
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

2020-Current year OA Pubs Open Access Publications 

10-1-2023 

Non-small cell lung cancer epigenomes exhibit altered DNA Non-small cell lung cancer epigenomes exhibit altered DNA 

methylation in smokers and never-smokers methylation in smokers and never-smokers 

Jennifer A Karlow 
Washington University School of Medicine in St. Louis 

Erica C Pehrsson 
Washington University School of Medicine in St. Louis 

Xiaoyun Xing 
Washington University School of Medicine in St. Louis 

Mark Watson 
Washington University School of Medicine in St. Louis 

Siddhartha Devarakonda 
Washington University School of Medicine in St. Louis 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4 

 Part of the Medicine and Health Sciences Commons 

Please let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Karlow, Jennifer A; Pehrsson, Erica C; Xing, Xiaoyun; Watson, Mark; Devarakonda, Siddhartha; Govindan, 
Ramaswamy; and Wang, Ting, "Non-small cell lung cancer epigenomes exhibit altered DNA methylation in 
smokers and never-smokers." Genomics, Proteomics & Bioinformatics. 21, 5. 991 - 1013. (2023). 
https://digitalcommons.wustl.edu/oa_4/3502 

This Open Access Publication is brought to you for free and open access by the Open Access Publications at 
Digital Commons@Becker. It has been accepted for inclusion in 2020-Current year OA Pubs by an authorized 
administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/oa_4
https://digitalcommons.wustl.edu/open_access_publications
https://digitalcommons.wustl.edu/oa_4?utm_source=digitalcommons.wustl.edu%2Foa_4%2F3502&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Foa_4%2F3502&utm_medium=PDF&utm_campaign=PDFCoverPages
https://becker.wustl.edu/digital-commons-becker-survey/?dclink=https://digitalcommons.wustl.edu/oa_4/3502
mailto:vanam@wustl.edu


Authors Authors 
Jennifer A Karlow, Erica C Pehrsson, Xiaoyun Xing, Mark Watson, Siddhartha Devarakonda, Ramaswamy 
Govindan, and Ting Wang 

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/oa_4/3502 

https://digitalcommons.wustl.edu/oa_4/3502


ORIGINAL RESEARCH

Non-small Cell Lung Cancer Epigenomes Exhibit

Altered DNA Methylation in Smokers and Never-

smokers

Jennifer A. Karlow
1,2,#,§

, Erica C. Pehrsson
1,2,#

, Xiaoyun Xing
1,2
, Mark Watson

3
,

Siddhartha Devarakonda 4, Ramaswamy Govindan 4, Ting Wang 1,2,5,*

1Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
2The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis,
MO 63110, USA

3Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
4Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
5McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA

Received 16 March 2022; revised 11 February 2023; accepted 14 March 2023
Available online 22 September 2023

Handled by Hui Shen

KEYWORDS

Non-small cell lung cancer;

Epigenomics;

M&M;

methylCRF;

DNA methylation

Abstract Epigenetic alterations are widespread in cancer and can complement genetic alterations

to influence cancer progression and treatment outcome. To determine the potential contribution of

DNA methylation alterations to tumor phenotype in non-small cell lung cancer (NSCLC) in both

smoker and never-smoker patients, we performed genome-wide profiling of DNA methylation in

17 primary NSCLC tumors and 10 matched normal lung samples using the complementary assays,

methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation sensitive restric-

tion enzyme sequencing (MRE-seq). We reported recurrent methylation changes in the promoters

of several genes, many previously implicated in cancer, including FAM83A and SEPT9 (hy-

pomethylation), as well as PCDH7, NKX2-1, and SOX17 (hypermethylation). Although many

methylation changes between tumors and their paired normal samples were shared across patients,

several were specific to a particular smoking status. For example, never-smokers displayed a greater

proportion of hypomethylated differentially methylated regions (hypoDMRs) and a greater number

of recurrently hypomethylated promoters, including those of ASPSCR1, TOP2A, DPP9, and

USP39, all previously linked to cancer. Changes outside of promoters were also widespread and
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often recurrent, particularly methylation loss over repetitive elements, highly enriched for ERV1

subfamilies. Recurrent hypoDMRs were enriched for several transcription factor binding motifs,

often for genes involved in signaling and cell proliferation. For example, 71% of recurrent promoter

hypoDMRs contained a motif for NKX2-1. Finally, the majority of DMRs were located within an

active chromatin state in tissues profiled using the Roadmap Epigenomics data, suggesting that

methylation changes may contribute to altered regulatory programs through the adaptation of cell

type-specific expression programs.

Introduction

Lung cancer is the leading cause of cancer deaths in the USA,
with a 5-year relative survival rate of 22.9% [1]. Non-small cell

lung cancer (NSCLC) represents 85% of lung cancer cases and
is highly heterogeneous, comprising lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), and large

cell carcinoma. In addition to cytotoxic chemotherapies, cur-
rently approved therapeutics for NSCLC include inhibitors
of EGFR, ALK, ROS1, VEGF, and other proteins, as well

as checkpoint blockade therapies targeting PD-1 and PD-L1
[2]. LUAD and LUSC both exhibit high somatic mutation
rates relative to other cancers [3].

Although most NSCLC cases are associated with tobacco
smoking [4], the proportion of NSCLC cases attributed to
never-smokers is rising and now represents 10%–40% of
NSCLC cases worldwide [5]. Lung cancer in never-smokers

is linked to genetic susceptibilities and certain environmental
exposures [4]. It is most common among women and East
Asians, and most frequently of the LUAD subtype [4].

Never-smoker tumors exhibit distinct molecular characteris-
tics, including a higher frequency of EGFR and HER2 muta-
tions and ALK/RET/ROS fusions that improve their

response to targeted therapy. In contrast, smokers exhibit a
higher rate of mutations in KRAS, TP53, STK11, BRAF,
JAK2, JAK3, and mismatch repair genes [5,6]. The mutation
burden in smokers is > 10� higher [5] and is characterized

by C > A nucleotide transversions caused by direct
benzo[a]pyrene exposure. This signature is clonal, suggesting
that mutations occur before transformation, and correlates

with pack years smoked [7]. Smokers also exhibit a higher rate
of copy number alterations, non-synonymous mutations, and
neoepitopes [7,8], which may explain their greater response

to immunotherapy.
In the past, cancer analyses have focused primarily on

genomic mutations. However, cancer is also characterized by

massive epigenetic dysregulation. Epigenetic modifiers are fre-
quently mutated in cancer, suggesting a role in tumorigenesis.
Cancer exhibits global DNA hypomethylation coupled with
focal promoter hypermethylation [9], which can silence tumor

suppressor genes in lung cancer [6]. In addition, epigenetic
alterations can lead to genomic instability, the dysregulation
of genomic architecture [10], histone modification spreading,

and widespread DNA hypomethylation, resulting in aber-
rantly activated transposable elements (TEs). Cryptic promot-
ers within de-repressed TEs can drive oncogene expression [11–

13] and create chimeric transcripts that may produce neoepi-
topes [14,15]. Additionally, demethylated endogenous retro-
viruses produce double-stranded RNA and trigger an anti-

viral immune response [16,17], potentiating treatment with

checkpoint blockade therapy [18]. In sum, epigenetic alter-
ations can complement genomic alterations and have profound
effects on cancer progression and treatment outcome.

The Cancer Genome Atlas (TCGA) has profiled thou-

sands of NSCLC samples and matched normal lung samples
[19,20]. However, DNA methylation data were generated
using the Human Methylation 450K array, which covers only

a fraction of the CpGs in the genome. To supplement this
analysis, we profiled genome-wide DNA methylation in 17
primary LUAD tumors, as well as matched normal lung sam-

ples from 10 of the patients (see Materials and methods).
Clinicopathologic data are summarized in Table S1. For each
sample, we performed methylated DNA immunoprecipita-

tion sequencing (MeDIP-seq) and methylation sensitive
restriction enzyme sequencing (MRE-seq), which capture
methylated and unmethylated CpGs, respectively (Figure S1).
Data generated by these complementary assays were then

integrated using methylCRF [21] to estimate the methylation
level at over 28 million CpGs genome-wide, resulting in com-
prehensive, environmentally matched pairs of normal lung

and primary tumor methylomes. We also used the M&M
algorithm, which integrates MeDIP-seq and MRE-seq from
two comparative samples [22], to identify differentially

methylated regions (DMRs), providing a complete profile
of common DNA methylation alterations across a heteroge-
neous set of primary NSCLC tumors.

Results

Global methylation profiles of primary tumors exhibit systematic

deviations from non-malignant lung

We first profiled genome-wide DNA methylation changes
between primary NSCLC and patient-matched, histologically
non-malignant lung tissues. Although there was substantial

variation across samples (Figure S2A), on average, primary
tumor samples exhibited a shift in overall methylation density,
with fewer highly methylated CpGs and lowly methylated
CpGs and a significant increase in intermediately methylated

CpGs (Wilcox test, P = 0.001423; Figure 1A, Figure S2B; File
S1). The genome-wide methylation changes observed in this
study are in line with data from other studies (Karlow et al.,

unpublished data; [23]), and analysis of MRE-seq data alone
confirmed that tumors lose methylation over intergenic regions
and repeats (Figure S3A–H; File S1), consistent with previous

studies [24].
At a finer resolution, local methylation changes separated

normal lung samples from tumor samples. Principal compo-
nent analysis (PCA) on the average methylation level over

1-kb windows separated normal lung samples from primary
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NSCLC samples along principal component 1 (PC1) and PC2
(Figure 1B). The degree of correlation between tumors and
paired normals was not different when separating patients

based on smoking status (Wilcox test, P = 1; Figure
S4A–C) or tumor stage (early vs. late; Wilcox test, P = 1;
Figure S4D–G), and was not correlated with tumor purity

(Pearson correlation, P = 0.6079; Figure S4H–J). The two
patients with adenosquamous carcinomas demonstrated a
greater divergence from their paired normal samples than

patients with adenocarcinomas, although this also did not
meet statistical significance (Wilcox test, P = 0.09524; Fig-
ure S4K–M). Interestingly, interpatient normal-to-primary

tumor distances were comparable to intrapatient distances
(Wilcox test, P = 0.06136; Figure S4N–Q), suggesting that
tumors undergo a great deal of epigenetic repatterning relative

to non-malignant tissues.
Non-malignant lung tissue was equally homogenous among

smokers and never-smokers (Wilcox test, P = 0.10052,

Figure 1 Genome-wide CpG methylation alterations in primary NSCLC

A. Average genome-wide methylation and proportion of CpGs at each methylation level per sample (lowly methylated, < 30%

methylation; intermediately methylated, 30%–70% methylation; highly methylated, > 70% methylation). B. PCA on normal lung and

primary tumor samples using the average methylation level over genome-wide 1-kb windows as features. Group centroids are indicated

with squares. Axis titles display the amount of variance explained by each PC. P2385_N_UC is the outlier on PC2. C. Distance to centroid

by sample malignancy (Wilcox test, P = 0.0004497). Normal outliers are P4999_N_S and P2385_N_UC; tumor outlier is P14658_T_NS.

D. Average CpG methylation level across genomic features in all samples, colored by sample malignancy and ordered by median CpG

methylation level. *, P < 0.05 (Wilcox test). E. Average CpG methylation level across genomic features in normal samples, separated by

smoking status. F. Average CpG methylation level across genomic features in tumor samples, separated by smoking status. NSCLC, non-

small cell lung cancer; PCA, principal component analysis; PC, principal component; CGI, CpG island; UTR, untranslated region.

