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a b s t r a c t

Background: Direct electrical stimulation of the amygdala can enhance declarative memory for specific
events. An unanswered question is what underlying neurophysiological changes are induced by amyg-
dala stimulation.
Objective: To leverage interpretable machine learning to identify the neurophysiological processes un-
derlying amygdala-mediated memory, and to develop more efficient neuromodulation technologies.
Method: Patients with treatment-resistant epilepsy and depth electrodes placed in the hippocampus and
amygdala performed a recognition memory task for neutral images of objects. During the encoding
phase, 160 images were shown to patients. Half of the images were followed by brief low-amplitude
amygdala stimulation. For local field potentials (LFPs) recorded from key medial temporal lobe struc-
tures, feature vectors were calculated by taking the average spectral power in canonical frequency bands,
before and after stimulation, to train a logistic regression classification model with elastic net regula-
rization to differentiate brain states.
Results: Classifying the neural states at the time of encoding based on images subsequently remembered
versus not-remembered showed that theta and slow-gamma power in the hippocampus were the most
important features predicting subsequent memory performance. Classifying the post-image neural states
at the time of encoding based on stimulated versus unstimulated trials showed that amygdala stimu-
lation led to increased gamma power in the hippocampus.
Conclusion: Amygdala stimulation induced pro-memory states in the hippocampus to enhance subse-
quent memory performance. Interpretable machine learning provides an effective tool for investigating
the neurophysiological effects of brain stimulation.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Quantifying the neurophysiological effects of brain stimulation
is crucial for understanding the underlying mechanisms by which
stimulation affects cognitive processes. Such an understanding can
pave the way for developing more effective neuromodulation
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strategies. Moments of relative emotional arousal tend to be
remembered better than moments without such arousal, and the
amygdala is a key node in the distributed emotion and memory
circuits underlying this prioritization of memory [1]. Studies in
rodents support the view that the amygdala, particularly the
basolateral complex of the amygdala (BLA), is activated by arousal
and that it canmodulate memory processes in downstream regions
such as the hippocampus [2]. However, the mechanisms through
which these BLA inputs act remain unknown. One possibility is that
direct activation of the BLA could enhance memory without
necessitating emotional arousal. Indeed, previous studies in rats
have shown that direct electrical stimulation of the BLA can
improve recognition memory performance in tasks with neutral
stimuli [2]. In one study [3], rats were presented with novel objects,
and bouts of exploration of some of the objects were immediately
followed by brief electrical stimulation of the BLA. When rats were
tested one day later, recollection of objects that had been previously
presented with stimulation was enhanced compared to that of
objects that had not been paired with stimulation. Subsequent
studies in rats found that electrical and optogenetic stimulation of
the BLA elicited slow gamma (30e55 Hz) oscillations in the hip-
pocampus and that inactivation of the hippocampus eliminated the
memory enhancement resulting from BLA stimulation [3e5].

A recent study of patients with depth electrodes implanted in
the medial temporal lobe (MTL) to monitor epileptic activity
extended the rodent findings in three key respects [6]. First, the
study found that direct electrical stimulation of the BLA in humans
following the presentation of a neutral object led to better memory
for the objects when memory was tested the subsequent day.
Second, MTL LFP activity that occurred one day after encoding,
during accurate recognition, differed between objects that had
been previously presented with BLA stimulation versus those that
had not. Third, stimulationwas performed at lowamplitudes which
did not cause detectable changes in peripheral autonomic mea-
sures, and during formal testing, patients reported no awareness of
the BLA stimulation, indicating that the memory enhancement did
not appear to depend upon emotional arousal. Thus, data from rats
and humans have indicated that direct stimulation of the BLA can
enhancememory bymodulating processes in the hippocampus and
can do so without triggering overt emotional arousal.

Key unanswered questions, particularly for humans, involve the
precise nature of amygdala-hippocampal network states favorable
to memory and how direct electrical BLA stimulation may control
such states. Quantifying the neurophysiological effects of brain
stimulation and their link to subsequent behavior is crucial for
understanding how specific activity patterns relate to cognitive
processes. Interpretable machine learning classification models
combined with feature learning techniques are effective tools for
identifying neurophysiological features that predict memory per-
formance [7]. Moreover, these techniques can be used to quantify
the neurophysiological effects of stimulation by classifying be-
tween stimulated and unstimulated states based on the neural
features.

