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Abstract: Clostridioides difficile is an anaerobic, spore-forming bacterium associated with intestinal
infection, manifesting a broad spectrum of gastrointestinal symptoms, ranging from mild diarrhea
to severe colitis. A primary risk factor for the development of C. difficile infection (CDI) is antibiotic
exposure. Elderly and immunocompromised individuals are particularly vulnerable to CDI. A pivotal
aspect for comprehending the complexities of this infection relies on the utilization of experimental
models that mimic human CDI transmission, pathogenesis, and progression. These models offer
invaluable insights into host–pathogen interactions and disease dynamics, and serve as essential
tools for testing potential therapeutic approaches. In this review, we examine the animal model for
CDI and delineate the stages of infection, with a specific focus on mice. Our objective is to offer an
updated description of experimental models employed in the study of CDI, emphasizing both their
strengths and limitations.
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1. Introduction

Clostridioides difficile, commonly referred to as C. difficile or C. diff, is a spore-forming
anaerobic bacterium of significant notoriety within the domain of infectious diseases [1].
Over recent decades, it has emerged as a prominent causative agent of healthcare-associated
infections, particularly affecting individuals who have recently undergone antibiotic ther-
apy or present a compromised immune system [2]. The infection primarily relies on the
perturbation of the gut microbiota [3], creating a conducive environment for the coloniza-
tion of C. difficile and the subsequent release of its toxins [4]. These toxins adversely affect
host cells, undermining the integrity of the intestinal barrier and causing inflammation
along with tissue damage [5,6]. The clinical manifestation of the disease in humans en-
compasses a spectrum of presentations, ranging from mild diarrhea to severe colitis, often
leading to life-threatening complications and, in some cases, mortality [7,8].

Substantial research efforts have been dedicated to unraveling the complexities of
C. difficile infection (CDI), covering aspects such as prevention, pathogenesis, and treatment
approaches. An essential component of this research journey involves the establishment
and utilization of animal models to replicate and analyze various aspects of diseases. For
decades, hamsters and mice have been the primary animal models for studying CDI [9].
These models have been instrumental in elucidating key aspects of the disease, such as
C. difficile toxins production, host immune response, and the role of microbiota in the host
susceptibility to CDI. However, these models inherently exhibit limitations that should be
taken into consideration for experimental applications.

In this review, we offer updated information on animal models in C. difficile infection
research, with a particular focus on murine models. We aim to emphasize the valuable
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insights these models have brought to our comprehension of CDI and highlight their
effective performance in elucidating the disease’s complexity.

2. Clostridioides difficile Infection

“Bacillus difficile”, as denominated before, entered the scientific spotlight in 1935 when
it was first identified by researchers Hall and O’Toole [10]. At that time, this bacterium
was considered relatively innocuous, quietly inhabiting the human gut without drawing
much attention. However, it was during the 1970s that “Clostridium difficile” began to reveal
its pathogenic potential [11–13]. Researchers observed a connection between C. difficile
and antibiotic-associated diarrhea, as well as pseudomembranous colitis, leading to a
surge in research interest [8]. Since then, the bacterium has persisted in its evolutionary
trajectory, developing resistance to various antibiotics and producing virulent strains that
pose significant challenges to healthcare providers and researchers alike [14]. In 2016,
the reclassification of “Clostridium difficile” to “Clostridioides difficile” marked a significant
taxonomic shift, motivated by advancements in genetic research and DNA sequencing [15].
This realignment sought to more accurately reflect the bacterium’s genetic and evolutionary
characteristics, setting it apart from the Clostridium genus.