Karlow JA et al /DNA Methylation Changes in NSCLC by Smoking Status 993



distance to centroid; Figure S5A–C), and was significantly
more homogenous than primary NSCLC (Wilcox test, P <
0.001, distance to centroid; Figure 1C), suggesting that epige-

netic changes during tumor progression can take a number
of paths. Primary tumors were also equally homogenous
among smokers and never-smokers (Wilcox test,

P = 0.8363, distance to centroid; Figure S5D–F), across
tumor stages (early vs. late; Wilcox test, P = 0.8981, distance
to centroid; Figure S5G–I), and across subtypes (adenocarci-

noma vs. adenosquamous carcinoma; Wilcox test,
P = 0.7676, distance to centroid; Figure S5J–L). No correla-
tion was found between the degree of variation of tumor sam-
ples and their tumor purity (Pearson correlation, P = 0.7664;

Figure S5M–O).
Finally, we looked at methylation alterations in primary

NSCLC by genomic location (Figure 1D). Compared to nor-

mal lung, primary NSCLC gained CpG methylation over pro-
moters, exons [both untranslated regions (UTRs) and coding
exons], and CpG islands (CGIs), but lost methylation over

repeats (Wilcox test, P < 0.05), in agreement with previous
studies [24]. Interestingly, the two normal lung samples from
never-smokers tended to exhibit higher CpG methylation

across each profiled genomic feature compared to normal lung
samples from smokers, although the small sample sizes prohib-
ited the significance (Figure 1E). On the other hand, tumors
separated by smoking status did not show any differences in

methylation across genomic features (Figure 1F).

DMRs are largely patient-specific with several recurrent

examples pertaining to a particular smoking status

Next, we identified DMRs across the genome between patient-
matched normal lung and primary NSCLC, as well as between

normal lung samples and between normal lung and tumor
samples from different patients. A Q value threshold of
0.001 was selected (Figure S6A–G; File S1).

The number of DMRs per patient was highly variable,
ranging from 239 to 16,676 (Figure 2A), independent of tumor
purity (Figure S7A). However, all but one patient-matched
comparison exhibited more DMRs than that between normal

lung samples (59–1708 DMRs in normal vs. normal compar-
isons) (Figure S7B). The tumor in question (Patient_4999)
was a bronchioloalveolar carcinoma, a minimally invasive sub-

type of NSCLC that may have accumulated fewer methylation
changes due to a slower rate of cell division [25]. Based on
genome-wide methylation profiles, normal lung samples

were more homogenous than primary NSCLC samples
(Figure S7C–F; File S1). The proportion of DMRs that were
hypomethylated in normal lung compared to tumor also varied
by patient, from 2% to 73% (Figure 2A), and did not correlate

with the total number of DMRs (Pearson correlation,
P > 0.5).

To determine whether smoking created DNA methylation

field effects prior to malignant transformation, we identified
DMRs between normal lung samples based on smoking cate-
gory (n = 1214 unique DMRs). Normal samples of the same

smoking status did not have fewer DMRs, as would be
expected if there were characteristic changes in CpG methyla-
tion due to smoking (Wilcox test, P > 0.05) (Figure S8). Fur-

thermore, DMRs which were found between never-smoker
and smoker normal samples, but not between the two never-

smoker normal samples (n = 785), were not significantly
enriched in any Gene Ontology (GO) biological processes.
However, there were several examples of methylation loss in

only smoker samples, including DMRs in the promoters of
PM20D1 (chr1:205818500–205819000) and ARRB2 (chr17:
4612500–4613000). ARRB2 variants have been previously

linked to smoking status [26], and the depletion of the gene
promoted lung cancer growth in a mouse model [27]. Addition-
ally, there were DMRs overlapping with the gene bodies of

METAP1D, RGPD8, and PKP3, which have been shown to
be up-regulated in LUAD and promote cancer growth [28],
and whose methylation status has been linked to in utero nico-
tine exposure [29]. The number of DMRs identified in non-

malignant lung tissue specifically between smokers and
never-smokers was not significantly different from the number
of DMRs identified among the entire cohort, suggesting that

unlike somatic mutations, smoking history may not contribute
to a systematic difference in methylation status.

Although underpowered to reach statistical significance

(Wilcox test, P = 0.2667), there were fewer DMRs between
paired normal and tumor samples from smokers (n = 4
patients) than those from never-smokers (n = 2 patients), with

the exception of Patient_9890 (Figure 2B). Although never-
smoker patients tended to have higher numbers of both hyper-
methylated differentially methylated regions (hyperDMRs)
and hypomethylated differentially methylated regions

(hypoDMRs), they tended to have a higher percentage of
hypoDMRs relative to smokers (Figure S9A–C; Wilcox test,
P > 0.05). The number of DMRs as well as the percentage

of hypoDMRs did not correlate with tumor stage (Figure S9D
and E), subtype (Figure S9F and G), or total methylation
change (Figure S9H and I).

The majority of patient-matched DMRs were exclusive to a
single patient (Figure 2C), with 11% (3158/28,204) of
hypoDMRs and 31% (7457/24,242) of hyperDMRs shared by

multiple individuals. However, hypoDMRs were shared by up
to six patients, and hyperDMRs were shared by up to eight.
When considering patients according to smoking status, 8%
(612/7289) of hyperDMRs and 2% (378/15,305) of hypoDMRs

were shared by both never-smokers, while 10% (1380/13,593) of
hyperDMRs and 5% (432/9377) of hypoDMRs were shared by
at least two smokers (Figure 2D). Of the DMRs identified in

more than one patient (recurrent), 850 hyperDMRs and 320
hypoDMRs, respectively, were shared by at least two smokers
and absent in never-smokers, 196 hyperDMRs and 300

hypoDMRs were shared by both never-smokers and absent in
smokers, and 115 hyperDMRs and 6 hypoDMRs were recurrent
in both smokers and never-smokers (Figure 2E and F). Interest-
ingly, the number of DMRs recurrent in never-smokers but not

recurrent in smokers was generally greater than when randomly
subsetting patients, suggesting that these recurrent epigenetic
changes may contribute to never-smoker cancer progression

(Figure 2G and H).
Finally, we confirmed the DMRs observed in this study

using a much larger cohort from TCGA. Although only

14% of patient-matched hypoDMRs and 52% of hyperDMRs
overlapped with a CpG from the 450K array (n = 3815 and
12,668, respectively), the average methylation level of the

DMRs in TCGA LUAD and matched normal lung samples
recapitulated the DMR directions in our study (Figure 2I, Fig-
ure S10A). Furthermore, hyperDMRs identified in
smoker patients from our study (at all or recurrently) exhibited

994 Genomics Proteomics Bioinformatics 21 (2023) 991–1013



Figure 2 DMRs between normal lung and primary NSCLC

A. Number of DMRs between paired normal and tumor samples in each patient. The proportions of hypoDMRs and hyperDMRs are

also shown. B. Number of patient-matched DMRs in never-smoker, smoker, and unconfirmed patients. Wilcox test comparing never-

smoker patients (n = 2) to smoker patients (n = 4) is not significant (P = 0.2667). C. Number of patient-matched DMRs shared by

different numbers of patients by DMR direction. D. Number of patient-matched DMRs shared by different numbers of patients by both

DMR direction (outline color) and smoking status (fill color). E.Number of hyperDMRs recurrent in smokers, never-smokers, or both. F.

Number of hypoDMRs recurrent in smokers, never-smokers, or both. G. and H. Number (G) and percentage (H) of recurrent

hyperDMRs (left) or hypoDMRs (right) unique to the specified smoking status. Red indicates values using true patient smoking statuses;

blue indicates values using permutations of patients (smoker, n= 4; never-smoker, n= 2). I. Average methylation level of all hypoDMRs

or hyperDMRs shared by at least two patients across all TCGA LUAD samples, split by sample type. Violin plot lines indicate quartiles.

P < 0.001 (Wilcox test) between LUAD normal lung and primary tumor for both hypoDMRs and hyperDMRs. DMR, differentially

methylated region; hyperDMR, hypermethylated differentially methylated region; hypoDMR, hypomethylated differentially methylated

region; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma.
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significantly higher methylation levels in TCGA patients with
confirmed smoking history compared to never-smokers/
patients without data (Figure S10B and C). HypoDMRs found

in smoker patients from our study exhibited lower methylation
levels in TCGA LUAD samples with confirmed smoking his-
tory (Figure S10D) but failed to exhibit a significant difference

compared to TCGA LUAD never-smokers/patients without
data when restricted to recurrent smoker hypoDMRs (Fig-
ure S10E). Differences in average methylation between TCGA

LUAD tumor samples from patients with confirmed smoking
history and never-smokers/patients without data were not
observed over hyperDMRs or hypoDMRs identified in
never-smokers from our study (Figure S10F–I), with the

exception of significantly lower methylation in TCGA patients
with confirmed smoking status over hypoDMRs identified in
never-smokers from our study (Figure S10G).

Recurrent methylation changes are observed at the genome-wide

level, including within the promoters of several genes previously

implicated in lung cancer

The locations of DMRs between patient-matched primary and
non-tumor samples recapitulated recognized patterns. In gen-

eral, hyperDMRs in tumors (analyzing 500-bp bins containing
CpGs) were enriched in promoters, exons, CGIs, and partially
methylated domains (PMDs), and were depleted over inter-
genic regions and repeats, whereas hypoDMRs were enriched

to a lesser extent in promoters, exons, CGIs, and PMDs
(Figure 3A, Figure S11A). Stratifying DMRs based on identi-
fication in smokers, never-smokers, or both revealed similar

trends. Enrichment was slightly higher over promoters, exons,
and CGIs for hyperDMRs identified in smokers than in never-
smokers, whereas hypoDMRs identified in never-smokers

demonstrated a slightly higher enrichment over those regions
(Figure S11B and C). Enrichment over genic features was
stronger for DMRs shared between patients than for patient-

exclusive DMRs, where the pattern was again more pro-
nounced for hyperDMRs (Figure S11D).

The enrichment of DMRs over genic features also varied by
transcript type. Figure S11E displays DMR enrichment over

protein-coding, antisense, long intergenic non-coding RNA
(lincRNA), and processed transcripts, which together comprise
72% of all GENCODE-annotated transcripts. HyperDMRs

were more strongly enriched over the promoters and exons
of protein-coding and antisense transcripts, with a 50 vs. 30

UTR bias evident only in protein-coding transcripts. In con-

trast, hypoDMRs were most strongly enriched over lincRNA,
although still to a lesser degree than hyperDMRs. Stratifying
DMRs based on identification in smokers, never-smokers, or
both revealed similar enrichment trends (Figure S11F).

Finally, hyperDMRs were more strongly enriched over
protein-coding transcripts with a CGI in the promoter, partic-
ularly over the promoter (Figure S11G), where smoker

hyperDMRs showed a slightly higher enrichment in CGI-
associated promoter transcripts, and never-smoker
hyperDMRs showed a slightly higher enrichment in non-

CGI-associated transcripts (Figure S11H).
Both recurrent never-smoker-specific hyperDMRs (n = 2

patients) and smoker-specific hyperDMRs (n � 3 patients)

were enriched in functions related to transcription and
embryogenesis (Figure S12A and B), but smoker-specific

hyperDMRs were also enriched in terms related to cell signal-
ing, epithelial tissue, and the respiratory system. Several genes,
including NOTCH1, STK11, AKT1, CDKN2B, DLX5, EYA1,

GATA3, and SKI, were represented by many of the terms. In
contrast, recurrent never-smoker-specific hypoDMRs and
smoker-specific hypoDMRs did not display significant GO

enrichment.
Furthermore, 89% of CGIs overlapped with a hyperDMR,

and 39% of CGIs overlapped with a hypoDMR, which were

reduced to 78% and 15%, respectively, when only DMRs
shared between patients were considered. In addition, 12%
of genes (n = 5193) contained a hyperDMR in the promoter,
and 7% of genes (n = 3075) contained a hypoDMR, with only

5% (n = 2171) and 1% (n = 465) of genes overlapping with
shared DMRs, respectively. The results by gene biotype are
presented in Table S2. Genes with a DMR in the promoter

included 48 genes previously shown to be altered (amplified,
mutated, methylated, fused, etc.) in NSCLC [27 recurrent
(containing a DMR in more than one patient)], 188 genes from

the Cancer Gene Census database of Catalogue Of Somatic
Mutations In Cancer (COSMIC) [including 39 oncogenes, 25
tumor suppressor genes (TSGs), and 15 genes annotated as

both] (104 recurrent), 164 epigenetic regulators from the
EpiFactors database (78 recurrent), 43 cancer testis antigens
(CTAs; 25 recurrent), and 29 of the top 100 most highly
expressed genes in lung (16 recurrent).

