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An automatic pipeline for PET/MRI 
attenuation correction validation in the brain
Mahdjoub Hamdi1*  , Chunwei Ying1, Hongyu An1,2,3,4 and Richard Laforest1 

Introduction
Positron emission tomography (PET) attenuation correction (AC) is crucial for accu-
rate PET tracer’s quantification [1]. Hybrid PET Magnetic Resonance Imaging (PET/
MRI) gained interest due to its high soft-tissue contrast  resolution, especially for 
neurological [2] oncology applications [3] and its low exposure to ionizing radiation 
compared to hybrid PET Computed Tomography (PET/CT), especially for pediatric 

Abstract 

Purpose: Challenges in PET/MRI quantitative accuracy for neurological uses arise 
from PET attenuation correction accuracy. We proposed and evaluated an automatic 
pipeline to assess the quantitative accuracy of four MRI-derived PET AC methods using 
analytically simulated PET brain lesions and ROIs as ground truth for PET activity.

Methods: Our proposed pipeline, integrating a synthetic lesion insertion tool 
and the FreeSurfer neuroimaging framework, inserts simulated spherical and brain ROIs 
into PET projection space, reconstructing them via four PET MRAC techniques. Utilizing 
an 11-patient brain PET dataset, we compared the quantitative accuracy of four MRACs 
(DIXON, DIXONbone, UTE AC, and DL-DIXON) against the gold standard PET CTAC, eval-
uating MRAC to CTAC activity bias in spherical lesions and brain ROIs with and without 
background activity against original (lesion free) PET reconstructed images.

Results: The proposed pipeline yielded accurate results for spherical lesions and brain 
ROIs, adhering to the MRAC to CTAC pattern of original brain PET images. Among 
the MRAC methods, DIXON AC exhibited the highest bias, followed by UTE, DIXON-
Bone, and DL-DIXON showing the least. DIXON, DIXONbone, UTE, and DL-DIXON 
showed MRAC to CTAC biases of − 5.41%, − 1.85%, − 2.74%, and 0.08% respectively 
for ROIs inserted in background activity; − 7.02%, − 2.46%, − 3.56%, and − 0.05% 
for lesion ROIs without background; and − 6.82%, − 2.08%, − 2.29%, and 0.22% 
for the original brain PET images’ 16 FreeSurfer brain ROIs.

Conclusion: The proposed pipeline delivers accurate results for synthetic spherical 
lesions and brain ROIs, with and without background activity consideration, enabling 
the evaluation of new attenuation correction approaches without utilizing measured 
PET emission data. Additionally, it offers a consistent method to generate realistic 
lesion ROIs, potentially applicable in assessing further PET correction techniques.

Keywords: Quantitative brain PET, PET attenuation correction, PET/MRI, PET/CT, 
FreeSurfer brain atlas, Virtual synthetic PET imaging
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patients. Another distinct strength of  PET/MRI is cardiovascular/cardiac imaging 
when performed simultaneously. Although hybrid PET/MRI imaging systems were 
introduced a decade ago, they are still mainly used in the research arena. This is due 
to their cost and the lack of unique applications necessitating simultaneous PET and 
MR acquisition. In addition, PET AC using MRI information is not straightforward. 
MRI images provide information about tissue proton density and relaxation times 
but not tissue electron densities. Thus, body tissues with low proton densities or 
with very short relaxation time are not seen by the MRI system. The most important 
consequence is the absence of bone tissues in MRI based AC (MRAC) images affects 
the quantitative accuracy of the PET reconstructed images [4]. Research literature 
about MRAC for PET is generally categorized into: (1) MRI image tissue segmenta-
tion, like DIXON and UTE for identifying various tissues [5]; (2) templates-atlas-
based approaches, such as superimposing a bone template on a Dixon attenuation 
map [6]; (3) deep learning techniques [7]; and (4) approaches based on PET emis-
sion data, e.g., MLAA reconstruction methods [8]. While MRAC issues have been 
resolved for healthy subjects, particularly in brain studies [9]; challenges persist 
for subjects with skull and brain abnormalities due to dataset limitations for tem-
plate-atlas and deep learning MRAC approaches, requiring further evaluation and 
improvement in diverse patient cohorts [10].

