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S U P P L E M E N T  A R T I C L E

Imaging of Brain Structural and Functional Effects in 
People With Human Immunodeficiency Virus
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Before the introduction of antiretroviral therapy, human immunodeficiency virus (HIV) infection was often accompanied by 
central nervous system (CNS) opportunistic infections and HIV encephalopathy marked by profound structural and functional 
alterations detectable with neuroimaging. Treatment with antiretroviral therapy nearly eliminated CNS opportunistic infections, 
while neuropsychiatric impairment and peripheral nerve and organ damage have persisted among virally suppressed people 
with HIV (PWH), suggesting ongoing brain injury. Neuroimaging research must use methods sensitive for detecting subtle 
HIV-associated brain structural and functional abnormalities, while allowing for adjustments for potential confounders, such as 
age, sex, substance use, hepatitis C coinfection, cardiovascular risk, and others. Here, we review existing and emerging 
neuroimaging tools that demonstrated promise in detecting markers of HIV-associated brain pathology and explore strategies 
to study the impact of potential confounding factors on these brain measures. We emphasize neuroimaging approaches that 
may be used in parallel to gather complementary information, allowing efficient detection and interpretation of altered brain 
structure and function associated with suboptimal clinical outcomes among virally suppressed PWH. We examine the 
advantages of each imaging modality and systematic approaches in study design and analysis. We also consider advantages of 
combining experimental and statistical control techniques to improve sensitivity and specificity of biotype identification and 
explore the costs and benefits of aggregating data from multiple studies to achieve larger sample sizes, enabling use of emerging 
methods for combining and analyzing large, multifaceted data sets. Many of the topics addressed in this article were discussed 
at the National Institute of Mental Health meeting “Biotypes of CNS Complications in People Living with HIV,” held in 
October 2021, and are part of ongoing research initiatives to define the role of neuroimaging in emerging alternative 
approaches to identifying biotypes of CNS complications in PWH. An outcome of these considerations may be the development 
of a common neuroimaging protocol available for researchers to use in future studies examining neurological changes in the 
brains of PWH.
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HIV invasion of the central nervous system (CNS) occurs with
in days after exposure [1]. The ensuing inflammatory cascade 
results in a transient aseptic meningitis or encephalitis that 
can lead to neuronal death in acute infection prior to the initi
ation of antiretroviral therapy (ART) [2]. This neuronal dam
age may be responsible for neuropsychological dysfunction in 

virally suppressed people with HIV (PWH), also known as 
the “legacy effect.” In virally suppressed PWH, persistent in
flammation in the CNS and CNS viral reservoirs may also con
tribute to neuropsychological dysfunction in the chronic phase 
of infection. While it remains difficult to assess these changes in 
the brain, neuroimaging provides a reliable and reproducible 
noninvasive in vivo method to measure and track changes in 
brain structure and function in PWH.

STRUCTURAL BRAIN IMAGING

Macrostructural Magnetic Resonance Imaging Techniques

Structural magnetic resonance (MR) imaging has been used to 
measure macrostructural differences in PWH since the early 
days of the HIV epidemic. Macrostructural neuroimaging us
ing conventional T1-weighted MR imaging provides measures 
of whole-brain or regional gray matter (GM), white matter 
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(WM), and cerebrospinal fluid. GM measures include volume, 
thickness, and surface morphometry [3, 4]. Automated seg
mentation of brain structures can be performed using brain at
lases in standardized anatomical spaces [5].

The effects of HIV have diminished with time in all CNS 
tissue compartments, likely related to widespread use of ART 
[6, 7]. Nevertheless, brain structural differences can still be de
tected in chronically infected, virally suppressed PWH with 
voxel-wise volumetric approaches [8–10], cortical surface 
shape analysis [11–14], and cortical thickness estimation ap
proaches [8, 15]. Yet to be determined is whether aging inter
acts with treated HIV infection to diminish improvement in 
pretreatment structural changes conferred by ART.

GM volume deficits in virally suppressed PWH relative to 
uninfected controls have been reported in frontal and parietal 
cortices [16], the transitional cortex of the insula and cingulum 
[16], and subcortical structures comprising basal ganglia, thal
amus, and hippocampus [3, 16–18] (Figure 1). The smaller hip
pocampus, thalamus, and putamen and enlarged ventricles 
were associated with current CD4+ cell counts, viral load, and 
ART status [19]. Cortical and subcortical GM volume deficits 
were more pronounced in those with AIDS-defining illness his
tory [20].