While statistical inference techniques can be used to capture the
relationship between neural features and cognitive states, they
cannot be used for making predictions to inform closed-loop ex-
periments or to optimize neuromodulation [3,8e10]. Besides, sta-
tistical inference may become less precise as the number of input
variables increases. On the other hand, machine learning classifi-
cation methods are focused on identifying generalizable patterns in
high dimensional data for out-of-sample predictions [11]. Inter-
pretable machine learning techniques have built-in measures that
allow quantifying the contribution of each input variable to clas-
sification [12]. In the current study, we leveraged an interpretable
machine learning approach to investigate the neurophysiological

effects of amygdala stimulation and their relationship with bio-
markers of successful memory processing in the amygdalo-
hippocampal network.

2. Material and methods

2.1. Participants

Fourteen English-speaking adults (>18 years and five females)
with drug-resistant epilepsy and implanted with intracranial depth
electrodes in the BLA and hippocampus provided written informed
consent to undergo amygdala stimulation and an image memory
task [6]. The demographic information and memory performance
results of each subject are provided in Table S1. The Emory Uni-
versity Institutional Review Board approved this research study.

2.2. Experimental procedure

During the study phase, 160 neutral object images were pre-
sented to the patients for 3 s. Unbeknownst to each participant, a
random half of the images were followed by direct amygdala
stimulation (labeled as “stimulation” trials), and the other half were
considered as “no stimulation” trials (Fig. 1A and Fig. 1B). The
amygdala was stimulated with 1 s of low-amplitude, rectangular
pulses at 0.5 in 8 trains of 4 pulses at 50 Hz (theta-modulated
gamma stimulation). These stimulation parameters were selected
to mimic amygdalo-hippocampal theta-gamma activity patterns
observed during successful encoding of items and item-context
associations in prior experimental studies in animals and humans
[3,13e16]. Such BLA stimulation parameters were subsequently
demonstrated to enhance event-specific memory in several animal
experiments [15e18] and in humans [6].

Fig. 1C shows three representative examples of the LFP signals
recorded from a hippocampus depth electrode contact pair span-
ning the CA1 field during the study phase. The LFP signals from the
hippocampus and amygdala were recorded during the entire study
phase. The subjects' memorywas tested via a self-paced yes/no (i.e.,
repeated/new) recognition-memory task for half the images (40
from the stimulated and 40 from the unstimulated trials) imme-
diately after the end of the study session (i.e., “immediate” test);
memory for the remaining images (40 from the stimulated and 40
from the unstimulated trials) was tested approximately one day
later (i.e., “one-day” test; Mdelay ¼ 22 h, range ¼ 20e25 h delay).
Forty new images served as foils, and different foils were used for
each test [6]. In our study, we used a discriminability index (d’ in-
dex, a standard metric of recognition memory), to measure the
participant's memory in an old/new recognition memory test (see
Supplementary material for more details on the use of d’ recogni-
tion memory scores) [19].

2.3. Localization of the stimulation and recording electrodes

The stimulation and recording contacts in each patient were
determined by automated coregistration of each postoperative
structural brain MRI and head computed tomography images with
each preoperative brain MRI using a stereotactic neurosurgical
planning computer workstation (ROSA Surgical Planning Software;
MedTech Surgical, Inc.). Next, a neurosurgeon (JTW) compared the
contact locations with standard MRI and tissue-section atlases of
the human brain for precise localization of each electrode relative
to each patient's medial temporal lobe anatomy [6].
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2.4. Brain stimulation and recording

LFPs were recorded using depth electrodes (Ad-Tech; 0.86 mm
diameter, 2 mm length platinum-coated contacts, typically spaced
along with 5-mm intervals) and an amplifier (XLTEK EMU 128FS;
Natus Medical) for each patient, at a sampling rate of either 500 or
1,000Hz. A research neurostimulator (CereStim M96; Blackrock
Microsystems) was used to deliver the current regulated, charge-
balanced, biphasic rectangular pulses at 0.5 mA for 1s in eight
trains of four pulses at 50 Hz (theta-modulated gamma burst,
Fig. 1B) to the BLA precisely at the offset of image presentation for a
randomized half of the studied images. No seizure activity or after-
discharges following stimulationwere detected during testing or in
a thorough post-test review of all recorded LFP channels by a
clinical epileptologist.