Virtual synthetic PET imaging, utilized to evaluate new PET image reconstruc-
tion and analysis algorithms, can be categorized into three primary techniques.
First, Monte Carlo simulations (MCS), which leverage random sampling to simu-
late ionizing radiation interaction with matter, have been validated and widely uti-
lized to simulate realistic PET data across varied patient anatomies and pathologies 
[11–13]. Second, deep learning-based image generation, due to recent GPU software 
and hardware advances, has gained notable attention [14]. Lastly, the third category 
encompasses analytical-based image generation techniques, with various toolkits 
and approaches proposed in existing literature [15–17]. Our team developed a PET 
synthetic lesion insertion tool for the Siemens mMR PET/MRI scanner, validated its 
accuracy with recovery coefficients in the NEMA IEC phantom, and assessed MRAC 
to CTAC lesion activity bias in brain and pelvis regions [18]. Despite accurate results 
and simulations under 5 min, the tool lacked automated, consistent ROI insertion, 
especially in brain uptake studies. Extending our work, we devised an automatic 
pipeline, merging the Siemens mMR-specific tool with FreeSurfer software, to gen-
erate synthetic PET data for neurological studies and assess the PET quantitative 
accuracy of existing MRAC attenuation correction approaches.

Method
The Siemens Biograph mMR PET/MRI system, utilized in this study, integrates 
simultaneous PET and MRI subsystems with 50  cm field of view (FOV) operating 
in 2D and 3D modes. Detector assembly for the PET sub-system part consist of 56 
detector cassettes, each housing eight axially distributed 8 × 8 lutetium oxyorthosili-
cate crystal arrays linked to a 3 × 3 APD array for scintillation light readout. Com-
plete camera description and geometry details are available in [19].
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Patient data

This study utilized neuro PET/MR datasets from eleven patients (median [IQR] age: 
70 [65, 72.5] years old, 7 Females) acquired at the Washington University Knight Alz-
heimer Disease Research Center (ADRC), with approval from the institutional review 
board and patient consent. Tri-modality brain PET/MRI/CT images were acquired 
using Biograph mMR PET/MRI and Biograph True Point 40 PET/CT systems (Sie-
mens Healthcare). Head CT images were obtained with the clinical Biograph True 
Point 40 PET/CT system. The quantitative accuracy of the brain PET images was eval-
uated using four MRAC approaches and compared to CTAC as a reference. The two-
point DIXON MRI sequence (DIXON) [5] segmenting head tissue as fat and water 
like only, the same two-point DIXON but including a skull model (DIXONbone) 
[20], the ultra-short echo-time MRI sequence (UTE) [21] that extract bone infor-
mation from short relaxation time of protons in bone, and a DIXON-trained deep-
learning-network-generated pseudo-CT map [22]. Three MRAC approaches, DIXON, 
DIXONbone, and UTE, are available on the mMR PET/MRI system. T1 Magnetiza-
tion-prepared Rapid Acquisition Gradient Echo (MPRAGE) MRI images were pro-
cessed with FreeSurfer to provide a patient-specific brain atlas of 16 regions, which 
were used to define lesion shape and location in the synthetic lesion insertion tool.

PET imaging

Patients were injected with an F-18-based amyloid-binding radio-ligand (Florbetapir). 
Data were acquired 50 min post-injection for 20 min from 10 patients, and immedi-
ately after injection for 70  min from 1 patient, using the Biograph mMR PET/MRI 
system. List-mode files were acquired and re-binned to sinograms using the Siemens 
research reconstruction software e7tools (Siemens healthcare). PET images were 
reconstructed using a 3D OSEM algorithm at 3 iterations, 24 subsets, and a 4  mm 
post-reconstruction Gaussian smoothing kernel [23]. The PET reconstructed image 
sizes are 344 × 344 × 127 voxels at 2.08 × 2.08 × 2.03  mm3 each.

CT imaging

Low-dose brain CT images were acquired using the CT subsystem of the Biograph 
TruePoint 40 PET/CT scanner at 120  kVp, 25  mAs exposure. Images were recon-
structed using the filtered back-projection algorithm with H19f. The dimensions of 
the brain CT images are 512 × 512 × 70 voxels at 0.59 × 0.59 × 2  mm3 per voxel.

MRI imaging

Three brain MRI images were acquired using the Biograph mMR PET/MRI system 
using vendor-provided sequences, the standard two-point Dixon–volumetric inter-
polated breath-hold examination (VIBE), the high-resolution two-point Dixon CAPI, 
UTE, and the MPRAGE.

