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Systems/Circuits

Neural Circuit Dynamics for Sensory Detection

Sruti Mallik,1 Srinath Nizampatnam,1 Anirban Nandi,2 Debajit Saha,3 Baranidharan Raman,4 and
ShiNung Ching1,4

1Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, 2Allen Institute of Brain Science,
Seattle, Washington 98109, 3Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, and 4Department of
Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130

We consider the question of how sensory networks enable the detection of sensory stimuli in a combinatorial coding space.
We are specifically interested in the olfactory system, wherein recent experimental studies have reported the existence of
rich, enigmatic response patterns associated with stimulus onset and offset. This study aims to identify the functional rele-
vance of such response patterns (i.e., what benefits does such neural activity provide in the context of detecting stimuli in a
natural environment). We study this problem through the lens of normative, optimization-based modeling. Here, we define
the notion of a low-dimensional latent representation of stimulus identity, which is generated through action of the sensory
network. The objective of our optimization framework is to ensure high-fidelity tracking of a nominal representation in this
latent space in an energy-efficient manner. It turns out that the optimal motifs emerging from this framework possess mor-
phologic similarity with prototypical onset and offset responses observed in vivo in locusts (Schistocerca americana) of either
sex. Furthermore, this objective can be exactly achieved by a network with reciprocal excitatory–inhibitory competitive dy-
namics, similar to interactions between projection neurons and local neurons in the early olfactory system of insects. The
derived model also makes several predictions regarding maintenance of robust latent representations in the presence of con-
founding background information and trade-offs between the energy of sensory activity and resultant behavioral measures
such as speed and accuracy of stimulus detection.

Significance Statement

A key area of study in olfactory coding involves understanding the transformation from high-dimensional sensory stimulus
to low-dimensional decoded representation. Here, we examine not only the dimensionality reduction of this mapping but also
its temporal dynamics, with specific focus on stimuli that are temporally continuous. Through optimization-based synthesis,
we examine how sensory networks can track representations without prior assumption of discrete trial structure. We show
that such tracking can be achieved by canonical network architectures and dynamics, and that the resulting responses resem-
ble observations from neurons in the insect olfactory system. Thus, our results provide hypotheses regarding the functional
role of olfactory circuit activity at both single neuronal and population scales.

Introduction
We consider the question of how early sensory networks produce
actionable neural representation in response to sensory stimuli
arriving in a dynamic fashion. The specific focus here is on the
olfactory system, wherein the architecture is schematically

conserved across species (Strausfeld and Hildebrand, 1999). In
this system, early networks receive external excitation from pe-
riphery and transform it into intermediate representations which
are then routed to higher-level brain areas for further processing
and behavioral and motor response generation (Kay and Stopfer,
2006; Martin et al., 2011; Aldworth and Stopfer, 2015). Our goal
is to identify the functional significance of certain characteristic
neural response patterns observed as animals encounter sensory
stimuli.

We are specifically motivated by experimental findings illus-
trating a rich taxonomy of stimulus-evoked, time-varying
responses or sensory trajectories associated with both stimulus
onset and offset (Stopfer et al., 2003; Kay and Stopfer, 2006;
Bathellier et al., 2008; Saha et al., 2013b, 2017). It has been
reported that the most noticeable change in activity of sensory
neurons occurs immediately following stimulus onset and then
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following stimulus offset (Stopfer et al., 2003; Mazor and
Laurent, 2005; Bathellier et al., 2008; Raman et al., 2010), and
these responses are in fact orthogonal to each other at a popula-
tion level (Saha et al., 2017). In this work, we are not attempting
to “pattern match” these responses per se, but rather provide a
functional interpretation of what these prototypical spatiotempo-
ral response motifs achieve in terms of their ability to mediate
stimulus detection. Through both theory and validation, we
address the following: (1) whether there are particular decoding
objectives that explain the manifestation of observed sensory
response motifs; and (2) whether there are physiologically plausi-
ble neural circuit architectures that are capable of realizing motifs
generated by optimization of the objective in (1).

The central theoretical premise of our paper is that activity of
the early sensory network drives a latent representation of
accrued evidence regarding presence or absence of stimulus. The
neural responses thus encode not only detection but also “unde-
tection” or withdrawal of the source of excitation. Adapting from
approaches used in behavioral neuroscience, we formulate a dy-
namical decoder that uses high-dimensional, combinatorial input
to generate a low-dimensional latent representation. Thereafter,
we use a top-down, normative approach wherein we generate the
response motifs by minimizing an objective function. We formu-
late this objective function so that it emphasizes that latent repre-
sentations should quickly and accurately convey information
about peripheral stimulus in an energy-efficient manner. Neural
response motifs borne out of such an optimization problem bear
morphologic similarity to those observed in vivo, leading us to
assert our claim of ascribed functional relevance.

Our work builds on a rich theory of olfactory coding focused
on the question of how reliable and informative representations
propagate through the sensory hierarchy (Bhandawat et al., 2007;
Schaefer and Margrie, 2007; Zhang and Sharpee, 2016). In partic-
ular, we note recent efforts to ascribe particular functions to the
circuit architectures, including enabling stimulus reconstruction
(Qin et al., 2019), categorization (Dasgupta et al., 2017), and nov-
elty detection (Dasgupta et al., 2018). However, these findings
have mostly been pursued in a static input–output domain (i.e.,
with tacit assumption of instantaneous, algebraic signal transfor-
mation). In contrast, we work in the space of sensory dynamics
and time-varying representations, a topic that has received much
attention from a descriptive standpoint (Laurent, 1996;
Rabinovich et al., 2000; Laurent et al., 2001) but less so from the
perspective of normative synthesis. In particular, through formal
mathematical arguments, we investigate what advantages the big
switch between onset and offset responses achieves in the biolog-
ical world, where organisms encounter stimuli in a dynamic
fashion.

Our results show that our normative model produces emergent
phenomena that predict many nuanced features of actual sensory
network activity as observed in locust (Saha et al., 2017; Mazor
and Laurent, 2005; Nizampatnam et al., 2018). Further, our nor-
mative synthesis procedure yields a set of network dynamics that
is highly compatible with the known physiology of these circuit in
vivo. Hereafter, we proceed to formulate our theoretical setup
before presenting our key synthesis and validation results.

Materials and Methods
Computational model
Decoder and latent space
Our problem setup is premised on the canonical architecture of the
insect early olfactory system (Kay and Stopfer, 2006; Masse et al., 2009),

wherein chemical cues are transduced to neural signals through olfactory
receptor neurons (ORNs), which then propogate activity via glomeruli
to projection neurons (PNs) en route to higher brain areas. Our focus is
on the dynamical transformations mediated by PNs and their local
circuitry.

