fiber covariance networks could predict executive function above and beyond sex and data quality by

comparing a full model to a null model excluding the 14 covariance networks.We found a significant difference between a reduced covariate-only model (i.e., sex,

motion, and image quality) and a full model that included both the fiber covariance networks and covariates (F = 6.56, df = 14, p < 0.001). The proportion of

variance in executive function explained by the 14 covariance networks was R2 = 0.327, resulting in a good correspondence executive function and predicted

executive function.

(D) The association between executive function and FDC is shown for the covariance networks with the highest partial R2 scores. EF, executive function; CC,

corpus callosum; CST, corticospinal tract; CP, cerebellar peduncle; Int, internal; Sup, superior.
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that a hierarchical pattern may also orchestrate the timing of

age-related changes in white matter structure. Of note, it is likely

that white matter connections linking to the most anterior areas

connecting to regions subserving higher-order functions would

show another wave of maturational changes going into the third

decade of life.44 Further data-driven approaches using data that

encompass a larger age range would be better suited to capture

this. Overall, these findings indicate that white matter structure is

spatially and temporally coordinated in a manner that aligns with

major inferior-to-superior and posterior-to-anterior axes of

cortical organization.

Association covariance networks are linked to
executive function
Having characterized the development of fiber covariance net-

works during adolescence, we lastly evaluated the cognitive

impact of these developmental effects. While controlling for

age, we found that an increase in FDC was associated with

higher executive performance in all but one covariance network.

The associations between FDC and executive function were

most robust in frontoparietal and temporal association networks,

namely the parahippocampal cingulum as well as the SLF and

arcuate fasciculus. Higher FDC values may reflect increases in

axonal packing and count and/or increases in the number of vox-

els that a bundle occupies.4 Of note, childhood developmental

studies that have separately investigated FD, fiber cross-section

(FC), and their combination FDC, show more widespread and

pronounced increases in cross-sectional fiber bundle size rela-

tive to increases in FD.49,50 Applying this observation to the pre-

sent results suggests that the changes in FDC may be mostly

driven by changes in FC. Both microstructural (FD) and morpho-

logical changes (FC) may allow for more efficient signaling be-

tween distributed frontoparietal and temporal regions that are

critical for executive function. This result adds to prior work re-

porting associations between executive function and localized

increases in white matter integrity in relatively small samples.8

Furthermore, it directly coheres with observations that greater

cortical representation of association networks is linked to better

general cognition in youth51,52 and suggests that the expansion

of white matter underlying limbic and association cortices may

contribute to these findings. Of note, although the fornix/

cingulum was positively associated with executive function,

FDC values of this network decreased with age. Importantly,

the positive association between FDC and executive function

in this network was found while controlling for age effects.

Such potentially counterintuitive associations with development

and cognition have been reported for structural brain features

such as cortical thickness; the cortex tends to thin with develop-

ment, but in general, children who perform better on cognitive

tasks tend to have thicker cortex.53,54

Limitations of the study
Despite the strengths of this study, several limitations should be