Although most genes with a promoter methylation change
were unique to an individual, genes were found to contain a
hypoDMR in up to six patients and a hyperDMR in up to nine

(Figure 3B). When considering smoking status, both smokers
(n = 4) and never-smokers (n = 2) displayed recurrent
hyperDMRs (679 and 273, respectively) and recurrent

hypoDMRs (79 and 99, respectively) (Figure 3C). Interest-
ingly, despite having only two never-smokers, the number of
recurrent hypoDMRs was greater than the number recurrent

in the four smokers, suggesting perhaps that the never-
smoker hypoDMRs might be more relevant to tumor forma-
tion. Classifying genes with altered promoter methylation
according to whether the alteration was seen in smokers,

never-smokers, or both, revealed that the majority of recur-
rently altered genes appeared in both smokers and never-
smokers (Figure 3D). However, 65/99 genes with recurrent

hypoDMRs and 46/273 genes with recurrent hyperDMRs in
never-smokers were not seen in smokers, while 34/79 genes
with recurrent hypoDMRs and 318/679 genes with recurrent

hyperDMRs in smokers were not in never-smokers. Genes
with recurrent never-smoker-specific hypoDMRs in the pro-
moter include ASPSCR1, a known fusion oncogene whose
methylation is linked to prenatal smoking and reduced lung

function [30]; the DNA topoisomerase TOP2A, a pan-cancer
up-regulated gene [31,32]; and DPP9 and USP39, which have
been implicated in lung cancer [33,34]. Genes with recurrent

never-smoker-specific hyperDMRs in the promoter include
SMYD2, encoding a lysine methyltransferase that targets
EML4–ALK fusion proteins [35], and CYP1B1. CYP1B1 con-

verts benzo[a]pyrene from tobacco smoke into its more car-
cinogenic form and is up-regulated in smokers compared to
never-smokers [36]. In many cases, the DMR was one of many

in the gene promoter, although no transcript contained both a
never-smoker-specific DMR and a smoker-specific DMR.

Genes associated with recurrent promoter hypomethyla-
tion, regardless of smoking status, include FAM83A, a lung
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cancer biomarker and potential oncogene [37], whose
expression in TCGA LUAD samples was almost 100-fold
over that found in non-malignant lung samples (Wilcox test,

P < 0.001) (Figure 3E). The FAM83A promoter was
hypomethylated in six patients, and several isoforms also lost
methylation in TCGA (Wilcox test, P < 0.001). SEPT9 exhib-

ited promoter hypomethylation in five patients and hyperme-
thylation in three patients. Although overall gene expression
increased significantly in the TCGA LUAD samples (Fig-

ure 3E), individual transcripts could be up-regulated or
down-regulated (Figure S13A and B). Other genes containing
recurrently hypomethylated promoters included TNFRSF10A
(in five patients), encoding a TNF-related apoptosis-inducing

ligand receptor that induces apoptosis [38], and MET (in three
patients), a known oncogene implicated in NSCLC. In addi-
tion, MUC5B, which is involved in goblet cell mucus produc-

tion, is down-regulated in mucinous adenocarcinoma [39], and
was previously shown to be associated with LUAD cancer-
specific DNA methylation changes [40]. In our study, MUC5B

displayed promoter hypomethylation in four patients.
Genes with promoter hypermethylation in multiple patients

included those within the HOXA cluster, which is densely

hypermethylated in NSCLC (see below) [41,42]. Additionally,
the promoter of PCDH7, a protocadherin gene with an onco-
genic function in lung cancer [43], was hypermethylated in nine
patients. Its expression level significantly increased in LUAD

samples (Wilcox test, P < 0.001) (Figure 3E), although like
many genes, its expression had a much larger range than in
normal lung samples. The promoter of NKX2-1, a lung cancer

biomarker involved in lung development [44], was hyperme-
thylated in five patients (Figure S14), as was that of SOX17.
Several genes with recurrent promoter hypermethylation

and/or nearby intergenic hyperDMRs were also previously
shown to be associated with LUAD or LUSC cancer-specific
hypermethylation changes, including HYAL2 (in eight

patients), AQP1 (in seven patients), XRCC3 (in five patients),
RARA (in four patients), SPTBN1 (in three patients), EPAS1
(in three patients), CD34 (in two patients), and CLU (in two
patients). Other notable genes included SYT10 and KCNC1

(in eight patients each).
In many cases, the DMR was over the promoter of a

shorter or non-coding isoform of the gene. However, we also

identified potential instances of promoter switching, in which
one transcript promoter of a gene became hypermethylated,
while another became hypomethylated (Figure S15A–F). For

both ADCY2 and ASPG, the promoters of the longest
protein-coding transcripts (ADCY2: ENST00000338316.4;
ASPG: ENST00000551177.1 and ENST00000455920.2)

became hypermethylated in five patients, and the promoters
of shorter isoforms became hypomethylated in a subset. The
promoter methylation level of the longest transcripts also

increased significantly in TCGA LUAD samples (Figure S15A
and D), and the transcript expression levels dropped (Wilcox
test, P < 0.001) (Figure S15C and F). In both cases, the

overall gene expression level dropped as well (Wilcox test,
P < 0.001) (Figure S15B and E); however, because the shorter
isoforms were not captured by TCGA, we were unable to

determine whether their expression increased.
In addition to individual genes with highly recurrent DMRs

in the promoter, we looked at pathway-level effects using the
Database for Annotation, Visualization and Integrated Dis-

covery (DAVID). Genes with hypoDMRs in their promoters
in multiple patients were enriched in spleen-specific expression
(Q < 0.05) (Figure S15G and H), while genes with

hyperDMRs in their promoters were enriched for brain-
specific expression (Figure 3F and G). Both sets were enriched
on chromosome 19 and in alternative splicing functions. Those

overlapping hyperDMRs were also enriched in several func-
tions, including cell adhesion and terms related to homeobox
genes and development, reflecting the abundance of

hyperDMRs over HOX clusters.
We also determined whether DMRs overlapping with gene

promoters encode binding motifs for transcription factors
(TFs) dysregulated in NSCLC, which could provide a coordi-

nated method for regulating several genes at once. Based on
HOMER known motif analysis, shared promoter hypoDMRs
were enriched in binding motifs for TFs involved in signaling

and cell proliferation (Figure S15I). Additionally, 71% of the
DMRs encode a binding site for NKX2-1 (up from the back-
ground observed value of 64%). In our dataset and in TCGA,

promoters of the gene were recurrently hypermethylated, but
its expression was not significantly different between normal
lung samples and primary tumors. Promoter hyperDMRs were

enriched in binding motifs for TFs involved in embryonic
development, as well as hypoxia and angiogenesis
(Figure S15J).

DMRs in intronic or intergenic regions may also serve as

alternative promoters or enhancers that become activated in
NSCLC. In contrast to promoters, they are also less likely to
have been captured by TCGA or other large studies that relied

on probe-based methylation profiling methods. In this study,
we identified several recurrent intergenic DMRs, including
chr13:53775000–53775500, a bivalent enhancer that was hyper-

methylated in 8 of the 10 patients and is 49 kb from the nearest
gene; and chr6:158182500–158183000, which was hypomethy-
lated in 6 of the 10 patients and is 61 kb from the nearest gene.

Figure 3 DMRs within gene promoters

A. LOR enrichment of DMRs over genic features, intergenic regions, CGIs, and repeats compared to the background distribution of

500-bp bins containing CpGs, by DMR direction. B.–D. Number of patient-matched tumor vs. normal comparisons in which genes

contain a DMR in their promoter(s), stratified by DMR direction (B), by DMR direction and smoking status (C), and by DMR direction

and unique smoking status (classifying DMRs as identified in smokers, never-smokers, or both) (D). E. Expression of selected genes in

TCGA LUAD samples (red) and matched normal lung samples (blue). A pseudocount of 0.00001 was added to each value. Lines represent

median values. F. Significantly enriched gene sets among genes with a hyperDMR in the promoter in at least two patients, as determined

by DAVID (top 20 terms by corrected P, out of 160 terms). Only terms with a Benjamini-corrected P < 0.05 are included. Terms are

labeled with the number of selected genes and ordered by corrected P within each category. G. Indication of DAVID Brain UP_TISSUE

Pathway genes with a hyperDMR in the promoter in at least five patients, stratified by patient. LOR, log odds ratio; PMD, partially

methylated domain; DAVID, the Database for Annotation, Visualization, and Integrated Discovery.
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There were also recurrent intronic DMRs, including the
hyperDMR chr14:37136000–37136500, a bivalent enhancer
within a PAX9 intron (in 8 of the 10 patients), and the

hypoDMR chr2:240169000–240169500 within an HDAC4
intron (in 6 of the 10 patients).

Like hypoDMRs overlapping with promoters, shared inter-

genic DMRs were also enriched for AP-1 complex binding
motifs, as well as other cell signaling and proliferation path-
ways (Figure S16A and B). Several of the TFs for which shared

intergenic hypoDMRs have enriched binding motifs have
altered expression levels in TCGA LUAD data, although half
have lower expression in tumors, including JUNB and ATF3
(Figure S16C).

Additionally, we determined whether intergenic-exclusive
DMRs were enriched near genes with particular biological
functions using GREAT. Shared hypoDMRs were signifi-

cantly enriched near genes with the function ‘‘glucose import”
(Q < 0.05, seven DMRs and seven genes). In contrast, shared
hyperDMRs were enriched near genes with functions involved

in morphogenesis and transcription (Figure S16D).
Finally, we identified small RNAs whose gene bodies over-

lapped with patient-matched DMRs. In total, 72 small RNA

genes overlapped with a hypoDMR and 82 small RNA genes
overlapped with a hyperDMR in at least one patient, although
only 6 and 26 did so in multiple patients, respectively.
MIR663A (chr20:26188821–26188914), which belongs to a

processed transcript gene, was hypermethylated in six patients.
The hypermethylated region overlapped with the promoter of
the other isoforms and was annotated as a bivalent promoter;

no other genes were in the vicinity. MIR663A is a known
NSCLC tumor suppressor that acts through a variety of down-
stream targets, including TGFb, p53, p21, and JunD [45–47],

and its predicted targets include ACSL3, TGFB1, and
HOXC10. MIR487A (chr14:101518782–101518862), which
promotes tumor growth and metastasis in other cancers [48],

was hypomethylated in four patients. For both, the expression
level in LUAD samples was higher than that in normal lung
samples (Wilcox test, P < 0.001) (Figure S17). Additionally,
the small nuclear RNA (snRNA) RNVU1-8 (chr1:

146551294–146551419), an alternative snRNA involved in
mRNA processing [49], was hypermethylated in five patients,
while the vault RNA VTRNA1-2 (chr5:140098509–140098598),

which may contribute to multidrug resistance in cancer cell
lines [50], was hypermethylated in two patients.