WM structures exhibiting volume deficits in PWH included 
centrum semiovale and corpus callosum [21, 22]. Stratification 
by clinical symptoms and cognitive performance as unimpaired, 
asymptomatic neurocognitive impairment, mild neurocognitive 
disorder, or HIV-associated dementia revealed the following: (1) 
smaller medial orbitofrontal WM volume in asymptomatic neuro
cognitive impairment; (2) enlarged lateral ventricles and small vol
umes of frontal, cingulate, and parietal WM occurring in mild 
neurocognitive disorder; and (3) smaller volumes correlated 
with CD4+/CD8+ cell count ratios [23, 24]. Lower CD4+ cell count 
nadir and detectable HIV RNA were associated with smaller total 
WM volumes [25].

The greater presence of WM hyperintensities, often quanti
fied with fluid-attenuated inversion recovery (FLAIR) imaging, 
occurs with older age, longer HIV infection duration, and 
CD4+ cell counts <500/mL [26, 27]. There is also evidence 
that cerebrovascular risk factors contribute more than 
HIV-seropositive status to the development of WM lesions in 
PWH [28, 29].

The noninvasive nature of MR imaging enables safe, longitu
dinal studies in PWH [7, 30]. Some longitudinal studies of vi
rally suppressed PWH provide confirmation of similar 
cross-sectional findings across the aging spectrum [13], includ
ing accelerated volume loss associated with older age, higher 
plasma viral loads, lower CD4+ cell counts, and cognitive defi
cits [21, 31–33]. Such longitudinal work also showed 
HIV-by-age interactions in frontal and posterior parietal vol
umes in PWH [16]. Controversy remains, however, regarding 
how chronic HIV shapes brain aging [34], with some studies 
finding no differences in rates of change of structural (or other 
neuroimaging) measures over approximately 2 years [8, 35].

Structural MR imaging findings in PWH can help identify 
CNS correlates of clinical symptoms. For example, objective 
signs of neuropathy in virally suppressed PWH are correlated 
with smaller cerebellar vermis volumes, while subjective symp
toms of neuropathy were associated with smaller precuneus 
volumes [36]. Furthermore, lower pontocerebellar volumes in 
PWH were correlated with impaired postural stability and psy
chomotor speed [37].

Microstructural MR Imaging Techniques

MR imaging diffusion tensor imaging (DTI) of WM micro
structure yields measures of fiber organization (fractional an
isotropy [FA]) and unrestricted water motility (mean 
diffusivity [MD]). Many studies have found alterations in FA 
and in MD in PWH, particularly in subcortical brain regions, 
such as the basal ganglia and corpus callosum [30, 38–40] 

Figure 1. A novel machine learning approach identified a human immunodeficiency virus (HIV) diagnostically specific pattern of cortical and subcortical volume, surface 
area, mean curvature, or thickness deficits in the regions, noted in green. The top 4 sagittal images mark the precentral motor strip, superior parietal cortex, pars triangularis, 
insula, inferior and middle temporal gyri, and superior frontal cortex. The bottom 4 sagittal images mark the caudal anterior cingulum, parahippocampal gyrus, occipital 
cortex, pericalcarine, fusiform, temporal pole, precunneus, and medial frontal cortex. The leftward-facing sagittal image marks the thalamus, hippocampus, and accumbens. 
The pattern of cortical and subcortical regions specific to HIV emerged from a novel machine learning approach that differentiated HIV from other diagnoses (alcohol use 
disorder, HIV plus alcohol use disorder, and controls. (This image is a portion of figure published elsewhere [3, p 4], reprinted with permission from Elsevier.)
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Abnormalities in DTI parameters suggest compromised tissue 
and HIV-associated neuroinflammation. Diffusion basis spec
trum imaging, using a tensor model sensitive to the effects of 
cellularity, found higher cellularity in aviremic PWH, which 
also suggests persistent inflammation [41]. Diffusion alter
ations in PWH correlated with elevated levels of inflammatory 
biomarkers, such as cytokines (eg, tumor necrosis factor α and 
interleukin 6), chemokines (eg, monocyte chemoattractant 
protein 1) and metalloproteinases, even in virally suppressed 
PWH [30, 41–44]. Markers of inflammation also were identi
fied as discriminating features in machine learning models of 
HIV-induced brain injury, as quantified with diffusion and 
brain volume measures [30].

Cross-sectional studies found associations between clinical 
indices and diffusion measures. Higher FA and lower MD 
were associated with high CNS penetrance of HIV treatment, 
higher CD4+ cell counts, and greater recovery from the CD4+ 

cell count nadir [45, 46]. Furthermore, a greater number of 
years with CD4+ cell counts <500/µL was associated with lower 
FA and higher MD in the projection, association, and callosal 
fiber systems [47]. A controlled study using DTI fiber tracking 
found higher MD in posterior corpus callosum, internal and 
external capsules, and superior cingulate bundles in PWH 
than in controls. Among the PWH, diffusivity differences 
from the control group in the posterior corpus callosum, for
nix, and superior cingulate bundle were greatest in those with 
an AIDS-defining event [48].