C. difficile is a Gram-positive bacterium characterized by its ability to form spores [16].
These spores are the resilient, dormant form of the bacterium, exhibiting the capacity to
endure adverse conditions, including high temperatures and sterilizing chemicals [17].
Their durability contributes to their persistence in the environment, making CDI prevention
and control challenging. Moreover, C. difficile spores play a critical role in CDI recurrence;
even after successful CDI treatment, some patients experience a recurrence due to the
germination of these spores when favorable conditions arise in the colon, often as a result
of disruptions to the normal gut microbiota [16,18,19]. Certainly, their germination and
the onset of C. difficile infection depend not only on microbiota imbalance, but also on
various host-related factors, including immunity, age, and others. In fact, individuals
within healthcare settings face an increased risk for CDI, attributed to factors like the use of
antibiotics, an impaired immune system, and direct exposure to an environment with a
higher abundance of C. difficile spores [4]. Moreover, 2.4% to 17.5% of healthy adults can
asymptomatically carry C. difficile, serving as potential sources of transmission, both in
healthcare environments and the community at large [20–22].

The pathological consequences of CDI are primarily centered in the colon. The dis-
ease can manifest across a spectrum of severity, ranging from mild diarrhea to severe
pseudomembranous colitis, and in extreme cases, leading to fulminant outcomes [23–25].
Specifically, the development of pseudomembranous colitis arises as a sequence of un-
folding events leading to colitis: CDI often starts with the ingestion of C. difficile spores,
typically encountered in the environment, which then transform into active bacteria after
germination within the large intestine (cecum and colon) [16]. C. difficile produces two
crucial toxins, toxin A (TcdA) and toxin B (TcdB), that specifically target epithelial cells
by binding to their respective receptors [5,6]. Once internalized, these toxins cause the
subsequent inactivation of Rho-family GTPases through glucosylation [5,26,27]. This event
disrupts the host cell’s cytoskeleton, accelerating cell death [28,29]. Consequently, the
damaged epithelial layer increases gut permeability and facilitates the translocation of
luminal content into the intestinal lamina propria. Simultaneously, the accumulation of
dead cells and the presence of translocated bacteria enable immune cells and fluids to
infiltrate the tissue [30,31]. As a result, pseudomembranes manifest as yellowish-white
patches on the inflamed colon mucosa, consisting of inflammatory cells, mucus, fibrin,
and dead epithelial cells [30]. The classic symptoms of pseudomembranous colitis include
severe diarrhea, abdominal pain, and fever. In the absence of treatment or in cases of
heightened host susceptibility to infection, severe complications may arise, including toxic
megacolon, bowel perforation, sepsis, and, in some instances, death [32].

In addition, the emergence of hypervirulent strains, such as the NAP1/B1/027 variant,
has emerged as a global public health concern by being associated with more severe
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and recurrent cases of CDI [33–37]. Specifically, the PCR ribotype 027 strain, commonly
denoted as RT027, distinguishes itself with heightened virulence, characterized by elevated
production of TcdA and TcdB toxins [38]. Infections with the RT027 strain are known for
their high recurrence rates, impacting patient outcomes and placing a significant burden
on healthcare systems. Remarkably, RT027 demonstrates resistance to certain antibiotics,
notably fluoroquinolones, presenting challenges in treatment and contributing to persistent
infections [39,40]. Furthermore, this strain is recognized for frequently producing the
binary toxin, also known as CDT (C. difficile transferase), which is associated with increased
severity and mortality in patients [41–43]. Unlike the more well-known toxins TcdA and
TcdB, CDT functions as an ADP-ribosyltransferase, comprising two subunits, CDTa and
CDTb. CDTa manages enzymatic activity, while CDTb facilitates entry into host cells [42].
Research indicates that this binary toxin plays a crucial role in enhancing the virulence
of C. difficile, particularly through increased activation of the inflammasome via Toll-like
receptor 2 (TLR2)-mediated priming [44]. This heightened inflammasome activation is
implicated in the pathogenicity of C. difficile infection. Additionally, CDT-induced TLR2
activation leads to the release of proinflammatory cytokines and increased apoptosis
of eosinophils, further contributing to the overall impact of CDT on the host immune
response [45]. Comprehending the role of the binary toxin is crucial for unraveling host
immune responses and developing novel therapeutic strategies for CDI.