MRI T1-weighted brain images were acquired using a 3D MPRAGE sequence with 
the following imaging parameters: TE/TR = 2.95/2300  ms, TI = 900  ms, number of 
partitions = 176, matrix size = 240 × 256 × 176, voxel size = 1.05 × 1.05 × 1.2   mm3, 
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acquisition time = 5 min 11 s. The T1-weighted image was used as an input to Free-
Surfer to generate the patient specific brain atlas.

Attenuation maps

DIXON

The DIXON attenuation map was acquired using a vendor-provided two-point Dixon 
VIBE MRI sequence with a 10° flip angle (FA). At repetition time (TR), 3.6 ms, there are 
two echo-time TE readouts, in-phase, 2.46 ms, and out-phase, 1.23 ms, from which fat 
and water dominant images are generated. The acquisition time was 19 s. Four classes 
of tissues are generated for whole-body PET/MRI applications: air, fat, and soft tissues, 
to which fixed 511 keV photons attenuation coefficient were assigned. In this study, the 
whole brain and the skull are considered uniform soft tissues (water). The dimensions of 
the DIXON images are 192 × 126 × 128 voxels, and the voxel size is 2.6 × 2.6 × 3.12  mm3.

DIXONbone

The DIXONbone images were generated based on the high-resolution DIXON Con-
trolled Aliasing in Parallel Imaging Results in Higher Acceleration (CAIPIRINHA) 
images (TE1/TE2/TR = 1.28/2.51/4.14  ms, FA = 10°, dimensions = 384 × 204 × 132 
voxels, and voxel size = 1.30 × 1.30 × 2.02 mm, acquisition time = 39 s). Skull bones lin-
ear attenuation coefficient (LAC) replaced the soft tissues LAC in the high-resolution 
DIXON images. The skull bones were generated using a vendor-provided model-based 
bone prototype segmentation algorithm (Siemens AG, Erlangen, Germany). The first 
step is to generate a bone model from pre-aligned MRI images and bone masks contain-
ing continuous bone LAC at 511 keV photons. In the second step, the patient DIXON 
image is registered to the generated MRI model, then bone masks are registered to the 
patient DIXON image, segmented in the bone tissues, and brought back to the original 
DIXOM image space using the same transformations [20, 24].

UTE

The UTE images were generated using a vendor-provided MRI imaging sequence with 
a 10-degree FA, 4.64 ms TR, and 0.07 ms and 2.46 ms TE, which results in simultane-
ous generation of cranial bones and the brain tissues. The acquisition time was 144 s. 
The resulted images were segmented into two compartments, soft tissues for the whole 
brain and bones-tissues for the cranial bones. The size of the raw UTE images consists of 
192 × 192 × 192 voxels, 1.56 × 1.56 × 1.56 mm3 per voxel.

DL‑DIXON

Synthetic pseudoCT attenuation maps were generated using a deep-learning technique. 
A network that combines the 3D residual and UNet architectures (ResUNet) was used. 
Pseudo-CT images were generated from the standard in- and opposite-phase DIXON 
images. More details about the DL-DIXON attenuation maps generation methodology, 
network architecture, training, and testing datasets were published in previous work in 
[22].
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Attenuation maps preprocessing

The four MRI-derived attenuation maps and CT images obtained directly from the 
Biograph mMR, and True Point 40 PET/CT systems, respectively, were resampled 
using nearest neighbor interpolation onto the default attenuation map gridded on 
344 × 344 × 127 voxels at 2.086 × 2.086 × 2.031   mm3/voxel. The DIXON, DIXONbone, 
and DL-DIXON MRAC were registered to the UTE attenuation map using a 12-param-
eter affine registration with the FMRIB Linear Image Registration Tool (FLIRT) in the 
FSL toolbox [25].

The CT and pseudo-CT Hounsfield (HU) unit were converted to 511 keV linear attenu-
ation coefficients by piecewise linear scaling [26]. The CT attenuation maps were aligned 
to DIXON, DIXONbone, UTE, and DL-DIXON attenuation maps using a 12-parameter 
affine registration with FLIRT. All MR and CT attenuation maps were then wrapped to 
default attenuation map space using vendor-provided e7tools software.