FUNCTIONAL MR IMAGING

Functional imaging studies, including blood oxygen level– 
dependent (BOLD)–contrast functional MR imaging and per
fusion MR imaging, are used to assess neuronal functioning 
that complements structural neuroimaging techniques. 
BOLD-contrast functional MR imaging can evaluate brain 
function at rest or during a task by measuring the MR imaging 
signal changes associated with varying levels of oxygenated ver
sus deoxygenated hemoglobin. Images obtained with resting- 
state functional MR (rsfMR) imaging are readily acquired 
and amenable to myriad analysis approaches. The brain at 
rest has low-frequency spontaneous fluctuations that exhibit 
coherent activity across spatially distinct networks. These cor
relations are used to estimate interregional functional 
connectivity.

PWH show subtly altered functional connectivity in some 
networks regardless of age [49]. rsfMR imaging that evaluated 
PWH in various stages of HIV-associated neurocognitive dis
order (HAND) found altered connectivity in canonical brain 
networks, including the salience, default mode, and executive 
networks [50]. Network disruptions were detected even in 
those with acute HIV infection [51]. By contrast, task-related 
functional MR imaging requires participants to perform 

specific tasks or view images that can elicit regional brain activ
ity change. PWH typically showed lower task-induced activa
tion within the normal networks but greater activation in 
reserve brain regions with the more demanding tasks and 
greater attentional load [52–59] or risk-taking behaviors [60– 
62]. These studies detected neural abnormalities with increas
ing cognitive demand in PWH. While task functional MR im
aging is more challenging to implement in routine clinical care, 
it is generally associated with large changes in BOLD-contrast, 
and therefore may be more sensitive than rsfMR imaging for 
monitoring treatment or intervention effects [63].

Other functional imaging techniques, such as dynamic sus
ceptibility contrast and arterial spin labeling (ASL), have been 
used more rarely to study brain perfusion in PWH. Dynamic 
susceptibility contrast showed relative changes in regional per
fusion in PWH but requires a gadolinium contrast agent [64]. 
ASL is easier to acquire since it does not require gadolinium or 
radioactive tracers; instead, it assesses regional cerebral blood 
flow with radiofrequency pulses to label water molecules in 
the cerebral vasculature. Lower perfusion is seen in the lenti
form nuclei in both acute and chronic phases of HIV infection 
[65], whereas cortical perfusion findings vary [65, 66]. Age, vi
ral load, and treatment status can influence perfusion [66, 67].

PROTON MR SPECTROSCOPY

Proton MR spectroscopy noninvasively probes neuropathology 
by measuring levels of metabolites that reflect neuronal health 
and integrity or neuroinflammation. By reliably detecting 
chronic HIV infection effects, proton MR spectroscopy may 
be useful for assessing the pathophysiology associated with cog
nitive and sensorimotor decline following HIV infection. For 
localized proton MR spectroscopy, typical voxel placement 
used to evaluate PWH includes the basal ganglia, WM, and cor
tical GM [68]. Meta-analysis of HIV neurometabolite studies 
showed consistently lower total N-acetyl-aspartate (NAA)/total 
creatine (tCr), higher total choline (tCh)/tCr, and higher 
myoinositol (mI)/tCr ratios associated with chronic HIV infec
tion [49]. Although many studies used tCr as a reference and 
reported metabolite ratios [68], HIV infection may influence 
tCr concentrations [69]. Hence, absolute quantification of me
tabolite concentrations removes the ratio confounding factor in 
assessment of neurochemical abnormalities. Levels of neuronal 
metabolites, including NAA, are lower in later stages of HAND, 
whereas glutamate levels are already lower in earlier stages of 
HAND and correlated well with cognitive deficits [70]. Levels 
of glial metabolites, especially mI, along with tCr and tCh, 
are also elevated in early stages of HAND, suggesting ongoing 
neuroinflammation and glial activation.

Further evidence that myoinositol and choline compounds 
reflect chronic neuroinflammation was shown by their correla
tions with β-amyloid tracer uptake (Pittsburgh compound B), 
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typically associated with neuroinflammation, in 311 cognitively 
normal elderly at risk for Alzheimer disease [71]. Myoinositol 
levels also appeared to be more sensitive than a microglial pos
itron emission tomography (PET) tracer (PK-11195) for de
tecting inflammation in patients coinfected with HIV and 
hepatitis C virus [72].

