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Abstract: Diffuse optical methods including speckle contrast optical spectroscopy and tomog-
raphy (SCOS and SCOT), use speckle contrast (κ) to measure deep blood flow. In order to
design practical systems, parameters such as signal-to-noise ratio (SNR) and the effects of
limited sampling of statistical quantities, should be considered. To that end, we have developed a
method for simulating speckle contrast signals including effects of detector noise. The method
was validated experimentally, and the simulations were used to study the effects of physical
and experimental parameters on the accuracy and precision of κ. These results revealed that
systematic detector effects resulted in decreased accuracy and precision of κ in the regime of low
detected signals. The method can provide guidelines for the design and usage of SCOS and/or
SCOT instruments.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

An accurate and often continuous assessment of microvascular, regional blood flow has many
implications for diagnosis and treatment of diseases and for the study of healthy physiology.
Despite continued efforts to establish practical means for measuring microvascular, regional
blood flow in a non-invasive manner, this remains an important unmet need. One potential
approach uses near-infrared, coherent light and the arising speckles after its diffusion [1–4].

Coherent laser light can be used to non-invasively measure local microvascular blood flow in
tissue by detecting the fluctuating speckle patterns after light interaction with the tissue [5–9].
For the purposes of this manuscript, we will focus on deep-tissue, i.e. those that utilize light that
penetrates up to several centimeters, measurements using photon diffusion. This is possible since
near-infrared (∼650-1000 nm) light is only mildly absorbed in most tissues.

In the field of near-infrared diffuse optics, there are two common methods for determining blood
flow from laser speckles. The first consists of measuring the speckle intensity autocorrelation
(g2(τ)) or the electric field autocorrelation (g1(τ)) over a continuous range of decay times (τ) to
derive a blood flow index [10]. Diffuse correlation spectroscopy (DCS) [10–12] and its variants
[13–15] utilize this method for quantifying the speckle statistics to determine blood flow. The
second common method consists of quantifying the speckle intensity statistics using a parameter
called the “speckle contrast” (κ). Several related techniques measure κ to measure blood flow.
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These include tomographic techniques (SCOT, scDCT) for the three-dimensional mapping of
blood flow from measurement of κ [16,17] and techniques to calculate one or two-dimensional
maps of blood flow (DSCA, SCOS, LSF, LASCA, LSCI, iSVS) [2,8,18–22]. Of these, some
techniques (LASCA and LSCI) are non-diffuse methods and therefore only measure superficial
blood flow [8,20].

Diffuse optical methods using the laser speckle contrast can achieve similar blood flow
information as DCS at an overall cheaper cost per detector channel since κ is an integral of g2(τ)
over the delay times up to a longer exposure time. In other words, common scientific cameras
can be utilized as “slower” detectors. This claim has been supported by experiments [3,23–25],
simulations [26], and most recently by theoretical analyses [27].

A thorough analysis of the measurements utilizing the intensity auto-correlation of the speckle
statistics, i.e. DCS, has previously been developed and tested [28–33]. Among other uses, these
works have allowed the design of components (detectors, sources) and systems that target specific
goals in detection precision and accuracy in DCS.

Despite the increasing prevalence in literature of the use of speckle contrast techniques, a
comprehensive method for determining the effects experimental parameters have on the accuracy
and precision of κ has not yet been developed. Accuracy in speckle contrast values, particularly
in scenarios with low levels of detected light, is important to consider as the effects of detector
noise can greatly influence the detected signal. Valdes et al. [2] first described this phenomenon,
and subsequently developed a noise removal algorithm to reduce the effect of detector noise on
the measured value of κ. This algorithm has been shown to be effective, however it does not
correct for all detector effects, in particular shot noise.

Previous work to optimize accuracy and precision in speckle contrast measurements includes
theoretical and experimental characterization of the sampling of speckles on the precision of
measured κ [34–36], and the effect of the imaged speckle to camera pixel ratio on the accuracy
of κ [37–39]. These earlier works did not account for the effect of experimental sources of
noise, particularly detector noise, on the measured accuracy and precision of the speckle contrast
signal. Recently, this gap in the existing literature was addressed by Zilpelwar et.al. [40] through
a simulation method which modeled the generation and detection of decorrelating speckles
including detector noise effects. The authors demonstrated that the developed model is able to
simulate both the values of κ as well as the noise in κ detected using sCMOS cameras. Using
this simulation, the authors investigate the effect of speckle to pixel size ratio, exposure time,
and detected photon count rate on κ and its signal to noise ratio (SNR) for two commercially
available cameras.

We have developed a separate simulation model to Zilpelwar et.al. [40], but with a similar aim
of simulating the behavior of κ with respect to detector noise and other experimental parameters.
Our model addresses details not included in Ref. [40] such as the efficacy of the detector noise
correction by Valdes et.al. [2], and the behavior of κ in a multi-scattering regime in a semi-infinite
geometry. We are specifically interested in characterizing the accuracy and precision of speckle
contrast measurements taking into consideration experimentally relevant parameters such as
the noise specifications of the detectors, the exposure time of the experiments, the detected
photon-count rate, the measured medium, and the sampling of the detected speckles. To this end,
the developed method was first verified experimentally for its ability to simulate κ and the noise
in κ. After verifying the simulation method, the method was used to study the effect of accuracy
and precision of κ in various experimental scenarios. Finally, the simulations were used to design
and optimize a system capable of measuring baseline cerebral blood flow non-invasively in an
adult human.
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2. Methods

Here we focus on two dimensional detectors (i× j) with “pixels” but the results can be generalized
to other standard detectors. As will be evident later on, it is more convenient to use the square
of the speckle contrast (κ2) for the analysis. We assume that the κ2 is derived from sampling n
speckles that are distributed over space (wz) and/or over time by repeated measurements (wt).
These n speckles sampled over wz and/or wt are used to estimate the probability distribution
of the speckle intensity. From these n speckles, the mean intensity (µ(I)) and the variance of
intensity (σ2(I)) are determined.

Even in the case of ideal detectors and light sources, the calculated values are not exactly equal
to the true mean and the true variance due to the effects of limited sampling. In experiments,
the situation is more complex due to additional sources that contribute to the observed photon
statistics such as the detector noise which further influence the measured values of mean and
variance.

Therefore, these measurement effects must be accounted for in order to experimentally
determine a “corrected κ2”, or the best estimate of the true value of κ2. For common detectors,
these corrections include a dark frame subtraction which attempts to account for the dark and
read-out signal and a statistical correction attempting to estimate the shot noise as well as the
dark and read-out noise variances [2].

The speckle contrast is an alternative data-type that is used to characterize the decorrelation
time (τc) of the intensity autocorrelation of the speckle statistics which is more commonly utilized
[27,41]. τc is in turn dependent on several aspects such as the the optical properties of the
medium, the dynamics of the scatterers, the measurement geometry, the source wavelength and
more. The signals that are detected in a common detector are affected by this statistical profile
which in turn affects the noise statistics. Therefore, in order to simulate realistic speckle contrast
signals, we need to take all this into account and incorporate the appropriate aspects of the
detectors. An illustrative flowchart of the method that has been developed is shown in Fig. 1 and
is further detailed below.

2.1. Simulated experimental setup

Let us begin by detailing the canonical experimental setup that is being simulated. The exact
details of the desired experimental setup to simulate may differ, however, the simulations are
largely independent of these details. A visual representation of a possible setup is shown in
Fig. 1(a). Here, the light is delivered through an optical fiber, and detected with a separate fiber
coupled to a camera. The core of the fiber is imaged with appropriate optics and all the pixels
within that region-of-interest (ROI) correspond to one value of source-detector separation, ρ. In
a free-space system, the pixels in the imaged field of view could correspond to different values of
ρ.