The majority of DMRs overlap with active chromatin states in

tissues profiled by the Roadmap Epigenomics Project

Next, to better understand which regions may be susceptible to
changes in DNA methylation in NSCLC, we determined the

epigenetic state of each DMR in adult lung and other normal
human tissues profiled by the Roadmap Epigenomics Project.
For each of the 127 consolidated epigenomes, the Roadmap

Epigenomics Project assigned a composite epigenetic state gen-
erated from five core histone modifications (15-state model)
using ChromHMM. In addition, 98 epigenomes were also

annotated with an 18-state model that includes H3K27ac.
We looked first at the epigenetic state of the DMRs in adult

lung (epigenome E096). Compared to all potential regions,

hypoDMRs were enriched in the enhancer states, ZNF/Rpts
state, and heterochromatin state (Figure 4A). Although

hypoDMRs were also enriched in polycomb-repressed states,
hyperDMRs were enriched > 50-fold for the bivalent pro-
moter and enhancer states (14_TssBiv and 15_EnhBiv) and

> 25-fold for the polycomb-repressed state (16_ReprPC), as
well as active promoter and enhancer states. In contrast, both
hypoDMRs and hyperDMRs were strongly depleted in the

18_Quies quiescent state (29% and 11% of all DMR bases,
respectively, vs. 54% of potential DMR bases), which repre-
sents an absence of histone modification chromatin immuno-

precipitation sequencing signal. The enrichments held true
even when DMRs were split by feature overlap and/or the
number of patients in which they were found, although
hyperDMRs were more likely to overlap with polycomb-

repressed regions the more frequently they occurred
(Figure S18A). Enrichment profiles were comparable for
DMRs from smoker patients and those from never-smokers

(Figure S19A). However, hyperDMRs exclusive to smokers
demonstrated increasing enrichment over active enhancers
the more they were shared across patients, in contrast to

hyperDMRs observed in never-smokers (Figure S19B).
Overall, only 14% of hypoDMRs and 51% of hyperDMRs

were in an active regulatory ChromHMM state in normal lung

samples, although shared hypoDMRs were more likely to be in
those states. Repressed genomic regions that became activated
in NSCLC may have been poised to do so because they were
regulatory elements in another tissue. Indeed, 65% of

hypoDMRs and 94% of hyperDMRs were in an active regula-
tory state in a Roadmap sample besides adult lung (15-state
model, excluding cancer cell lines), including > 50% of

hypoDMRs in each repressed state in E096 (Figure S18B).
The proportion of DMRs in an active regulatory state in

each sample varied by Roadmap sample group (Kruskal–

Wallis test, P < 0.01, by DMR direction and composite
ChromHMM state in E096). Interestingly, hypoDMRs in the
heterochromatin, polycomb, or ZNF/Rpts state in adult lung

were most likely to be in an active regulatory state in E022,
an induced pluripotent stem cell (iPSC) sample that did not
have a higher overall proportion of bases in those states (Fig-
ure 4B). They were also more likely to be in active states in

brain, embryonic stem cells (ESCs), muscle, and other organs,
and this was observed in hypoDMRs regardless of smoking
status (Figure S19C). The three other normal lung samples

profiled by the Roadmap Epigenomics Project — fetal lung
(E088), normal human lung fibroblast primary cells (E128),
and the IMR90 fetal lung fibroblast cell line (E017) — did

not stand out in terms of the proportion of hypoDMRs in
active regulatory states in those samples.

Additionally, we compared the epigenetic state of the
DMRs in the A549 lung carcinoma cell line (E114) to the state

in adult lung to determine whether changes in CpG methyla-
tion were matched by histone modification alterations. Both
hypoDMRs and hyperDMRs were enriched relative to geno-

mic background in active regulatory and polycomb-repressed
states in A549 (Figure S18C). Regardless of epigenetic state
in adult lung, hyperDMRs were far more likely to be in

polycomb-repressed states in A549.
Finally, we found the average CpG methylation level of

each DMR in 16 Roadmap samples profiled with methylCRF,

none of which were lung samples. In general, regions that
became hypomethylated in NSCLC were highly methylated
in most or all other samples (see Materials and methods for
complete listing of samples), suggesting that they lost regula-
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tion in NSCLC (Figure 4C). Interestingly, hypoDMRs were
most likely to have lower methylation in epithelial samples

(Figure S18D). In contrast, regions that became hypermethy-
lated in NSCLC had a more variable profile and were
hypomethylated or intermediately methylated in at least some
other samples.

DMR density is non-random across the genome

As noted above, DMRs were not evenly distributed across the

genome. Although the median DMR density per patient was
0.05% for both DMR directions (� 1 DMR per 2000 bins)
(Figure 5A), hyperDMRs exclusive to never-smokers were less

dense than hypoDMRs, whereas the ratio of hyperDMR to
hypoDMR density was relatively comparable for smoker-
exclusive DMRs (Figure S20A). DMR density also varied

heavily by chromosome for some patients. For example, chro-
mosome 19 had unusually high DMR density for many
patients, reflecting its high gene density and unique epigenetic
profile (Figure S20B). However, when DMRs were separated

according to smoking status (DMRs unique to smokers,

unique to never-smokers, or found in both), the hypoDMRs
specific to never-smokers displayed high density across both

never-smokers, particularly over chromosomes 16, 19, and 22
(Figure 5B). There were also instances of chromosomal out-
liers unique to individual patients, such as chromosome 14
for Patient_9890 and chromosome 7 for Patient_8951. These

may represent instances of genomic rearrangement or loss of
topologically associating domain (TAD) boundaries during
NSCLC transformation that permitted chromatin spreading,

although in both cases, the MRE-seq and MeDIP-seq read
densities over the chromosomes did not suggest a large-scale
copy number change relative to other tumors (Figure S1).

To better understand the distribution of DMRs, we profiled
their density at three resolutions ranging from 100 kb to 10 Mb
and identified windows with unusually high DMR densities
(Figure 5C and D). For example, the 10-Mb window, chr14:

30000000–40000000, had a hyperDMR density of 5.8% in
Patient_9890, representing 81% (n= 1075) of the hyperDMRs
on chromosome 14 but only 11% of potential DMR locations.

Most of the DMRs were within two � 2-Mb-sized regions,
with the density over the 1-Mb window, chr14:32000000–

Figure 4 Epigenetic state of DMRs in Roadmap tissues

A. Proportion of Roadmap sample E096 (adult lung) genomic bases in each 18-state ChromHMM state, overall and overlapping

hypoDMRs or hyperDMRs, split by exclusive feature overlap. Genic DMRs overlap with genes but not promoters, and intergenic DMRs

do not overlap with genes or promoters. The overall states in E096 are restricted to regions overlapping with 500-bp bins that contain

CpGs. 500-bp bins: promoter n = 453,670, genic n = 2,548,316, intergenic n = 2,267,290. HypoDMRs: promoter n = 4663, genic

n = 13,730, intergenic n = 14,472. HyperDMRs: promoter n = 12,628, genic n = 14,670, intergenic n = 7128. B. The proportion of

hypoDMRs in an active 15-state ChromHMM state in each Roadmap sample, by sample group (columns) and its 18-state ChromHMM

state in E096 (rows) (see Materials and methods for composite state definitions). C. Distribution of the number of Roadmap samples in

which each DMR has each average CpG methylation level, as assigned by methylCRF, split by DMR direction in the patient-matched

NSCLC samples. ESC, embryonic stem cell; HSC, hematopoietic stem cell; iPSC, induced pluripotent stem cell.
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33000000, reaching 16.7%. Because many patient-specific

DMRs were within high-density regions — for instance, 13%
of hyperDMRs specific to Patient_9890 were within 1-Mb win-
dows with a DMR density of > 10% (Figure S21) — most

analyses focused on shared DMRs.
Although many of the high-density windows were specific

to a single patient, others were recurrent. At a resolution of

1 Mb (approximately the length of a TAD), 82 windows had
a DMR density of > 1% in multiple patients (Figure 5E
and F, Figure S20C). This included chr5:140000000–141000000,
which was densely hypermethylated in seven patients and is

centered over a protocadherin gene cluster; chr7:27000000–

28000000 over the HOXA cluster (> 1% hyperDMR density,
in six patients); and chr17:46000000–47000000 over the HOXB
cluster (> 1% hyperDMR density, in four patients). In con-

trast, the only protein-coding gene within chr1:4000000–
5000000 (> 1% hypoDMR density, in four patients) was
AJAP1.

To further explore which regions of the genome may be pre-
disposed to large-scale methylation alterations in NSCLC, we
compared DMR density to features such as gene, CpG, and
repeat density, and the epigenetic state in normal lung. Many

Figure 5 DMR density across patients, regions, and smoking status

A. Genome-wide DMR density per patient (number of DMRs vs. number of 500-bp bins overlapping with CpGs), by DMR direction,

with lines colored by smoking status of patient. B. DMR density per patient and chromosome, by DMR direction, for DMRs exclusive to

smokers, exclusive to never-smokers, and identified in both. C. and D. DMR density (number of DMRs vs. 500-bp bins overlapping with

CpGs) at three levels of resolution on chromosome 14 of Patient_9890 (C) and on chromosome 7 of Patient_8951 (D). E. and F. Mean

hypoDMR (E) and hyperDMR (F) densities across 1-Mb windows in which the DMR density is > 1% in more than one patient or is one

of the top 15 densest regions across samples, by patient.
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of these features were highly correlated (Figure S22A), with
the first several PCs separating (1) the proportion of the win-
dow in the quiescent state (18_Quies) in normal lung (E096)

from gene density and active states, (2) active states from
repressed states, and (3) polycomb-repressed states from the
heterochromatin and ZNF/Rpts states and repeat density (Fig-

ure S22B–E; File S1).
For both hypoDMRs and hyperDMRs, DMR density in

individual windows, the mean density across patients, and

the number of patients in which the DMR density was
> 1% were negatively correlated with the proportion of the
windows in the quiescent state (Figure S22F and G).
HypoDMR density was most highly correlated with the hete-

rochromatin, ZNF/Rpts, and polycomb-repressed states as
well as CpG density. HyperDMR density was most highly cor-
related with gene and CpG densities and the polycomb-

repressed states, as well as active genic and enhancer states.
Interestingly, DMR density in both directions was also

anticorrelated with the starting methylation level in the normal

lung sample from that patient, as estimated by methylCRF. If
changes in CpG methylation were stochastic, the starting
methylation level should dictate the direction of methylation

change; however, a higher normal lung methylation level led
to higher DMR density in both directions, likely because it is
linked to gene and CpG densities. Together, these results sug-
gest that (1) changes in methylation level during primary

NSCLC transformation were enriched in regions with higher
gene and CpG densities, (2) hypoDMRs were skewed toward
heterochromatin-repressed regions, (3) hyperDMRs were

enriched over active regions, and (4) both were enriched over
polycomb-repressed regions.

Many hyperDMRs are exclusive to adenosquamous carcinomas

and enriched for nervous system development processes

Next, we identified DMRs associated with specific patient and/

or tumor characteristics.
Although TP53 mutations were previously shown to be

associated with lung cancer grade [4], few patient-matched
DMRs were exclusive to low-stage (1/1A) or high-stage

(3A/3B) tumors (10 and 9 DMRs, respectively; see Materials
and methods). However, 99 hypoDMRs and 18 hyperDMRs
were exclusive to acinar cell adenocarcinoma (n = 2 patients),

and 37 hypoDMRs and 389 hyperDMRs were exclusive to
adenosquamous carcinoma (n = 2 patients). For categories
including Patient_4999, DMRs were counted as exclusive if

they were present in all other members of that category.
Although many of the exclusive DMRs may be passenger
events, the number of exclusive DMRs for adenosquamous
carcinoma tumors was on the high end of a distribution gener-

ated with shuffled patient clinicopathologic data, suggesting
that many of them are truly biology-specific (Figure 6A).