PET IMAGING

Brain PET imaging performed early in the HIV epidemic found 
subcortical hypermetabolism on 18F-fluorodeoxyglucose 
(FDG) PET, interpreted as a reflection of neuroinflammation 
[73, 74], while hypometabolism was observed in the later stages 
of disease, assumed to be related to neuronal loss [75].

More recently, brain PET imaging has used various targets 
and ligands (Table 1) to evaluate both the neuropathophysiol
ogy of HIV and the effects of treatment and comorbid condi
tions, particularly cardiovascular disease [84] (Table 2)  [85]. 
Longitudinal FDG PET demonstrated varied regional brain 
FDG uptake over the course of treated HIV, decreasing in sub
cortical structures as peripheral viral load and immune markers 
(interleukin 6R and soluble CD14) declined 6–8 weeks after 
ART while increasing in the frontal cortex, suggesting normal
ization of cortical dysfunction with ART initiation [78]. At 2 
years after ART initiation, however, subcortical FDG uptake 
further decreased, suggesting that neuronal loss that may con
tribute to cognitive deficits [78]. Cross-sectional FDG PET im
aging in well-treated chronic infection revealed lower uptake in 
mesial frontal and anterior cingulate cortex [79, 80], although 
the studies were not robustly generalizable owing to a focus 

on predominantly white men with limited comorbidity. 
A more recent FDG study in chronically infected, virally sup
pressed PWH found that HIV status best predicted thalamic 
hypometabolism, whereas cardiovascular disease was a better 

Table 1. Positron Emission Tomography Target and Ligands Used in 
Human Immunodeficiency Virus Neuroimaging

Target Radioligand Study Focus References

Glucose 
metabolism

18F-FDG Neuroimmune response, 
neuronal function

[59–62, 76, 
77]

18-kDa TSPO 11C-PK11195, 
11C-DPA-713, 
18F-DPA714, 
11C-PBR128

Brain injury, 
neuroimmune 
response

[63–70]

Synaptic vesicle 
glycoprotein 2

11C-UCB-J Synaptic integrity [78]

Amyloid plaque 11C-PiB; 
18F-florbetaben, 
18F-AV-45 
(florbetapir)

Patterns of localized or 
whole-brain amyloid 
plaque

[79–82]

Tau 18F-AV-1451 
(flortaucipir)

Patterns of localized tau [83]

Dopaminergic 
and 
serotonergic 
systems

11C-raclopride, 
18F-fallypride; 
11C-cocaine, 
18F-FP-CMT, 
11C-DASB

Neurotransmitter system 
integrity and function

[71–75, 84]

Abbreviations: FDG, fluorodeoxyglucose; TSPO, translocator protein; PiB, Pittsburgh 
compound B.

Table 2. Factors Affecting Central Nervous System Measures

HIV infection–related variables 

• Degree of viral suppression
• Nadir CD4+ cell count
• Current CD4+ cell count
• HIV infection duration
• AIDS-defining illness history

Treatment-related variables 

• Time before beginning ART
• ART type
• ART adherence

Systemic inflammation [86] 

• Monocyte activation markers 
• sCD14
• sCD163
• Lipopolysaccharide levels

• Cytokines 
• IP-10
• IFN-α
• IL-6
• IL-10
• IL-15

Comorbid conditions 

• Hepatitis C
• Substance use 

• Alcohol
• Marijuana
• Cocaine
• Methamphetamines
• Nicotine

• Psychiatric disorders 
• Anxiety
• Major depressive disorders
• Posttraumatic stress disorder
• Schizophrenia

• Cerebrovascular risk 
• Cigarette smoking
• Hypertension
• Diabetes
• Hyperlipidemia
• Hypercholesterolemia

Demographic factors 

• Age
• Sex
• Socioeconomic status
• Premorbid cognitive function

Abbreviations: ART, antiretroviral therapy; HIV, human immunodeficiency virus; IFN, 
interferon; IL-6, IL-10, and IL-15, interleukin 6, 10, and 15 ; IP-10, IFN-induced protein 10; 
sCD14, soluble CD14; sCD163, soluble CD163.
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predictor of whole-brain metabolism than HIV status, suggest
ing an integral role of comorbid conditions, namely cardiovas
cular disease, in controlling brain involvement in HIV [84].

