
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

2020-Current year OA Pubs Open Access Publications 

8-31-2023 

Pan-cancer proteogenomics connects oncogenic drivers to Pan-cancer proteogenomics connects oncogenic drivers to 

functional states functional states 

Yize Li 
Washington University School of Medicine in St. Louis 

Song Cao 
Washington University School of Medicine in St. Louis 

Matthew A Wyczalkowski 
Washington University School of Medicine in St. Louis 

Yizhe Song 
Washington University School of Medicine in St. Louis 

Erik P Storrs 
Washington University School of Medicine in St. Louis 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4 

 Part of the Medicine and Health Sciences Commons 

Please let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Li, Yize; Cao, Song; Wyczalkowski, Matthew A; Song, Yizhe; Storrs, Erik P; Wendl, Michael C; Liang, Wen-
Wei; Terekhanova, Nadezhda V; Rodrigues, Fernanda Martins; Zhou, Daniel Cui; Wang, Liang-Bo; Baral, 
Jessika; Chheda, Milan G; Ding, Li; and et al., "Pan-cancer proteogenomics connects oncogenic drivers to 
functional states." Cell. 186, 18. 3921 - 3944.e25. (2023). 
https://digitalcommons.wustl.edu/oa_4/3096 

This Open Access Publication is brought to you for free and open access by the Open Access Publications at 
Digital Commons@Becker. It has been accepted for inclusion in 2020-Current year OA Pubs by an authorized 
administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/oa_4
https://digitalcommons.wustl.edu/open_access_publications
https://digitalcommons.wustl.edu/oa_4?utm_source=digitalcommons.wustl.edu%2Foa_4%2F3096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Foa_4%2F3096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://becker.wustl.edu/digital-commons-becker-survey/?dclink=https://digitalcommons.wustl.edu/oa_4/3096
mailto:vanam@wustl.edu


Authors Authors 
Yize Li, Song Cao, Matthew A Wyczalkowski, Yizhe Song, Erik P Storrs, Michael C Wendl, Wen-Wei Liang, 
Nadezhda V Terekhanova, Fernanda Martins Rodrigues, Daniel Cui Zhou, Liang-Bo Wang, Jessika Baral, 
Milan G Chheda, Li Ding, and et al. 

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/oa_4/3096 

https://digitalcommons.wustl.edu/oa_4/3096


Article

Pan-cancer proteogenomics connects oncogenic
drivers to functional states

Graphical abstract

Highlights

d Multi-omic clusters reveal shared oncogenic driver

pathways across ten cancer types

d Genetic changes correlate with altered, tumor-specific

protein-protein interactions

d cis/trans-effects and kinase activities show driver

heterogeneity and druggability

d Proteomic integration with genomic drivers resolves distinct

cancer hallmark patterns

Authors

Yize Li, Eduard Porta-Pardo,

Collin Tokheim, ..., Gad Getz, Li Ding,

Clinical Proteomic Tumor Analysis

Consortium

Correspondence
lewis_cantley@dfci.harvard.edu (L.C.C.),
gadgetz@broadinstitute.org (G.G.),
lding@wustl.edu (L.D.)

In brief

A multi-omics analysis-based resource

across ten cancer types from more than

1,000 patients provides pan-cancer

insights into shared oncogenic driver

mechanisms and pathways.

Li et al., 2023, Cell 186, 3921–3944
August 31, 2023 ª 2023 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.cell.2023.07.014 ll

mailto:lewis_cantley@dfci.harvard.edu
mailto:gadgetz@broadinstitute.org
mailto:lding@wustl.edu
https://doi.org/10.1016/j.cell.2023.07.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2023.07.014&domain=pdf


Article

Pan-cancer proteogenomics connects
oncogenic drivers to functional states
Yize Li,1,2,31 Eduard Porta-Pardo,3,4,31 Collin Tokheim,5,6,31 Matthew H. Bailey,7,31 Tomer M. Yaron,8,9,10,31

Vasileios Stathias,11,12,32 Yifat Geffen,13,14,32 Kathleen J. Imbach,3,4,32 Song Cao,1,2,32 Shankara Anand,13 Yo Akiyama,13

Wenke Liu,15,16 Matthew A. Wyczalkowski,1,2 Yizhe Song,1,2 Erik P. Storrs,1,2 Michael C. Wendl,2,17,18 Wubing Zhang,5

Mustafa Sibai,3,4 Victoria Ruiz-Serra,3,4 Wen-Wei Liang,1,2 Nadezhda V. Terekhanova,1,2 Fernanda Martins Rodrigues,1,2