Our model for sensory tracking hinges on the definition of a latent
space, mðtÞ � ½�1ðtÞ; �2ðtÞ; :::; �mðtÞ�, which contains information about
stimulus identity. Each dimension of the latent space indicates accrued
evidence regarding the presence of high-level stimulus features (Raman
et al., 2011). The assumption is that such features provide an actionable
representation of the stimulus that can then be used to enable higher-
level processing and behavior. Specifically, PN activity, x 2 Rn, is line-
arly decoded into the latent space via (1):

_m ¼ Am1bx; (1)

where A 2 Rm�m such that sðAÞ 2 R�, and sðAÞ represents the
spectrum of A. Here, A ¼ �aI, where a. 0 and I 2 Rm�m is the
identity matrix. The matrix b 2 Rm�n linearly mixes the contribu-
tion of PNs onto each dimension of the latent vector. Equation (1)
imposes that the change in accrued evidence at any time t is propor-
tional to the difference between the information encoded by repre-
sentative PNs and evidence lost due to intrinsic leaky dynamics of
the decoder. Figure 1A illustrates our problem setup, noting that we
are focused on activity downstream of the ORNs (i.e., the dashed
vertical line). Afferent activity from the receptor neurons is denoted
by rðtÞ. It is important to note that our approach does not assume
any network structure nor dynamics for the PNs; rather, our goal is
to synthesize these dynamics.

Enabling labile, accurate latent representations via sensory
tracking
In particular, the formulation in Equation 1 allows us to introduce our
normative premise (i.e., that the PN activity x drives accurate representa-
tions of accrued evidence, thus conveying information about stimulus
presence and identity). Further, the dynamics of x should allow for fast
transitions in m.

This idea is readily captured through the notion of tracking in the
latent space. From the initial state m ¼ 0, we seek to construct dynamics
for the PN x such that m can quickly and accurately reach an arbitrary
point in the latent space, z. Mathematically, we formulate a quadratic
objective function:

J xð Þ ¼
ð1

0

1
2

mðtÞT � z
� �

Q mðtð Þ � z
� �

1 xðtÞTSx tð Þ1 _xðtÞTR _xðtÞ�dt:
(2)

The terms in this objective function are highly interpretable from a
biological perspective. The first term in the integrand penalizes the devia-
tion of the decoded state from z. The second term penalizes the energy
of the PN response, whereas the last term penalizes large fluctuations
in the PN response. The objective is formulated over an infinite horizon
(i.e., there is no bias or expectation regarding the amount of time that
the representation is to be tracked).

The objective and normative optimization is schematized in
Figure 1B,C. At the stimulus onset (Fig. 1B), the latent state is to
track some nominal representation z. On termination of the stimu-
lus, the latent state continues tracking z, which is now positioned
at the origin of the m-dimensional latent space signifying absence
of a stimulus. Here, we considered a pulsatile stimulus structure in
accordance with the natural olfactory environment, where an
organism perceives olfactory stimulation as pockets of odor
plumes (Vickers, 2000). Furthermore, in this work, our focus
was on the neural dynamics downstream of the receptor neurons
(Fig. 1A); therefore, we assumed that each stimulus is presented
at a fixed intensity. The matrix Q in our setup enforces that the
tracking in the latent space occurs accurately, without transient
or asymptotic misreprsentation (see Fig. 1B). The matrix S
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imposes penalty on the energy expendi-
ture, whereas the matrix R regularizes
rapid fluctuation in firing rate activity.
Upon withdrawal of the stimulus (Fig.
1C), the representation returns to neu-
tral. In essense, this model embeds the
idea of active stimulus detection and
undetection.” The question at hand is
how x should be specified (according
to Equation 2) for robust and accurate
detection of odor stimuli.

Table 1 summarizes all mathematical
symbols used in this paper as well as their
interpretation.

Reduction of optimization framework to
infinite horizon linear quadradic
regulator problem
The objective function (as in Eq. 2) subject
to the decoder dynamics (Eq. 1) constitutes
our optimization problem.

We denote _x ¼ y. Thus, the problem
can be rewritten as follows:

min
y

ð1

0

1
2

mðtÞT � z
� �

Q m tð Þ � zð Þ
�

1 xðtÞTSx tð Þ1 yðtÞTRyðtÞ�dt
subject to; _m ¼ Am1bx and _x ¼ y:

(3)

Now, we define vz ¼ ½mT; xT; zT�T . We
assume that the fixed representation z
remains constant as long as the same stimu-
lus conditions prevail at the periphery (i.e.,
_z ¼ 0). Therefore, we can write the
following:

_vz ¼
A b
0 0

0

2
4

3
5vz 1 0

In
0

2
4

3
5y ¼ Avz

1By � gðvz; yÞ (4)

With this, Equation 3 reduces to:

min
y

ð1

0

1
2
½vzðtÞTQ tð Þvz tð Þ1 yðtÞTR tð Þy tð Þ�dt

subject to; _vz ¼ g vz; yð Þ; (5)

where Q ¼
Q 0 �Q
0 S 0
�Q 0 Q

2
4

3
5 and R ¼ R. The transformed optimiza-

tion problem (OP) (Eq. 5) amounts to an infinite horizon linear quad-
ratic control problem (Boyd and Barratt, 1991; Anderson and Moore,
2007), a classical control theoretic framework for finding the optimal
control input to a dynamical system. In our context, the “controls” are
the activity of the PNs and the task is to realize these controls by means
of a dynamical network.

Solving the optimization problem
As the matrices Q, S, and R in Equation 3 are positive definite, it is
straightforward to establish that Q � 0, R. 0, and hence, problem
Equation 5 has a unique solution (Anderson and Moore, 2007). Indeed,
the solution to Equation 5 with initial conditions vzð0Þ ¼ ½m0T ; xT0 ; 0T �T
is given by

yðtÞ ¼ �R�1BTKvz ¼ Wvz; (6)

where K is the solution of the algebraic Riccati equation (ARE), given as
follows:

ATK1KA � KBR�1BTK1Q ¼ 0 (7)

Therefore, we can now write

_xðtÞ ¼ yðtÞ
¼ W�mðtÞ1WfxðtÞ1WzzðtÞ; (8)

where W ¼ ½W� : Wf : Wz� and W� 2 Rn�m, Wf 2 Rn�n and
Wz 2 Rn�m.

The excitation to the PN layer arrives from first-level ORNs. We
denote the afferent input from these receptor neurons as rðtÞ. In the
model,

rðtÞ � WzzðtÞ: (9)

It is important to note that the model does not predict ORN dynam-
ics or connectivity per se, only that rðtÞ is provided to the network the
PNs. There may be multiple ways to synthesize an ORN network that
realizes this transformation, and specifying such a construction is not
the primary focus of this paper.