In addition to quantification of glucose metabolism, which 
reflects a combination of neuroinflammation and neuronal 
function, animal and human brain PET imaging targeted mi
croglial activation markers [81–83, 87–91], neurotransmitter 
signaling systems [76, 77, 92–95], synaptic integrity [96] and 
pathological correlates, such as amyloid and tau deposition 
[97–102]. Neuroinflammation in HIV is likely due to microglial 
activation, peripheral monocytes infiltration, astrocytic activa
tion, and possibly lymphocytic infiltration. To date, the most 
commonly pursued neuroinflammation imaging target in 
HIV is the 18-kDa translocator protein (TSPO), an outer mito
chondrial membrane receptor expressed in resident microglia 
and monocyte-derived macrophages, astrocytes, endothelial 
cells, and choroid plexus/ependymal cells. TSPO expression is 
up-regulated in activated microglia, marking deviation from 
the normally low levels of parenchymal TSPO expression in 
healthy brain [103].

Human TSPO-PET imaging in PWH, however, has yielded in
consistent findings, in part likely owing to differences in radiotrac
er properties across first- and second-generation TSPO-targeting 
ligands. For example, the first-generation TSPO radiotracer 
11C-PK11195 is limited by low target specificity, and while 2 stud
ies found higher TSPO brain uptake in PWH than in controls us
ing 11C-PK11195 [88, 90], another found no group differences 
[104]. Using a more specific, second-generation radiotracer for 
TSPO imaging, 11C-DPA713, higher TSPO binding (distribution 
volume) in the WM, cingulate cortex and supramarginal gyrus 
relative to GM was detected in PWH relative to controls, suggest
ing neuroinflammatory changes [105]. Lower global TSPO expres
sion, but higher regional tracer uptake in the parietal and occipital 
lobes and globus pallidus, were also observed in PWH [87]; how
ever, another second-generation TSPO radiotracer,11C-PBR128 
found no group differences [81]. Higher TSPO uptake also 
correlated with lower cognitive performance in PWH, although 
the involved regions and cognitive domains varied across studies 
[81, 82, 87, 88]. These conflicting results may be due to differences 
in cohort characteristics, ligands used, functions examined, or anal
ysis methods.

HIV protein neurotoxicity, another postulated mechanism 
of CNS injury, may affect specific neurotransmitter systems, 
which were assessed using a variety of established PET ligands 
[76, 77, 92, 94, 95, 106, 107]. Lower synaptic density measured 
with 11C-UCB-J was found in the frontostriatal-thalamic cir
cuit and other cortical areas of older male PWH on ART com
pared with uninfected controls, suggesting synaptic loss [96]. 
Finally, studies investigating amyloid or tau accumulation as 
underlying causes of HAND found no increased burden of am
yloid [97–99, 101] or tau protein [100] in virally suppressed 
PWH relative to cognitively normal controls.

MAGNETOENCEPHALOGRAPHY

Magnetoencephalography (MEG) is another noninvasive neuro
imaging technique with excellent temporal (ie, milliseconds) 
and spatial precision (ie, 3–5 mm). The method directly measures 
the minute magnetic fields that naturally emanate from electro
physiological activity in populations of neurons, with the strength 
of these neuromagnetic fields being proportional to the amplitude 
of the underlying electrical currents [108]. Almost all the MEG 
studies in PWH focus on virally suppressed cohorts [109].

One of the most consistent findings in PWH is elevated spon
taneous cortical activity in task-related brain regions [110–115]. 
This activity modulates the oscillatory neural dynamics serving 
cognitive processing [110–115]. Spontaneous activity reflects 
the seemingly random neuronal discharges, fluctuations in den
dritic currents, and other electrical field phenomena that occur 
across the cortex in the absence of exogenous and endogenous 
inputs. In PWH, sharply elevated spontaneous activity was 
shown in brain regions serving visuospatial attention [110, 
114], selective attention [111], somatosensory processing [112, 
113, 115], and working memory [116]. Several studies showed 
increased spontaneous activity that distinguishes cognitively im
paired and unimpaired PWH and both HIV groups from con
trols [110, 111, 113]. Such elevated spontaneous cortical 
activity is related to both cognitive and motor processing and oc
curs in healthy aging [117–120], suggesting accelerated aging in 
PWH [121]. Interestingly, regular cannabis use may normalize 
elevated spontaneous cortical activity in PWH and thereby im
prove cortical function and cognitive performance [114].

MEG studies also showed deficits in the neural oscillatory 
dynamics serving early visual processing [110, 112, 122], motor 
function [123], selective attention [111, 124], attentional reori
enting [125], visuospatial attention [122, 126], working memo
ry [116, 127], and somatosensory processing [86, 112, 113, 115]. 
Frequently, these oscillatory aberrations were tightly coupled to 
worse cognitive performance in PWH. Several of these studies 
also enrolled relatively large samples and examined the impact 
of aging on cognitive function and the underlying oscillatory 
dynamics in PWH [113, 122, 124, 125]. Broadly, these MEG 
studies also show aberrant aging trajectories in PWH. The 
most recent data, however, suggest that these effects are driven 
by the cognitively impaired subgroup (ie, those with 
HIV-associated neurocognitive disorder) [125].