We assume that a coherent light source of wavelength λ is utilized. The photons, once in
the medium, undergo absorption and scattering events. The probability per unit length the
photons are absorbed is estimated by the absorption coefficient (µa(λ)). The reduced scattering
coefficient (µ′s(λ)) is used to estimate the total length which after a few scattering events leads to
the randomization of the photon direction. In other words, after a photon traverses a distance
few times the 1/µ′s, the light can be considered diffuse [42]. This diffuse light is measured at a
distance ρ away from the source. As a rule-of-thumb, ρ is related to the mean probed depth by
the measured light so that in order to measure deeper tissue, canonical experiments utilize longer
ρ.

If the light source is of sufficiently narrow bandwidth (long coherence length) [43], then the
so-called “diffuse laser speckles” and their statistical fluctuations can be observed. The electric-
field (g1) or the intensity (g2) autocorrelation of the detected speckles are functions of parameters
related to the experimental setup (e.g. ρ and λ) and the properties of the measured medium



Research Article Vol. 15, No. 2 / 1 Feb 2024 / Biomedical Optics Express 878

Fig. 1. Flow chart for simulating frames of correlated speckles and κ2. These simulations
aim to simulate a variety of experimental setups such as in sub-figure a. Depending on
the experimental setup, the imaged field of view will differ. In this example, source and
the detector fibers are placed a certain distance (ρ) from each other and are coupled to the
laser and detector. The imaged field-of-view (imaged over i × j pixels includes the fiber
core which in later steps will be used to calculate κ2 over a specified region of interest (wz).
Sub-figure b illustrates Step 1 of the simulations. In this step, the rate at which the speckles
decorrelate, τc, is determined from the correlation diffusion equation (CDE). Using this
value of τc, consecutive frames of correlated speckles are simulated so that their electric-field
autocorrelation decays with τc. The intensity of these simulations are in arbitrary units,
and independent of exposure time, T . Instead they represent speckles measured during a
finite time-bin width, tframe, on the g1 curve. In order to simulate several values of ρ, the
process illustrated in b can be repeated several times to simulate the ρ dependent change in
τc. In Step 2 (sub-figure c), the arbitrary units of the simulated frames is scaled to represent
realistic values of photon current rate, Φ, in units of photons/second. In Step 3 (sub-figure
d), an exposure time is introduced to the simulations by summing over frames. This process
additionally converts the units of the simulations from photons/s to photons. Various values
of T can be simulated from the same set of simulated frames of Step 1. In this case, the
simulation of two values of exposure time, TX and TY , is shown. Multiplying the summed
frames in units of photons by the quantum efficiency (QE) of the camera converts the units of
the simulations to electrons (e−). In Step 4 (sub-figure e), the detector effects are simulated
by altering the simulated intensity statistics according to the specifications of real detectors.
In Step 5 (sub-figures f and g), n speckles are sampled over an area, wz or over pixels of
several repetitions of simulations to estimate a value of κ2. The yellow dots represent κ2
simulated for the τc and therefore ρ simulated in Step 1. The two values of T simulated
in Step 3 are also shown. In the final step (Step 6, sub-figure h), the discrepancies in the
exact form of the speckle autocorrelation decay between the solution for the CDE for a
semi-infinite medium and the developed model is corrected for (NB: The scale of sub-figure
h was modified from sub-figures f and g to emphasize the difference between the copula
model and CDE.).
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including µa, µ′s, the ratio of the moving scatterers to the static ones (α) and the mean-squared
displacement of the scatters (∆r2). For most experiments, the “effective” particle/scatterer
diffusion coefficient weighted by α (αDb) is measured as a “blood flow index” (BFI). For further
details see Refs. [7,10,44]. The decorrelation time, τc (normally defined as the time g1 decays to
1/e [20]) was defined for the purpose of these simulations as the time at which g1 decayed to 0.5
and is also a function of these parameters.

2.2. Speckle statistics detected by a two dimensional detector array

We have simulated κ2 for tissue with specific optical properties and blood flow by simulating
consecutive frames of correlated speckles which simulate their electric field autocorrelation
with a decorrelation time, τc, defined by the solution of the CDE for a semi-infinite medium
[10]. The methodology presented is independent of this solution and other solutions (layered,
heterogeneous, numerical) of the CDE could be utilized. For clarity, electric-field autocorrelation
curves following the solution of the CDE will be referred to as ĝ1, while the simulated electric-field
autocorrelation curves are referred to as g1. While the two are similar, there are slight differences
which are discussed below. Furthermore, the theoretical value of κ2 derived from the CDE will
be referred to as κ̂2 while the simulated values will be referred to as κ2.

In the first step of the simulation pipeline (Figure 1(b)), τc is derived from ĝ1. The derived
value of τc was used to simulate frames of individual speckles by modifying the copula method
developed in Ref. [45]. This method simulates consecutive two dimensional matrices of numbers
that are correlated to each other by using a mathematical copula. Furthermore, the statistical
profile of each matrix reflects the probability distribution of speckle intensity. Therefore, each
individual matrix can be considered as a camera frame acquired in a speckle contrast experiment.
These matrices are referred to as “frames” (f ) simulating pixel coordinates i, j while imaging
speckles with diameter, Ø. Ø behaves as a scaling factor to put physical units for the pixel
size since the speckle diameter is approximately equal to the wavelength of light being used.
Therefore, choosing Ø to be equal to three pixels for a system modeling λ = 785 nm will scale
the width of each pixel to be equal to approximately 262 nm. The details of the simulation of Ø
is described in the original copula method of Ref. [45].

The autocorrelation, g1, of the first frame, f = f1 to the kth frame, f = fk is given by

g1 = exp
{︃
−
(2πm)2

6

[︃
1 − cos(

π

2
k − 1
T − 1

)

]︃ }︃
, (1)

where k is the frame number and m is a parameter related to the decorrelation of the frames. In our
adaptation we have defined m to be a function of τc. Since τc has been defined as g1 = ĝ1 = 0.5
then

m(τc) =

⌜⃓⎷
−6ln(0.5)

4π2
(︂
1 − cos( π2

τc−1
T−1 )

)︂ . (2)

We note that the definition of τc = 0.5 was an arbitrary decision. Depending on the definition of
τc used, Eq. (2) can be updated to reflect the chosen definition. Each of the individual simulations
of g1 consisting of f = fN frames of speckles patterns constitute an experiment, defined by ϵ . fN
frames are simulated to simulate the full g1 curve to later simulate κ2 by integrating g1 from 0 to
T [46]. This process together with notation is illustrated in Fig. 2. The basic method simulates β,
an experimental parameter related to the coherence of the light source and the detection optics
[47], equal to one. However β can also be simulated for other values by following the method of
Ref. [45].

The simulations are simulated in arbitrary copula units. In addition, the frames are only
dependent on ρ and every simulated frame represents a point on the g1 curve with a finite time-bin
width, tframe. Since each frame has a defined ρ and is simulated over an array i × j, the complete
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Fig. 2. Illustration of how frames with a defined τc are simulated. First individual speckles
are simulated on a grid of i× j pixels. These individual frames, f , are correlated to each other
and their electric-field autocorrelation, g1, decay according to τc defined from semi-infinite
theory (Figure 1). One full simulation of a theoretical g1 curve (g1) consisting of fN frames
corresponds to one experiment, ϵ . This process is repeated several times resulting in several
simulations of g1.

notation is, c
∼S(ρ)ijf . In this notation, the pre-superscript indicates the units of the simulated

frame. In this case, c refers to the arbitrary “copula” units. The pre-subscript, ∼, indicates that
no effect of detector noise has been included in the simulated frame. The indices i, j and f refer
to the pixel and frame.