The adenosquamous carcinoma-specific hyperDMRs were

significantly enriched for several GO biological processes
related to nervous system development by GREAT (Fig-
ure 6B). A small set of genes were included in many of the

terms, including NKX6-2, PAX6, LHX3, SOX1, ISL1, and
HOXD10. 44% (n = 186) of the adenosquamous carcinoma-
specific DMRs overlapped with promoters. These included

ZSCAN30 and ZIK1, whose promoters became hypermethy-
lated only in adenosquamous carcinoma.

The majority of DMRs overlap with repeats, demonstrating

enrichment over classes and subfamilies by direction of

methylation change

Finally, we looked at methylation changes over repeats during

NSCLC transformation. This is a relatively understudied aspect
of cancer biology, especially considering that repeats comprise
half of the human genome and can serve as alternative promot-
ers and enhancers. Utilizing MeDIP-seq and MRE-seq data

allowed us to better explore this component of the genome, as
53% of the CpGs profiled by methylCRF overlapped with a
repeat, compared to 16% of those profiled by TCGA.

As noted above (Figure S11A), 46% of hyperDMRs
(n = 11,239) and 73% of hypoDMRs (n = 20,685) identified
in this study overlapped with a repeat. Across the 10 patients,

this corresponded to 50,699 repeats that overlapped with a
patient-matched DMR, including 35,414 overlapping with
hypoDMRs and 15,652 overlapping with hyperDMRs. In addi-

tion, 12% of the repeats overlapped with a hypoDMR in multi-
ple patients (maximum 6) and 22% of the repeats overlapped
with a hyperDMR in multiple patients (maximum 8) (Fig-
ure 7A). This included a DMR (chr10:67554500–67555000) far

from any gene that overlapped with adjacent L1M5, LTR24C,
and AluY elements and was hypomethylated in five patients.

In a single patient, the number of repeats overlapping with

DMRs ranged from 8 to 15,213 for hypoDMRs (mean 4040)
and from 109 to 6978 for hyperDMRs (mean 2094) (Fig-
ure 7B), reflecting the landscape of CpG methylation changes

in those patients.
Repeats were divided into several classes of retrotrans-

posons, DNA transposons, and other repetitive elements.
When compared to the number of repeats per class, short

interspersed nuclear element (SINE) and long terminal repeat
(LTR) elements were enriched among those overlapping with
shared hypoDMRs (Figure 7C). In contrast, low complexity

regions and simple repeats were enriched among those overlap-
ping with hyperDMRs, and DNA transposons and long inter-
spersed elements (LINEs) were depleted from both sets. These

patterns held true when all patient-matched DMRs were con-
sidered (Figure S23A).

Next, we looked at CpG methylation changes over repeat

subfamilies during NSCLC transformation. Several of the
youngest TE subfamilies had the highest overall methylation
in normal lung samples, including SVA and AluY subfamilies
and LTR12C (Pearson correlation, P > 0.05, median Jukes–

Cantor distance vs. median methylation level) (Figure S23B).
Additionally, TE subfamilies with higher methylation in nor-
mal lung exhibited less variation in methylation level between

normal samples (Pearson correlation coefficient = �0.53,
P < 0.001) (Figure S23C), reflecting the importance of DNA
methylation as a repressive tool. Younger TE subfamilies lost

more CpG methylation on average in NSCLC (Pearson corre-
lation coefficient = �0.30, P < 0.001) (Figure S23D),
although interestingly, this was not primarily due to their
higher starting methylation level, as there was little correlation

between the median methylation level in normal samples and
the change between normal lung samples and tumors (Pearson
correlation coefficient = 0.12, P < 0.001).

As expected, the variation in repeat subfamily methylation
level across samples increased in tumors (Figure S23E),
although it was higher for those with greater variation in nor-
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mal lung samples (Pearson correlation coefficient = 0.75, P <
0.001) (Figure S23F). Interestingly, many of the subfamilies

with the largest median change in methylation between normal
lung and tumor samples exhibited a bimodal distribution in
tumors, with the same subfamily exhibiting increased methyla-

tion in some tumors and decreased methylation in others
(Figure S23G).

In addition, we calculated the enrichment of DMRs over

repeat subfamilies compared to their length to determine
which were most prone to concentrated DNA methylation
alterations. Most repeat subfamilies overlapped with DMRs:
74% of all subfamilies and 85% of TE subfamilies overlapped

with hypoDMRs (1032 of 1397 and 824 of 968, respectively),
and 63% and 69% overlapped with hyperDMRs (877 of
1397 and 665 of 968, respectively).

When considering all DMRs, the most highly enriched
subfamilies in both directions were transfer RNAs (tRNAs),

low complexity regions, satellite repeats, and simple repeats
(Figure S24A). However, when restricted to DMRs shared
between patients, TE subfamilies were better represented

among those overlapping with hypoDMRs, particularly
ERV1 subfamilies (Figure 7D). Highly enriched subfamilies
included LTR1, LTR1D, LTR12C, LTR17, MER45A,

MER50, MER52A, MER52D, AluY, AluYc, AluYk4, and
SVA_F. 11% of LTR12C elements (n = 278) overlapped with
a hypoDMR in at least one patient, and 53 LTR12C elements
were hypomethylated in multiple patients [Log odds ratio

(LOR) = 3.04, n = 45 DMRs; maximum 3 patients, n = 8].
This included the smoker-specific DMR in the ARRB2 pro-
moter mentioned above. Similarly, 10% of MER52D elements

Figure 6 Tumor histological subtype-exclusive DMRs

A.Number of DMRs exclusive to acinar cell carcinoma (purple) or adenosquamous carcinoma (turquoise) using true tumor subtype or all

possible pairs of patients (gray), by DMR direction. B. Top 20 significant GO biological processes for hyperDMRs specific to

adenosquamous carcinoma, as identified by GREAT (see Materials and methods). Terms are ordered by FDR-corrected binomial Q and

are labeled by the number of DMRs over the number of genes involved. FDR, false discovery rate.
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(n = 57) and 9% of MER52A elements (n = 149) overlapped
with a hypoDMR in at least one patient.

In contrast, the LTR subfamily MER57E3 was enriched in
shared hyperDMRs (LOR = 6.33, n = 7 DMRs). Of the eight
MER57E3 elements that overlapped with DMRs in multiple

comparisons, most were within the first intron of a ZNF,
pseudo-, or non-coding gene; they were also often adjacent
to a MER21C element. MER57E3 had the lowest methylation

level of any TE subfamily in normal lung samples (median
49.8% methylation), likely due to its overlap with promoter
elements [51].

There was a moderate correlation between the CpG density

of TE subfamilies and their enrichment for hypoDMRs
(Spearman’s rho = 0.47, P < 0.001), which was less true for
hyperDMRs (Spearman’s rho = 0.17, P < 0.001) (Fig-

ure S24B). However, although several of the most enriched
subfamilies were relatively young, there was little correlation
between TE subfamily age and DMR enrichment (Spearman’s

rho < 0.2 in both directions). There was also little correlation
between DMR enrichment and overall changes in CpG methy-
lation level across the subfamily (Pearson correlation coeffi-
cient < 0.25 for hyperDMRs, P > 0.1 for hypoDMRs).

A recent study used TCGA data to identify TEs that spliced
into oncogenes to create alternative isoforms in cancer [15].

Four of the TEs identified in that study overlapped with
patient-matched hypoDMRs here, although only in one

patient each. They included an intergenic AluSp element
(chr19:15439585–15439882) that spliced into BRD4, as well
as an intronic AluSp element (chr20:490814–491118) that

formed an alternative CSNK2A1 transcript in hundreds of
TCGA LUAD and LUSC samples.

Discussion

In this study, we used two complementary, genome-wide DNA
methylation profiling techniques to interrogate DNA methyla-

tion changes in primary NSCLC and to detect local DMRs in
comparison to patient-matched non-malignant lung tissue.
Methylation changes in primary NSCLC were highly heteroge-

neous. As expected, tumors lost methylation over intergenic
regions and repeats and gained methylation over promoters.
HOX and protocadherin clusters, as well as several lung

biomarkers and oncogenes, were recurrently targeted by pro-
moter methylation changes, as were small RNAs. However,
we also identified recurrent, intergenic DMRs, which may rep-
resent distal regulatory elements affected in NSCLC. These

regions could potentially serve as biomarkers in cell-free
DNA assays, for example, for early lung cancer detection.

Figure 7 Repeat overlap with patient-matched DMRs

A.Number of comparisons in which each repeat overlaps with a DMR, by DMR direction. B.Number of repeats overlapping with DMRs

per patient. Bars are labeled with the number of repeats. Counts less than 100 are not shown. C. Proportion of repeats in each class across

the genome and overlapping with hypoDMRs or hyperDMRs shared between patients. Proportions less than 0.02 are not shown. D. LOR

enrichment of shared DMRs over repeat subfamilies, colored by repeat class and stratified by DMR direction. Only subfamilies

overlapping with more than 5 DMRs across all patients are shown. Dashed line represents no enrichment or depletion. LINE, long

interspersed element; LTR, long terminal repeat; SINE, short interspersed nuclear element; RC, rolling circle; rRNA, ribosomal RNA;

scRNA, small cytoplasmic RNA; snRNA, small nuclear RNA; srpRNA, signal recognition particle RNA; tRNA, transfer RNA.
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Many of the genes identified in [20] as frequently methy-
lated in the LUAD CGI methylator phenotype-high cluster,
which were enriched for WNT pathway genes, were also

hypermethylated in our study. As noted, the promoters of
HOXA9, SOX17, and GATA2 overlapped with hyperDMRs
in seven, five, and four patients in our study, respectively.

CDKN2A, which is frequently methylated in LUAD and is
inactivated by epigenetic silencing in 21% of LUSC [19], over-
lapped with hyperDMRs in three patients. STK11, a fre-

quently mutated tumor suppressor gene, overlapped with
hyperDMRs in five patients, but only over the promoter of a
shorter isoform. In contrast, the most common driver genes
in NSCLC, EGFR, KRAS, and TP53, rarely or never over-

lapped with DMRs. Interestingly, one of the most commonly
methylated genes in this study, SEPT9, is the basis for an
FDA-approved, methylation-based colorectal cancer detection

test (Epi proColon) and is being explored as a biomarker for
lung cancer [52,53]. Promoter methylation of SOX17 also
showed promise as a lung cancer biomarker [54].