Neural aberrations in the visual and somatosensory cortices 
were reported across multiple studies focusing on different cog
nitive constructs (eg, visual attention). Furthermore, the avail
able data do not support simple dichotomies such as deficits in 
cortical versus subcortical areas or association versus sensory 
cortices, as studies have found aberrations across multiple sen
sory regions and a broad variety of association cortices, includ
ing prefrontal and parietal attention networks. All but one 
MEG study focused on virally suppressed PWH [127], and 
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almost all MEG studies excluded participants with severe psy
chiatric diseases (eg, PTSD or schizophrenia), substance use 
disorders, and other possibly confounding conditions. Such 
an approach ensures that the findings are specific to HIV infec
tion rather than confounders but limits the generalizability to 
PWH who have a high prevalence of these characteristics.

Work in recent studies suggests that MEG-derived cortical 
maps are highly reliable for ≥3 years in individual participants 
[128, 129], which is critical for establishing the veracity and 
predictive utility of MEG markers [130]. Fortuitously, most ac
tive MEG sites in neuroHIV research recently installed identi
cal instrumentation, which allows the merging of data sets 
across sites to build even larger samples.

USE OF MULTIMODAL NEUROIMAGING TO 
INFORM RESULTS

Recognizing that changes in cognition may be on asynchro
nous trajectories with functional or structural brain imaging 
changes, combining multiple features from neuroimaging 
data may improve identification and tracking of functional out
comes of the HIV-associated brain injury. Novel “fusion” ap
proaches that jointly analyze multiple neuroimaging features 
have the potential to reveal interrelated patterns across modal
ities and in spatially distinct regions beyond detection with a 
single modality [131]. A 2021 analysis in PWH combined 
T1-weighted MR imaging, DTI, and rsfMR imaging and found 
that lower scores on cognitive functions related to abnormal 
morphometry (smaller volumes of the thalamus and visual, 
posterior parietal, and orbitofrontal cortices), compromised 
WM integrity (lower FA throughout the corpus callosum and 
association fibers), and abnormal activity in frontoparietal 
and occipital networks [132]. On this identified joint compo
nent, PWH had lower loadings for both GM volume and 
WM integrity, suggesting that HIV-associated alterations in 
brain structure may contribute to cognitive impairment.

In another multiparametric study of HIV, lower FA in the 
corpus callosum body correlated with greater functional con
nectivity in linked GM regions; cognitive impairment was asso
ciated with low FA in the corpus callosum; and higher 
functional connectivity occurred in linked GM regions [133]. 
Joint analysis of MR imaging and neuropsychological data clas
sified individuals ranging across unaffected controls, HIV with
out cognitive impairment, HIV with mild cognitive 
impairment, and HAND [134]. Machine learning algorithms 
using resting state networks classified individuals by HIV status 
and cognitive status [135]. They also showed that polysub
stance use, race, educational attainment, and volumes of the 
precuneus, cingulate, nucleus accumbens, and thalamus differ
entiated membership in the normal versus impaired clusters. 
These emerging studies demonstrate the value of multimodal 
data fusion for identifying neural substrates of complex 

cognitive decline, even when observations for compromise 
are not in temporal lockstep.

STRATEGIC DESIGN AND ANALYTIC APPROACHES 
TO ACHIEVE GREATER CONSISTENCY

Given the observational nature of HIV neuroimaging data, 
both experimental and statistical control can increase sensitiv
ity to detection of subtle HIV effects on brain structure and 
function. Potential confounds, such as comorbid conditions 
and variable clinical features common in PWH, raise the ques
tion of whether neuroimaging changes reported as HIV effects 
are related solely to viral infection [7]. Hence, some neuroim
aging changes attributed to HIV might have originated from 
confounding effects [136–138] (Table 2).

Because PWH exhibit a wide range of demographic 
variations and medical comorbid conditions, larger sample 
sizes will facilitate the formation of stratified subgroups, 
which can delineate their influences on neuroimaging find
ings [85]. This stratification will also allow more representa
tive, ecologically valid assessment of chronic HIV infection 
and its course. Across-diagnostic profile comparisons 
are also useful for establishing HIV-specific deficit profiles 
[1, 32].

In addition to cohort characteristics, variation in image ac
quisition and analysis techniques may contribute to study out
come heterogeneity. Current harmonization methods have 
reduced, but not eliminated, inconsistencies related to image 
acquisition and processing differences across sites  [139].