noted. We used a cross-sectional design, which precludes infer-

ence regarding within-individual developmental effects. How-

ever, it is worth mentioning that the present developmental

effects of FDC agree with results from smaller-scale longitudinal

studies.36,49 Larger-scale longitudinal studies such as the

IMAGEN study55 and the Adolescent Brain Cognitive Develop-

ment Study56 could eventually provide estimates of within-person

change in fiber covariance networks at the population level. Sec-

ond, the b-value of the diffusion imaging protocol is somewhat low

(b = 1,000 s/mm2), which may result in less accurate FDC mea-

sures due to contamination from extra-axonal signal.36 In the pre-

sent study, we addressed this caveat by using a single-shell multi-

tissue modeling approach, which minimizes extra-axonal signal

contributions. In addition, we chose to quantify white matter

development using a combined measure of FD and FC, which

limited the biological specificity from the FD metric. Of note, prior

work using FBA has shown that the development of white matter

is driven mostly by morphological changes from FC.36,49,50

Conclusions
We introduced a data-driven approach for defining fiber covari-

ance networks that are distinct from typical tract-based anatom-

ical atlases and have unique associations with age in youth. Our

findings suggest that developmental patterns of white matter

follow large-scale anatomical gradients, in away thatmay support

heterochronous patterns of cortical maturation. Notably, specific

limbic and association networks were associated with individual

differences in executive function. Taken together, these results

provide a data-driven framework to understand adolescent white

matter organization and maturation using high-order diffusion

modeling and multivariate analysis techniques.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. Theodore Sat-

terthwaite (sattertt@pennmedicine.upenn.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data from the Philadelphia Neurodevelopmental Cohort.31 Data is available at

the database of Genotypes and Phenotypes (dbGaP): https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000607.v3.p2. To request access, an authorization request can be completed via https://dbgap.ncbi.nlm.nih.

gov/aa/wga.cgi?%20page=login&page=login.

d All original code for image preprocessing, evaluating opNMF solutions, and all statistical analyses has been deposited at

https://github.com/PennLINC/Fixel_NMF_development and on Zenodo at https://zenodo.org/records/10064924, https://doi.

org/10.5281/zenodo.10064924. All code is publicly available as of the date of publication. DOIs are listed in the key resources

table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants
Participants were drawn from the Philadelphia Neurodevelopmental Cohort (PNC).31 Among the original 1,601 individuals who partic-

ipated in the PNC, 340 were excluded due to clinical factors, including medical disorders that could affect brain function, current use

of psychoactive medications, prior inpatient psychiatric hospitalizations, or an incidentally encountered structural brain abnormality.

Among the 1,261 participants eligible for inclusion in this study, 174 participants were excluded for missing either a B0 field map or

diffusion weighted MRI data. Data from the remaining 1,087 participants underwent both manual and automated quality assurance

protocol for DWI57,58 and T1w datasets, which excluded 146 participants for poor quality data (see below for details and Figure S1).

This set of exclusion criteria resulted in a final sample of 941 participants, with mean age 15.3 years, standard deviation (SD) = 3.4

years (n = 522 females). All participants or their parent/guardian provided informed consent, and minors provided assent. All study

procedures were approved by the Institutional Review Boards of both the University of Pennsylvania and the Children’s Hospital of

Philadelphia.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and preprocessed structural

T1-weighted images, diffusion

images, clinical and cognitive data

Philadelphia Neurodevelopmental Cohort https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.

cgi?study_id=phs000607.v3.p2

Software and algorithms

R 4.1.2 R Foundation https://cran.r-project.org/bin/macosx/

MATLAB R2018a MathWorks https://www.mathworks.com/

Nipype NiPy https://pypi.org/project/nipype/

QSIprep PennLINC https://github.com/PennBBL/qsiprep

FSL 6.0.3 FSL https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

MRtrix3 v3.0RC3 MRtrix http://www.mrtrix.org/

Confixel PennLINC https://github.com/PennLINC/ConFixel

BrainParts (non-negative matrix factorization) BrainParts https://github.com/asotiras/brainparts

Statistical analyses of fiber covariance networks This paper https://doi.org/10.5281/zenodo.10064923

12 Cell Reports 42, 113487, December 26, 2023

Article
ll

OPEN ACCESS

mailto:sattertt@pennmedicine.upenn.edu
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2
https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?%20page=login&amp;page=login
https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?%20page=login&amp;page=login
https://github.com/PennLINC/Fixel_NMF_development
https://zenodo.org/records/10064924
https://doi.org/10.5281/zenodo.10064924
https://doi.org/10.5281/zenodo.10064924
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2
https://cran.r-project.org/bin/macosx/
https://www.mathworks.com/
https://pypi.org/project/nipype/
https://github.com/PennBBL/qsiprep
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.mrtrix.org/
https://github.com/PennLINC/ConFixel
https://github.com/asotiras/brainparts
https://doi.org/10.5281/zenodo.10064923