2.5. Preprocessing

The LFP signals were first digitally filtered with a high pass
cutoff of 1 Hz to attenuate low-frequency artifacts and a low pass
cutoff of 249 Hz. The median LFP across all available recording
electrodes was then subtracted from each LFP to remove non-local
(global) artifacts. The signal was decomposed into the frequency
components using Fast Fourier Transform, and power was averaged
in standard bands, including q (5e8 Hz), a (9e12 Hz), b (13e30 Hz),
slow-g (31e55 Hz), and fast-g (65e90 Hz) [20]. We used the
spectral power extracted from hippocampus and amygdala re-
cordings as potential biomarkers.

2.6. Binary classification and feature learning

A logistic regression (LR) model was used to classify the neural
states with spectral features of the LFPs as the input signal. The
neural states (i.e., “good” memory vs. “bad” memory or Stim vs. No
Stim) were labeled for the classification task. One of the main ad-
vantages of LR is the interpretability of the model. We leveraged
this property to identify the important neural features that
contributed to classification. To this end, we utilized the elastic net
regularization (ENR) technique. Elastic net is a regularization and
feature selection technique that simultaneously estimates the
model parameters and selects the most important features by
minimizing the cost function in (Eq. (1)&2).

min
b0;b

ð 1
2N

XN

i¼1

ðyi � b0 � xTi bÞ
2 þ lPaðbÞÞ 1

PaðbÞ¼ ð1� aÞ
2

b22 þ ajbj1 2

whereN is the number of samples, yi is the label of sample i, xi is the
feature of sample i, b and b0 are the fitted coefficients, l is the
regularization parameters, and Pa(b) is the penalty term in which a
scalar coefficient (a) controls the contribution of L1 and L2 norms.

The idea is to achieve the best classification accuracywith as few
model parameters as possible. This was accomplished by control-
ling the l parameter in Eq. (1). As the l increased (l¼0 in a non-
regularized model), the model parameters were driven to 0. The

Fig. 1. Experimental and Analysis Procedure (A) Schematic of recognition memory task in which amygdala was stimulated following half of the objects in the study phase and
recognition memory was tested on unique subsets of images immediately and one day after the study phase. (B) Representative, postoperative coronal MRI showing electrode
contacts in the amygdala (white square). The red arrow shows the place of stimulation. (C) Representative signals recorded from hippocampus electrode contact pair nearest to CA1
for three trials 200 ms of the signals before and after stimulation (gray boxes) are not being used. (D) Spectral power (features) of the electrodes in the hippocampus and amygdala
was used as input to fit a classifier to discriminate between two input groups based on their labels. Feature selection used the model generated by the classifier and the input
features to find the biomarker that was most predictive in discriminating between the two states. . (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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trajectory of the model parameters as a function of the regulari-
zation parameter (l) formed the regularization path of the model.
The features corresponding to the slowest decaying coefficients
were interpreted as the most important ones [21,22].

The classification model parameters were estimated using N-
folds nested cross-validation [23], where in each iteration, data
were divided into training and test sets in the outer-fold. In the
inner folds, the training data was further divided into training and
validation sets. The best set of parameters were estimated by
training different models using the inner-fold training data and
validating using the validation data set. By sweeping the regulari-
zation parameter l logarithmically from 10�5 to 105 and the mixing
parameter a between 0.8 and 0.95 in each inner-fold, we identified
the optimal values of the hyperparameters that minimized the
cross-validation error. We chose the range of a parameter close to 1
to prioritize model sparsification. The area under the curve (AUC) of
receiver operating characteristic was calculated as a measure of the
classifier's performance. To find the most informative feature in the
model, we calculated the proportion of the models for which a
given parameter was retained during the sweep of parameters in
the inner fold. This measurement reflected the importance of a
feature in the classification between two groups. The importance of
a specific feature is relative to the other input features in the clas-
sification between two classes. The statistical significance of the
relative importance of the features was calculated using a one-way
analysis of variance (ANOVA) (Fig. 1D). This study utilized a
repeated measures ANOVA (rmANOVA) test for statistical com-
parisons between “remembered” and “not-remembered” and be-
tween stimulated and unstimulated LFP features. All p-values have
been adjusted for multiple comparisons using the Benjamini-
Hochberg correction method [24]. We used Pearson linear corre-
lation coefficients for the correlation analysis.