The instantaneous decoded evidence mðtÞ can be written as follows
(recall Eq. 1):

ORNs

PNs

......

b

Decoder

...
Stimulus Stimulus

*
t t

*

Transient
Misrepresentation

Asymptotic
Misrepresentation

A

B C

Figure 1. A, Schematic of signal flow through the early olfactory system. We consider response dynamics for the PNs subject to
input r, which abstracts afferent signals from ORNs. B, We posit a decoding objective. At stimulus onset (marked by asterisk), the
goal of PNs is to accurately drive a latent representation to a nominal target. C, At stimulus offset (marked by asterisk), the latent
representation should return to neutral.
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mðtÞ ¼ e�atmð0Þ1
ðt

0

e�aðt�tÞbxðtÞdt : (10)

We initialize the decoder to a zero initial state (i.e., mð0Þ ¼ 0), lead-
ing to

mðtÞ ¼
ðt

0

e�aðt�tÞbxðtÞdt: (11)

Using Equations 11 and 9 in Equation 8, we obtain the optimal neu-
ral dynamics:

_xðtÞ ¼ W�b
ðt

0

e�aðt�tÞxðtÞdt 1WfxðtÞ1 rðtÞ: (12)

When the latent decoder is a noisy one or when the neural entities
are modeled as those associated with background noise, we can posit a
similar problem. In such a model, the objective function is written as
follows:

J xð Þ ¼ E
ð1

0

1
2

m tð Þ � zÞTQ m tð Þ � zð Þ1xðtÞTSx tð Þ
���

1 _xðtÞTR _x tð Þ�dt
�
: (13)

The reduction technique for this stochastic problem is similar to what
has been shown above (Boyd and Barratt, 1991) for the deterministic case,
and the solution of the ARE for this stochastic linear quadratic regulator is
identical to what we have derived above except for the addition of a noise
term gðtÞ(see Eq. 14 below):

_xðtÞ ¼ W�b
ðt

0

e�aðt�tÞxðtÞdt 1WfxðtÞ1 rðtÞ1s 2
xgðtÞ: (14)

We have used this stochastic version to generate figures depicting
Principal Component (PC) trajectories and correlation of ensemble
response.

Extracting a first-order network to realize the optimal solution
The primary step in extracting a first-order network from the derived
optimal motif is to introduce a population of ni auxiliary neurons whose
activity xi 2 Rni is given by the following dynamics:

_x i ¼ �axi 1Wxo; (15)

where xo � x is the PN activity, no is the number of PNs, and
W 2 Rni�no .

Thus, the function of the matrixW is to compute a weighted sum of
the PN activity and propagate it to the auxiliary neurons. Using
Equations 12 and 15, we can write the following:

_xoðtÞ ¼ Ws
bWW

ðt

0

e�aðt�tÞxoðtÞdt 1WfxoðtÞ1 rðtÞ: (16)

Here,Ws � W�b, bW 2 Rno�ni and bW;W must satisfy the conditionbWW ¼ I to realize the deduced optimal dynamics. We choose ni,no
(Laurent, 1996). Therefore, W is a wide matrix, and the matrix decom-
position problem bWW ¼ I is ill posed, which might have no solution or
an infinite number of solutions. Instead of solving this underdetermined
set of equations for an arbitrary choice of W, we reformulate the prob-
lem in a tractable format. We introduced a constrained iterative optimi-
zation framework (Shlizerman et al., 2014) that minimizes jj bWW � Ijj2
(see Algorithm 1) to derive the matricesW; bW. The constraints in ques-
tion are motivated by reports of existence of distinct excitatory/inhibi-
tory neural units in the insect antennal lobe (AL; Wilson and Laurent,
2005; Kay and Stopfer, 2006; Shang et al., 2007). Together, Equations
(15) and (16) provide the first-order rate equations of the sensory net-
work (See Figure 2 for schematic of the network).

Parameter selection
We chose the decoder parameter as a ¼ 0:25 in our simulations (excep-
tions mentioned in relevant Figure caption). The penalty matrices are
chosen as Q ¼ 10Im, S ¼ 2In, R ¼ 0:2In. Also, unless mentioned

Table 1. Table of math symbols and their interpretation

Mathematical
symbol Meaning in the model Significance in the olfactory system

rðtÞ Afferent input to PNs Activity of ORNs
xðtÞ; xoðtÞ Activity of neural units driving the latent decoder Firing rate of PNs with baseline activity set to zero.
xiðtÞ Activity of auxiliary population of neurons Firing rate of LNs with baseline activity set to zero
mðtÞ Decoded latent space activity: each dimension indicates accrued evidence regarding

presence of high-level stimulus features
Intermediate representation of stimulus information that
drives downstream behavioral/motor responses

A;b Dynamics of the latent space decoder. A represents the internal dynamics of the
decoder.
Weights of matrix b represent combinatorial encoding

z A fixed representation associated with a particular stimulus
Q Penalty on accuracy of latent representation
S Penalty on neural resources (i.e., energy used)
R Regularization on rapid fluctuation in firing rate activity
Ws Connections mapping slow processing of xðtÞ onto its dynamics
Wf Connections mapping fast processing of xðtÞ onto its dynamics
Wi

o Excitatory connections from the representative PNs to the auxiliary population Excitatory synaptic connections from PNs to LNs
Wo

i Inhibitory connections from the auxiliary population to the putative PNs Inhibitory synaptic connections from LNs to PNs

Wi
i;W

o
o

Intrapopulation interactions Synaptic connections among PNs and LNs

W; bW Computational parameters (matrix) that must satisfy the following: bWW ¼ I,
vecðWÞ � 0
and vecðWs

bWÞ � 0
C Fraction of neurons responding to both red/blue stimuli Percentage of projection neurons that respond to more

than one sensory stimulus
gðtÞ Unit variance Gaussian noise for the network model developed through Stochastic

Linear Quadratic Regulator formulation
Background noise in neural response

ts Duration of stimulus period Duration of stimulus period
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otherwise, we have chosen n ¼ 41 (number of neural units driving the
decoder) and m ¼ 2 (dimension of the latent space). For simulations
using the stochastic model, we have considered gðtÞ to be unit variance
Gaussian noise with s x = 0.05.

The secondary iterative optimization that generates W; bW can be
outlined as follows.

Algorithm 1

chooseWinit s.t. vecðWinitÞ � 0;

set score ¼ jjWinit
† Winit � Ijj2; set flag ¼ 0

Wp ¼ Winit

While iter�maxIters dobWp¼argminbW jj bWWp�Ijj21l 1jj bWjj2, subject to vecðWs
bWÞ,¼0

W
p ¼ argmin

W

jj bWp
W � Ijj2 1 l 2jjWjj2, subjectto vecðWÞ. ¼ 0

If jjcWpW
p � Ijj2 , score then

set flag ¼ 1;
else
continue;

Result: If flag ¼¼ 1 then

returnWp, bWp

Else
If vecðWsWinit

† Þ, ¼ 0 then

returnWinit,Winit
†

Else
No solution for this initialization.

Here, jj:jj2 is the Frobenius matrix norm, and regularization
coefficients l 1; l 2 are chosen such that 0,l 1,1, 0,l 2,1. We ini-
tialize the algorithm with an arbitrary wiring for W such that its
pseudoinverse W† exists, and we initialize the matrix bW as W†, as
the pseudoinverse is the best fit for a least-squares solution.
Thereafter, we proceed using Algorithm 1 to find a pair of matricesbW and W such that the resultant network realizes the optimal motifs
as well as the well characterized network constraints are satisfied.
The optimization problem is solved using the disciplined convex
optimization package CVX implemented in MATLAB (MathWorks;
Grant et al., 2008).