METHOD DETAILS

Cognitive assessment
The Penn computerized neurocognitive battery (CNB) was administered to all participants. The CNB consists of 14 tests adapted

from tasks applied in functional neuroimaging to evaluate a broad range of cognitive domains.5,59 These domains include executive

control (abstraction and flexibility, attention, working memory), episodic memory (verbal, facial, spatial), complex cognition (verbal

reasoning, nonverbal reasoning, spatial, processing), social cognition (emotion identification, emotion intensity differentiation, age

differentiation), motor and sensorimotor speed. As in prior work,58,60 the z-transformed accuracy and speed of each test were aver-

aged to yield an integrated measure of cognitive efficiency (excluding motor and sensorimotor speed because they do not produce

accuracy measures) that reflects accurate and rapid responding. These efficiency scores were then summarized by an exploratory

factor analysis, which delineated four correlated factors (complex cognition, executive function, social cognition, and memory).60

Two participants from the full n = 941 sample had incomplete cognitive datasets, thus group-level statistical analyses examining

associations between fiber covariance networks and executive function focused on the remaining 939 participants.

Image acquisition
All MRI scans were acquired on the same 3T Siemens Tim Trio scanner and 32-channel head coil at the Hospital of the University of

Pennsylvania.31

T1 weighted MRI

T1-weighted structural images were acquired prior to DWI acquisition with a 5-min magnetization-prepared, rapid acquisition

gradient-echo T1-weighted (MPRAGE) image with the following parameters: repetition time = 1810 ms, echo time = 3.51 ms, inver-

sion time = 1100 ms, flip angle = 9�, field of view = 1803 240 mm, matrix = 192 x 256, slice number = 160, voxel resolution = 0.943

0.94 3 1 mm).

Diffusion MRI

Diffusion scans were acquired using a twice-refocused spin-echo (TRSE) single-shot echo-planar imaging (EPI) sequence (TR =

8100 ms, TE = 82 ms, FOV = 240 3 240 mm, matrix = 128 x 128, slices = 70, slice thickness/gap = 2/0 mm, flip angle = 90/180/

180, voxel resolution = 1.875 3 1.875 3 2 mm, volumes = 71). A 64-direction set was divided into two independent 32-directions

imaging runs - for a total scanning time of �11 min. Each 32-direction sub-set was chosen to be maximally independent such

that they separately sampled the surface of a sphere. The complete sequence consisted of 64 directions with b = 1000 s/mm2

and 7 interspersed scans with b = 0 s/mm2.

Field map

In addition, a map of the main magnetic field (i.e., B0) using phase-difference images was derived from a double-echo, gradient-re-

called echo (GRE) sequence, allowing us to estimate field distortions in each dataset (TR = 1000 ms; TE1 = 2.69 ms; TE2 = 5.27 ms;

44 slices; slice thickness/gap = 4/0 mm; FOV = 240 mm; effective voxel resolution = 3.8 3 3.8 3 4 mm).

Image quality assurance
All T1-weighted anatomical images were independently rated by three highly trained image analysts (see61 for a detailed description);

participants with low quality structural images were excluded. Similarly, all dMRI images were subject to a rigorous manual quality

assessment procedure involving visual inspection of all 71 gradient volumes.57 Each volume was evaluated for the presence of arti-

fact, with the total number of volumes impacted summed over the series. Data was considered ‘‘Poor’’ if more than 14 (20%) volumes

contained artifact, ‘‘Good’’ if it contained 1–14 volumes with artifact, and ‘‘Excellent’’ if no visible artifacts were detected in any vol-

umes. All 941 participants included in the present study had diffusion datasets identified as ‘‘Good’’ or ‘‘Excellent’’ and also had less

than 2 mm mean relative displacement between interspersed b = 0 volumes. Finally, to further mitigate potential effects of image

quality on our DWI findings, measures of quality were included as covariates in all group-level analyses.