Experimental Control

The goal of increasing sample size in HIV neuroimaging stud
ies by pooling data across multiple sites presents challenges. In 
addition to the administrative overhead needed to coordinate 
activities among sites, adoption of standardized data acquisi
tion systems and protocols are essential for multisite studies, 
because using a common scanner platform, hardware, and 
software (manufacturer, model, field strength, head coil, soft
ware version) across sites will minimize these variables. 
Maintenance of identical acquisition protocols, however, can 
be complicated by site hardware and software upgrades or re
placement, circumstances often beyond the control of study in
vestigators. Nevertheless, a standardized imaging protocol 
mitigates the risk that observed cohort differences are an arti
fact of acquisition differences. The Alzheimer’s Diseases 
Neuroimaging Initiative (ADNI), Adolescent Brain Cognitive 
Development Study (ABCD), and Human Connectome 
Project (HCP) have successfully implemented standardized 
protocols across multiple sites [140–142]. Examples of multisite 
studies in PWH include CHARTER and ENIGMA-HIV, which 
provide data access to the public for additional analyses 
[19, 143].
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A first-tier, MR imaging protocol should include (1) high- 
resolution T1-weighted imaging for structural analysis and cor
egistration with other MR imaging sequences and neuroimag
ing modalities (eg, PET and MEG), (2) T2-weighted imaging 
for cerebrospinal fluid–tissue distinction, (3) FLAIR sequences 
for detecting WM hyperintensities, (4) a high-resolution, mul
tishell diffusion sequence with adequate signal-to-noise for es
timation of microstructural WM measures and more complex 
modeling of structural connectivity, (5) multiband rsfMR im
aging to determine functional connectivity, and (6) ASL to as
sess brain perfusion. Total imaging time for these suggested 
first-tier sequences can be <1 hour, especially if multiband ap
proaches are used, thus minimizing participant burden and 
scanner costs. These sequences also allow comparison with 
standing multisite studies, such as ADNI, HCP, National 
Consortium on Alcohol and Neurodevelopment in 
Adolescence, and ABCD, that have publicly available imaging 
data on healthy controls from preadolescence to senescence 
for comparison with those in PWH. Using a tiered approach, 
other sequences such as task functional MR imaging, quantita
tive susceptibility mapping, or MR spectroscopy, and other 
modalities (eg, MEG and PET), can be added to site protocols, 
depending on the research question.

Regarding MEG protocols, resting-state recordings at 1 kHz 
or faster are essential for assessing spontaneous activity and 
whole-brain connectivity, while a targeted battery of task-based 
paradigms would help delineate altered brain dynamics in the 
cognitive networks most commonly affected in PWH. 
Selecting a standard set of cognitive tasks with identical stimu
lus presentation parameters across sites and recording empty- 
room MEG data to compute noise covariance matrices would 
allow the data to be effectively coalesced with experimental 
rigor.

Standardizing PET studies is more challenging than MR im
aging and MEG, considering the major differences in scanner 
models, resolutions, configurations, and reconstruction algo
rithms, among other site-specific parameters. In addition, mul
tiple ligands with different characteristics (eg, lipophilicity, 
brain availability, affinity, specific to nonspecific binding) are 
often used to image the same targets (eg, TSPO). Different anal
ysis approaches and patient populations add to the variability 
and discordance of PET studies. Despite the generally insur
mountable differences in infrastructure and ligand availabilities 
across centers, reaching a unified approach to compartmental 
modeling and analysis methods of various ligands, especially 
those for neuroinflammation, may diminish protocol discord
ance. Future work could take advantage of novel PET imaging 
ligands (eg, new inflammations targets [144, 145]) and validat
ed PET imaging ligands and reduce current limitations. 
Reaching a unified approach for compartmental modeling 
and analysis methods of target ligands, especially in neuroin
flammation imaging, and a thorough assessment of current 

and historical comorbid conditions in PWH would address 
potential confounders [144–146].

Quality Control

Rigorous quality control to assure limited head motion, appro
priate anatomical coverage, and adherence to protocol param
eters can also improve consistency. Regular scanning with 
structural and functional phantoms (both standardized and hu
man phantoms) provides objective assessment of scanner drift, 
potential correction factors, and stability measures for across 
time and multisite harmonization. Thorough quality assurance 
is particularly important in rsfMR imaging studies, in which 
the changes in interregional functional connectivity are vulner
able to physiological noise from many sources, including head 
motion, cardiac activity and respiration [7]. Image analyses 
may exploit semiautomated or fully automated preprocessing 
pipelines that facilitate quality assurance procedures. These 
pipelines can simplify computational effort before statistical 
analysis, but different pipelines can also introduce variabilities 
[147–150]. Hence, a common image preprocessing approach 
for each modality, supported by a centralized imaging core, 
would decrease heterogeneity in HIV neuroimaging studies.