The current strategy for managing and treating patients with CDI typically involves
a multifaceted approach [46]. Treatment plans are customized to address the unique
clinical condition of each individual, underscoring the crucial role of early diagnosis
and intervention for effectively managing the disease. The first step is discontinuing
the antibiotic that may have triggered the infection, if applicable, to halt the selective
advantage C. difficile gains in an altered gut microbiome. The next crucial step is the
administration of specific antibiotics, such as vancomycin or fidaxomicin, to target and
eliminate C. difficile bacteria [46–48]. Metronidazole is designated as an alternative agent
and has been omitted from the treatment of nonsevere CDI since the 2021 guidelines [49].
Additionally, supportive care, including adequate hydration and electrolyte management,
plays a pivotal role in treatment, particularly for patients with severe diarrhea [46]. These
strategies do not contribute to the restoration of the natural microbiota’s colonization,
potentially explaining their modest effectiveness in terms of treatment outcomes and
increased rates of relapse episodes [3]. Approximately 15–30% of patients who respond
to antimicrobial therapy may experience recurrent CDI, and the risk escalates with each
subsequent episode [50]. Studies indicate that older age and female sex are associated with
an increased risk of recurrence [51]. It is also noteworthy to notice that recurrent CDI is
not always attributed to the same strain, with a new strain being identified in 33–56% of
recurrent episodes [52–54]. For the treatment of recurrent CDI, Bezlotoxumab (Zinplava),
a monoclonal antibody targeting the toxin TcdB, helps prevent recurrences and mitigates
damage to colonic epithelial cells [55].

Remarkably, fecal microbiota transplantation (FMT) surprisingly emerges as a highly
potent therapeutic approach for treating recurrent or severe CDI [56,57]. This procedure
entails the infusion of fecal matter from a healthy donor into the patient’s gastrointestinal
tract, with the overarching goal of reestablishing a balanced gut microbiota. The trans-
planted microbiome, armed with its diverse arsenal of beneficial microbes, plays a crucial
role in efficiently combatting the opportunistic C. difficile [3,58]. Meta-analyses examining
the efficacy of FMT for recurrent, severe, or fulminant CDI consistently indicate promising
outcomes [59,60]. FMT has demonstrated high success rates in preventing recurrent CDI,
with significant reductions in recurrence compared to standard antibiotic therapy. More-
over, this therapeutic approach has shown effectiveness in treating severe and fulminant
cases, contributing to improved clinical outcomes and reduced mortality rates. However, it
is not without its drawbacks and potential risks [61]. One of the primary concerns is the
lack of long-term safety data, as the consequences of introducing a new, diverse microbial
community into a patient’s gut over time remain uncertain. FMT relies on donated fecal
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matter, which, despite rigorous donor screening and testing, may still carry undetected
pathogens or infections that can be transmitted to the recipient [62,63]. There is also a risk
of unintended alterations to the recipient’s microbiome, potentially leading to unexpected
health issues [64,65]. Continuing research and ongoing debates focus on the application
and long-term consequences of FMT, emphasizing the need for a thorough evaluation of its
risks and benefits.

Overall, effectively combating CDI requires a comprehensive understanding of its
microbiological foundations, insight into the underlying pathological processes, and the
ability to navigate the complex epidemiological factors that contribute to its persistence
and spread. Given these considerations, animal models of C. difficile infection play a pivotal
role in providing insights into the pathogenesis, treatment, and prevention of CDI.

3. Animal Models of CDI

CDI has been studied using different animal species, including hamsters, guinea
pigs, rabbits, mice, and rats, as reviewed before [9]. The hamster model is the most
commonly used experimental model. On hamsters, CDI can be induced after ingestion
of antibiotics, and colonization occurs through experimental challenge or environmental
exposure to C. difficile [66–68]. The disease in this model primarily affects the cecum with
some involvement of the ileum, resulting in diarrhea and fatal enterocolitis when exposed
to toxigenic strains [69,70]. It is important to note that this model represents well the severe
and lethal forms of the disease, but does not consistently display the full spectrum of CDI
symptoms seen in humans [66,67,71]. The hamster model has been employed for three
decades to investigate CDI therapy and disease mechanisms. Studies involving hamster
vaccination have demonstrated that C. difficile toxoids (formalin-inactivated toxins) can
offer protection against fatal outcomes in animal models [72].