Dimensionality reduction analysis for simulated PN response
Similar to methods by Saha et al. (2017), we applied principal com-
ponent analysis (PCA) on our simulated PN response data to visu-
alize the n-dimensional time-varying activity of PNs. Each
exposure to a stimulus of given identity continues for t seconds,
followed by a period of no excitation of equal duration. As we syn-
thesized PN response at 10 ms intervals, we generated a time-series
data matrix of dimensions n� C (where C ¼ 2t

0:01) for each stimulus
encounter. We concatenated such data matrices obtained for dif-
ferent odorants to compare and contrast the trajectories evoked.
The resulting matrix was used to generate an n� n response covar-
iance matrix.

To visualize the neural activity during on and off response phases, a
time window comprising activity at stimulus onset and withdrawal is
selected (4 s on followed by 4 s off). This high-dimensional time-varying
data are then projected along the first three eigenvectors of the response
covariance matrix. Low-dimensional data points in consecutive time
instances were connected to construct trajectories in the three-dimen-
sional space. On the other hand, to compare the activities invoked by
red/blue stimulus in on and off phases, a 4 s window comprising either
on or off response is used.

Definition of metrics to analyze decoder performance
We analyze the quality of the latent representation generated by action
of PNs through the following quantities.

� Accuracy: Accuracy quantifies the deviation of the latent space rep-
resentation produced by PN activity from the true representation. This
quantification was made at the end of the stimulus period, given mathe-
matically by

accuracy ¼ 1� dðmðtsÞ; zÞ � dmin

dmax � dmin
; (17)

where dðu; vÞ is a distant metric between the points u and v, and ts is the
time instant when the pulse in withdrawn. We use a Euclidean metric
for distance in this case.

� Latency: Latency quantifies the time required by the synthesized
network model to provide an accurate representation of the stimulus. It
is computed as the time necessary to reach 1� e of the nominal repre-
sentation z. We used e ¼ 0:2.

� Similarity: Yet another way of evaluating the quality of the latent
representation produced by neural activity is by measuring the cosine of
the angle between mðtÞ at time t ¼ ts and z. This can be interpreted as
computing the similarity between the latent representation at the end of
stimulus period and the desired nominal representation and is given
mathematically as follows:

similarity � cosu ¼ mðtsÞTz
jjmðtsÞjjjjzjj : (18)

However, we find that the trends observed via this quantification
closely match that produced by accuracy. This is intuitive as the cosine
metric can be written in terms of the Euclidean norm. Therefore, in this
paper, we provide results using only accuracy and latency measures.

Experimental design
Odor stimulation
We followed a similar protocol as in our previous studies for odor stimu-
lation (Saha et al., 2013b, 2017). The odor solutions were diluted in min-
eral oil (from Sigma-Aldrich) to achieve 1% dilution (v/v). Twenty
milliliters of diluted odor solution was placed in a 60 ml sealed glass bot-
tle with inlet and outlet lines. A constant volume (0.1 L min�1) from the
odor bottle headspace was injected into the carrier stream using a pneu-
matic pico-pump (PV-820; WPI Inc.) during odor presentations. A vac-
uum funnel was placed right behind the animal preparation to ensure
the removal of odor vapors. Odor presentations were 4 s long. Each trial
was 40 s in duration with an intertrial interval set to 20 s.

Extracellular recordings
Post fifth instar locusts (Schistocerca americana) of either sex were
selected and were immobilized first, and then the brain was exposed,
desheathed as reported in previous studies (Laurent and Davidowitz,
1994; Brown et al., 2005; Saha et al., 2013a). Extracellular recordings of
PNs were performed using NeuroNexus 16-channel, 4� 4 silicon
probes. Impedances of all electrodes were kept in the 200–300 kV range.
Raw extracellular signals were amplified at 10k gain using a custom-
made 16-channel amplifier (Biology Electronics Shop; Caltech), filtered
between 300Hz and 6 kHz, and acquired at a 15 kHz sampling rate using
a custom-written LabVIEW (National Instruments) software.

Intracellular recordings
Animal preparation for intracellular recordings was the same as that
used for extracellular recordings. Patch-clamp (in vivo) recordings from
PNs were performed using the pipettes filled with locust intracellular so-
lution (in mM; Laurent et al., 1993): 155 K aspartate, 1.5 MgCl2, 1 CaCl2,
10 HEPES, 10 EGTA, 2 ATP disodium salt, 3 D-glucose, 0.1 cAMP. All
of these chemicals were purchased from Sigma-Adrich. The pH of the
patch solution was adjusted to 7.0 using 1 M NaOH, and osmolarity was
adjusted to the 320–325 mM range using sucrose. The impedances of
electrodes ranged between 5 and 15 MV. Raw voltage traces were ampli-
fied (Axoclamp 900a, Molecular Devices) and acquired at 16 kHz sam-
pling rate using LabVIEW software.
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Results
Sensory tracking is achieved by a biologically plausible
network architecture
The posited optimization problem is as follows:

min
x

ð1

0

1
2

m tÞT�z
� �

Q m tð Þ�zð Þ1x tÞTSx tð Þ1 _x tÞTR _x tð Þ
� �

dt
���

subject to; _m ¼ Am1bx: (19)

The solution of Equation 19 yields the following PN dynamics
(see Materials and Methods for details):

_xðtÞ ¼ Ws

Ð t
0e

�aðt�tÞxðtÞdt 1WfxðtÞ1 rðtÞ : (20)

Equation (20) reveals the existence of a network that incorpo-
rates both slow and fast processing (viaWs andWf , respectively)
in response to an external stimulus. Also present is dependence
on the exogenous stimulus via rðtÞ. However, how the slower
time scale is achieved in vivo is not explicitly explained by
Equation 20. The question here is whether a biologically plausi-
ble first-order network architecture can be realized by decompo-
sition of Equation 20 into first-order rate equations. We find that
by introducing an auxiliary population of neurons which share
reciprocal connections with the second-order PNs, this can be
achieved. Equations 21 and 22 below is a representative network
architecture arising from Equation 20 that produces the optimal
motif as seen in Figure 3:

_x0ðtÞ ¼ W0
i xiðtÞ1W0

0x0ðtÞ1 rðtÞ; (21)

_x iðtÞ ¼ Wi
ixiðtÞ1Wi

0xoðtÞ: (22)

Here, x � xo 2 Rno is the PN activity, xi 2 Rni is the activity
of the auxiliary population, and no and ni are the number of neu-
rons belonging to each population subgroup. The connectivity
matrices in Equations 21 and 22 are analytically specified as
W0

i ¼ Ws
bW , W0

0 ¼ Wf , Wi
i ¼ �aI, and Wi

0 ¼ W, where
W 2 Rni�no and bW 2 Rno�ni (see Materials and Methods for
details). In the insect AL, PNs extend excitatory connections
onto an auxiliary population of neurons known as local neurons
(LNs), which in turn provide inhibitory control on the PNs
(Wilson and Laurent, 2005; Kay and Stopfer, 2006; Shang et al.,
2007). In our network architecture, connections between PNs
and the auxiliary population are encapsulated in the matrices
Wi

o andW0
i . The structure of these matrices depend on choice ofbW and W (chosen such that bWW ¼ I). We set the dimensions

of these matrices such that ni,no, as cellular studies have
reported that typically the size of the population of LNs is smaller

than that of PNs (Laurent, 1996). W; bW are chosen through a
constrained iterative optimization scheme (see Algorithm 1) .
The constraints for this secondary optimization problem are
stated on the basis of the canonical excitatory–inhibitory struc-
ture found in the insect antennal lobe: (1) W (PN to LN) must

be non-negative, and (2) Ws
bW (LN to PN) must be nonpositive.