Longitudinal Designs

Although most HIV neuroimaging studies are cross-sectional, 
longitudinal designs are preferred in assessing ART effects on 
the CNS and disease progression. The repeated measures de
signs allow each participant to serve as their own control. 
Because chronic HIV samples are diverse in associated comor
bid conditions, a longitudinal design provides within-subject 
accounting of comorbidity effects. A balanced group of 
HIV-seronegative controls should be included in studies to ac
count for aging, sex, or other effects. To isolate ART effects on 
the CNS, investigators may assess PWH both before and after 
initiating ART. They may also consider statistically adjusting 
for the CNS penetration-effectiveness score of participants’ 
ART regimens or the Veterans Aging Cohort Study index to es
timate risk of 5-year all-cause mortality in PWH [151–153]. 
While longitudinal studies are preferred to answer many ques
tions, particularly the effects of ART and aging on the CNS, 
they do require additional resources and comprehensive partic
ipant follow-up.

Statistical Control

Even with the most robust efforts to minimize site differences 
in acquisition protocols and equipment, residual “site” variance 
is likely to persist. Novel approaches to harmonize data from 
multiple sites (eg, ComBat [154]) may reduce inconsistencies 
related to image acquisition and processing differences across 
sites.

More problematic are the use of poorly matched control 
groups and the lack of adequate statistical adjustment for the 
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effects of various confounding factors on imaging measures. To 
study the effects of “uncomplicated” HIV on brain structure 
and function, experimental designs often eliminate or mini
mize confounders, which greatly limits generalizability of the 
results to the diverse population of PWH. Statistical approaches 
can adjust for nuisance variables not completely controlled ex
perimentally. However, a large sample size will be required for 
such adjustments. Successful selection of covariate effects will 
improve statistical model fit by reducing error variance. 
Nuisance variables of interest include age, sex, and a range of 
comorbid conditions (Table 2).

One complexity encountered with this approach is that when 
nuisance variables exhibit collinearity, their individual contri
bution to the measure of interest cannot be determined. 
Examples include strong associations between hepatitis C virus 
infection and heroin use and the coupling of smoking and other 
cerebrovascular risk factors. Standard techniques for predictor 
collinearity can be used to mitigate these effects. Applications 
of statistical control techniques in large sample sizes afford sub
group stratification that may yield greater generalizability to 
the PWH population, while still accounting for commonly en
countered clinical differences and comorbid conditions.

Another goal for the HIV neuroimaging community is replica
tion of results by facilitating sharing of existing data sets. In addi
tion to harmonized data collection and processing in future 
prospective studies, replications using existing data collected 
could be an efficient means to validate current claims that can 
withstand the process of out-of-sample replication. For instance, 
from the rapidly growing field of functional MR imaging replica
tion, protocols with the strongest task-related activity have the 
best replication [155]. The widespread sharing of carefully curated 
data sets would also facilitate greater use by the machine learning 
community, and thereby lead to the emergence of new markers of 
HIV-related cognitive decline and potential targets for future 
therapeutics. Groups such as ENIGMA have started working to
ward this goal by pooling data sets. The next steps will include a 
survey of the HIV neuroimaging community to assess common 
sequences and numbers of participant among groups.

CONCLUSIONS

HIV neuroimaging studies began nearly 4 decades ago with the 
predominant use of computed tomography for qualitative 
characterization of parenchymal atrophy and CNS opportunis
tic infections associated with AIDS. As knowledge of HIV neu
ropathology and treatments evolved, we now have multiple 
advanced imaging modalities to detect the subtle brain injury 
effects in treated, virally suppressed cohorts. Our next chal
lenge is to undertake the measurement, design, and analysis 
complexities associated with HIV neuroimaging to achieve 
greater consistency in the in vivo characterization of HIV infec
tion and to track its dynamic course across the life span. Critical 

comorbid conditions to address include psychiatric disorders, 
substance use disorders, and cardiovascular risk factors. 
Larger samples collected with standardized acquisition proto
cols that include the suggested first-tier protocol will allow 
for pooling of data sets across sites. Rigorous experimental 
and statistical control methods can reduce the variability in es
timates of how HIV infection per se affects brain structure and 
function. These methods include use of well-balanced control 
groups, adjustment for nuisance variables not completely con
trolled experimentally, and data harmonization techniques for 
multisite studies. Critically, these approaches will reveal the 
neuroimaging data elements best suited for identifying biotypes 
of CNS complications, HIV-aging interactions, and potential 
treatment responses in PWH.
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