Pathways related to cell signaling, cell cycle and prolifera-
tion, adhesion, chromatin and RNA splicing factors, and the
oxidative stress response are commonly altered in LUAD, with

76% of tumors exhibiting RTK/RAS/RAF pathway activa-
tion [4,5,20]. In our study, similar pathways were enriched
among genes with DMRs in their promoters. In line with pre-
vious studies, we also demonstrated recurrent gain of methyla-

tion over regions marked with polycomb repressive marks,
which were hypomethylated in most tissues [9]. Previous
research has also indicated that enhancers lost in cancer tar-

geted cell fate-specifying genes and were lineage-specific, while
those activated in cancer were more universal and targeted
growth-related genes [24,55]. Here, recurrent hypoDMRs,

including those in intergenic regions, were enriched for binding
motifs for the AP-1 complex, as well as the lung development
TF NKX2-1, which is both lineage-specific and related to

development.
Additionally, we identified DMRs exclusive to both tumor

subtype and smoking status. Although underpowered to reach
significance due to small sample sizes, we did observe that smo-

ker patients generally exhibited fewer DMRs than those seen
in never-smokers, with the exception of Patient_9890. In addi-
tion, never-smokers tended to have a higher percentage of

hypoDMRs than smokers, and more frequently displayed
recurrent promoter hypomethylation despite fewer samples
(n = 2 never-smokers, n = 4 smokers), suggesting that loss

of methylation may promote cancer development in never-
smokers. In contrast, smokers more frequently displayed
recurrent promoter hyperDMRs than never-smokers. These
observations are consistent with the hypothesis that

smoking-induced DNA damage recruits DNMT1 and leads
to local increased methylation at repaired sites [56], although
additional studies are needed to validate these trends due to

small sample sizes.
Alexandrov et al. [7] identified only 434 differently methy-

lated CpGs based on smoking status, most of which were in

genes with no known cancer function. Similarly, although
Freeman et al. [57] identified 263 CpGs significantly associated
with smoking in the TCGA LUAD and LUSC methylation

datasets, only five replicated in an independent dataset. Few
genes identified in earlier studies as preferentially mutated or
silenced via promoter methylation based on smoking status
overlapped with DMRs in our study, including p16, APC,

and MLH1/2 [6]; MICAL3 [5]; CST6, EMILIN2, LAYN,
and MARVELD3 [58]; and RASSF1, MGMT, RARB, DAPK,
WIF1, and FHIT [59]. CPEB1, which was identified as specific

to smokers in [58], and CDKN2A, identified in a meta-analysis
of 97 studies by [59], overlapped with hyperDMRs here,
although none were smoking status-specific. However, we

identified DMRs overlapping with additional genes known
to be involved in NSCLC or smoking, such as CYP1B1.

Finally, we identified repeat subfamilies and individual

repeats that were frequently affected by DNA methylation
changes in NSCLC. Promoters overlapping with repeats are
often up-regulated in cancer [32]. In our study, we observed
a strong enrichment of hypoDMRs over ERV1 subfamilies.

Although all major TE classes contain a sense-directional pro-
moter [60], L1 elements are frequently 50 truncated, while LTR
repeats retain their regulatory elements after recombination

removes the intervening viral genome [13], potentially explain-
ing this phenomenon. We also observed hypomethylation over
several young subfamilies, including SVA_F and several AluY

subfamilies. Finally, we identified examples of repeats that
have been shown to splice into known oncogenes in TCGA
cancer samples to form alternative transcripts [15].

Here, we expand our knowledge of the epigenetic changes
that occur during primary NSCLC transformation across
LUAD subtypes and smoking status, potentially informing
treatment strategies such as epigenetic therapy and

immunotherapy. Future studies aimed at whole methylome
profiling of patient-matched normal and lung tumor samples
of smokers and never-smokers should be conducted to further

assess the frequency of DMR recurrence and specificity of
methylation alterations for specific cohorts of patients.

Materials and methods

Samples and clinical data

Snap-frozen primary NSCLC tumor specimens (n = 17) and
patient-matched non-malignant tissue (n = 10) along with

de-identified pathology and demographic data were obtained
from the Siteman Cancer Center Tissue Procurement Core.
All specimens were previously collected from surgical rem-

nants with patient consent under a protocol approved by the
Institutional Review Board (IRB) (Approval No.
201305031). All frozen tissue specimens were sectioned and

stained with hematoxylin and eosin to confirm histopathology
and estimate tumor cell purity in each malignant tissue speci-
men. Serial frozen tissue sections were used for genomic
DNA isolation using spin-column based purification (Catalog

No. 56304, Qiagen, Germantown, MD). Quantification of all
DNA samples was performed by nanodrop spectrophotometry
prior to methylation analyses using a GE NanoVue Portable

Spectrophotometer (Catalog No. 80-2140-21, GE HealthCare,
Chicago, IL).

Patient demographics and pathology data, including smok-

ing status, pathologic diagnosis, stage, and tumor purity, were
provided by the Tissue Procurement Core. Smoking status and
patient sex were confirmed via chart review by an ‘‘honest data
broker”. For analyses between never-smokers and smokers,

former smokers were included in the latter category. Samples
listed as ‘‘Acinar adenocarcinoma”, ‘‘Acinar cell carcinoma”,
and ‘‘Acinic cell adenocarcinoma” were combined into a single
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category, ‘‘Acinar cell carcinoma”, for all analyses. Specimens
for which demographic or pathology data could not be
obtained were excluded from the relevant statistical tests

(Table S1).

Features

GENCODE (v19) comprehensive gene features and CGIs
(cpgIslandExtUnmasked) were downloaded from the Univer-
sity of California Santa Cruz (UCSC) Table Browser. Promot-

ers were defined as 2000 bp upstream and 500 bp downstream
of GENCODE transcription start sites. A lookup table associ-
ating each Ensembl transcript ID with gene ID, name, and bio-

type was downloaded from the UCSC Table Browser.
Chromosomes and promoters overlapping with CGIs were
added to each transcript. The National Center of Biotechnol-
ogy Information (NCBI) gene alias table (Homo_sapiens.

gene_info.gz) was downloaded from NCBI. The hg19 Repeat-
Masker rmsk file was used to identify repeats.

MRE-seq and MeDIP-seq

MRE-seq and MeDIP-seq were performed on all samples
using the procedures described in [61]. MRE-seq was per-

formed with four enzymes:HpaII, SsiI,Hin6I, andHpyCH4IV
(Catalog Nos. R0171S, R0551S, R0124S, and R0619S, New
England Biolabs, Ipswich, MA). A base offset of 3 was used
during sequencing.

Adapter trimming, read alignment to the hg19 genome with
BWA, and methylQA post-processing were also performed as
described in [61]. methylQA produced a bed file of unique

alignments (mapping quality � 10), virtually extended, for
each MeDIP-seq alignment file. For MRE-seq, it removed
reads that did not map to MRE cut sites. Chromosomes

1–22, X, Y, and M were included.
MRE-seq and MeDIP-seq read counts per 500-bp bin were

generated using M&M. MeDIP-seq read counts were normal-

ized to reads per kilobase per million mapped reads (RPKM)
using the total number of input reads. For MRE-seq, bins were
restricted to those containing an MRE cut site, and read
counts were normalized to RPKM using the total number of

reads mapped.
PCA was performed on all samples using the MeDIP-seq

and MRE-seq RPKM per 500-bp bin as features with the

prcomp() function. Matrices were scaled and centered, and
only bins with variation across samples were included. The
variance explained by each PC was calculated from the stan-

dard deviation.

methylCRF

methylCRF was performed on the 27 primary tumor and nor-
mal lung samples to estimate the methylation level at each
CpG using MRE-seq and MeDIP-seq data. The methylCRF
package was downloaded and installed from http://methylcrf.

wustl.edu/. methylCRF was run using Perl (v5.14.4), R
(v3.3.0), and SAM tools (v1.3.1).

MRE normalization was performed on aligned MRE-seq

reads as recommended, using a quality score of 10 and a base
offset of 3 for sam2bed.pl and the 4-enzyme MRE fragment
file as input for MRE_norm.pl.

methylCRF was performed on normalized MRE-seq read
counts and MeDIP-seq extended alignments in bed format
using the H1ES model-specific files, the hg19 genome-specific

files, the 4-enzyme virtual digest file, and a gap size of
750 bp. Methylation estimates were assigned for 28,085,255
CpGs across chromosomes 1–22, X, Y, and M (chromosome

M always misses methylation value). Chromosomes 1–22, X,
and Y were used for all methylCRF analyses.

Methylation distribution in 1-kb windows

Non-overlapping 1-kb windows were generated using bedtools
makewindows across chromosomes 1–22, X, Y, and M. Win-

dows were intersected with CpG methylation level estimates
generated by methylCRF using bedtools intersect, and the
mean methylation over all CpGs within each window was cal-
culated for all samples. Windows that did not overlap with a

CpG were excluded from analyses.
PCA was performed on genomic windows with variation

between samples using the prcomp() function. Matrices were

scaled and centered. The variance explained by each PC was
calculated from the standard deviation. Group centroids were
identified by calculating the mean along each PC by malignant

status. The distance to the group centroid for normal and
tumor samples was calculated using Euclidean distance over
all PCs.

A Pearson correlation distance matrix between all samples

across the 1-kb windows was generated.

Average methylation over genomic features

The average methylation level over each feature was calculated
by first internally collapsing features to reduce overlapping
bases using bedtools merge, and then intersecting the merged

features with the CpG methylation level estimates generated
by methylCRF using bedtools intersect. Then, the mean methy-
lation level over all CpGs overlapping with the feature was cal-

culated for all samples.

MRE cut site saturation

The number of sampled restriction enzyme cut sites and the

number of cut site-filtered MRE-seq reads per sample were
obtained from the methylQA reports.

Cut sites specific to normal and tumor samples were identi-

fied by comparing the CpGs included in the MRE-seq CpG
bedGraph files output by methylQA. The number of normal
and tumor samples in which each CpG was sampled was

counted. Cut sites overlapping with each genomic feature were
identified using bedtools intersect, and the distribution was
compared to that of all possible restriction enzyme sites in

the genome (n = 10,214,062).

Comparison to previously published methylCRF data

CpG methylation level estimates generated by methylCRF for

16 samples profiled in [62] [Gene Expression Omnibus (GEO):
GSE86505] were downloaded from https://wangftp.wustl.edu/
�jli/final_hub/methylCRF_score, and cancer types were

extracted from sample names.
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methylCRF was performed on three samples profiled by the
Roadmap Epigenomics Project using MeDIP-seq and MRE-
seq (GEO: GSM613862, GSM613842, GSM669614,

GSM669604, GSM707021, and GSM707017). methylQA was
performed on the MeDIP-seq read alignments as recom-
mended (http://methylqa.sourceforge.net/tutorial.php) after

adding the ‘‘chr” prefix to each chromosome in the header with
samtools reheader. MRE normalization was performed using
the 3-enzyme fragment file with a base offset of 3, and

methylCRF was performed using the 3-enzyme virtual digest
file. The average methylation in 1-kb windows across the gen-
ome was calculated as above, excluding windows that did not
overlap with a CpG.

To compare to the samples profiled in this study, which
were processed with four restriction enzymes, methylCRF
was performed on two samples (P4796_N_UC and

P4796_T_UC) considering only three enzymes (excluding Hpy-
CH4IV). MRE normalization was repeated using the 3-enzyme
fragment file, and methylCRF was performed using the 3-

enzyme virtual digest file. The average methylation in 1-kb
windows across the genome was calculated as above, excluding
windows that did not overlap with a CpG. PCA was per-

formed as above on all primary NSCLC samples, the three
Roadmap samples, and the two re-processed primary NSCLC
samples simultaneously.

M&M

M&M (R package methylMnM) was used to identify DMRs
between samples using MRE-seq and MeDIP-seq data. First,

the functions countcpgbin and countMREcpgbin were used to
count the number of CpGs and restriction enzyme cut sites
in 500-bp bins across the genome (chromosomes 1–22, X, Y,

and M; n = 6,166,049 bins). Cut sites for the four enzymes
used in MRE-seq were considered, and a blacklist file was pro-
vided (hg19 DAC Blacklisted Regions, e.g.,

wgEncodeDacMapabilityConsensusExcludable from the
UCSC Genome Browser).

Then, 500-bp DMRs were identified using the read align-
ment bed files output by methylQA for MRE-seq and

MeDIP-seq from two samples. The functions countMeDIPbin
and countMREbin were used to produce normalized read
counts per bin for each sample. Default values were used for

MnM.test, MnM.qvalue, and MnM.selectDMR, and no poly-
merase chain reaction threshold was set.

DMRs were identified between patient-matched normal

lung and tumor samples from the same patient (n = 10),
between all pairs of normal samples (n = 45), and between
all normal–tumor sample pairs from different patients
(n = 170).