Image processing
All images were processed with QSIprep, version 0.8.0RC3 (https://github.com/PennBBL/qsiprep),62 which is based on Nipype

1.1.9.63 A total of 2 DWI series in the j-distortion group were concatenated, with preprocessing operations performed on individual

DWI series before concatenation. Any image with a b-value less than 100 s/mm2 was treated as a b = 0 image. MP-PCA denoising as

implemented in MRtrix3’s dwidenoise64 was applied with a 5-voxel window. After MP-PCA, Gibbs unringing was performed using

Mrtrix3’s mrdegibbs.65 Following unringing, B1 field inhomogeneity was corrected using dwibiascorrect from Mrtrix3 with the N4 al-

gorithm.66 After B1 bias correction, the mean intensity of the DWI series was adjusted so all the mean intensity of the b = 0 images

matched across each separate DWI scanning sequence.

Prelude from FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, version 6.0.3) was used to estimate the susceptibility distortion correction.

FSL’s eddy was used for head motion and Eddy current correction.67 Eddy was configured with a q-space smoothing factor of 10, a

total of 5 iterations, and 1000 voxels used to estimate hyperparameters. A linear first level model and a linear second level model were

used to characterize Eddy current-related spatial distortion. Q-space coordinates were forcefully assigned to the shell. Field offset

was attempted to be separated from participant movement. Shells were aligned post-eddy. Eddy’s outlier replacement was run.67

Data were grouped by slice, only including values from slices determined to contain at least 250 intracerebral voxels. Groups
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deviating bymore than 4 standard deviations (SD) from the prediction had their data replaced with imputed values. Final interpolation

was performed using the jac method.

The DWI time-series were resampled to the anterior-to-posterior commissure (ACPC) generating a preprocessed DWI run in AC-

PC space with 1.25mm isotropic voxels. Several confounding time-series were calculated: framewise displacement (FD) based on

the preprocessed DWI using the implementation in Nipype (following the definitions by68) and the number of bad slices in raw images.

These two metrics - mean framewise displacement and number of bad slices - were included in all group-level statistical analyses.

Fixel-based analysis
We pursued a modeling technique that models information from multiple distinct fiber populations within a given voxel: the fixel-

based analysis (FBA) pipeline.4 In this pipeline, an individual fiber population within a voxel (fixel) is derived from fiber orientation dis-

tributions (FODs) estimated by a CSD technique.32 This approach minimizes extra-axonal signal contributions from gray matter and

cerebrospinal fluid, resulting in more accurate estimations of white matter structure for single shelled data. Moreover, unlike voxel-

based diffusionmodeling approaches, FBA gives amore accurate description of the underlying white matter geometry as it can iden-

tify multiple fiber populations within a voxel.

Diffusion images were further processed using MRtrix3 (v3.0RC3, http://www.mrtrix.org/)69 according to the FBA pipeline,4 which

involves the following steps. First, we calculated study-specific response functions for white matter, gray matter, and cerebrospinal

fluid70 using data from 30 representative study participants (1 female and 1 male from each of fifteen age bins: 8–9 years old, 9–10

years old, up to 22–23 years old). Study-specific average response functions were then used to estimate FODs for all individuals with

single-shell three tissue CSD.32 Following group-wise intensity normalization of the FOD images, we generated a study-specific FOD

template (with the same 30 participants) and each individual’s FOD image was registered to the study template. The resulting par-

ticipants’ transformed FOD images in template space were segmented along their main directions to delineate individual fiber bundle

elements in each voxel, referred to as ‘‘fixels’’ (main manuscript Figure 1).4,33 Apparent fiber density (FD) was calculated for each fixel

as the integral of the FOD lobe. Fiber cross-section (FC) was computed using the spatial warps generated during registration of each

participant’s FOD image toward the common FOD template.4 Finally, a combined fiber density and cross-section (FDC)measure was