We initialized our proposed algorithm by selecting W to be a
positive random block matrix such that its pseudoinverse existed,

and we set the initial choice for bW as W†, the Moore–Penrose
pseudoinverse of W. The choice of such an initialization was
fashioned after our prior knowledge regarding existence of

stimulus-specific tuning of the PNs (Assisi et al., 2011; Saha et
al., 2017). It is important to emphasize here that the solution of
this iterative scheme is nonunique due to the structure of the

problem (W is a wide matrix and bW is its left inverse). In other
words, in general there will be many network architectures that
realize the optimal motif from Equation 19. The common
trend observed across various solutions (each a mathemati-
cally valid network architecture) is that the connections
between PNs and LNs are essentially random (salt and pep-
per). This is consistent with in vivo observations wherein each
PN extends its efferent terminals onto only a subset of the
auxiliary population and receives inhibitory control only from
a subset of the population (Bazhenov et al., 2001; Carey and
Carlson, 2011; Saha et al., 2017). It is worthwhile to point out
that the response motifs for LNs indeed depend on the result-
ing W matrix, as it encapsulates how each PN projects its syn-
apses on the putative LNs. But the motifs for PNs remain the
phasic/tonic ones derived directly from Equation 19 because
the cost function of the secondary optimization ensuresbWW ’ I.

Intrapopulation interactions of PNs and LNs are captured in
the matrices Wo

o and Wi
i. The diagonal terms in these matrices

represent the self-decay dynamics associated with each neuron.
Our construction also revealed very weak inhibitory connections
within the PN population pool. Such connections are not known
to exist experimentally, and we surmised that these small nega-
tive weights could be proxies of fast inhibitory synapses
(Bazhenov et al., 2001; Bazhenov et al., 2005) occurring else-
where in the antennal lobe (see also Discussion).

Network dynamics produce stimulus onset and offset
responses that are observed in vivo
Although the architecture of the normative model is consistent
with that of the antennal lobe, it is not yet clear whether its dy-
namics and activity also match the types of responses observed
in vivo. To study this issue, we set up an illustrative model for bi-
nary discrimination in a combinatorial setting. We emphasize
here that the choice of a two-dimensional state space is made
without loss of generality (see “Results” for an example of a sys-
tem with higher-dimensional latent space).

The combinatorial nature of the encoding space is embedded in
b (see Eq. 1), which determines the tuning of individual neurons.
In the example network, we used Gaussian tuning curves as per
Figure 3, so that some neurons respond preferentially to one stimu-
lus or the other (here, visualized as red vs blue), whereas some do
not exhibit a tuning preference (referred to as untuned). It is
observed that the PNs generate two significant phasic bursts of ac-
tivity: one following odor onset and the other on odor termination
(see Fig. 3B). These motifs are comparable to observations made in
vivo in the locust antennal lobe (see Figure 4). Moreover, the on
and off responses have orthogonal orientations in a dimensionality-
reduced space and are negatively correlated (see Figure 5A–C and
methods for dimensionality reduction details). Although spatiotem-
poral patterns of stimulus-evoked activity in the AL of insects has
been studied previously in the literature (Laurent, 1996; Raman et
al., 2010; Saha et al., 2017), our normative formulation provides an
insight into the functional relevance of such response patterns (i.e.,
these motifs allow for robust and accurate stimulus representations
for downstream processing in an energy-efficient manner).

Dependingontheir tuning,PNresponses fall intooneof the fol-
lowingcategories: (1)a rapid increase infiringat theonsetofstimu-
lus that subsequently settles to a steady-state response of reduced
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amplitude; on removal of stimulus, there exists a brief period of
inhibited activity (below baseline) before the system returns to
baseline; or (2) a state of suppressed firing activity through the
entire duration of stimulus but excitatory (above baseline) firing
activity when the stimulus is withdrawn (see Fig. 3B,C). On the
other hand, the auxiliary neurons (i.e., the putative LNs) display
tonic activity in response to stimuli, returning tobaseline gradually
when the stimulus is no longer active. Although the tuning of PNs
has been studied extensively (Stopfer et al., 2003; Wilson et al.,
2004),whether similar combinatorial architecture exists in theLNs
isyet tobe fully characterized. InFigure3C, theblue/redcoloration
does not imply prior tuning but simply indicates whether the neu-
ronswereexcited/inhibitedby the stimulus (Sahaetal., 2017).

Interestingly, these predicted response dynamics have been
observed in recordings from the locust olfactory system, wherein

recent findings suggest both phasic and tonic temporal responses
associated with stimulus onset and offset (Saha et al., 2017).
Specifically, experimental observations indicate that when a pulse
of stimulus is provided, the neurons in the antennal lobe exhibit
a phasic transient followed by a tonic activity for the duration of
the stimulus (referred to as on response). On termination of the
pulse, there is another short-lived burst of activity before activity
slowly returns to the quiescent regime (an off response; Saha et
al., 2017). Figure 4 shows intracellular voltage traces recorded
from four representative PNs in the locust antennal lobe. As can
be noted, the stimulus-evoked responses in these PNs occur ei-
ther when the stimulus is present followed by hyperpolarization
(ON type), or following the termination of the stimulus (OFF
type; note that membrane potential is hyperpolarized when the
odor was presented). This segregation of stimulus-evoked PN
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Figure 2. A, Schematic of synaptic interactions between PNs and LNs in the antennal lobe of insects. The PNs provide excitation to LNs, whereas LNs impose inhibitory control on PNs. B,
Connectivity matrices arising for a particular choice ofW , bW in our mathematical model shows the synaptic interactions between the two populations. It is consistent with the canonical exci-
tatory–inhibitory scheme observed in sensory networks in vivo.
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responses into these distinct categories is maintained even when
a larger number of neurons probed with a wider panel was con-
sidered (Saha et al., 2017). It should be mentioned here that the
ensemble response vectors during onset and offset responses
have distinct geometric orientations and are negatively correlated
with each other as reported by both model simulations and ex-
perimental recordings (Fig. 5A–C).

Orthogonalization of population response achieves robust
latent representation
In the previous section, we explored how the PNs achieve stimu-
lus detection in a latent space via spatiotemporal response pat-
terns. We sought to understand how PN response patterns that
are optimized for stimulus detection affect other aspects of sen-
sory processing. One prediction that was made by the model per-
tains to processing stimuli that are encountered in sequence,
often without a sufficient interstimulus interval for the system to
recover fully. Our model revealed that in such situations, result-
ant PN responses emphasize, albeit more strongly, on distinct
orientations for distinct stimuli (in the reduced dimension space;
Fig. 6A–C). This finding has been previously referred to as the
contrast enhancement computation (Nizampatnam et al., 2018)
that highlights the uniqueness of the current stimulus with
respect to prior distractions (Fig. 6E). Here, we used our defined
latent space of intermediate representation to analyze the need
for such patterning. It turns out that what appeared as contrast
enhancement/novelty detection through activity of PNs in fact
enabled maintenance of robust latent representation (Fig. 6D) in
the face of a variety of background distractions.