2.3. Scaling detected photon intensity

The simulation of c
∼S(ρ)ijf is only a simulation of the decorrelation of speckles and is in arbitrary

units. Therefore, in order to convert c
∼S(ρ)ijf to physical units and convey a realistic decay

in detected photon intensity with ρ, the arbitrary copula units must be scaled to a realistic
value (Fig. 1(c)). This is done by defining the spatial decay of light intensity theoretically
or experimentally. According to the photon diffusion theory, in a semi-infinite geometry, the
measured photon current rate, Φ(ρ), in units of photons/second, decreases with ρ as:

Φ(ρ) =
vS

4πD

(︃
exp(kr1(ρ))

r1(ρ)
−

exp(krb(ρ))

rb(ρ)

)︃
×
λ

hv
× A (3)

Where k =
√︁
−vµa/D, and D is the diffusion coefficient (D = v/(3µa + µ

′

s)), and v is the speed
of light in medium. r1(ρ) and rb(ρ) are variables related to the boundary conditions for a
semi-infinite geometry [10]. Here h is Plank’s constant, S is the source irradiance in units
W/cm3, and A is the pixel area. It is noted that A in the simulations is related to the speckle size,
Ø, such that A = λ/Ø.

Alternatively, experimental values of Φ(ρ) can be used to simulate the photon current rate
at the detector. In this case, the average measured photons per second at specified values of
ρ (divided by the quantum efficieny of the specified detector) can be used to approximate the
photon current rate.

Once Φ(ρ) has been established, whether theoretically or experimentally, the simulated frames
are scaled using Φ(ρ) to convert them to a physically meaningful unit of photons/second, denoted
as ps

∼ S(ρ)ijf . This is evaluated through the normalization of c
∼S(ρ)ijf with its mean over simulated
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frames, µ
(︁c
∼S(ρ)ij

)︁
f :

ps
∼ S(ρ)ijf =

c
∼S(ρ)ijf
µ
(︁c
∼S(ρ)ij

)︁
f
× Φ(ρ) (4)

2.4. Introducing exposure time to the simulated frames

The next step (Fig. 1(d)) requires converting the frames of equal frame widths, tframe, to frames
with an exposure time, Tx. These frames are denoted as p

∼S(ρ, T)ijf and are in units of photons.
This is done by adding N = Tx/tframe consecutive frames:

p
∼S(ρ, Tx)ij =

fx∑︂
f=1

ps
∼ S(ρ)ijf (5)

Note that with the introduction of exposure time, the simulated frames drop their indexing of
f . Furthermore, we also note that in order to properly introduce exposure time, it is important
to sum simulated instantaneous frames with a sufficient time resolution. In other words, the
integration of g1 over τ (Ref. [46]), must be done with a small enough step-size. For example,
for the case of β = 1, adding only the first frame with the last frame results in a simulated value
of κ2 close to 0.5 independent of the value of τc.

Finally, the simulated frames are converted from photons to electrons:
e
∼S(ρ, Tx)ij = QE × p

∼S(ρ, Tx)ij (6)

Where QE is the quantum efficiency of the camera.
Table 1 summarizes the introduced notation to refer to the simulated frames.

Table 1. Table of definitions of the simulated speckle patterns including conversion of units
from arbitrary simulation units with no T dependency to electron units with T dependency. In
the notation for the simulated frames, the pre-superscript indicates the units of the simulated

speckle intensities while the pre-subscript, ∼, indicates that no noise has been added

Speckles (ρ) Speckles (ρ, T)

i, j pixel index Tmax = fN × tframe maximum exposure time simulated

f frame index Tx = fx × tframes exposure time, x (fx number of frames
required to simulate Tx )

fN number of frames simulated for one g1
p
∼S(ρ, Tx)ij frame (units: photons) (Eq. (5))

tframe size of each frame (units: time) e
∼S(ρ, Tx)ij frame (units: electrons) (Eq. (6))

c
∼S(ρ)ijf frame (units: a.u.)
ps
∼ S(ρ)ijf frame (units: photons/second) (Eq. (4))

2.5. Detector noise

The final step before using the simulations to calculate κ2 is to simulate the effects of the main
types of detector noise on the simulated frames previously described, namely: photon shot noise,
dark signal non-uniformity (DSNU), dark current shot noise, and read-out noise [48,49]. This
step is illustrated in Fig. 1(e). To simulate detector noise, the distribution of each of the types of
noise is considered, and random numbers are generated following the distribution. The notation
used to describe the generation of random numbers and their distributions is shown in Eq. (7)

IZij = pZ(z; µ(I),σ2(I)) (7)

IZij is the random number generated representing a certain intensity (in e−) at pixel i, j. IZij

originates from a distribution, pZ , with a mean value of intensity, µ(I), and variance, σ2(I).
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Photon shot noise is a Poisson distributed noise source [48,50]. Using the notation in Eq. (7),
the contribution of photon shot noise at each pixel i, j is described as:

e
sS(ρ, Tx)ij = Isij = pS(s; e

∼S(ρ, Tx)ij, e
∼S(ρ, Tx)ij) (8)

Where we have applied the definition of a Poisson distribution, µ(I) = σ2(I). In this case
µ(I) = e

∼S(ρ, Tx)ij (i.e. the measured intensity in e− (Eq. (6))). We have also included a new
notation e

sS(ρ, Tx)ij. The pre-subscript, s, denotes the application of shot noise on the simulated
frame.

DSNU and dark current noise along with read-out noise are not directly applied to e
sS(ρ, Tx)ij,

instead independent dark frames are simulated and then added to e
sS(ρ, Tx)ij.

DSNU is simulated by simulating individual pixels of logistically distributed random numbers
[50]:

Iδij = p∆(δ; µ(Iδ),σ2(Iδ)) (9)

Where µ(Iδ) and σ2(Iδ) are the mean and variance of the DSNU specific to each detector. Their
values can typically be found in camera specification sheets. The variance of a logistic distribution
is given by σ2(Iδ) = (s2

l π
2)/3 where sl is the shape parameter of the logistic distribution.

The dark shot noise, similar to the photon shot noise (Eq. (8)) is simulated by applying Poisson
distributed random numbers [48] to each pixel simulated in Eq. (9):

Idij = pD(d; Iδij , Iδij ) (10)

Finally, read out noise is simulated by assuming that it is a normally distributed noise source
[51]. Read out noise in CMOS cameras is added at each pixel and is independent of the dark
noise and the detected signal. Therefore, the contribution of the read out signal at each pixel, Irij ,
is simulated:

Irij = pR(r; µ(Ir),σ2(Ir)) (11)

where the mean and variance of the read-out signal (µ(Ir) and σ2(Ir)) are specific to each detector
and can be found in specification sheets or estimated from online camera simulators.