3. Results

3.1. Theta and gamma power in the hippocampus predict
subsequent memory performance

The first step towards identifying the neurophysiological effects
of memory-enhancing BLA stimulation was to investigate the
neural processes underlying “good” memory performance in the
absence of stimulation. To this end, we labeled the successfully and
unsuccessfully “remembered” trials in the image recognition task
as “good” and “bad”memory trials, respectively. 2800ms of the LFP
recordings from hippocampal electrodes nearest CA1 (hippocam-
pus-CA1) and from the amygdala during the presentation of each
image (named “during object”, hereafter, Fig. 1C) were used to
determine “good” and “bad” memory states when paired with the
subsequent memory result. This time-window length was chosen
to accurately estimate the lower end of the theta frequency band
[25]. We focused on hippocampal CA1 due to the critical role in
memory formation in humans and it's strong and direct connec-
tivity to the BLA [26,27]. Moreover, it was the only hippocampal
subregion that was sampled consistently in almost all (12 out of 14)
subjects. This initial analysis focused on “no stimulation” trials to
explore biomarkers in the absence of any potential confounding
effect of stimulation. The spectral power from hippocampus-CA1
and the amygdala during each trial of the study phase in each of
the twelve subjects formed the input vectors for the classification.
The labels extracted from the subsequent recognition memory test
were used to train a LR model with ENR. Since, we had imbalance
labeled (imbalance number of “remembered” and “not remem-
bered” trials) for each individual, we combined data from all sub-
jects. To account for the subject variability, we used a leave-one
subject-out approach in which one subject was used for testing,

and the remaining eleven subjects were used for training. The
trained model was used to predict memory performance in the test
phase based on the LFP spectral powers of hippocampus-CA1 and
amygdala during the study phase.

Fig. 2A shows the receiver operating characteristic (ROC) curve
of classification between the “remembered” and “not-remem-
bered” memory trials for the “immediate” test based on the
hippocampus-CA1 LFP spectral features during the study phase. We
used a leave-one subject-out (12-fold) nested cross-validation
(mean AUC: 0.7182 ± 0.0828, n ¼ 12, comparison with chance
level p < 0.001, see Supplementary material) to evaluate the clas-
sifier's out-of-sample performance. Fig. 2B shows that theta power
during the encoding phase was significantly more important than
the other features in predicting “good” vs “bad” memory perfor-
mance. (pcorrected<0.01). Fig. 2C, in which performance for each
individual is calculated by subtracting remembered from non-
remembered for each subject, shows that successfully remem-
bering a picture in the “immediate” test is associated with higher
theta power of the hippocampus-CA1 during the prior study phase
(rmANOVA, F (1,11) ¼ 5.6, pcorrected ¼ 0.04). More specifically, we
averaged the power of all “remembered” trials and “non-remem-
bered” trials for each of 12 subjects in any specific band. Therefore,
we had 12 values for the “remembered” and 12 values for the “not-
remembered” trials.We used rmANOVA to statistically compare the
12 values of the remembered trials with non-remembered trials.

We used the same leave-one subject-out (12-fold) nested cross-
validation approach to train and evaluate the LR model with ENR to
predict the “remembered” and “not-remembered” trials in the
“one-day” test based on the spectral features of the LFP recordings
during the study phase. The ROC curve of this classification is based
on the hippocampus-CA1 LFP features as the input is shown in
Fig. 2D (mean AUC: 0.6561 ± 0.0842, n ¼ 12, comparison with
chance level p < 0.001). Fig. 2E shows that hippocampus-CA1 slow-
gamma was the most important feature that predicted differences
between the “not-remembered” and “remembered” trials during
the “one-day” test (pcorrected<0.01). In addition, Fig. 2F shows that
hippocampus-CA1 slow-gamma power was significantly higher in
“remembered” compared to “not-remembered” trials (F
(1,10) ¼ 4.63 uncorrected p ¼ 0.04). Using the interquartile range
rule [28], one outlier was detected and removed from the statistical
analysis.