Importantly, the objective function in our optimization frame-
work (Equation 2) stressed only on formation of accurate latent
representation in an energy-efficientmanner for a single stimulus at
a time. Regardless, this framework predicted response features that
are observed in the biologicalworldwhere stimuli are often perceived

under a variety of contexts (Nizampatnam et
al., 2018). This functional interpretation of
what is achieved by neural response modula-
tion when stimuli appear in conjuction with a
multitude of distractions is an interesting out-
comeof this study.

Active reset enables consecutive fast and
accurate representations
As suggested by the above finding, the syn-
thesized network embodies the notion of
active reset via its off response. We further
analyzed the functional advantage of such
distinct reversal of firing trends at the con-
clusion of the active stimulus period by sys-
tematic simulations of our model. Here, we
considered two model alternatives: (a) the
synthesized network and (b) a network
whose activity ceases immediately on with-
drawal of the stimulus and the decoder
relies only on its natural decay to return to
neutral (“passive reset”). We simulated each
of these models with a sequence of stimuli
(Fig. 6A, right). It turned out that the active
reset mechanism mediated via the off
response prepares the system promptly for
the next incoming excitation. In the absence
of such swift reversal of firing activity at the
conclusion of a stimulus, the system “recov-

ered” at a much slower rate, leading to confounding latent repre-
sentation of succeeding stimuli (Fig. 7A). Clearly, the extent of
misrepresentation depends on the degree of passive reset (i.e.,
the parameter a) as well as the time allowed for the system to
recover between pulses (Fig. 7B; the definition of accuracy in this
context is included in the Materials and Methods).

The optimal response motif predicts the existence of a fixed-
point attractor
It has been found that PN population response comprising pha-
sic/tonic activity patterns when analyzed in the reduced principal
component space traces distinct, odor-specific trajectories.
Starting from the origin or a neutral point, each odor-evoked tra-
jectory quickly coalesced to a specific “fixed point” in the neural
state space (Galán et al., 2004; Mazor and Laurent, 2005). The
model in this study is designed to “track” a nominal representation
in the low-dimensional decoded latent space with high confidence.
In doing so, the derived optimal neural responses displayed a
sharp transient activity at both stimulus onset and offset (Fig. 3B);
in the period between these transients, the PNs responded to the
stimulus by a steady-state response of low amplitude. Therefore,
the model indeed predicts the existence of an odor-specific fixed-
point attractor in the neural state space (see Figure 8). Beginning
from a neutral state, it took only a few milliseconds to be in the
proximity of the attractor determined by stimulus identity; like-
wise, on withdrawal of the stimulus, it is the transient activity that
propeled the system to quickly return to its neutral regime. The
interesting observation here is the speed with which the neural
response mediated detection and “undetection,” as our optimiza-
tion framework (Eq. 2) is formulated to produce representations
over an infinite time horizon without any bias toward when spe-
cific events (i.e., detection) should occur.
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Figure 3. A, Combinatorial encoding is represented through the weights of matrix b in our model. Each row deter-
mines the contribution of the n ¼ 41 neural units (marked as colored circles) to evidence accrued corresponding to the
high-level feature. B, C, Response motifs produced by the two populations (PNs and LNs) in presence of a blue pulse.
Depending on their tuning to blue/red stimulus, the neurons may be excited or inhibited, respectively. B, PN activity dis-
plays two phasic transients, one on stimulus onset and the other on stimulus withdrawal; in between these transients the
activity is steady but reduced in amplitude. C, LN activity is present chiefly as long as the stimulus is in action.
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Encoding performance degrades
gracefully with respect to increasing
tuning overlap
Combinatorial coding in olfaction is ubiq-
uitously present (Menini, 2009; Kundu et
al., 2016), as this scheme provides efficient
utilization of limited neural resources for
identification and processing of a very
large number of odors. The question is,
how robust is the performance of the
model across different degrees of overlap
in the tuning curves? In our mathematical
setup, C is the fraction of neurons that
responds to both red/blue stimuli with no
overt preference to either stimuli; there-
fore, it also indicates the extent of overlap
between the tuning curves or similarity
between the feature space of afferent stim-
uli. The synthesized model predicted that
the network can maintain accurate repre-
sentations of the stimuli for a large range
of values of C (see Fig. 9A,B). Beyond this
range of overlap, however, there is a rapid
decline in the quality of representation. It
is evident that systems which endured
large expenditures in terms of energy and
maintained strict demands for error mini-
mization were more tolerant to increased
overlap in the combinatorial space (see
Fig. 9B) than their counterparts.

In this context the next question is,
can this graceful deterioration in per-
formance be attributed to some embed-
ded feature of the optimal motif? On
analysis, we found that in fact it is the
activity of the competing neurons that
alleviated both transient and asymptotic
misrepresentation over a considerable
range of overlap in the tuning curves.
We have previously identified that the
neurons preferentially selective to a given stimulus remain in a
state of suppressed activity in the presence of a competing stimu-
lus (Figure 3B). When this activity is eliminated by reducing the
contribution of the red-tuned neurons to the latent decoder to
baseline, we observed that the latent state trajectory tracked z
poorly. Furthermore, the inherent property of graceful degrada-
tion of the synthesized network also disappeared in the absence
of competitive inhibition (see Fig. 9C,D).

Optimal motifs mediate a trade-off between latency, energy,
and accuracy
The choice of the error penalty matrix Q and energy regulariza-
tion matrix S in Equation 2 shaped the optimal neural responses
and subsequently influenced the performance of sensory tracking
in the latent space. Intuitively, as Q is scaled to higher values,
stricter demands are made to ensure high-fidelity tracking,
whereas increasing the scale of S encourages greater degree of
conservation of energy. The notion of a performance trade-off
here is embedded, therefore, in the choice of matrices Q and S
(Fig. 10A,B), as they share an antipodal relationship with respect
to accuracy as well as latency (time to reach 80% of the nominal
evidence level). In the Materials and Methods section of this pa-
per, we have reported how choosing a cosine metric to measure

the quality of latent representation can be used. Figure 10C,D illus-
trates the response morphology associated with different penalties.
This indicated that low penalty on tracking error and high regula-
rization on energy produced smaller overshoots on stimulus onset.
Such responses, although still capable of forming latent space rep-
resentations, did so more slowly and less accurately (Fig. 10A,B,
cyan squares on surface plots). Phasic overshoot, conversely, is in-
dicative of a network designed to promote accurate and fast repre-
sentations (Fig. 10A,B, pink circles on surface plots). Thus, our
finding is compatible with the argument that short stimulus expo-
sures are sufficient for olfactory discrimination (Uchida and
Mainen, 2003), at the cost of higher energy expenditure within sen-
sorynetworks.