Mice and rats are less susceptible to CDI than hamsters [73]. Nevertheless, murine
models serve as valuable tools for studying CDI, given their genetic similarity to humans
and enhanced translational relevance [74]. Mouse application allows researchers to control
various factors such as genetics, environment, and diet, ensuring consistent experimental
conditions. The availability of transgenic mice facilitates the examination of host factors and
components of immune responses throughout the progression of the disease. There are well-
established protocols for inducing C. difficile infection in mice, making them a standardized
and widely adopted model in the field. Typically, laboratory mice are subjected to antibiotic
treatment to disturb their gut microbiota, rendering them susceptible to the germination
and colonization of C. difficile—mirroring the dynamics observed in humans [75,76]. Then,
the mice are orally inoculated with C. difficile spores or vegetative cells. Over time, infected
mice may develop symptoms similar to those seen in humans, such as diarrhea, weight
loss, and other gastrointestinal issues [54,77]. The severity of symptoms varies depending
on the C. difficile strain used and the susceptibility state of the mouse [78]. Researchers
can monitor various parameters, including the progression of infection, changes in gut
microbiota composition, histopathological alterations in the colon, and levels of C. difficile
toxins in feces [79]. The mouse model is very useful for testing potential treatments and
interventions, including new antibiotics, probiotics, dietary modifications, or vaccines
designed to combat C. difficile infection.

Numerous mouse models have been created for studying the mechanisms behind
C. difficile pathogenesis, and each has its own strengths for investigating different aspects
of the disease [75]. The selection of a particular method is guided by the research goals,
the specific strain of C. difficile, and the intended disease features. One common approach
is to perform a single oral gavage with C. difficile spores, as it mimics the natural route of
infection from contaminated surfaces [80,81]. To study recurrent infections, some models
involve multiple rounds of challenge [50,54]. Alternatively, researchers can administer pu-
rified C. difficile toxins to study the role of toxins in disease pathogenesis [82–85]. Antibiotic
pretreatment disrupts the gut microbiota, making mice more susceptible to colonization,
reflecting conditions seen in patients with antibiotic-associated C. difficile disease [86–88].
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Likewise, models designed to investigate colonization resistance explore the use of probi-
otics or microbiota components to enhance the mechanisms of resistance [88–91].

Gnotobiotic/germ-free mice can be colonized by C. difficile and exhibit intestinal
pathology, primarily in the colon, with pseudomembrane formation similar to human
disease [92–95]. This model in particular enables the exploration of microbiota or isolated
groups of bacteria’s role in the development of CDI. Reeves et al. unveiled a significant
delay in the onset of primary CDI and relapse in germ-free mice pretreated with pro-
biotics [96]. Notably, the microbiome of mice undergoing moderate CDI and receiving
probiotic treatment revealed a striking increase in the abundance of the Lachnospiraceae
family during the initial CDI phase. Intriguingly, mice that were precolonized with the
Lachnospiraceae isolate demonstrated a substantial decrease in C. difficile colonization, de-
creased levels of intestinal cytotoxin, and exhibited milder clinical symptoms and colonic
histopathology. This effect was not observed in mice solely colonized with E. coli as a
control. This study suggests novel therapeutic approaches for the treatment and prevention
of CDI by utilizing bacterial species that potentially inhibit C. difficile growth. Likewise, a
bacterial consortium named VE303 is currently under development as a potential treatment
for high-risk CDI [97,98]. This oral treatment consists of eight nonpathogenic, nontoxigenic,
commensal strains of Clostridia that have been shown to effectively restore a healthy gut
microbial community, mitigate inflammation, and elevate levels of protective metabolites
in mice [97,98]. However, the use of gnotobiotic mouse models has a much higher cost and
is less practical when compared to conventional mice. Additionally, the absence of other
microorganisms in these models makes them less representative of the human situation.
Nonetheless, the utilization of germ-free mice is crucial for investigating the specific role of
human microbiota in the development of CDI. Humanized mouse models, engrafted with
human microbiota, provide an environment closer to human C. difficile infection [99–102].
These methods offer flexibility in investigating various aspects of C. difficile infection, from
pathogenesis to potential interventions.