The total dark frame, df , is then given by

dfij = Idij + Irij . (12)

Putting everything together, the frames with shot noise, DSNU, dark shot noise, and read-out
noise, e

sdrS(ρ, Tx)ij, are given by:
e

sdrS(ρ, Tx)ij =
e
sS(ρ, Tx)ij + dfij (13)

To generalize the notation, the pre-subscript N indicates a general noise source. In other words,
e
NS(ρ, Tx) is shorthand for speckle intensity frames in units of electrons with unspecified noise, N,
added. N can take values:

• ∼ : no noise

• s : shot noise added

• sdr : shot noise and dark frame added (dark and read out noise)

• sd′r′ : shot noise and dark frame added, dark frame offset subtracted (dark and read out
noise corrected)

• s′d′r′: shot noise and dark frame added, dark frame and shot noise corrected.

The definitions and notation for simulating detector noise is summarized in Table 2:
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Table 2. Table of definitions of the noise sources that are included in the
simulations along with their corresponding distributions. The notation

pZ (z;µ,σ2) is used to define random numbers, z , originating from a
distribution, pZ , with a mean value of, µ, and variance, σ2.

Noise Source Distribution

shot
Isij = pS(s;µ(Iij),σ2(Iij))

Iij = e
∼S(ρ, Tx)ij

(Eq. (8))

Poisson
µ(Is)ij = Iij

σ2(Is)ij = µ(Is)ij

dark
dark signal non-uniformity
Iδij = p∆(δ;µ(Iδij ),σ

2(Iδij ))

(Eq. (9))

Logistic
µ(Iδ )ij = µ(Iδ )a

σ2(Iδ )ij =
3s2

l
π2

sl
a: shape parameter, logistic distribution

dark shot
Idij = pD(d;µ(Iδij ),σ

2(Iδij ))

(Eq. (10))

Poisson
µ(Id)ij = Iδij

σ2(Iδ )ij = µ(Iδ )ij

read pR(Irij ;µ(Irij ),σ
2(Irij ))

(Eq. (11))

Normal
µ(Ir)ij = µ(Ir)a

σ2(Ir)ij = σ2(Ir)a

adenotes parameters that can be found in camera specification sheets.

2.6. Speckle contrast

The final steps of the simulation pipeline require the calculation of κ2 using the frames that
have been simulated. In the first step, κ2 is directly calculated using the simulated frames. The
calculation of κ2, as in a real experimental setting, can be done temporally or spatially depending
on how speckles are sampled. Independent of the domain in which κ2 is simulated, it should
be noted that since the speckle decorrelation was modelled as a single exponential (Eq. (1)),
the physically more realistic semi-infinite model of the speckle decorrelation follows a double
exponential model [10]. A correction was applied in order to simulate a model corrected value
of κ2 denoted as κ2

′

. Previous work in developing a successful DCS noise model also applied
a single exponential model in order to model noise [28,52]. Therefore, while the value of κ2
will be affected by the model used for g1, the noise is well described using the simplified single
exponential model. The definitions and notation related to κ2 are summarized in Table 3. The
following sections will describe their calculations.

2.7. Model uncorrected speckle contrast

So far the process for simulating the detection of speckle statistics on a 2D detector array and the
detector properties (Fig. 1(b) to (e)) has been described. These steps can be repeated in order
to simulate several experiments (ϵ , Fig. 2) for several different values of τc and therefore ρ, for
calculating κ2 in the temporal domain over wt, or for determining σ(κ2).

The next step in the pipeline is to use these frames to calculate values of κ2 (Fig. 1(f) and (g)).
As mentioned previously, κ2 can be measured spatially or temporally i.e. speckle statistics can
be determined spatially by using an area, wz, of pixels or temporally over the pixels in a set of
experiments, wt.

Spatial κ2 is given by:

N κ2ϵ =
σ2(eNS(ρ, Tx)ϵ )wz

µ2(eNS(ρ, Tx)ϵ )wz

(14)
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Table 3. Table of definitions for κ2. Three different variations of κ2 are calculated: first κ2

calculated directly from the integration of the double exponential g1 from CDE. This is κ̂2.
Secondly, κ2 calculated directly from the simulated frames whose g1 (g1) follows a single

exponential form. This is κ2 and outlined in Section 2.7. Thirdly, the model differences due to
the differences in g1 is corrected. This is κ2

′
and is outlined in Section 2.8. Moreover, κ2 and κ2

′

can be calculated either spatially or temporally.

κ2 Spatial κ2 Temporal κ2

ĝ1
electric-field autocorrelation curve
CDE, semi-infinite solution [10]

wz =
[︁
iζ jζ , iξ jξ

]︁
“spatial window” of pixel area

wt =
[︁
ϵζ , ϵξ

]︁
“temporal window” of experiments

κ̂2

derived from ĝ1

µ(Iϵ )wz
mean intensity over wz

µ(Iij)wt
mean intensity over wt

g1
simulated autocorrelation curve
(Eq. (1))

σ2(Iϵ )wz
variance of intensity over wz

σ2(Iij)wt
variance of intensity over wt

κ2

derived from g1
Nκ2

ϵ =
σ2(Iϵ )wz
µ2(Iϵ )wz

spatial κ2 (Eq. (14))
Nκ2ij =

σ2(Iij )wt
µ2(Iij )wt

temporal κ2 (Eq. (15))

Nγ = ∼κ2 − Nκ2

bias term (Eq. (19))

Nκ2′ = pK (k; κ̂2 + Nγ,σ2(Nκ2))
corrected for semi-infinite theory
(Eq. (20))

Where σ2(eNS(ρ, Tx)ϵ )wz
is the variance of the speckles and µ(eNS(ρ, Tx)ϵ )wz

is the mean of the
speckles, both calculated over the window wz for each experiment, ϵ .

Similarly, temporal κ2 is given by:

N κ2ij =
σ2(eNS(ρ, Tx)ij)wt

µ2(eNS(ρ, Tx)ij)wt

(15)

Where in this case, the variance and means of the speckle intensities are calculated over a temporal
window of many experiments wt for a set of i × j pixels.

With N κ2 simulated, noise correction must be applied. To do this, the noise correction method
outlined in [2] was used. Here we outline the correction for spatial N κ2, but the same principles
apply for temporal measurements.

Briefly, in order to correct for the dark and read signal offset in N κ2, a new dark frame, dfcorr,
is simulated using Eq. (12). The new dark and read signal offset corrected speckles frames is
given by:

e
sd′r′S(ρ, Tx)ij =

e
sdrS(ρ, Tx)ij − dfcorrij (16)

After the dark frame offset is corrected, the additional variance due to shot (σ2
shot) and the dark

frame (dark and read out noise, σ2
df ) is corrected by subtracting their respective variances from

the signal variance, σ2
signal = σ

2( e
sd′r′S(ρ, Tx)wz )ϵ .

Putting everything together, the shot, dark, and read noise corrected value of κ2, i.e. s′d′r′κ2wzϵ ,
is given by:

s′d′r′κ2ϵ =
σ2

signal − σ
2
shot − σ

2
df

µ2( e
sd′r′S(ρ, Tx)ϵ )wz

(17)

Where σ2
shot = µ(

e
sd′r′S(ρ, Tx)ϵ )wz and σ2

df = σ
2(dfϵ )wz .
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Variations in the noise correction can also be simulated. For example, the shot noise only
added frames, sκ

2, can be corrected in the following way:

s′κ2ϵ =
σ2

signal − σ
2
shot

µ2(esS(ρ, Tx)ϵ )wz

(18)

Where in this case, σ2
signal = σ

2(es′S(ρ, Tx)ϵ )wz and σ2
shot = µ(

e
s′S(ρ, Tx)ϵ )wz .