Higher-dimensional generalization of the latent space
In this section, we address how the latent space can be generalized
to higher dimensions so that a large number of odor inputs can be
represented. Here, we consider six odors (blue/magenta/red/olive/
green/cyan) that map to a three-dimensional high-level feature
space (Fig. 11A,B) through matrix b. Similar to the two-dimen-
sional case, neural activity causes accrued evidence mðtÞ toward
track z in the latent space (Fig. 11C). Through this simulation, we
found out that through choice of an appropriate tuning matrix, it

A

B

Figure 4. A, Intracellular voltage traces of four different PNs are shown (different colors). Shaded gray box in each panel
shows the 4 s duration of odor exposure (cit, citral; hex, hexanol; both delivered at 1% v/v dilutions), and the black line repre-
sents the scale bar (20 mV). Three traces in each panel correspond to three consecutive trials of recording, revealing that the
temporal patterns are consistent between trials. PN1 and PN2 responded during the presentation of odor (on response), and
PN3 and PN4 responded after the termination of odor (off response). B, PN firing rates in 50ms time bins were averaged across
trials and are shown in A.

3416 • J. Neurosci., April 22, 2020 • 40(17):3408–3423 Mallik et al. · Neural Circuit Dynamics for Sensory Detection



is possible to represent a relatively large number of odors in a low-
dimensional latent space.

Discussion
In this work, we have proposed a mechanistic model for sensory
detection that identifies the functional significance of spatiotemporal
motifs observed ubiquitously across species in the context of
olfaction. Previous studies on this topic (Stopfer et al., 2003;
Mazor and Laurent, 2005; Bathellier et al., 2008; Raman et al.,
2010; Saha et al., 2013b, 2017) have used post hoc analysis to
surmise the role of the aforementioned responses. In contrast,
we present here a normative modeling perspective: we formally
optimize PN response dynamics to achieve input separation in
an intermediate latent space in an energy-efficient manner.

The key contributions of this paper are summarized as
follows:

1. We showed that sensory onset and offset responses can be
explained by a latent decoding objective function and associ-
ated mathematical optimization thereof.

2. We showed that a biologically plausible network architecture
is capable of producing the optimal responses elucidated
by 1.

3. We showed that this optimization leads to several emergent
predictions regarding the mapping from stimulus to latent
representation for more complex stimuli.

Normative interpretation of PN response dynamics
We adopted a top-down approach and formulated a represen-
tation tracking problem wherein PNs must fluidly and effi-
ciently encode the stimulus such that it generates a robust
and coherent latent representation for downstream processes.
It turned out that, to achieve this objective, the optimal PN
dynamics exhibited two distinct overshoots above baseline
activity, one on onset of stimulus and the other on withdrawal
(Fig. 3). The analytical responses also exhibited distinct geo-
metric orientations during stimulus on and off phases, analo-
gous to what has been reported in vivo (Fig. 5). It is worth
noting here that the optimization problem we have solved
amounts to the linear quadratic regulator problem, a classical
construct in control theory (Anderson and Moore, 2007).

Figure 5. A, Mean PN firing rates (50 ms time bins and averaged across 10 trials) are shown for each PN (single row) and across the entire PN ensemble (different rows). The 4 s when the
odorant was present (i.e., on period) and 4 s after the termination of the stimulus (i.e., off period) are identified using a red and a blue bar, respectively. PNs are ordered based on the differ-
ence between the peak firing rates during ON and OFF epochs (Saha et al., 2017). Nonresponsive neurons are shown at the bottom. Normalized peak firing responses during ON and OFF periods
for each PN are shown on the right of the panel as a color bar. Neural ensemble response trajectories after PCA dimensionality reduction are shown. Red trajectory corresponds to the 4 s when
isoamyl acetate (iaa) was presented, and the blue trajectory corresponds to the 4 s after termination of the stimulus. Similar plots for two different odorants, iaa at 1% v/v (left) and 2-octanol
at 1% v/v (right), are shown. B, Correlation between ensemble response evoked by an odorant; the ON and OFF responses are negatively correlated. C, PCA trajectories and correlation maps
generated during 4 s stimulus (blue) onset and 4 s following stimulus withdrawal generated by the noisy model are shown. Arrows indicate the direction of evolution of the trajectories.
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We have shown here that an excitatory–inhibitory network
architecture with first-order dynamics can implement the motifs
generated by the optimization framework. We derived the con-
nectivity weights between the second-order PNs and an auxiliary

population of LNs by means of an iterative optimization scheme
(see Fig. 2 and Materials and Methods for details). Our results,
however, indicate that there might be several plausible ways to
mathematically specify such a network.

Figure 6. A, The synthesized model is excited by (a) a solitary red target pulse or (b) a blue distractor pulse followed by a red target pulse. B, Change in neural activity due to presence of
distractor cue. C, PN activity visualized after dimensional reduction: response trajectory in the distractor-target sequence implements contrast enhancement (Nizampatnam et al., 2018). Arrows
indicate the direction of evolution of the trajectories. D, Latent state representation for a range of interstimulus interval. The model predicts that robust latent realizations are possible even
when interstimulus intervals are very small due to contrast enhancement computations. E, Similar plots as in Figure 5A are shown for a sequential presentation of hexanol (hexanol after 2 s
ISI shown as brown trajectory). Neural response trajectories for solitary presentations of 2-octanol (blue trajectory) and hexanol (red trajectory) are also plotted for comparison. Note that, com-
pared with the red trajectory, brown trajectory is more distant from the blue trajectory.

Figure 7. A, In the absence of active reset, latent state trajectory evolves with a bias introduced by the previous cue. B, The amount of bias introduced in the system depends on the intrinsic
dynamics of the decoder controlled by a and the time between two stimuli. A comparison is made with a system implementing active reset (gray line). Here we sweep the parameter a over a
range of 0.05 to 0.25.
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We probed our model further to highlight the relevance of
certain response features that appear both in simulations and
through experimentation. The tractable construct facilitates a
comprehensive understanding through rigorous mathematical
simulations for different ranges of parameters andmodel alterna-
tives. We analyzed the quality of the latent space representations
formed using metrics of accuracy and latency to interpret what
benefits neural response features, such as competitive inhibition,
contrast enhancement, etc., provide in detecting a stimulus. A key
result of this studywas that the constructed sensory networkswere
capable of distinguishing between highly similar inputs (see Fig.
9). There is in fact no inherent trade-off between accuracy (i.e.,
input separation) and speed; rather, both are monotonic with
respect to energetic considerations (Fig. 10). Several studies in the
literature have discussed these notions through experimental
observations and data-driven, bottom-up modeling approaches
(Wehr and Laurent, 1999; Rabinovich et al., 2000; Ito et al., 2008;
Chittka et al., 2009; Saha et al., 2017). Here, we presented a top-
down normative framework that began from the specification of a
mathematical form for the decoding objective and systematically
navigated the results to provide a functional interpretation of pat-
ternsobserved invivo.

Normative model produces known sensory neural dynamics
beyond onset and offset responses
From our high-level detection objective, our normative model
predicted several complex neural computations observed in the
early olfactory networks beyond onset and offset responses.