3.2. Amygdala stimulation modulates hippocampal gamma activity

Understanding how amygdala stimulation impacts biomarkers
associated with memory performance could help guide the design
of closed-loop neuromodulation therapies for improving memory.
To begin addressing this question, we explored the neurophysio-
logical effects of BLA stimulation on hippocampus activity recorded
from electrodes nearest CA1. 2800-ms continuous segments of the
hippocampus-CA1 LFP recordings after each stimulation were
extracted. To minimize any residual artifacts of the stimulation,
200 ms after the stimulation offset was excluded, as shown in
Fig. 1C [29] (see Supplementary Fig. S1). The spectral power of the
hippocampus-CA1 LFPs in different electrophysiological frequency
bands was used as the input feature vector to train an LR classifier
using ENR to classify between “stimulation” and “no stimulation”
trials (Fig. 3A). Notably, we had equal numbers of stimulation and
no stimulation trials gathered from each subject. As such, within
each subject, we trained a model using a 10-fold nested cross-
validation method in which 90% of the data was used for training
and evaluating (in inner folds) the model, and the other 10% was
used to test the out-of-sample generalization performance of the
model. The ROC curve in Fig. 3B shows the performance of the
classifier in discriminating between the stimulated and the
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unstimulated trials for the 12 subjects, using hippocampus-CA1 LFP
features after the stimulation offset. The AUC of the classifier with
10-fold nested cross-validation across all subjects was 0.70 ± 0.07
(comparison with chance level p < 0.001), which indicates signifi-
cant changes in the hippocampus-CA1 LFP features post-
stimulation. Fig. 3C shows a representative importance graph,
which reflects the contribution of each frequency band in classi-
fying between stimulated and unstimulated trials for one subject.
As this figure shows, slow gamma activity has the most contribu-
tion in this classification (pcorrected<0.01, n ¼ 1). Also, Fig. 3D shows
the power difference (stimulated vs. unstimulated trials) in distinct
frequency bands. A significant increase in the slow-gamma band
was observed (unstimulated: mean ¼ 0.3422, sd ¼ 0.02, stimu-
lated: mean ¼ 0.3803, sd ¼ 0.0192, pcorrected <0.01). The feature
selection results for each subject are shown in Fig. S3.

3.3. Amygdala stimulation may heterogeneously modulate
subregions of the hippocampal formation

Spectral power features, using the same 2800-ms post-
stimulation window, were extracted from the bipolar LFP

recordings from electrode pairs localized in the subiculum (SUB,
number of subject or N ¼ 10), CA1, dentate gyrus (DG, N ¼ 5), and
the parahippocampal cortex (PHC, N ¼ 9). LR classification models
with ENR were trained using 10-fold nested cross-validation to
discriminate between stimulated and unstimulated trials in each
region. Fig. 4A shows the mean and standard deviation of the
classifier performance in different regions across subjects. A higher
classification accuracy indicates greater separability in the feature
space and suggests a stronger neuromodulatory effect of amygdala
stimulation. As this figure demonstrates, memory-enhancing
amygdala stimulation had a stronger neuromodulatory effect
upon LFPs recorded nearest the SUB compared to other subregions
of the hippocampal formation (mean AUC: 0.7286 ± 0.0752,
n ¼ 10). However, no significant difference was observed on the
AUC of different hippocampal subregions. An additional correlation
analysis did not show an association between the distance between
the stimulation site and the recording electrode (from CA1) and
change in slow-gamma power as an effect of stimulation (See
Supplementary Material Fig. S4). Fig. 4B compares the theta power
between stimulated and unstimulated trials in possibly different
regions of the hippocampal formation. The rmANOVA test showed