2.8. Model corrected speckle contrast

In these simulations, two forms of the electric field autocorrelation function have been introduced:
ĝ1 and g1, and crucially the decorrelation of the latter was modeled from the decorrelation time
of the former. However, the two are described by two different exponential functions meaning
that the values of κ2 derived from the two will differ. In particular, ĝ1 describes a measurement
in a semi-infinite medium and a multi-scattering (diffuse) regime. Since ĝ1 is a more realistic
solution to the CDE, rather than working with κ2 derived from g1, we introduce another variable,
κ2

′

, which is the model-corrected value of κ2.
κ2

′

is derived from both κ2 and κ̂2. κ2 values are used to simulate the offset or bias (γ) in κ2

due to noise, as well as to simulate the expected variance of κ2 over ϵ . The CDE solution of κ̂2 is
then used to scale the value of κ2

′

to the expected value of speckle contrast when measuring in a
semi-infinite geometry.

The bias term, γ is defined as:

γ = µ(∼κ
2)ϵ − µ(N κ

2)ϵ (19)

Finally κ2
′

values are generated by generating normally distributed random numbers, k, with
mean equal to κ̂2 + γ and variance equal to σ2(N κ

2)ϵ :

N κ2
′

= pK(k; κ̂2 + γ,σ2(N κ2)ϵ ) (20)

No model correction was performed for the correction of the variance of κ2
′

, following the
same reasoning as was used in the well- validated noise models for DCS [28,52]. These previously
developed DCS models have shown that the simulated variance in g1, despite being simulated
using a single exponential form of g1, is equivalent for measurement geometries where g1 takes a
double exponential form [28,53–55].

2.9. Using the simulations to evaluate system performance

A primary motivation for developing a speckle contrast model is to evaluate the performance
of such systems. Performance of simulated systems has been evaluated by its accuracy and
precision. In this context, accuracy refers to the percent error of N κ2

′

from its CDE solution, κ̂2,
and was defined as 100 × κ2′−κ̂2

κ̂2 . Precision is a measure of how variable a repeated measurement
is and has been evaluated by its coefficient of variation (CV) as a percentage defined as the ratio
of standard deviation of repeated experiments of N κ2

′

to its mean: 100 ×
σ(Nκ2′)ϵ

µ(Nκ2′)ϵ
. Maximum

accuracy and maximum precision correspond to the minimum values in these metrics.

2.10. Experimental setup (A) to validate simulations

The speckle contrast noise model was validated by comparing experimental results to the simulated
noise for a range of exposure times. A multi-mode fiber delivered light (785nm, Crystalaser,



Research Article Vol. 15, No. 2 / 1 Feb 2024 / Biomedical Optics Express 886

Reno NV, USA), onto a a homogeneous, steady-state phantom with lipid droplets undergoing
Brownian diffusion as in Ref. [29] was prepared. The resulting speckle pattern was imaged
onto an sCMOS camera (Orca Fusion-C14440-20UP, Hamamatsu Photonics K.K., Hamamatsu,
Japan) using a multi-mode fiber (910 µm core, 0.22 NA) and objective lens (f = 11 mm). The
value of β was measured to be approximately 0.2, and Ø was adjusted to be approximately 4
pixels.
τc of the system was obtained by simultaneous recording g2 of the system using a single mode

fiber coupled to a standard DCS device. The detector fibers of both the SCOS system as well as
the DCS system were placed at a distance ρ = 0.8 cm from the source. The performance of the
simulations was compared to the experimental results by evaluating the standard deviations of
sdrκ

2 of both over 100 experiments. In addition, the expected signal-to-noise-ratio (SNR) was
also evaluated considering µ(κ2

′

) to be equal to the average value of sdrκ
2 over 100 experiments

(Eq. (20)). SNR is defined as the ratio of the average value of the signal over the noise. The
experimental values of sdrκ

2 was calculated over a horizontal row of 1032 pixels. The simulated
SNR was defined as the ratio of the standard deviation of the experimentally obtained values
of sdrκ

2 to the average value of sdrκ2
′

over 100 simulated experiments, ϵ , calculated over 1032
simulated pixels.

2.11. Experimental setup (B) to optimize and design a speckle contrast system

The speckle contrast noise model was further used to design a speckle contrast system and define
the required detected electron count rate (e−/pixel/second) in order to accurately measure blood
flow in the adult human brain. An sCMOS camera by Basler (daA1920-160um, Basler AG,
Ahrensburg, Germany) was considered and simulated due its lightweight (15 g), compact size
(19.9 mm x 29.3 mm x 29 mm) and cheap price (<300€). Measurements were chosen to be taken
at ρ of 2.5 cm and T of 5 ms.

The required detected electron count rate to accurately measure κ2 was determined by
attenuating a 785 nm laser (Crystalaser, Reno NV, USA) on a liquid using a fiber attenuator (OZ
Optics, Ottawa Ontario, Canada). The diffuse light was imaged onto the camera using an 800
µm core multi-mode fiber (0.22 NA). The imaged speckles had a size of Ø = 5 pixels. The value
of β of the system was previously determined to be approximately 0.2. Speckle contrast data was
acquired over 600 frames, and data was analyzed using an ROI of approximately 1100 pixels.

As in the setup (A) to validate the simulations, τc of the simulations was obtained from g2
recorded using a standard DCS device. In order to approximate the required detected electron
count-rate (e−/pixel/second), a homogeneous (i.e., without layers) liquid phantom [29] was
prepared to have optical properties of µa = 0.1 cm−1 and µ′s = 10 cm−1. The true value of κ2
was considered to be the value of κ2 measured with the highest detected intensity count rate,
Imax. Percent error of κ2 as a function of the attenuated detected intensity count rates, Iatt, was
therefore calculated as: 100 ×

κ2(Iatt)−κ
2(Imax)

κ2(Imax)
.

3. Results

3.1. Verification with experimental data

The results of the simulation model were compared to experimental data of an Orca Fusion
camera using the experimental set-up in Section 2.10. Details of the camera parameters are
summarized in Table 4. The simulations used τc obtained from the g1 curve recorded using DCS
(Figure 3(a)). β was simulated to be 0.2 and Ø was set to 4 pixels to agree with the values of
β and Ø of the experimental data. Both experimental and simulation results were obtained for
exposure times ranging between 0.1 ms and 5 ms in order to cover a range of detected electron
intensities. It was ensured that the average value of the simulated detected electron intensity
matched the experimental data (Figure 3(b)). The resulting experimental and simulated standard
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deviation of e
sdrκ

2 is shown in Fig. 3(c). The calculated signal to noise ratio of κ2 in Fig. 3(d),
shows good agreement of the simulations with the experimental results.

Fig. 3. Comparison of the developed speckle contrast noise simulation model with
experimental values. The number of experiments as well as the number of speckles used
to obtain κ2 were the same for experiments and simulations. a) Experimental g1 curves
measured with a DCS system from which τc used in the simulations was determined (red). b)
Average detected electrons over 1032 pixels and 100 experiments (black) and 100 simulations
over 1000 pixels (grey). c) The standard deviation in e

sdrκ
2 calculated by simulation (grey)

and the experimental results (black). d) SNR from experiment (black) and simulation (grey).

Table 4. Simulation parameters used to verify simulations with
experimental data acquired using an sCMOS camera (Orca

Fusion-C14440-20UP, Hamamatsu Photonics K.K.)