Pipeline description

Our pipeline, visualized in Fig.  1, combines a validated synthetic lesion insertion tool 
for Siemens mMR [18] and FreeSurfer framework  for brain segmentation, utilizing 
T1-weighted MRI images to produce a patient-specific brain atlas. Brain regions of inter-
est (ROIs), with definable activity or Standardized Uptake Value (SUV), are input into 
the tool, optionally using original PET image data for lesion-to-background ratio (LBR) 
application and smoothing via the scanner’s point spread function (PSF). Subsequent 
to this, lesion ROI and attenuation map images are forward-projected, with the lesion 
ROI sinogram undergoing multiple processing stages—including voxel-wise division by 
extended normalization and integral factors matrices, calibration of lesions activity, cal-
culation and addition of scatter using e7tools, and Poisson noise addition—before being 
added to or replacing sinogram counts in the patient PET projection space. Final image 
reconstruction is achieved using standard 3D-OSEM with three iterations and 21 sub-
sets [23]. More technical details about the lesion insertion tool are presented in [18].

Brain regions of interest

In a typical comparison of PET/MRI to PET/CT for attenuation correction evaluation, 
PET emission data were reconstructed with two different attenuation maps: a specific 
MRAC and a CTAC. For regional brain uptake analysis, brain ROIs are delineated using 
manual or automatic approaches to calculate the uptake deviation from MRAC PET 
reconstruction relative to CTAC PET reconstruction. In the case of automatic ROIs gen-
eration, for instance, a brain atlas generated from a FreeSurfer T1 weighted MRI images 
with 256 × 256 × 256 voxels at ~ 1  mm3/voxel needs to be in the same space as the final 
reconstructed PET images. The FreeSurfer brain atlases were aligned to the PET using 
rigid registration with FSL’s FLIRT. Figure 2a presents a 2D slice of a brain atlas super-
imposed on its corresponding 2D brain PET image. Brain ROIs are defined, projected to 
sinogram space, and reconstructed with and without considering the patient’s sinogram, 
using a lesion insertion tool. The MRAC to CTAC bias is then compared in the inserted 
16 brain ROIs and the original PET images.
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Pipeline evaluation

Two spherical 4 mm radius lesions were inserted, one in the superior frontal cortex 
and another in the fusiform gyrus. Figure 2b, c show examples of the two spherical 
lesions inserted in the brain. The MRAC to CTAC bias is most sensitive to lesion 
location; a lesion inserted near the skull shows a higher bias than one inserted far-
ther from the brain skull. PET images with inserted lesions were reconstructed with 
and without the brain PET background (or projections) using the four MRAC maps, 
DIXON, DIXONbone, UTE, DL-DIXON, and the CTAC map. In addition, PET 
images without the inserted lesions were also reconstructed using the same MRAC 
maps. PET reconstruction bias in the inserted lesions ROIs were compared across 
methods.

Fig. 1 Pipeline for the evaluation of different PET attenuation correction approaches using the synthetic 
lesion ROIs insertion tool and FreeSurfer
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Data analysis

MRAC to CTAC bias was calculated in the inserted spherical lesions ROIs and Free-
Surfer brain atlas ROIs using relative and relative absolute errors in Eq.  1 and Eq.  2, 
respectively. Box plots of the relative and absolute MRAC to CTAC bias were displayed 
for the entire patient cohort.

Statistical analyses

Statistical analyses were performed using R 4.2.0 (Foundation for Statistical Computing, 
Vienna, Austria). Comparisons between PET absolute bias using DL-DIXON AC maps 
and using other three MRAC maps were performed using paired t tests with the Benja-
mini–Hochberg to control for the false discovery rate in multiple comparisons.

(1)Relative bias = (PETMRAC − PETCTAC)/PETCTAC

(2)Aboslute bias = |(PETMRAC − PETCTAC)|/PETCTAC

Fig. 2 Examples of FreeSurfer brain atlas (a) and two spherical lesions (b and c). The atlas and the inserted 
lesions are superimposed over the PET image
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Results
Pipeline evaluation