Fig. 2. Predicting memory performance in the “immediate” test and “one-day” test phase based on the CA1 activities during the study phase: (A) ROC for LR with ENR prediction of
“remembered” versus “not-remembered” trials using CA1 signal in the “immediate test” (mean AUC: 0.7182 ± 0.0828, n ¼ 12, comparison with chance level p < 0.001). (B)
Biomarker importance graph for classification between “remembered” and “not-remembered” trials using CA1 signal and combining all subjects with 12-fold nested cross-
validation. This graph shows that the theta band contributes most in classification between these two groups (corrected p < 0.01). In this figure, each dot represents the model
that was used for any individual to predict their subsequent memory performance. Each red cross (þ) represents an outlier in the boxplot.(C) Power difference between
“remembered” and “not-remembered” trials using CA1 signal. The “remembered” trials show more power in theta band (rmANOVA F (1,11) ¼ 5.6 corrected p ¼ 0.04). In this graph
each point represents the power difference between different trial types (“remembered” vs “not-remembered”) for each individual. No significant outlier has been detected in theta
band. (D) ROC of LR with ENR prediction of “remembered” versus “not-remembered” trials using CA1 signal (mean AUC: 0.6561 ± 0.0842, n ¼ 12, comparison with chance level
p < 0.001). (E) CA1 biomarker importance graph for classification between “remembered” and “not-remembered” trials combining all subjects with 12-fold nested cross-validation
(corrected p < 0.01). This graph shows that the slow-gamma power in the CA1 contributed most in classification between these two groups. Each dot represents one subject. (F)
Power difference between “remembered” and “not-remembered” trials in CA1 signal. The “remembered” trials show more power in CA1 slow-gamma band (rmANOVA F
(1,10) ¼ 4.63 uncorrected p ¼ 0.04).). Each point represents one subject. We have removed the outlier in the statistical test. Each point represents one subject. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)

M.S.E. Sendi, C.S. Inman, K.R. Bijanki et al. Brain Stimulation 14 (2021) 1511e1519

1515



a significant difference in theta power between stimulated and
unstimulated trials in LFPs nearest PHC (pcorrected¼ 0.04, n¼ 9), and
no significant difference in theta power was observed in the other
regions. Fig. 4C shows the results of the same analysis for slow-
gamma power. Again, amygdala stimulation was associated with
a significant increase in gamma activity in LFPs nearest the SUB
(pcorrected ¼ 0.01, n ¼ 10) and the CA1 (pcorrected ¼ 0.04, n ¼ 12)
regions. However, the BLA stimulation did not significantly affect
the slow-gamma power of the LFPs recorded nearest the other
regions.

Given the potential for modulatory effects of amygdala stimu-
lation upon CA1, SUB, and PHG subregions, we examined this ef-
fect's relationship to subsequent memory performance
(supplementary material and Fig. S5). Specifically, we examined
potential correlations between theta power in PHG and slow-
gamma in CA1 and SUB with memory performance at “immedi-
ate” and One-day test time points. Notably, only the positive cor-
relation of slow-gamma in CA1 tomemory performance at the One-
day test was observed to be statistically significant.

4. Discussion

Neural activity, measured by LFPs during emotional and mem-
ory tasks, can be used as biomarkers to understand the effects of
direct brain stimulation on memory processing network dynamics
[8,30]. In this study, we used LR classification with ENR to differ-
entiate between “remembered” and “not-remembered” trials in the
“immediate” and “one-day” tests, based on LFP features recorded

nearest CA1 (Fig. 2) and the amygdala (See Fig. S2). The ENR was
used as a feature learning method to identify the most important
features that discriminated between “remembered” and “not-
remembered” trials. We found an increase in the hippocampal CA1
theta power during the encoding phase was the most important
feature that discriminated between “remembered” and “not-
remembered” trials of the “immediate” test. Indeed, the hippo-
campal theta rhythm is a prominent biomarker of spatial memory,
and memory in general, in human and animal models [31e33].
Several human studies have demonstrated that hippocampal theta
activation during encoding predicted subsequent memory perfor-
mance [34e36]. In particular, theta rhythm was a predictor of the
memory performance in the short-term memory test [37,38].
Moreover, theta power before the presentation of stimuli predicts
the subsequent remembering performance of successful episodic
memory retrieval [39]. Likewise, Backus et al. [35] showed an in-
crease in hippocampal theta activity while a new memory is suc-
cessfully combined with an existing mnemonic representation, and
Lin et al. [17], which showed that theta power increases during
successful item encoding.

We found that the spectral band features that differentiated
between “remembered” and “not-remembered” trials in the “one-
day” test included slow-gamma power recorded within the
sampled locations in the medial temporal lobe from hippocampus-
CA1 and theta power recorded from the amygdala. Although we
could not histologically verify that human recordings represent
signals specific to these locations, the results are generally in
agreement with the results of other animal and human studies.