calculated that quantifies both microscopic (intra-axonal volume) and macroscopic (morphology differences in fiber bundles) prop-

erties of white matter. FDC has previously been found to be more sensitive to detect change in white matter properties relative to FD

and fiber cross-section alone.4 After calculating FDC for each fixel, the FDC values were smoothed to increase the signal-to-noise

ratio. However, it is important to smooth fixel-specific metrics only with other fixels that share common streamlines, and not with all

adjacent fixels.33 Therefore, to appropriately smooth fixels’ FDC values, we first generated a whole-brain probabilistic tractogram

from the FOD template – in this case, a 20-million streamlines tractogram. The tractogram was reduced to a 2-million streamlines

tractogram using the Spherical-deconvolution Informed Filtering of Tractograms algorithm (SIFT)71 for which streamlines density

is proportional to FD as estimated with CSD. Lastly, we computed a fixel-fixel connectivity matrix based on the reduced tractogram

to inform smoothing of the fixel data at 10mmFull-Width at Half Maximum. Smoothed FDCmetric for 602,229 fixels was used as input

to the unsupervised machine learning approach using opNMF.

Non-negative matrix factorization
We employed orthonormal projective NMF23 to identify networks where fibers’ FDC covaried consistently across participants.

opNMF produces sparse, positively-signed components that form a purely additive and non-overlapping parts-based representa-

tion.23 opNMF decomposes the input matrix X containing fixel-wise FDC estimates ⎯ of dimensions F x N (F = 602,229 fixels, N =

941 participants) ⎯ into a network matrix W (of dimension F x K; K = user-specified number of networks) and a weight matrix H (of

dimension K x N; main manuscript Figure 1). The network and weight matrices are estimated such that their multiplication recon-

structs the input matrix as best as possible by minimizing the reconstruction error between the original and the reconstructed input –

the Frobenius norm. The network matrix W contains the estimated non-negative networks and their respective loadings on each of

the fixels. This probabilistic (soft) definition of networks can be converted into discrete (hard) network definitions for visualization by

labeling each fixel according to its highest network loading. The weight matrix H contains participant-specific scores for each

network. These participant-specific scores are equivalent to an average of FDC values for each covariance network. Consequently,

the higher the participant score on a network, the higher that participant’s FDC value within that network. The participants’ scores

from matrix H for each network were then used as the dependent variable in the subsequent group-level univariate analyses.

We used ConFixel72 (https://github.com/PennLINC/ConFixel) to convert participants’ FDC data at every fixel into a readable Hi-

erarchical Data Format 5 (HDF5) file format for opNMF. Then, we used Brainparts (https://github.com/asotiras/brainparts) and

MATLAB R2018a to run the opNMF decomposition. Consistent with prior studies using this technique,21,73 we evaluated multiple

opNMF solutions from 2 to 30 networks (in steps of two) to obtain a range of possible solutions. We selected the optimal network

solution using the reconstruction error criterion. This involves a visualization of the residual error after estimating different numbers

of components (Figure S2A) (see21 for a detailed description). The inflection point of the reconstruction error slope indicates the

optimal number of components, given that adding more components than the intrinsic data dimension only results in minor de-

creases in reconstruction error. The stability of the identified 14 fiber covariance networks was evaluated in a split-half reliability anal-

ysis by computing the cosine similarity between matched components of data splits 1 and 2 (Figure S2B). Cosine similarity range

from 0 to 1, with higher values indicating greater stability of a given component across different data splits. To further contextualize
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the obtained stability values, we generated a null distribution of cosine similarity values by permuting fixel loadings on the 14 networks

in each data split, reflecting random fixel loadings onto the 14 networks. Null cosine similarity values were then recomputed between

matched pairs of permuted components. This procedure was repeated 10,000 times (Figure S2C). Cosine similarity values were ex-

pected to be higher for observed networks compared to permuted networks. The explained variance was computed for each of the

14 networks by calculating the reconstruction error between the original input X matrix and the reconstructed matrix for a given

opNMF network (Figure S2D). The amount of variance explained by each opNMF network is expected to be distributed across all

14 networks.