4. Antibiotic-Induced Murine Model of CDI

Antibiotic-induced murine models of CDI are specifically designed to mimic the
clinical manifestations and pathological features of human CDI within a controlled lab-
oratory setting [80,103]. Despite some limitations, this model has greatly contributed to
our understanding of CDI and continues to be an essential component of CDI research.
Antibiotics are employed to initiate gut dysbiosis, a crucial step in simulating the clinical
conditions that lead to C. difficile expansion [87,104,105]. Commonly used antibiotics for
this purpose include vancomycin, cefoperazone, and tetracycline, typically administered
orally via drinking water supplementation [73,106–109]. Likewise, clindamycin is often
linked to the development of CDI in humans, attributed to its effectiveness against a wide
range of bacteria. It is administered systemically as an antibiotic, usually through intraperi-
toneal injection in mice. In essence, antibiotic treatment eliminates competing bacteria in
the gastrointestinal tract, thereby creating an environment that favors the proliferation of
C. difficile [110,111].

The selection of antibiotics varies according to the specific study goals and the desired
level of gut dysbiosis, with the administration of these antibiotics for a predetermined
period before introducing C. difficile to initiate infection. Giel et al. conducted a study on
the antibiotic-induced mouse model of CDI to investigate C. difficile spore germination [18].
Their findings revealed that spores were more likely to germinate in antibiotic-treated
mice, but this germination was mitigated by cholestyramine, a treatment that chelated
bile salts. This observation led the authors to suggest that cecal bacterial populations in
antibiotic-treated mice had a reduced capacity to modify taurocholate, a spore germinant
factor, providing further support for the role of bile salts in C. difficile spore germination and
infection development in the host [18]. Similarly, a ten-day antibiotic pretreatment with
broad-spectrum cefoperazone in drinking water showed an increase in mice’s susceptibility
to infection with C. difficile strain VPI 10463 [105]. This particular strain of C. difficile
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produces elevated levels of toxins, and experimental infection with it proves lethal in
hamsters and, depending on the dose, in mice [80,112].

Studies on mouse models have extensively characterized infection with C. difficile
spores. Lawley et al. [113] confirmed that a low number of spores (seven) of C. difficile
per square centimeter of mucosal tissue constitutes the minimum infectious dose. In
another study by the same authors, Lawley et al. explored spore transmission between
healthy and immunocompromised mice, shaping infection control strategies [73]. This
study demonstrated that virulent C. difficile can asymptomatically colonize the intestines of
healthy mice, establishing a persistent carrier state. The authors convincingly illustrated
that when C. difficile was shed in significant amounts, referred to as the “super-shedder”
state, it promoted efficient transmission. In contrast, the carrier state, in which C. difficile
shedding was lower, did not facilitate transmission to the same extent. In healthy mice,
the infection induced mild mucosal inflammation. Conversely, transmission to mice with
compromised innate immune responses (Myd88−/−) resulted in severe and frequently
fatal intestinal disease, underscoring the role of host factors in CDI.