Tissue Parameters Detector Parameters Speckle Parameters

τc: 4.18×10−5 s QE: scaled from measurements Ø: 4 pixels

µ(Iδ ) : 0.0025e− ϵN : 100

σ2(Iδ ) : 0.16e− wz : [0, 0; 32, 32]

µ(Ir) : 0.93e−

σ2(Ir) : 0.24e−

3.2. Simulation study

Using the simulation pipeline described, we simulate speckle patterns with realistic detector
noise. All simulations considered hardware consisting of a 785 nm unpolarized laser (β = 0.5)
and a 100×100 pixel array detector with noise properties derived from an Orca Flash4.0 v3
CMOS camera [56]. Since the variance of read-out noise is typically not defined in specification
sheets, an online simulation tool was used to approximate the value of σ2(Ir) [57]. Tissue with
optical properties listed in Table 5 were simulated. These values were chosen as they are roughly
the expected values when measuring in human tissue. g1 was simulated for ρ ranging from 0.5 to
4.5 cm for Tmax = 5 ms. Ø was chosen to equal three pixels in order to meet the requirements of
the Nyquist criteria [38,58]. The details of the parameters used in the simulation are summarized
in the table below:
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Table 5. Parameters that were used to simulate synthetic
speckles. Optical properties were chosen to mimic biological

tissue, and detector parameters are based off of the properties
of the Orca Flash4.0 v3 CMOS camera by Hamamatsu K.K.

Tissue Parameters Detector Parameters Speckle Parameters

µa : 0.1cm−1 QE: 54.2% Ø: 3 pixels

µ
′

s : 10cm−1 µ(Iδ ) : 0.06e−/s ϵN : 100

n : 1.33 σ2(Iδ ) : 0.16e− wz : [0, 0; 100, 100]

Db : 1 × 10−8cm2/s µ(Ir) : 2.9e−

σ2(Ir) : 0.1e−

3.3. Part I: simulating κ2

The simulated values of the decorrelation time, τc, as a function of source-detector separation,
ρ, is shown in Fig. 4(a). As expected from theory, the speckle autocorrelation decays faster
with increasing ρ [10], confirming that the modified copula method for simulating decorrelating
speckle intensity replicates the expected dynamics from theory. In Fig. 4(b), κ2(ρ) calculated
by integrating the simulated speckle electric field decorrelation curves, g1 (Eq. (1)) for three
different exposure times is shown. As expected from theory, κ2 decreases with increasing ρ and
increasing T .

Fig. 4. a) simulated values of τc in ms. A clear decrease in τc with increasing ρ is seen. b)
κ2 at three different exposure times calculated from integrating the autocorrelation, g1, of
the simulated speckles.

The simulated detected number of electrons (e
∼S(ρ, T)ij) for different ρ at two different T for

all 100 simulated experiments are shown in Fig. 5(a) and (d). Including detector effects in the
simulations results in deviations of the average value and variance from the ideal detected electron
intensity value. This effect is ρ and T dependent. For all values of ρ and T , the average value of
the electron intensity does not deviate from the ideal case when only shot noise is simulated (N:
s). However, in the regime of lower detected electron counts originating from speckle signal,
i.e. at longer ρ and shorter T , there is an increased variance in the shot noise included detected
electron intensity. Furthermore, at short T , it is seen that the addition of a dark frame (N: sdr)
visibly leads to a deviation in the average value of the detected electron intensity at ρ = 2 cm,
while the same deviation for higher T is not observed until approximately ρ = 4 cm. This is
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explained by the properties of the camera that were simulated. In this case, the dark current, a
T dependent signal, was significantly smaller than the read out signal, a T independent signal,
for the exposure times shown (µ(Id) = 6 × 10−6e− and µ(Id) = 3 × 10−4e− for T = 0.1 ms and
T = 5 ms respectively, compared to µ(Ir) = 2.5e−). Therefore, while dark noise is a T dependent
noise source, the effect of adding a dark frame appears more significant at shorter T due to the
high read-out signal relative to the speckle signal. Subtracting a dark frame (N: sd′r′) corrects
this deviation. However a dark frame subtraction does not correct the increase in variance of the
detected signal due to shot, dark, and read-out noise terms.

Fig. 5. Simulation of κ2 from the frames of synthetic speckles. a, d) Φ(ρ) for two different
exposure times (T = 0.1 ms and T = 5.0 ms on the top and bottom rows respectively) for
when no noise source are added are shown as well as for when noise sources are added and
when a dark frame is subtracted. b, e), the values of N κ

2 for all 100 simulated experiments.
c, f) In order to correct for differences in theory of g1 between the double exponential form
of the semi-infinite model from CDE and the single exponential copula model, a bias term γ
is calculated (Eq. (19)). These are shown for different variations of added noise, N, at the
two simulated exposure times.

These observations are carried through to Fig. 5(b) and (e) where the values of κ2 are plotted.
At shorter ρ and for both values of T , simulation of detector effects show very little deviation
from the ideal, no detector noise added case. However, with increasing ρ, there is a noticeable
deviation, as expected from experiments [2]. In the case of addition of shot, dark, and read-out
noise (N: sdr), it is seen that for T = 0.1 ms (Figure 5(b)), sdrκ2 begins to deviate from the ideal
case, at approximately ρ=2.0 cm. At T = 5.0 ms (Figure 5(e)), sdrκ2 begins to deviate from the
ideal case from approximately ρ=1.5 cm. Correcting for detector effects by applying a dark
frame subtraction and correcting for shot, dark, and read-out noises (N: s′d′r′) results in a larger
range of ρ for which κ2 agrees with the ideal case for T=5.0 ms, to about ρ=3 cm. However, the
same correction does not obviously perform as well for T=0.1 ms (Figure 5(b)), with detector
effects correction (N: s′d′r′) apparently performing worse than the uncorrected case (N: sdr).
This last observation should not be interpreted as a failure in the correction of noise, rather it
is a reflection of the origin of the electron signal in this regime. Referring back to the plot of
the detected intensity (Figure 5(a)), at T=0.1 ms, the majority of the detected electron signal
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after ρ=2 cm originate from the detector rather than from speckles. Therefore, without applying
corrections, any value of κ2 in this regime is not a reflection of speckle contrast, rather reflects a
“detector signal" contrast.

The bias term, γ (Eq. (19)), is shown in Fig. 5(c) and (f) and reflects the offset of N κ2 from the
no noise added case, ∼κ2. These were used to calculate the average theory corrected value of κ2

with simulated detector effects (N κ2
′

). For the remaining results, only the case of N = s′d′r′ will
be considered as this is the case of most interest in any experiment. The theory corrected values
of κ2 are shown in Fig. 6(a) and (d).

Fig. 6. a, d) Simulation of theory corrected values of speckle contrast, ∼κ2
′
. b, e) Accuracy

(percent error) of ∼κ2
′
. c, f) Precision (coefficient of variation) of ∼κ2

′
.

Theory corrected values of speckle contrast, N κ
2
′

, were calculated from Eq. (20). The final
averaged value of the simulated 500 normally distributed random values of N κ

2
′

for T = 0.1 ms
and T = 5 ms are plotted in Fig. 6(a) and (d). Error bars reflect the standard deviation. The
accuracy of N κ

2
′

is shown in Fig. 6(b) and (e), reflected as the percent error. The percent error
increases (accuracy decreases) with increasing ρ reaching 5% at approximately 1.8 cm for short
T (Fig. 6(b)) and 2.5 cm for long T ((Fig. 6(e)). Similarly, the precision of N κ

2
′

, represented as
the coefficient of variation (CV) also decreases (CV increases) with increasing ρ (Fig. 6(c) and
(d) for T = 0.1 and T = 5.0 ms respectively).