Figure 3 presents a boxplot of the MRAC to CTAC lesion’s activity bias for the 11 patient 
datasets. Figure 3a–c show MRAC to CTAC bias in lesions reconstructed with and with-
out background activity and in the original PET images, respectively. The original PET 
images show similar behavior to the inserted lesions for the four MRAC approaches. 
For lesions inserted in the superior frontal cortex, at the vicinity of the skull, the DIXON 
AC showed the largest underestimation of activity with a median and an interquartile 
range (IQR) of − 8.33% [− 10.93%, − 5.45%] for lesion inserted in the activity back-
ground. Lesion inserted without the activity background showed a median [IQR] of 
− 11.74 [− 15.32%, − 10.42%]. The UTE showed an improved activity estimation com-
pared to the DIXON AC, with a median [IQR] of − 5.26% [− 4.73%, − 0.30%] for lesion 
inserted with the background activity and a median [IQR] of − 4.14% [− 5.86%, − 0.84%] 
for lesion inserted without the background activity. The DIXONbone showed similar 
performances to the UTE with a median [IQR] of − 2.32% [− 4.19%, − 1.4%] in lesions 
inserted with the background activity, and a median [IQR] of − 3.56% [− 6.33%, − 3.18%] 
in lesions inserted without the background activity. The DL-DIXON showed the best 
performance, with a median [IQR] bias of − 0.03% [− 0.80%, 0.78%] for lesions inserted 
in the background activity and a median [IQR] bias of − 0.88% [− 3.16%, 0.03%] for 
lesions inserted without the background activity.

In lesion inserted in the fusiform gyrus, not in the vicinity of the skull, the four atten-
uation maps showed lower MRAC to CTAC activity bias than those from the lesion 
inserted in the superior frontal cortex. The DL-DIXON has the least bias, followed by 
DIXONbone, UTE, and DIXON. The median [IQR] bias were − 5.26% [− 5.54%, 1.50%] 
and − 0.75% [− 1.26%, 0.72%] from DIXON and UTE for lesions inserted with the back-
ground activity. Lesion inserted without the background showed median [IQR] bias 
of − 6.03% [− 7.16%, − 4.87%] and median [IQR] bias of 3.06% [− 3.07%, − 0.01%] for 

Fig. 3 MR to CT-based PET attenuation correction relative (a–c) and absolute (d–f) bias in two synthetic 
spherical lesions inserted at two brain locations. Lesions were reconstructed with (a and d) and without (b 
and e) the background activity and from the corresponding spherical ROIs in the original PET images (c and f)
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lesions inserted without considering the background. The DL-DIXON showed a consist-
ent lesion activity bias to lesion inserted in the prefrontal cortex with a median [IQR] 
of 0.24% [0.01%, 0.67%] for lesions inserted on the background the medium [IQR] of 
− 0.23% [− 0.20, 0.73%] on lesion inserted without the background.

For lesions inserted in the background activity (Fig.  3d), DL-DIXON showed a sig-
nificantly smaller PET absolute bias than DIXON (p < 0.01) and UTE (p < 0.01) in both 
inserted lesions. DL-DIXON also showed a significantly smaller PET absolute bias than 
DIXONbone (p < 0.05) in the lesion inserted in the superior frontal cortex. For lesions 
inserted without background activity (Fig.  3e), DL-DIXON showed a significantly 
smaller PET absolute bias than DIXON (p < 0.001), DIXONbone (p < 0.05), and UTE 
(p < 0.001) in both inserted lesions. For the original brain PET reconstructed images 
(Fig.  3f ), DL-DIXON showed a significantly smaller PET absolute bias than DIXON 
(p < 0.01) and UTE (p < 0.01) in both inserted lesion regions. DL-DIXON also showed a 
significantly smaller PET absolute bias than DIXONbone (p < 0.01) in the inserted lesion 
region in the superior frontal cortex.

Regional brain ROIs

Figure 4 presents MRAC to CTAC activity bias in nine lesion ROIs in the prefrontal cor-
tex. MRAC to CTAC activity bias in lesion ROIs inserted with and without the back-
ground activity is presented in Fig. 4a–c shows activity bias in the original reconstructed 
PET images using the same ROIs.