In some research scenarios, a combination of antibiotics may be utilized to induce a
more profound disturbance in the gut microbiota, closely mirroring the clinical situation
where patients often receive multiple antibiotics before developing CDI. Chen et al. [80]
pioneered an innovative mouse model wherein C57Bl/6 mice were subjected to a 3-day
oral exposure to a combination of kanamycin, gentamicin, colistin, metronidazole, and
vancomycin, followed by an intraperitoneal administration of clindamycin 48 h later.
Subsequently, the mice were challenged with varying doses of C. difficile. This mouse model
faithfully replicated human C. difficile infections, inducing characteristic symptoms such
as diarrhea, weight loss, and typical histological features. The severity of the disease in
this mouse model was proportional to the challenge dose used, ranging from 2 × 102 to
105 CFU. In a parallel initiative, our research team modified the infection model, originally
proposed by Chen et al., to incorporate a more aggressive dose of the vegetative form of
C. difficile [79]. We found that treating 8-week-old male C57BL/6 mice with a combination
of kanamycin, gentamicin, colistin, metronidazole, and vancomycin for 4 days, followed by
clindamycin administration 24 h later, and subsequent infection in the next day with 108

CFU of C. difficile, effectively induced weight loss, diarrhea, and intestinal inflammation.
Furthermore, researchers investigated the progression of C. difficile infection in correla-

tion with the age of the mice [92]. The study utilized germ-free C57BL/6 mice aged 7 to
14 months, infected with the BI/NAP1 strain. Notably, older infected mice were critically
ill within 48 to 72 h after infection, exhibiting noticeable cecitis and colitis upon gross and
histological examination. These infected mice also displayed elevated levels of keratinocyte
chemoattractant (KC, also known as Cxcl1), interleukin 1β, monocyte chemotactic protein
1 (MCP-1, also known as Ccl2), and granulocyte colony-stimulating factor (G-CSF). Con-
versely, they had decreased levels of interferon-γ, interleukin-12, and interleukin-10 when
compared to the younger control group. This unique model not only sheds light on the
role of the host response in disease development but also highlights its connection with the
aging process. These findings are particularly significant due to the rising incidence and
severity of C. difficile infection in older adults, particularly those aged 65 years and above,
largely associated with the emergence of the BI/NAP1 strain [114,115].

5. CDI Pathogenesis and Disease Progression in Mice

After antibiotic treatment, the mouse’s gut undergoes substantial modifications, ren-
dering it susceptible to C. difficile colonization [87,116,117]. The highly resilient C. difficile
spores colonize the intestines, primarily finding their niche in the murine cecum and
colon [16,118]. Within these regions, spores undergo germination, transitioning into vege-
tative cells that actively grow and produce the toxins responsible for clinical symptoms
(Figure 1) [118]. Toxin A (TcdA) and toxin B (TcdB) are released following C. difficile ger-
mination, typically occurring on the first day postinfection [118]. These toxins have a
specific affinity for the intestinal epithelial cells, disrupting the colonic epithelium and
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subsequently contributing to tissue damage and bacterial translocation [119–122]. In par-
ticular, gut bacterial translocation involves the process through which bacteria, mostly
those that naturally inhabit the intestinal tract, cross the protective barrier of the gut and
enter the bloodstream or other distant anatomical regions. Furthermore, the compromised
epithelial barrier plays a pivotal role in the development of diarrhea and inflammation
during the early stages (around day 2 postinfection) [123]. This event can ultimately lead
to the development of sepsis, a life-threatening condition that arises in an overwhelming
and systemic inflammatory response [124]. The consequent uncontrolled immune reaction,
often termed a “cytokine storm”, holds the potential to inflict substantial harm systemically,
characterized by a spectrum of clinical symptoms, including a high fever, cognitive impair-
ment, organ dysfunction, and a reduction in blood pressure [125,126]. In severe cases, mice
may manifest fulminant colitis, elevating the risk of mortality significantly, while sepsis
can lead to a fatal outcome [124].
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Figure 1. Pathogenesis of C. difficile infection in the mouse model. Mice are infected after antibiotic
treatment. The disease is usually acute, lasting for less than a week for the first episode. After
antibiotic treatment and microbiota disruption, C. difficile spores germinate and colonize the colon,
releasing toxins that damage the intestinal epithelium. This damage can potentially lead to bacterial
translocation and inflammation, primarily driven by neutrophil infiltration, which peaks around
day 2 postinfection. On day 5 postinfection, a resolving phase begins, characterized by reduced
inflammation and increased tissue repair mechanisms, including the involvement of ILC3 and Treg
cells. Around 20–25% of infected mice may experience recurrent infection relapse, offering valuable
insights into the role of adaptive immunity in CDI.