QUANTIFICATION AND STATISTICAL ANALYSIS

After delineating fiber covariance networks, we evaluated associations between network FDC and both age and executive function.

As brain maturation is a nonlinear process, we modeled age associations using generalized additive models (GAMs) with penalized

splines in the R package ‘‘mgcv’’.74 GAMs assess a penalty with increasing nonlinearity to avoid overfitting the data. Due to this pen-

alty, GAMs designate nonlinearities only when they explain additional variance in the data above and beyond linear effects. All models

used up to four basis functions, which were selected using the restricted maximum likelihood framework (REML) to produce esti-

mates of variance parameters. For each white matter covariance network, we examined associations between age and FDC while

controlling for sex, mean framewise displacement during the diffusion scan, and the number of slices with signal dropout (‘‘bad

slices’’) observed in diffusion volumes, using the following formula:

opNMF fiber covariance network score = spline(age, k = 4) + sex + motion + bad slices + error.

To identify developmental windows of significant white matter maturation, we quantified the first derivative of the smooth age term,

which represents the slope of the spline fit, at every age. Using the gratia package in R, we operationalized the window of significant

age-related change as the period at which the 95% point-wise confidence interval of the spline’s estimated slope did not include 0.

To investigate whether executive function performance was associated with each network’s FDC above and beyond the effect of

age, we included the executive efficiency factor score as a linear variable in the model above. In each set of analyses, multiple com-

parisons were controlled for using the False Discovery Rate (q < 0.05) and effect sizes were quantified as the partial R2. The partial R2

is the proportion of variance explained by a full model that is not explained by a reduced model. For example, when investigating the

relationship between age and FDC, the full GAM model includes age and the aforementioned covariates while the reduced model

includes only covariates.

Following the investigation of the developmental and executive function effects of each covariance network separately, we next

explored how well FDC of all these covariance networks jointly encode age and individual differences in executive function. Using

a linear model, we tested whether the 14 covariance networks’ FDC jointly predicted age above and beyond sex, in-scanner motion,

and quality of diffusion data. We used an F-test to compare the full linear model predicting age to a reduced model that excluded the

14 covariance networks. Similarly, we explored whether a network’s FDC predicted executive function above and beyond covariates

and compared this full model to a reducedmodel excluding the 14 covariance networks. Finally, we calculated the proportion of vari-

ance explained (partial R2 coefficient) by the 14 covariance networks in predicting age and executive functioning.

Sensitivity analyses
We conducted sensitivity analyses to ensure our results were not influenced by confounding variables. First, we repeated all group-

level statistical analyses while including maternal education level as an additional covariate. Second, we included total brain volume

in all group-level analyses to evaluate whether our results were driven by gross differences in brain volume. Third, we evaluated the

ability of fiber covariance networks to predict age above and beyond TBV, by comparing a full model that included TBV, all 14 fiber

covariance networks and covariates to a reduced model that included only TBV and covariates. Fourth, we addressed the potential

impact of outliers by excluding individuals with executive function z-scores below �2 and regenerating executive function predic-

tions using fiber covariance networks. Finally, we included a summary measure of overall lifetime psychopathology from a bifactor

model, a dimensional approach to psychopathology that has been widely used in past work in this sample.73,75–79
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SUPPLEMENTAL FIGURES 
 