Lesion ROIs inserted in the prefrontal cortex with and without the background activ-
ity showed similar behavior to lesion ROIs in the original brain PET reconstructed 
images. However, a slightly higher fluctuation, activity bias range, was observed in the 
original lesion ROIs due to their lower statistics than the inserted synthetic lesion ROIs. 
For lesion ROIs in the prefrontal cortex, inserted on the background activity, the DIXON 
AC showed the largest underestimation of activity, with a median ranging from − 1.75% 

Fig. 4 MR to CT based PET attenuation correction relative (a–c) and absolute (d–e) bias in FreeSurfer ROIs in 
the prefrontal cortex. ROIs were reconstructed with (a and d) and without (b and e) background activity and 
from the original PET images (c and f)
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in the left frontal pole to − 10.43% in the caudal middle frontal gyrus and present the 
lowest and highest MRAC to CTAC activity biases, respectively (Fig. 4). The UTE AC 
showed an enhancement in activity estimation relative to the DIXON, with an MRAC 
to CTAC activity bias with a median ranging from − 0.22 to − 4.17% for both lesions 
inserted with or without the background activity. However, UTE has higher interpa-
tient variability, IQR (Fig. 4a). The DIXONbone performed better than the UTE, with a 
median activity deviation ranging from − 2.77 to 1.91%. The DIXON-DL presented the 
best performance across all MRAC approaches, with the lowest MRAC to CTAC activity 
bias with a medium ranging from − 0.39 to 0.4%. A similar pattern was observed using 
MRAC to CTAC activity bias in lesion ROIs inserted without considering the back-
ground activity and lesion ROIs in the original reconstructed images (Fig. 4b). MRAC 
to CTAC lesion ROIs bias shows good agreement with MRAC to CTAC bias calculated 
with the same ROIs in the original brain PET images. However, the latter have more 
interpatient variability (Fig. 4c).

Figure  5 depicts MRAC to CTAC bias in brain ROIs in the parietal and temporal 
cortexes. Lesion ROIs inserted with and without the background activity show similar 
MRAC to CTAC bias for the four MRAC approaches. The median MRAC to CTAC 
activity bias of the 16 inserted lesion ROIs for the 11 patients with or without the back-
ground activity and in the original PET images followed the same pattern.

For lesion ROIs inserted in the background activity (Figs.  4d and 5d), DL-DIXON 
showed a significantly smaller PET absolute bias than DIXON (p < 0.05) and UTE 
(p < 0.05) in all 16 ROIs. Except in medial orbital gyrus, the orbital part of inferior fron-
tal gyrus and the triangular part of inferior frontal gyrus, DL-DIXON also showed 
a significantly smaller PET absolute bias than DIXONbone (p < 0.05). For lesion ROIs 
inserted without background activity (Figs.  4e and 5e), DL-DIXON showed a signifi-
cantly smaller PET absolute bias than DIXON (p < 0.01) and UTE (p < 0.05) in all 16 
ROIs. Except in the orbital part of inferior frontal gyrus and the anterior part of middle 

Fig. 5 MR to CT based PET attenuation correction bias in a FreeSurfer extracted T1 ROIs in the parietal 
and temporal cortex. For relative (a–c) and absolute bias (d–e), ROIs were reconstructed with and without 
background activity (a, b) and the original PET images in (c). Same order is followed in Sub-figures (d–f)



Page 11 of 14Hamdi et al. EJNMMI Physics           (2023) 10:71  

frontal gyrus, DL-DIXON showed a significantly smaller PET absolute bias than DIX-
ONbone (p < 0.05). For the original brain PET reconstructed images (Figs.  4f and 5f ), 
DL-DIXON showed a significantly smaller PET absolute bias than DIXON (p < 0.05) 
and UTE (p < 0.01) in all 16 ROIs. Except in the opercular part of inferior frontal gyrus, 
DL-DIXON also showed a significantly smaller PET absolute bias than DIXONbone 
(p < 0.05).

Discussion
Our developed pipeline analytically generates realistic 3D PET brain ROIs and lesions. 
The tool was used to evaluate the quantitative accuracy of different MRI-based PET 
attenuation correction approaches and demonstrated a very good agreement with 
MRAC to CTAC assessed in the original measured patient PET data and will enable 
mimicking clinically relevant diseases in the brain studied by PET. Different brain ana-
tomical regions, including the prefrontal, parietal, temporal cortexes, and the fusiform 
gyrus, were investigated. The study presents three sets of result, lesions with and with-
out PET patient emission data and original PET images. Lesions inserted without PET 
emission data exhibited similar behavior to those inserted with it  (emission data) and 
in the original reconstructed PET images. Findings align with existing literature [6] and 
advocate for using the synthetic lesion insertion tool to evaluate quantitative accuracy 
without requiring PET emission data.