In addition, the intestinal inflammatory cascade after TcdA and TcdB toxins-associated
damage, which includes the recruitment of immune cells, such as neutrophils, and the re-
lease of proinflammatory cytokines, such as IL-1β, IL-23, TNF-α, and IFN-γ, occurs around
2 days postinfection, a hallmark of CDI disease progression [121–123,127–130]. In particular,
these toxins have been noted for their ability to activate the inflammasome, a multiprotein
complex that detects cellular stress and danger signals, instigating a potent inflammatory
response [131]. This activation leads to the cleavage of proinflammatory cytokines, includ-
ing interleukin-18 (IL-18) and IL-1β, crucial in combating the infection [132]. Excessive
activation, however, can be pathogenic, contributing to heightened host morbidity and
mortality [44,131]. Moreover, the existence of the binary toxin, CDT, has demonstrated



Microorganisms 2024, 12, 273 8 of 16

an augmentation in inflammasome activation via TLR2-mediated priming [45,133]. The
process involves the coordinated actions of Mitogen-Activated Protein Kinases (MAPKs),
which in turn activate the Nuclear Factor κB (NF-κB) [133]. MAPKs are triggered, initiating
a phosphorylation cascade that leads to the degradation of IκB, enabling the release and
translocation of NF-κB into the nucleus for the transcriptional regulation of inflammatory
genes [134]. This collaborative interplay among the inflammasome, NF-κB, and MAPKs
forms a dynamic and orchestrated response, pivotal for the host’s early defense against
C. difficile infection.

In severe cases, pseudomembrane plaques are visible on the colonic mucosa around
day 3 and 4 p.i., consisting of inflammatory cells, fibrin, and mucus [135]. However, it
is essential to recognize that the mouse model of CDI is typically acute, encompassing a
brief one-week timeframe [54,80]. After the disease reaches its peak around day 2 and
3 p.i., a resolutive phase takes hold within the intestinal lamina propria around 5 days
postinfection [79]. During this phase, we observe a diminishing inflammatory response,
with increased epithelial cell proliferation and mucus production, and the gradual relief
of clinical symptoms, including body weight loss and diarrhea [79,136,137]. Significant
changes include a decline in neutrophil infiltration in the tissue, a decrease in proinflamma-
tory cytokine levels, and an increase in IL-10 and IL-22 production [138–141]. Moreover,
there is a notable increase in the prevalence of group 3 innate lymphoid cells (ILC3) and
regulatory T cells (Treg cells) within the lamina propria, with these alterations becoming
particularly pronounced after 5–6 days of infection [128,142]. IL-22-productin ILC3 play a
crucial role in CDI, reinforcing the gut barrier and promoting tissue repair [121,128]. Treg
cells have a dual role, modulating immune responses to prevent excessive inflammation,
while potentially hampering the efficient clearance of C. difficile [142,143].

In some instances, the immune response in mice is effective in clearing the infection,
and they recover from CDI. However, chronic colonization can occur in some cases (around
20% of cases), with C. difficile persisting in the gut, potentially leading to recurrent episodes
of infection [144,145]. Furthermore, following a recovery period and the discontinuation of
antibiotics, mirroring the clinical scenario in which patients are susceptible to recurrent CDI,
mice can be subjected to a rechallenge with C. difficile, whether from the same or a different
strain [54]. The rechallenge initiates a recurrent phase in mice that were previously infected,
enabling the evaluation of the host’s immune response, the maturation of protective immu-
nity, and the effective assessment of various interventions for preventing relapse. Although
T cells and B cells may not play a direct role in resolving the acute phase of C. difficile
infection in mice [128,141], clinical data suggest that adaptive immune responses can confer
protective effects. In this context, B cells are instrumental in the production of specific
antibodies, including IgG and IgA, which can neutralize C. difficile toxins and limit their
damage to intestinal epithelial cells [21,146–148]. Furthermore, CD4+ and CD8+ T cells
play pivotal roles, orchestrating the immune response by aiding in antibody production,
stimulating other immune cells, and directly targeting infected host cells [149–151]. Impor-
tantly, the development of immunological memory within the adaptive immune system
ensures a more rapid and effective response upon re-exposure to C. difficile [152,153].