DMR Q value threshold

The DMR Q value threshold was selected from among four

potential thresholds (1E�2 to 1E�5). For each threshold,
the false positive ratio was calculated for patient-matched nor-
mal vs. tumor comparisons as the mean number of DMRs

identified between the given normal and all other normal sam-
ples divided by the number of patient-matched DMRs. The
proportion of DMRs shared between patient-matched com-

parisons was also calculated for each threshold.

Additionally, all DMRs between patient-matched normal
and tumor samples were intersected with the CpG methylation
levels generated by methylCRF for each sample in the pair,

and the mean methylation level across all CpGs within each
DMR was calculated for each sample. The change in mean
methylation level between patient-matched normal and tumor

samples was calculated for each DMR identified in that pair.
The proportion of DMRs with > 10% methylation change
in either direction was calculated for each Q value threshold.

DMRs with a Q value < 0.001 from all comparisons were
combined and assigned a unique ID by position. First, adja-
cent DMRs were merged and assigned a number based on
their location in the genome. Then, individual 500-bp DMRs

were assigned a second number representing their position
within the merged block. IDs were consistent across sample
comparisons. There were 1,817,809 instances of 245,723

unique DMRs across all comparisons.
Because all patients with patient-matched normal and

tumor samples were female, DMRs on chromosome Y

(n = 1112 instances of 80 unique DMRs, 0.03% of all DMRs)
were excluded from downstream analyses.

Feature overlap

To determine the genomic context of DMRs identified in this
study, all unique DMRs were intersected with GENCODE
genic features, intergenic regions, CGIs, and repeats using bed-

tools intersect. As background, genome-wide 500-bp bins
(M&M input) were also intersected with the features. Only
bins on chromosomes 1–22 and X that overlapped with a

CpG (e.g., potential DMRs) and did not overlap with a black-
listed CpG were considered (n = 5,269,276). The proportion
of DMRs and 500-bp bins overlapping with each feature cate-

gory was calculated, and the LOR enrichment of DMR over-
lap vs. bin overlap was calculated for each feature.

Intersections of unique DMRs with individual CGIs were

identified by CGI ID (n = 524, chromosomes 1–22 and X).
The proportion of unique CGIs overlapping with a DMR
(any or shared between multiple patient-matched compar-
isons) was calculated.

The number of GENCODE genes whose promoter(s) over-
lapped with a patient-matched DMR (any or shared by multi-
ple patients) was calculated and compared to the number of

genes whose promoter(s) overlapped with a 500-bp bin con-
taining a CpG (e.g., potential DMRs) by gene biotype. Greater
than 99.9% of transcripts and genes contained a potential

DMR in their promoter(s) (chromosomes 1–22 and X), includ-
ing > 99% of all gene and transcript biotypes except mito-
chondrial ribosomal RNA (rRNA) and tRNA. Unique
transcripts and genes were identified by IDs, not gene names.

In addition, exclusive feature overlap categories were
assigned to each DMR: promoter (DMRs overlapping with
a promoter), genic (DMRs overlapping with a gene but not

a promoter), and intergenic (intergenic DMRs overlapping
with neither a promoter nor a gene).

For each GENCODE transcript and gene, the number of

unique patient-matched DMRs overlapping with the pro-
moter(s), the number of patient comparisons in which the pro-
moter(s) overlapped with a DMR, and the total number of

DMR overlaps across comparisons were calculated by direc-
tion of methylation change.
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For each DMR, the distance to the closest gene on
either strand was found using bedtools closest, reporting
all ties.

Gene sets

Several gene lists were used to identify genes previously recog-

nized as involved in cancer. A list of genes previously identified
as altered in LUAD and LUSC was compiled from nine pub-
lications [4–6,8,19,20,58,59,63]. The Cancer Gene Census

(CGC) database (v79) was downloaded from COSMIC. The
EpiFactors database (v1.7.3) was downloaded from the FAN-
TOM5 consortium. CTAs (gene names plus alternative names)

were obtained from the CTdatabase website (http://www.cta.
lncc.br/; accessed 2/13/2019). Additionally, genes listed as
‘‘cancer/testis antigen” or ‘‘cancer testis antigen” in the NCBI
gene alias table were also included. The top 100 most highly

expressed genes in lung were obtained from the Genotype-
Tissue Expression Project (GTEx) data portal, excluding mito-
chondrial genes (https://gtexportal.org/home/eqtls/tissue?tis-

sueName=Lung).
Genes included in sets of interest were identified by gene

names and linked to gene IDs using the GENCODE lookup

table. For gene names not included in the GENCODE table,
where possible, the name was identified among synonyms in
the NCBI gene alias table and linked to the canonical name.
For GTEx genes, the gene ID (without version suffix) provided

by GTEx was used to restrict gene names to the correct
Ensembl ID in the lookup table. In the one case where the
ID provided by GTEx did not match any IDs for the gene

name in the GENCODE lookup table (‘‘TXNIP”), the ID
from the lookup table was used instead. Four genes previously
identified in NSCLC, 7 Cancer Gene Census genes, 5 EpiFac-

tors genes, 51 CTAs, and 1 GTEx gene were not present in
either the GENCODE lookup table or the NCBI gene alias
table.

GENCODE IDs were used to link genes between gene sets
and link genes and transcripts with gene set membership. The
CGC ‘‘Role in Cancer” field was used to identify TSGs and
oncogenes. The EpiFactors ‘‘Function” field was used to iden-

tify gene function.

Alternative promoters

To identify potential instances of promoter switching in pri-
mary NSCLC, all genes with multiple promoters overlap-
ping with DMRs and at least one hypoDMR and one

hyperDMR in the same patient-matched comparison were
identified. Genes exhibiting that combination in multiple
patient-matched comparisons were selected for further

investigation.

Identification of small RNAs overlapping with patient-matched

DMRs

MicroRNAs (miRNAs) and small RNAs whose gene bodies
overlapped with patient-matched DMRs (transcript biotype:
‘‘miRNA”, ‘‘misc_RNA”, ‘‘snRNA”, ‘‘snoRNA”, ‘‘rRNA”,

‘‘Mt_tRNA”, and ‘‘Mt_rRNA”) were identified. Predicted
miRNA targets were obtained from miRDB information on
the miRBase website.

DAVID

DAVID was performed on lists of genes with patient-matched
hypoDMRs or hyperDMRs in their promoter(s), scaled by the
number of comparisons in which the gene overlapped with a

DMR. Genes were looked up using ‘‘official gene symbol”.
The categories OMIM_DISEASE, COG_ONTOLOGY,
UP_KEYWORDS, CHROMOSOME, BBID, BIOCARTA,
KEGG_PATHWAY, and UP_TISSUE were tested. To

accommodate the list of genes with hyperDMRs in the pro-
moter in any patient, the list was first split into six smaller lists,
and gene IDs that were not mappable by DAVID were

excluded. The remaining gene names were combined into a sin-
gle list and analyzed as before.

Terms with a Benjamini-corrected P < 0.05 were consid-

ered significant.

Roadmap Epigenomics Project epigenomes

Clinicopathologic data for the Roadmap Epigenomics Project
consolidated epigenomes were obtained from the Roadmap
Epigenomics Project data portal (https://egg2.wustl.edu/road-
map/web_portal/meta.html, Consolidated_EpigenomeIDs_

summary_Table). Cancer cell lines were those with ‘‘leukemia”
or ‘‘carcinoma” in the epigenome name (n = 5), which were
excluded from analyses unless otherwise stated. Group colors

are those assigned in the Roadmap publication [64].
Roadmap Epigenomics Project ChromHMM annotations

were downloaded from the Roadmap Epigenomics data por-

tal, including 127 samples annotated with the 15-state model
and 98 samples annotated with the 18-state model (http://
egg2.wustl.edu/roadmap/data/byFileType/chromhmmSeg
mentations/ChmmModels/coreMarks/jointModel/final/all.

mnemonics.bedFiles.tgz and https://egg2.wustl.edu/roadmap/
data/byFileType/chromhmmSegmentations/ChmmModels/
core_K27ac/jointModel/final/all.mnemonics.bedFiles.tgz). DMRs

were intersected with the annotations, and the length of each
DMR annotated with each ChromHMM state in each sample
was calculated.

As background, the proportion of samples E096 and E114
(Lung and A549 EtOH 0.02pct lung carcinoma) in each 18-
state ChromHMM state over 500-bp bins containing a CpG

(M&M input, chromosomes 1–22 and X) was calculated. For
E096, 500-bp bins were also split into promoter-overlapping,
genic-exclusive (do not overlap with promoters), and
intergenic-exclusive categories (do not overlap with promoters

or genes). The proportion of all samples in each 15-state
ChromHMM state over 500-bp bins containing a CpG
(M&M input, chromosomes 1–22 and X) was also calculated.

Colors used for ChromHMM states are those assigned
in [64] for the 15-state and 18-state models. Active regulatory
states were states 1–3 and 6–7 for the 15-state model and states

1–4 and 7–11 for the 18-state model. Additionally, other 18-
state ChromHMM states were assigned to composite states:
transcribed (states 5 and 6) and polycomb (states 14–17).

methylCRF CpG methylation level estimates generated for
16 epigenomes by the Roadmap Epigenomics Project were
downloaded from the Roadmap Epigenomics data portal
and reformatted into bed format (Sample IDs: E003, E027,

E028, E037, E038, E047, E053, E054, E055, E056, E057,
E058, E059, E061, E081, E082). DMRs were intersected with
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the methylation levels using bedtools intersect. Then, the mean
methylation level over all CpGs overlapping with the DMR
was calculated for all epigenomes. Methylation levels were

divided into three categories: hypomethylated (< 30%),
intermediately methylated (30%–70%), and hypermethylated
(> 70%). Eight DMRs did not overlap with any CpG in the

Roadmap files.

HOMER

Enrichment analysis of known motifs was performed using
HOMER findMotifsGenome.pl on each DMR set (hg19;
parameters: -size given -nomotif). DMR sets included

hypoDMRs and hyperDMRs in exclusive promoter, genic,
and intergenic categories, scaled by the number of patient-
matched comparisons in which they were found. The
knownResults.txt output files were used in downstream

analyses. Only motifs with a Benjamini-corrected P < 0.05
were considered.

The TF name was extracted from the ‘‘Motif Name” field in

the knownResults.txt file. TFs present in TCGA gene expres-
sion data were identified using case-insensitive exact name
matches.

GREAT

GREAT analysis (v4.0.4) was performed on each DMR set
using the basal plus extension model (5000 bp upstream,

1000 bp downstream, 1,000,000 bp max extension), including
curated regulatory regions. All significantly enriched GO bio-
logical processes with the following thresholds were down-

loaded: false discovery rate (FDR) P < 0.05 by
hypergeometric and binomial tests, at least one observed gene
hit, and minimum 2-region-based fold enrichment (default).

DMR sets included hypoDMRs and hyperDMRs in the
intergenic-exclusive category, scaled by the number of
patient-matched comparisons in which they were found.

DMR density in windows

The average genome-wide DMR density for each sample com-
parison and direction of methylation change was calculated as

the proportion of 500-bp bins overlapping with a CpG that
were called as DMRs. The average DMR density across each
chromosome was calculated in the same manner.

Non-overlapping windows of size 10 Mb, 1 Mb, 100 kb,
and 10 kb were created using bedtools makewindows across
the genome, excluding chromosome Y and chromosome M.

The numbers of hypoDMRs and hyperDMRs per window
were calculated for each patient-matched comparison. The
DMR density per window was calculated as the proportion

of 500-bp bins overlapping with a CpG called as DMRs, for
each direction of methylation change.