Our analytical synthetic lesion insertion approach has practical advantages over the 
widely used MCS toolkits like GATE in PET imaging [27]. It significantly reduces simu-
lation time, from days on a CPU cluster to 15 min on a standard workstation (with an 
Intel(R) Xeon(R) CPU X5650 at 2.67 GHz, housing 2 processors). Moreover, it offers an 
easy integration into existing PET imaging pipelines or workflows, utilizing a scanner 
geometry-specific forward projector. Unlike the GATE approach, which requires exten-
sive validation for generating realistic PET datasets, our method for synthetic PET data 
creation is considerably straightforward.

Analytical lesion insertion tools, such as PETSTEP introduced by Beatrice et al. [15] 
are designed to enhance PET imaging evaluations, particularly in automatic segmenta-
tion. PETSTEP, which inserts lesions into a previously reconstructed PET image’s pro-
jection space using MATLAB’s Radon transform, ensures independence from scanner 
geometry. However, it mandates that lesions be at least 3 cm from the phantom edge, 
necessitates specific scanner calibration, and is not ideal for assessing PET/MRI image 
quantitative accuracy near structures like cranial bones. Pfaehler et  al. [16] intro-
duced another lesion insertion tool called SMART, which utilizes the real attenuation 
map instead of water and offers 3D lesion insertion capabilities. Nevertheless, SMART 
requires calibration for the scanner in use and hasn’t been validated with patient data. 
Another methodology by C Tsoumpas et al. [17], used the STIR reconstruction software 
[28] and segmented 4D anatomical MRI images to generate 4D PET data for evaluat-
ing motion correction algorithms. Yet, STIR remains time-consuming, taking several 
hours for forward projection and PET image reconstruction. The proposed automatic 
synthetic PET generation combine the advantage of generating realistic lesion and ROIs 
for specific scanner, the Siemens mMR, while offering reduced simulation time.
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In our study, lesion ROIs are attenuated utilizing the real attenuation map, which lim-
its quantitative bias compared to other studies that assume water for lesion ROIs attenu-
ation. Nevertheless, this approach necessitates the precise registration of the brain atlas 
to the PET, and ensuring no apparent interference with the skull which can lead to a bias 
in the lesion ROIs activity. While the current noise simulation is implemented for static 
PET images, limiting the capabilities for simulating dynamic PET data, however it can be 
readily adapted for dynamic PET scenarios where noise need to be extracted from each 
sinogram frame and added into the lesion ROIs. Additionally, both the forward projec-
tor and the reconstruction tool are provided by the manufacturer, necessitating research 
collaboration between labs and the vendor. An analysis of the original PET images indi-
cated that larger ROIs display more significant fluctuations in MRAC to CTAC bias than 
smaller ones. This variation might stem from the reduced statistical data in the original 
lesion ROI images, in contrast to the synthetically inserted lesions.

The proposed automatic pipeline accelerates the development and assessment of 
PET/MRI attenuation correction approaches and goes beyond this application. The 
availability of ground truth data enables broader evaluation of PET data correction 
algorithms, including scatter, motion, and partial volume effect corrections, and 
enhances PET image analysis, such as segmentation and disease classification. Addi-
tionally, the pipeline facilitates the synthesis of PET images exhibiting unusual uptake 
patterns, thereby establishing a reliable ground truth that is vital for the rigorous 
evaluation and training processes associated with deep learning algorithms.

Conclusion
A pipeline based on a previously developed and validated lesion insertion tool and Free-
Surfer framework was proposed to accelerate the development, evaluation, and transi-
tion of different PET/MRI attenuation correction approaches to clinical neurological 
applications. Four MRI-based PET attenuation correction  approaches were evaluated 
against the CT attenuation map. Three types of evaluation were presented, MRAC to 
CTAC in lesions inserted with the background, without considering the background, 
and lesion ROIs in the original PET reconstructed images. MRAC to CTAC in inserted 
lesions, with and without background, is consistent with MRAC to CTAC bias in the 
original reconstructed PET images. This led us to conclude that the background activity 
does not show an apparent effect on MRAC to CTAC bias behavior. Thus, the proposed 
pipeline enables evaluation of novel MRI-based PET attenuation correction methods 
without requiring actual patient PET emission data. Furthermore, this pipeline offers a 
consistent and straightforward means to simulate authentic PET data, which can then be 
employed in assessing PET correction techniques such as scatter and motion correction, 
as well as in deep learning applications. The lesion insertion tool will be available for 
online users and can be used for multiple purposes.
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