For instance, experimental studies (Galán et al., 2004; Mazor
and Laurent, 2005) have established that the trajectory in the
neural state space quickly converges to a stimulus-specific fixed
point: the transient activity being crucial in driving the trajecto-
ries toward these fixed-point attractors. Persistence of weak
response (tonic activity) after the initial strong onset response
(phasic activity) emerged in the synthesized model due to

interplay between the first and second terms in the objective
function—namely, accuracy of latent representation and energy of
sensory activity (Fig. 8). So, the model indeed provides an objec-
tive way to think about the need for these fixed-point attractors.

Additionally, our model also provided a novel interpretation
of contrast enhancement computation (Nizampatnam et al.,
2018) known to exist at a population level in PNs. It turned out
that by highlighting the uniqueness of the current stimulus while
sensing stimuli in series with very small interstimulus intervals,
the PNs ensure robustness of latent representation required for
reliable functioning of downstream processes (Fig. 6).

To summarize, we found that our framework, built only to
ensure accurate representation tracking in a low-dimensional
latent space, exhibits (emergent) observations reported in the ac-
tivity of olfactory systems, thus providing a unified explanation
for these activity patterns.

Generality of the decoding model
The decoder we have used is a multivariate linear dynamical sys-
tem driven by PN activity. Mathematically, this is similar to drift-
diffusion-type models that have been used to study high-level
decision-making [e.g., the two-alternative forced choice task
(Bogacz et al., 2006; Colman, 2015)]. In addition to the obvious
difference in the level of behavioral abstraction being considered,
there are important differences in formulation between our work
and these prior results. In particular, our framework caters to the
need of representations being fluidly created and then abolished:
they must persist through the duration of the stimulus and dissi-
pate quickly after its withdrawal. This departs from theoretical de-
cision-making paradigms such as “interrogation” or “free
fesponse” (Bogacz et al., 2006) where a subject must make a detec-
tion within a set amount of time, and where the decoding process
essentially terminates at the time of decision. Indeed, there is no

Figure 8. A, PN population response for different lengths of stimulation (i.e., ts ¼ 1, 4, 10 s). B. PN trajectories as visualized in the PC space. Gray circle indicates the initial point, pink circle
indicates the end of transient (phasic) response period, and green circle indicates the fixed point to which the population response converges asymptotically in presence of a stimulus. The
thicker part of the trajectory indicates the period for which stimulus was on. The arrows indicate the direction of traversal.
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Figure 9. A, Trajectories in the latent space evolve with reduced spatial separation with increased overlap between Gaussian tuning curves embedded in b. However, the degree of misrepresen-
tation (inversely related to spatial separation) is appreciably low across a wide range of overlap. B, Accuracy of the normative model as a function of the percentage of overlap. We notice that, after
a critical point, the performance degrades drastically. This point along the horizontal axis is a function of penalty matrixQ (left) and regulariztion matrix S (right). C, Competitive inhibition is pivotal
for ensuring accurate representation. In the absence of competitive inhibition, the trajectories corresponding to red and blue stimulus are more proximal to each other (dashed line). D, Comparison
between systems with and without competitive inhibition. Fifty percent of the neurons responsive to the red stimulus are switched off while a blue stimulus was provided. The accuracy of the sys-
tem with impaired competitive inhibition declined rapidly.
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“threshold” in our model, only a latent representation that is con-
tinuously evolving in its state space.

In the scenario where the number of excitation sources
(i.e., odors) is very large (possibly infinite), we can continue to
use this normative framework for analysis by choosing an

appropriate b matrix. In such a case, we could formulate b so
that each row contains weights corresponding to a member of an
appropriate basis set. Then, it is possible to translate the infinite
set of inputs to their corresponding latent representations by lin-
ear combination of the chosen basis functions. The exact weight

Figure 10. A, Accuracy is plotted as a function of error penalty matrixQ and energy regularization matrix S. B, Latency of forming a reasonably accurate representation is plotted as a func-
tion of error penalty matrix Q and energy regularization matrix S. (Note that the axis directions in A and B are reversed for better visualization of surface plots.) C, Response motifs across
choice of energy regularization matrix S. With a higher penalty on energy, the amplitude of the overshoot decreases. D, Response motifs across choice of error penalty matrixQ. With highly
scaled error penalty, the systems produce a sharp overshoot followed by a prompt return to baseline.
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distributions for such basis set is yet to be determined and
remains a question for future study.

Features not explained
There are a number of important caveats and limitations that should
be pointed out regarding the interpretation of the normative model
presented through a set of first-order firing rate dynamics (Dayan
and Abbott, 2001). In particular, our synthesized network has linear
dynamics wherein neurons can assume both positive and negative
firing rates. Such a formulation is acceptable if we envision the rate
variables as a change relative to some positive baseline rate of activ-
ity. Harder to reconcile in the linear model is a lack of upper and
lower bounds of firing rate. Solving the optimization problem with
such constraints is a harder problem mathematically (Chachuat,
2007) that we have not yet resolved.

Our construction produces local neurons that are exclusively
inhibitory in nature and they interact only via the excitatory neu-
rons. However, there are reports of existence of excitatory local
neurons in the antennal lobe of some insects (Shang et al., 2007;
Masse et al., 2009; Assisi et al., 2012). The functional role of such
excitatory LNs is not accounted for in our model. However, in
the mathematical formulation, these excitatory components can
easily be realized by relaxing the nonpositivity constraint in the
iterative optimization procedure (see Materials and Methods for
details). Our construction also produces very weak lateral inhibi-
tion directly between PNs (Wo

o; Fig. 2). Although there is no ex-
perimental evidence of existence of such PN-PN inhibitory
synapses, fast GABAergic synapses (Bazhenov et al., 2001,
2005) are known to exist in the insect antennal lobe (between
LN-LN and LN-PN) and thought to be functionally relevant
for maintaining the synchrony of PN responses (Bazhenov et
al., 2001). We theorize that the inhibitory synaptic weights
between PNs produced by solving the reduced linear quadratic
regulator problem (Eq. 5) are in fact proxies for these fast in-
hibitory synapses that have not been explicitly considered in
the synthesized network.

In the objective function (Eq. 2), we use a Euclidean dis-
tance to evaluate the quality of the latent representation as
it tracks the incoming stimulation. However, downstream
neurons might achieve input separation before higher-level
processing by more involved computations. Experimental
studies identify spatial and temporal filtering, decorrela-
tion, etc. (Friedrich, 2013) as operations that could be plau-
sibly executed by sensory neurons. In the present work, we
choose to use the well characterized ‘2 norm as a surrogate
for specialized computations that might occur in vivo. It is
as yet an open question how incorporating such functions
would impact our synthesis results.

Additionally, we have not considered any form of adaptation
or habituation in our network, choosing to focus on a single ex-
posure regime. The question of how the optimal weights come to
be (e.g., via development or learning) is not considered herein.

Finally, our model makes no statements about the translation
from latent representations to behavior. Behavior can exhibit non-
linear and sometimes paradoxical characteristics with respect to
stimulus intensity, composition, and context. Accounting for these
factors within the optimization problem is highly intriguing, but is
a more complex formulation that is left for future study.
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