Fig. 3. The neuromodulatory effect of amygdala stimulation on the hippocampal activities: (A) Post-stimulation of the (CA1) LFPs of “stimulation” and “no stimulation” were
segmented to create features. (B) Individual classification ROC curves for each individual subject (mean AUC ¼ 0.70 ± 0.07, n ¼ 12). In this graph, each line represents one subject.
The color line is the representative subject (C) A representative biomarker importance graph for classifying between the post-stimulation state of stimulated and unstimulated trials
(corrected p < 0.01, n ¼ 1). The represented subject ROC has been marked by different color in Panel B. (D) Stimulated and unstimulated power in different electrophysiological
bands. The power in the low-gamma band is greater in the stimulated trial (unstimulated: mean ¼ 0.3422, sd ¼ 0.02, stimulated: mean ¼ 0.3803, sd ¼ 0.0192, corrected p < 0.01).
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Trimper et al. [40] showed an increase in the slow-gamma power in
the physiologically- and histologically-defined CA1 when rats
explored an object during encoding. Also, Jutras et al. [41] show
that greater hippocampal gamma power during encoding predicted
greater subsequent visual recognition memory performance in
macaque monkeys. Human studies likewise showed that broad-
band gamma power in the hippocampus and the left temporal and
frontal-parietal cortices is a neurophysiological predictor of suc-
cessful encoding during the memory tasks [42,43].

We used our classification approach to identify spectral features
of hippocampal LFPs that were modulated by amygdala stimula-
tion. Our results demonstrated that slow-gamma power was the
most important neurophysiological feature that discriminated be-
tween stimulated and unstimulated trials and that amygdala
stimulation particularly increased slow-gamma power in the hip-
pocampus near CA1. Similarly, optogenetic stimulation of the rat
amygdala with analogous stimulation parameters increased
gamma power in CA1 [44]. Taken together, the mechanisms that
govern hippocampal gamma induction by amygdala stimulation
are likely fundamentally similar in rats and humans. Recent studies
have linked emotional memory to increases in gamma power in the
amygdala as well [45e47]. We have previously demonstrated that
electrically stimulating the amygdala directly without eliciting
awareness, subjective emotions, or autonomic responses but still
enhanced memory for non-emotional objects in the subjects used
for this analysis [6]. Although the current study is not able to
demonstrate that these changes in post-stimulation slow-gamma
power are directly related memory enhancement, the increases in
slow-gamma power for remembered relative to forgotten items
suggest an enticing link between these hippocampal signal
changes. Future studies that address the limitations of our study are
directly designed to address whether stimulation directly modu-
lates successful memory biomarkers will be needed.

Although we did not observe a significant difference in AUC of
stimulation vs. no stimulation classification across all subregions of
the hippocampus, we found that amygdala stimulation differen-
tially affects the hippocampal subregions. Amygdala stimulation
increases the slow-gamma power in CA1 and SUB and the theta
power in PHG (Fig. 4B and C). While we found that the amygdala
stimulation significantly increased slow gamma power nearest the

CA1 and SUB and increased theta nearest PHG, our findings do not
exclude the possibility that additional neurophysiological features
or anatomic structures may be relevant but detectable with addi-
tional methods or only in larger samples with denser electrode
sampling of hippocampal subfields.

5. Conclusion

We presented a machine learning approach that utilized
classification-based feature learning for investigating the neuro-
physiological effects of memory-enhancing amygdala stimulation
and their link to memory processes. Neurophysiological states of
the amygdala and hippocampus during the encoding phase and
before stimulation delivery predict subsequent memory. In
particular, gamma power in CA1 may be correlated with subse-
quent memory performance. Finally, we found that amygdala
stimulation immediately increases CA1 gamma activity, and this
change correlates with behavioral outcomes in a memory recog-
nition test. The effect of amygdala stimulation upon CA1 gamma
power may elucidate a potential mechanism by which amygdala
stimulation enhances memory over time, however future studies
will be necessary to directly link these two findings.
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romoulatory effect on SUB (mean AUC: 0.7286 ± 0.0752, n ¼ 10). (B) Normalized power of theta band in CA1, SUB, DG, and PHC for stimulated (red) and unstimulated (blue) trials.
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