The proportion of DMRs exclusive to a patient-matched
comparison that fell within high-density windows was calcu-

lated for each comparison and direction of methylation
change.

The CpG and repeat density for each window were calcu-

lated by normalizing by the length of the window. GENCODE
transcripts overlapping with each window were also identified,
and the density of genes, protein-coding genes, transcripts, and

protein-coding transcripts were calculated using the biotype
information from GENCODE.

All windows were intersected with the CpG methylation

level estimates generated by methylCRF using bedtools inter-
sect. Then, the mean methylation level over all CpGs overlap-
ping with the window was calculated for all samples. For

comparisons to DMR density, the average methylCRF level
was restricted to the normal sample for that comparison.

In addition, the proportion of each window annotated as

each 18-state ChromHMM state in Roadmap sample E096
was calculated.

PCA was performed on all 1-Mb windows using gene,
CpG, and repeat density and the proportion of the window

in each ChromHMM state as features with the prcomp() func-
tion. Matrices were scaled and centered prior to transforma-
tion. Variance explained was calculated for each PC. The

Pearson correlation of each variable with the first three PCs
was calculated.

The Pearson correlation of all 1-Mb window features with

DMR density in individual comparisons, the number of com-
parisons in which the window had > 1% DMR density, and
the mean DMR density across comparisons were calculated.

Clinicopathologic data-specific DMRs

Patient-matched DMRs specific to patient clinicopathologic
data categories were identified using frequency information.

Never-smoker-specific DMRs were those found between the
normal lung vs. tumor samples of both never-smokers and
not present in smokers, while smoker-specific DMRs were

found in 3–4 smokers and no never-smokers, ignoring presence
in patients with unconfirmed smoking status. Low-stage
DMRs were those found in 4–5 patients with tumor stage

1/1A but not those with tumor stage 3A/3B, and high-stage
DMRs were those found in at least three patients with tumor
stage 3A/3B but not those with tumor stage 1/1A, ignoring

presence in patients with unconfirmed tumor stage. Tumor
subtype-specific DMRs were those found in all patients with
that tumor subtype and in no other.

To determine whether the number of smoking status-

specific DMRs was likely to be identified by chance, the smok-
ing status of the six patients with confirmed status was shuffled
to create all possible permutations with two never-smokers and

four smokers (n = 15). Then, the number of smoking status-
specific DMRs was recalculated for each permutation. For
subtype-exclusive DMRs, the number of exclusive DMRs

was recalculated for all possible pairs of patients (n = 45)
and compared to the true number for acinar/acinic cell adeno-
carcinoma and adenosquamous carcinoma.

GREAT analysis was performed on patient-matched

DMRs exclusive to never-smokers, smokers, adenosquamous
carcinoma, and acinic cell/acinar cell adenocarcinoma by
direction of methylation change using the same parameters

as above. GREAT analysis was also performed on DMRs
between never-smoker and smoker normal samples that were
not found between the never-smoker samples. The hypoDMRs

exclusive to each category did not return any significant GO
biological processes.

The proportion of smoking status-specific DMRs that fell

within high-density 1-Mb windows of the same direction of
methylation change in each patient was calculated.
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To determine whether smoking was associated with DNA
methylation alterations in normal lung samples, normal vs.
normal sample DMRs were assigned to never–never,

smoker–smoker, or never–smoker comparison categories
(n = 1214). DMRs found between never-smoker and smoker
normal samples, but not between the never-smoker samples,

were identified. Additionally, for each normal sample, the
number of DMRs found between the sample and never-
smokers and the sample and smokers was calculated and tested

for significant differences using Wilcox tests. Example DMRs
(n = 28) were identified as those found in three or more
never-smoker vs. smoker comparisons, including both never-
smoker samples, and not between the two never-smoker

samples.

TCGA

TCGA LUAD CpG methylation and gene, isoform, and
miRNA expression data were downloaded from the TCGA
legacy data portal using the gdc-client and manifests generated

through the Genomic Data Commons legacy data portal
(https://portal.gdc.cancer.gov/legacy-archive/).

Clinicopathologic data for all downloaded LUAD files

(n = 2214) was obtained from the legacy Application Program-
ming Interface endpoint using the file ID, including file name,
data category, data type, sample ID, sample type, and case
ID. A summary of the number of samples and files by data type

per case is provided (Table S3). All samples with gene expres-
sion data also have isoform expression data and vice versa.

All 450K array methylation level files were downloaded

(data type: ‘‘Methylation beta value”; platform: ‘‘Illumina
Human Methylation 450”; n = 507). The average CpG methy-
lation level over DMRs identified in this study and GEN-

CODE transcript promoters was calculated in all TCGA
LUAD and matched normal samples. First, promoters or
unique DMRs with Q < 0.001 were intersected with the

450K array CpG methylation levels from all LUAD samples.
Then, the mean methylation level over all CpGs within each
DMR/promoter in each TCGA sample was calculated. DMRs
or promoters without methylation data in any TCGA sample

were excluded from analysis.
The mean methylation level over each patient-matched

DMR was averaged across TCGA samples by sample type

(matched normal lung or primary LUAD) and by DMR direc-
tion of methylation change, excluding samples in which the
DMR was missing methylation data. The mean methylation

level over patient-matched DMRs identified in smokers and
never-smokers (either at all or recurrently) was also calculated
across TCGA samples, by sample type, DMR direction of
methylation change, and TCGA smoker status designation,

again excluding samples in which the DMR was missing
methylation data. TCGA samples were classified as either
smokers (having a value in the metadata category ‘‘cigarettes

per day” or ‘‘years smoked”) or never-smokers (empty values
in both metadata categories).

To compare 450K array CpG coverage to methylCRF CpG

coverage, TCGA CpG positions were extended 1 bp upstream,
and CpGs without a chromosome were excluded (n = 65). Of
the remaining 485,512 CpGs, 0.8% did not overlap with a

methylCRF CpG (n = 3868). 98.3% of methylCRF CpGs
(n = 27,603,511) did not overlap with a TCGA CpG.

All normalized gene and isoform expression files were
downloaded (experimental strategy: ‘‘RNA-seq”; data type:
‘‘Gene expression quantification” or ‘‘Isoform expression

quantification”; filtered to files ending in ‘‘rsem.genes.normal
ized_results” or ‘‘rsem.isoforms.normalized_results”; n = 576
each).

Gene symbols for gene and isoform expression levels in
TCGA were extracted from the gene IDs in the gene expres-
sion files and the TCGA hg19 gaf file, restricted to ‘‘transcript”

entries. Mappings between UCSC knownGene isoforms and
Ensembl transcripts (hg19.knownToEnsembl) were obtained
from the UCSC Table Browser, and isoform IDs used in
TCGA were connected to Ensembl transcripts using abbrevi-

ated isoform IDs without version suffixes.
For selected genes, average promoter CpG methylation,

gene expression, and isoform expression levels were plotted

for all TCGA samples, comparing LUAD primary tumors
and matched normal lung samples. All GENCODE transcripts
associated with the gene name were included in the promoter

methylation analyses. All TCGA genes and isoforms associ-
ated with the gene name were included in the expression anal-
yses. The difference in median promoter methylation level or

the fold change in median expression level was calculated
between primary tumors and matched normal lung samples,
and Wilcox tests were used to test for significant differences
for each gene, transcript, or isoform. Where possible, isoform

IDs were linked to GENCODE transcript IDs. Because some
promoters did not overlap with CpGs and some GENCODE
gene names were not included in the TCGA expression data,

all analyses could not be performed for all genes.
All miRNA files processed with miRBase (v20) were down-

loaded (experimental strategy: ‘‘miRNA-Seq”; data type:

‘‘miRNA gene quantification”; filtered to ‘‘mirbase20”;
n = 555 files). miRNAs were linked to gene symbols using
the TCGA hg19 gaf file and the NCBI gene alias table. The

TCGA hg19 gaf file was restricted to ‘‘pre-miRNA” entries,
and gene names and miRNA IDs were extracted from their
respective columns. Additionally, genes with synonyms con-
taining ‘‘has-” were extracted from the NCBI gene alias table

along with the associated gene names. Both sources were used
to link miRNA IDs assigned by miRBase with gene names in
the TCGA data.

The miRNA expression levels of specific genes in TCGA
LUAD and normal lung samples were plotted and tested for
significant differences between the sample types using a Wilcox

test. All miRNA IDs associated with the gene name were
included.

Repeats

TEs were considered those with class: ‘‘DNA”, ‘‘DNA?”,
‘‘LINE”, ‘‘LINE?”, ‘‘LTR”, ‘‘LTR?”, ‘‘Other”, ‘‘RC”,
‘‘SINE”, ‘‘SINE?”, ‘‘Unknown”, and ‘‘Unknown?”. Only

repeats on chromosomes 1–22 and X were considered.
The Jukes–Cantor evolutionary distance for each repeat

was calculated from the substitution rate compared to the

Repbase subfamily consensus sequence. The total length of
bases overlapping with each subfamily, the number of ele-
ments, the median Jukes–Cantor distance, and the number

of unique methylCRF CpGs overlapping with each subfamily
were calculated.
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The average methylation over each subfamily in each sam-
ple was calculated by identifying all unique CpGs that over-
lapped with the subfamily, then calculating the mean

methylation level assigned by methylCRF over all CpGs in
each sample. Seventeen subfamilies did not overlap with any
CpG. For each subfamily, a Wilcox test was performed on

the mean methylation level in normal vs. tumor samples. Only
subfamilies with at least 10 CpGs were considered for down-
stream analyses.

The LOR enrichment for each subfamily and DMR direc-
tion was calculated from the proportion of DMRs overlapping
with the subfamily vs. the proportion of total repeat length
represented by the subfamily. Enrichment was calculated for

all DMRs and those found in > 1 patient.
For all repeats overlapping with a patient-matched DMR,

the number of unique DMRs overlapping with the repeat,

the total number of DMRs overlapping with the repeat across
comparisons, and the number of comparisons in which the
repeat overlapped with a DMR were calculated by direction

of methylation change. The closest gene on each strand was
identified using bedtools closest, including all tied genes, ignor-
ing genes upstream of the repeat on the same strand and down-

stream of the repeat on the opposite strand. TEs overlapping
with hypoDMRs present in > 1 comparison upstream of a
gene on the sense strand (or downstream on the opposite
strand, in the case of LINE elements) were identified.

A list of TEs that splice into oncogenes to form alternative
isoforms in TCGA cancer samples was downloaded from [15]
(Table S2). The TE coordinates were lifted over to hg19 from

hg38 using LiftOver, and TEs that overlapped with
hypoDMRs in this study were identified.

Repeat class colors were those assigned on the WashU Epi-

genome Browser RepeatMasker track.

Software

The following software packages were used: vegan (v2.5.6), gg-
plot (v2 3.2.1), reshape (v2 1.4.3), plyr (v1.8.4), grid (v3.5.1),
gridExtra (v2.3), RColorBrewer (v1.1.2), knitr (v1.26), readxl
(v1.3.1), UpSetR (v1.4.0), and combinat (v0.0.8).
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the present study.

Code availability

Custom scripts generated for analyzing data in the present

study have been made publicly available at https://
github.com/jaflynn5/DNA-Methylation-Changes-in-NSCLC-
by-Smoking-Status.

Data availability

The MeDIP-seq, MRE-seq, M&M, and methylCRF data gen-

erated in this study are publicly available at a public WashU
Epigenome Browser datahub (https://epigenomegateway.
wustl.edu/browser/?genome=hg19&hub=https://wangftp.

wustl.edu/�epehrsson/NSCLC_primary/NSCLC_primary).
Tracks are linked to sample and patient clinicopathologic
data. In addition, all sequencing data generated as a part

of this study have been deposited in GEO (GEO:
GSE210957).
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