3.4. Part II: Using the simulations to study precision and accuracy

As seen in the previous section, effects of detector noise lead to decreases in accuracy of κ2
′

particularly in the regimes of long ρ and short T . In the next part of this analysis, the simulations
are used to understand how various parameters can be changed in order to increase the usable
range of ρ and T considering both precision and accuracy. In order to quantify the requirements
of a SCOS or SCOT system, it is assumed that the required accuracy is within a 5% error and
precision within a 10% coefficient of variation (CV) at ρ=4 cm and T=5 ms. These values were
chosen for deep tissue measurement: ρ=4 cm corresponds to an approximate measurement depth
of 2 cm. Although ρ=2.5 cm is considered sufficient for measuring the cortical surface going to
further distances offers greath depth sensitivity and distances of between 3.0 - 4.0 cm have been
used for tomographic reconstruction of human functional activation [59,60]. T=5 ms was chosen
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in order to be able to sample at fast enough acquisition rates while also maximizing the number
of detected photons (Figure 5(d)).

In speckle contrast optical tomography (SCOT) or speckle contrast diffuse correlation tomog-
raphy (scDCT) [16,17], several source and detector positions are used in order to reconstruct a
three dimensional image of blood flow. In a system incorporating nine source positions as in
[61], using T=5 ms, this will correspond to a full acquisition rate of 22.2 Hz for κ2 measured at
each source position. Furthermore, 5% accuracy and 10% precision have been chosen as our
targets since a 10% blood flow change corresponds to approximately 10% change in κ2. A 10%
change in flow is similar to what is measured in functional studies [23].

It is known that a contributing factor to the precision of κ2 is the number of speckles used
to determine µ and σ2 [34,38]. In the previous simulations of κ2, wz = 100 × 100 pixels
corresponding to the sampling of 1100 independent speckles. In Fig. 7, wz was changed to
simulate the effects of the number of independently sampled speckles on the CV of κ2

′

.

Fig. 7. The effect of the number sampled speckles on the measured precision of s′d′r′κ
2 ′ at

three values of ρ, and T = 5 ms. Increasing the number of sampled speckles results in a
decrease in the CV of s′d′r′κ

2 ′.

As expected in Fig. 7, increasing the number of speckles used to calculate κ2 results in an
increase in the precision of κ2. The decay in CV with increasing speckle number follows a
square root dependency, in accordance to the theory [34]. Therefore, if the objective is to
measure κ2 with 10% precision at ρ=4 cm and T=5 ms, wz must be increased from 100 x 100
to approximately 170 x 170 pixels corresponding to approximately 3000 speckles (since Ø=3
pixels). Sampling more speckles can easily be implemented in a typical sCMOS camera with
2048×2048 pixels by choosing a larger region of pixels.

As observed in Fig. 6(b) and (e), accuracy was seen to be higher at shorter ρ and longer T ,
i.e. in the regime of high Φ. Strategies for increasing the amount of detected light to achieve
good accuracy while remaining within safety limits may include employing dual sources located
equi-distance apart from the detected area of interest.
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In addition to Φ(ρ), τc, may also affect accuracy of κ2. In order to study the effect of τc
on accuracy in κ2, the simulations were repeated fixing Φ(ρ) to be constant over all values of
simulated ρ.

In Fig. 8, the percent error in s′d′r′κ
2
′

as a function of the number of detected electrons shows
that measurement accuracy is dependent on ρ, and by extension, τc. For the simulated camera,
measurements with longer ρ (shorter τc) require less detected electrons to achieve the same
accuracy in κ2.

Fig. 8. Accuracy of s′d′r′κ
2 ′ for two different values of ρ with identical values of Φ

(T = 1ms). Higher accuracy was found for greater ρ.

The results of Fig. 8 indicate that besides camera properties and detected light intensity,
variables affecting τc such as ρ or the optical properties of the tissue can also affect the accuracy
of κ2 measurements. We hypothesize that this result may be explained by the fact that the
distribution of speckle intensity changes with τc (in particular the variance), and as a result there
is a change in the sampling requirements for properly sampling the distribution. However, further
studies should be performed to verify this hypothesis.

3.5. Using the simulations to design and optimize a system

In the previous sections we have verified the simulation pipeline by comparing the SNR measured
experimentally with an Orca Fusion-C14440-20UP camera to the expectations from simulation.
We have further demonstrated in detail (without experimental comparison) the entire simulation
pipeline. Finally, in the following section we will demonstrate how these simulations can be used
to design and optimize a speckle contrast system.

Speckles were simulated using the parameters specified in Table 6. These parameters were
derived from the experimental results (τc and Ø), properties of the camera defined by the
manufacturer, as well as data analysis (wz). The resulting experimental and simulated percent
error in κ2 for varying detected electron count rates is shown in Fig. 9.
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Fig. 9. The effect of changing values of detected electron count rate on both the experimental
and simulated values of percent error of κ2. The grey horizontal line marks 5% error.

Table 6. Parameters that were used to simulate synthetic
speckles based on experimental data taken using a Basler

(daA1920-160um) CMOS camera on a liquid phantom.

Tissue Parameters Detector Parameters Speckle Parameters

τc : 1.46×10−5 s QE: 29% Ø: 5 pixels

µ(Iδ ) : 130.9e− ϵN : 100

σ2(Iδ ) : 0.8e− wz : [0, 0; 100, 100]

µ(Ir) : 2.15e−

σ2(Ir) : 2.28e−

The experimental and simulated results are in good agreement with each other and suggest
that for the chosen detector, a minimum detected count rate on the order between 4 to 5×104

e−/pixel/second allows us to calculate κ2 with approximately 5% error.
Using the derived acceptable minimum detected count rate as a guide in determining the

accuracy of raw data signal, the same device was placed on a human subject’s forehead using
a ρ of 2.53 cm and T of 5 ms. Data was acquired at a frame rate of 100 fps. A summary of
the measurements is show in Fig. 10. The desired electron count rate was reached (around
4.3×104 e−/pixel/second, Fig. 10), and the resulting 1/κ2 shows the expected pulsatile behavior
for a measurement acquired at this frame rate (Fig. 10(a)). In order to confirm that the pulsatile
behavior has physiological meaning, the fast Fourier transform (FFT) of the data has also been
plotted (Fig. 10(c)). A distinct peak at 1.4 Hz is seen in the FFT corresponding to a heart rate of
84 bpm. This value matches the resting heart rate measured in this subject using a standard pulse
oxymeter. The harmonics of the heart rate can also be seen.
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Fig. 10. Summary of results from a SCOS measurement on an adult human forehead. a)
1/κ2, a surrogate measure of blood flow, shows clear pulsatile signals. b) Average detected
electron count rate lies in a range which allows us to accurately measure κ2. c) Fourier
transform of the κ2 signal. A clear peak is found at 1.4 Hz corresponding to the heart rate of
the subject (84 bpm).

4. Discussion

A comprehensive model of speckle contrast signal for measurement of flow requires three
main components: the simulation of speckles, their dynamics, and the detector effects on the
measured signal. Individual 2D frames of speckles with the correct intensity distribution in
these simulations were simulated following the method of Duncan et.al. [62]. The dynamics of
the speckle intensity were simulated modifying the method of Ref. [45], where crucially the
modification allowed for the characterization of τc to be specified according to speckle intensity
decorrelation defined by the correlation diffusion equation [10]. While the exact form of the
speckle decorrelation, g1, differs in the simulations, general properties of the dynamics and their
dependency on parameters such as ρ and αDb could be simulated. The simplification of g1 of
a semi-infinite medium as a single exponential function has been seen to be accurate in noise
models for DCS [28]. We note that this work-flow is applicable to beyond the photon diffusion
regime and in the presence of static scatterers through the use of the appropriate model. Detector
effects were simulated taking into account photon shot noise, dark current signal and noise, and
read-out signal and noise. Our method for modeling speckle contrast can account for parameters
such as the speckle to pixel size and β.