 
Figure S1. Sample construction; related to STAR Methods. Among the original 1,601 
participants from the PNC, 340 participants were excluded due to clinical factors, including 
medical disorders that could affect brain function, current use of psychoactive medications, 
prior inpatient psychiatric hospitalizations, or an incidentally encountered structural brain 
abnormality. Among the 1,261 participants eligible for inclusion, 174 participants were 
excluded for missing either a B0 field map, and/or diffusion images. The remaining 1,087 
participants underwent a rigorous manual and automated quality assurance protocol for 
DWI datasets, which excluded 146 participants for poor data quality. This set of exclusion 
criteria resulted in a final sample of 941 participants.
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Figure S2. Evaluation of opNMF performance; related to STAR Methods. A) Gradient of 
reconstruction error for opNMF solutions. Reconstruction error is plotted for opNMF solutions 
ranging from two to thirty components. The gradient is the difference in reconstruction error of 
the X matrix (input data) as the opNMF solution increases by 2 components. The y-axis of the plot 
ranges from -100 to 0. However, to better visualize the differences in reconstruction errors between 
the different solutions, the y-axis was cropped to -30. As expected, reconstruction error plateaus 
as the number of components increases. The reconstruction error between the 10- to 30-
components are fairly similar. We chose the 14-components solution as it is the most parsimonious 
solution before a small drop in reconstruction error. Accordingly, the 14-network solution was 
used for all subsequent analyses. B) Cosine similarity scores from the split-half analysis indicating 
the stability of FDC covariance networks. Cosine similarity ranges from 0 to 1, with higher values 
indicating greater stability of a given component across different data splits. C) Histogram of null 
cosine similarity values computed on permuted W matrices from data splits 1 and 2. The observed 
cosine similarity value (0.61) was 1995.3 standard deviations from the null distribution of cosine 
similarity values (< 0.125), confirming that the selected 14 components are far more stable than 
would be expected by chance. D) Variance explained by each of the 14 fiber covariance networks. 
Non-negative matrix factorization produces a parts-based representation of the data, where the 
variance of the data is distributed fairly evenly across each component.  
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Figure S3. Effect sizes (partial R2) of age in each fiber covariance network controlling for 
total brain volume, maternal education, and overall psychopathology; related to Figure 3. 
A) Bar graph depicting the effect size of the developmental effect for each network (partial R2) 
while controlling for total brain volume. B) Bar graph depicting the effect size of the 
developmental effect for each network (partial R2) while controlling for maternal education. C) 
Bar graph depicting the effect size of the developmental effect for each network (partial R2) while 
controlling for overall psychopathology. Non-significant associations are marked by “ns”. 
Abbreviations: CC, corpus callosum; SLF, superior longitudinal fasciculus; CST, cortico-spinal 
tract; Sup, superior; Int, internal; CP, cerebellar peduncle. 
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Figure S4. Effect sizes (partial R2) of executive function in each fiber covariance network 
controlling for total brain volume, maternal education, and overall psychopathology; related 
to Figure 5. A) Bar graph depicting the effect size of executive function for each network (partial 
R2) while controlling for total brain volume. B) Bar graph depicting the effect size of executive 
function for each network (partial R2) while controlling for maternal education. C) Bar graph 
depicting the effect size of executive function for each network (partial R2) while controlling for 
overall psychopathology. Non-significant associations are marked by “ns”. Abbreviations: EF, 
executive function; CC, corpus callosum; SLF, superior longitudinal fasciculus; CST, cortico-
spinal tract; Sup, superior; Int, internal; CP, cerebellar peduncle. 
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Figure S5. Assessment of potential outliers in the multivariate fiber covariance networks 
prediction of executive function; related to Figure 5. A) Executive function prediction with 
actual executive function scores on the x axis and predicted executive function scores on the y 
axis, including all data. In the original model including the full sample, we found a significant 
difference between a reduced covariate-only model (i.e., sex, motion, and image quality) and a full 
model that included both the fiber covariance networks and covariates (F=6.56, df=14, p<0.001). 
The proportion of variance in executive function explained by the 14 covariance networks was 
R2=0.327. B) Prediction of executive function excluding participants with z-scores below -2. F-
test results (F=6.54, df=14, p<0.001) and proportion of explained variance (R2=0.307) were quite 
similar, indicating that the outlying data points did not play an outsized role in model predictions.  
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