In the murine model, CDI manifests as clinical symptoms similar to those seen in
humans. The severity of symptoms can vary depending on factors such as the C. difficile
strain used, the antibiotic regimen, and the specific study conditions. In general, symptoms
include severe diarrhea, often watery in consistency, which reflects the damaging effects
of C. difficile toxins on intestinal epithelial cells [4]. In mice, CDI leads to significant
weight loss, typically ranging from 10% to 20% of their initial body weight [80], serving
as a quantifiable marker of infection severity and its overall impact on host responses.
Reduced activity, lethargy, and altered grooming behavior are also common behavioral
manifestations after infection [107]. Additional clinical signs, such as a hunched posture
and ruffled fur, further highlight the mice’s discomfort [77]. These signs and symptoms are
commonly quantified using a standardized clinical scoring system, frequently employed in
research and experimentation (Table 1) [77].
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Table 1. Clinical score for evaluating the murine C. difficile infection.

Category Score *
0 1 2 3

Activity Normal Alert/Slow
moving Lethargic/Shaky Inactive unless

prodded

Posture Normal Back slanted Hunched Hunched/Nose
down

Pelage Normal Piloerection Rough skin Very ruffled
Puff/Ungroomed

Diarrhea Normal
Soft

stool/Discolored
(yellowish)

Wet stained
tail/mucous +/−

blood

Liquid or absence of
stool (ileus)

Eyes/Nose Normal Squinted
1/2 closed Squinted/Discharge Closed/Discharge

* Clinical score = sum of all parameter scores. Total possible score is 15 (death).

Furthermore, colonic inflammation characterized by neutrophil infiltration and tissue
damage, and pseudomembranous colitis featuring visible plaque on the colonic mucosa,
serve as critical histopathological features [54,123]. Additional parameters, including a
decrease in goblet cell frequency and mucus reduction, also serve as indicators of disease
progression and severity [154,155]. The assessment of epithelial permeability, exemplified
by tests involving the ingestion of sugar molecules followed by the analysis of urine or
blood samples, as well as the quantification of translocated bacteria in various peripheral
organs (e.g., liver, spleen, kidney, etc.), can serve as valuable indicators of compromised
epithelial barrier function following infection [120]. Finally, examination of the immune
response within the intestinal tissue postinfection, conducted through techniques like
flow cytometry, immunofluorescence on preserved tissue sections, or the quantification of
cytokines and gene expression, serves as a valuable means to monitor the progression of
CDI in murine models [6].

6. Conclusions

Over time, C. difficile is increasingly developing resistance to antibiotics and generating
virulent strains, posing challenges for healthcare providers and researchers alike. Current
research on CDI covers a wide range of crucial areas, including the exploration of the
gut microbiome’s role, investigating alternatives to antibiotics such as fecal microbiota
transplantation (FMT), and finding strategies for the prevention and management of CDI.
Mouse models have played a crucial role in the understanding of this field, offering insights
into pathogenesis, host responses, and potential interventions. Researchers have employed
various mouse models in the field, including genetically modified and germ-free mice.
Specifically, the antibiotic-induced mouse model stands as a well-established tool for
studying CDI, aiding in the comprehension of host–pathogen interactions. While it does
have many benefits, the model may not fully replicate the complexities of human CDI, as it
possesses gut microbiota that differ from that of humans. Overall, various protocols for
utilizing mice in experimental CDI have been crucial for advancing our understanding of
the disease and facilitating the development of approaches that may potentially be applied
for managing the disease.
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