The developed model was validated experimentally, and was shown to accurately predict the
SNR of κ2 measurements for a wide range of exposure times and detected intensities (Fig. 3). We
noticed a greater discrepancy between simulations and experiments for smaller exposure times
where the detected intensity is very small. We hypothesize that in this regime of low detected
intensity, this discrepancy can be a result of having neglected some sources of detector noise such
as quantization error. In addition, for regimes with noisier κ2, larger sample sizes (i.e. greater ϵ)
is required for accurately calculating σ(κ2).

In the simulation study to evaluate system performance, we have shown that the simulations
accurately represent experimentally observed behavior of κ2 in the regime of long ρ and/or
short T where the speckle contrast signal increases above the theoretically expected values.
Simulation of the noise correction method of Ref. [2] extends the region of ρ and T where the
speckle contrast signal matches its theoretical value. However, depending on the amount of
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the contribution of the detector effects, the correction cannot account for all of the increased
variance from these effects. Therefore, it is important when designing a speckle contrast system
to consider the range of ρ and T where κ2 can be corrected. We have also shown the dependency
of accuracy in speckle contrast signal on parameters including the number of detected photons,
ρ, and τc.

The accuracy and precision of κ2 developed in the simulation model not only reflects observed
experimental behavior, but is also comparable to what has been described in the noise models of
related techniques. In DCS, similar to what we have seen in speckle contrast, the SNR of the raw
g1 signal is dependent on the detected photon intensity and τc. Since DCS uses correlators to
measure g1, the noise model for DCS also depends on the architecture of the correlator [28,63].
An emerging variation of DCS known as interferometric DCS, or iDCS, utilizes a heterodyne
detection technique mixing the traditional DCS signal with a reference arm (i.e. the coherent
source). This detection scheme results in greater values of τc compared to traditional DCS
resulting in an increase in the SNR of the raw g1 data as well as a decrease in the coefficient of
variation of the retrieved blood flow values [15].

While in this analysis we have concentrated on the effects of detector noise in the regime
of low detected photon counts corresponding to the typical observations in experiments, it is
worth noting that high photon count rates that saturate the detector can also lead to decreases in
accuracy as well as precision of the raw signal and in the derived blood flow values. In DCS,
saturated detection leads to decreases in the experimentally measured β resulting in inaccuracy
of the retrieved blood flow [32]. Although not shown here, the same applies in measurements of
speckle contrast as detector saturation will lead to inaccurate measurements of σ2(I) and/or µ(I)
and consequently κ2.

The copula method [62] has previously been used by Qiu et.al. [35] to study the effects
of pixel sampling (sampling of wz and wt) on κ2. In this work, a pseudo exposure time was
considered. However since the decorrelation of the speckles were not reassigned in units of
time, the simulations were not related to proper physiological or system properties. Thompson
et.al [37] combined the method of simulating a single frame of speckles of Ref. [62] with small
random phase changes for each consecutively simulated frame, making it very similar to the
copula method of Ref. [62]. These simulations were used to study the effect of speckle to pixel
size ratio in the measurement of κ2. However, like in Ref. [35], the simulations were not scaled
to represent physiological properties and did not include any effects of detector noise.

The present study is complementary to the recent publication by Zilpelwar et.al. [40], with
several notable differences. The model developed by Zilpelwar et.al. is based on a Monte-Carlo
method simulating random particle (scatterer) motion. Their approach considers a single
scattering regime, and is therefore strictly speaking is not applicable for SCOS which is a diffuse
optical method considering a multi-scattering regime. Our approach does not simulate particle
motion, rather we directly simulate the statistical properties of decorrelating speckle by generating
correlated random numbers using the method of Duncan et.al. [45]. Both simulations are based
on a single-exponential form of g1. In the present work, we argue that while the exact value of
κ2 is dependent on the approximations used to define g1, the noise in κ2 is likely not affected
due to previous observations in the development of a noise model for DCS [28]. In order to
account for the difference in κ2 stemming from discrepancies in the approximation of g1, in our
simulations, we have included a method to correct for this difference. Furthermore, in the present
work we were interested in deriving limits of accuracy and precision for an experimental scenario
and therefore included a full noise corrected simulation of ∼κ2

′

by simulating the expected dark
frames of the individual specifications of each simulated camera. These details, multi-scattering
regime in a semi-infinite medium, was not included in the model of Ref. [40].

Another recent publication by Murali et.al. also proposes a method for simulating decorrelating
speckle statistics including the effect of detector noise [64]. In this work, unlike our proposed
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method or the method of Zilpelwar et.al. [40], the decorrelating speckle statistics are simulated for
any form of g1. This method can potentially offer better results for more complicated geometries
or in experimental situations with significant contributions from static scatterers. However,
for most typical SCOS or SCOT experimental scenarios, we expect that the proposed simple
copula-based method is sufficient for modeling speckle contrast data. In the present work a
detailed study comparing existing simulation methods such as those of Refs. [40,64] was not
performed, however a direct comparison is warranted in the future.

We are not the first to adapt the work of Duncan et.al. [45,62] to study the behavior of
κ. We note that this method is not only method in the literature for simulating decorrelating
speckle patterns [65–68]. In the copula method of [45], spatial correlation is not preserved
between frames. Song et.al propose another method for simulating frames correlated in the
spatio-temporal domain [65]. The authors successfully simulated real speckle contrast data by
creating correlation maps of data from a rat ear, however the authors note that the accuracy of
replicating an image taken from real data depends greatly on the quality of the camera used to
acquire the image. Sang et.al. utilized the method of Song et.al. [65] to further expand the
method to include time integration effects of exposure time [69], however only one exposure time
was simulated. Another method for modelling speckles is to model the summation of random
phasors [66]. Postnov et.al. modified this technique in order to simulate the effects of the laser
linewidth and camera noise on κ2 [67]. Finally, we also note that a separate method for simulating
static speckle using a Monte-Carlo method has also been developed by Bar et.al. [70].

An interesting work by Song et.al. [71] derives the effect of camera quantization of intensity
on speckle contrast from the probability density function of speckle intensity. Quantization of the
speckle signal is something that was not considered in the current study and should be considered
in future work.

5. Conclusion

In the present work we have introduced a method for simulating the formation and detection
of dynamic speckle patterns. The main application that we have focused on was the design
and characterization of a speckle a contrast system capable of measuring human adult cerebral
blood flow non-invasively. To this end, the simulation method was validated on a dynamic liquid
phantom, the details of speckle contrast signal as a function of ρ and T were studied, and finally
a system designed for human cerebral blood flow was characterized and validated on an adult
human subject.

Similar recent publications in the field highlight the need for methods for simulating speckle
contrast signal and noise [40,64]. In contrast to these publications, the main contribution of
the present work is the presentation of a full pipeline for the design and characterization of a
SCOS system with clearly defined experimental requirements including the detection accuracy
and precision of κ2. The simulation method has been shown to be useful when identifying
the lower bounds of detected electron count-rate to achieve the desired accuracy and precision
of speckle contrast signal. As speckle contrast signal is sensitive to detector noise effects at
low detected electron count-rates, characterizing these limits is advisable when developing any
speckle contrast system.
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