Karl R. Clauser,13 David I. Heiman,13 Qing Zhang,13 Francois Aguet,13 Anna P. Calinawan,19 SaravanaM. Dhanasekaran,20

Chet Birger,13 Shankha Satpathy,13 Daniel Cui Zhou,1,2 Liang-Bo Wang,1,2 Jessika Baral,1,2 Jared L. Johnson,8,9

Emily M. Huntsman,8,9 Pietro Pugliese,21 Antonio Colaprico,11,22 Antonio Iavarone,11,23 Milan G. Chheda,1,24,25

(Author list continued on next page)

SUMMARY

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular
mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights
into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified
at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point muta-
tions and copy-number alterations with the rewiring of protein interaction networks, and notably, most can-
cer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A
correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulner-
abilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging
fromuniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics
in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing
the limitations of studying individual cancer types.

INTRODUCTION

Cancer is primarily initiated by genetic driver mutations in tumor

suppressor genes (TSGs) and proto-oncogenes.1 Multiple met-

rics are considered to define a gene as a cancer driver, including

mutation recurrence in a gene,2 functional protein domains,3 in-

dividual amino acid hotspots for oncogenic mutations,4–6 enrich-

ment of damagingmutations,7 or three-dimensional clustering of
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somatic mutations in the protein structure.8–10 On applying

these criteria to the large cohorts of cancer genomics data,

the list of cancer genes and their predicted driver mutations

has grown in recent years.1,2,11 How these mutations

mechanistically ‘‘drive’’ tumorigenesis remains incompletely

understood.12

The Clinical Proteomics Tumor Analysis Consortium (CPTAC)

has accelerated the understanding of basic molecular mecha-

nisms in cancer by integrating data across the proteogenomic

spectrum: whole-exome and whole-genome sequencing, DNA

methylation, RNA-seq, and comprehensive proteomics and phos-

phoproteomics.13–22 Todate, extensivedata havebeengenerated

for 1,000+ cases spanning ten cancer types: colorectal adenocar-

cinoma (COAD),13 ovarian high-grade serous carcinoma

(HGSC),20 clear cell renal cell carcinoma (ccRCC),14 head and

neck squamous cell carcinoma (HNSCC),18 lung squamous cell

carcinoma (LSCC),22 uterine corpus endometrial carcinoma

(UCEC),15 lung adenocarcinoma (LUAD),17 pancreatic ductal

adenocarcinoma (PDAC),21 glioblastoma (GBM),16 and breast

carcinoma (BRCA).19 Through interrogation of alterations in

various omics layers, the effects of somatic driver mutations can

be tracked to the unit of biological structure and function: the

protein.

Pan-cancer studies focus on defining molecular characteris-

tics across diverse cancers. Here, we extend our previous geno-

mics-centered pan-cancer studies1,23–26 by incorporating the

proteomic layer to elucidate six critical aspects of cancer drivers:

(1) pan-cancer genomic and epigenomic driver frequencies,

exclusivities, and co-occurrences; (2) the impact of driver alter-

ations on RNA, protein, and post-translational modifications

(PTMs); (3) the effects of driver alterations on protein complexes;

(4) essential protein- and phosphorylation-level changes in

oncogenic pathways; (5) association of actionable driver alter-

ations with the tumor microenvironment (TME); and (6) the com-

bined effects of somatic drivers on protein abundance through

the lens of cancer hallmarks. Our findings show the potential of

integrative proteogenomic analysis in decoding oncogenic

drivers and its potential clinical utility, particularly when a clear

genomic target is absent.

RESULTS

A pan-cancer proteogenomic landscape of driver
alterations and associated multi-omic clusters
Although large-scale DNA-sequencing studies have been vital in

identifying cancer driver mutations, proteogenomics further en-

hances epigenomic, transcriptomic, and proteomic data to

reveal functional consequences and therapeutic vulnerabilities.

As part of CPTAC, we uniformly processed and analyzed proteo-

genomic data from 1,064 prospectively collected cases across

ten cancer types, encompassing genetic alterations, DNA

methylation, transcriptome, global proteomics, and phospho-

proteomics (Figure 1A). Each case is accompanied by anony-

mized clinical data, histopathology, treatment outcome, and, in

some cases, detailed molecular data from normal-adjacent tis-

sues (NATs) (Table S1). A significant advance is the inclusion of

mass-spectrometry-based proteomic and phosphoproteomic

data, which exponentially expands the number of quantified fea-

tures to 15,699 proteins and 110,274 phosphosites (Figure 1B),

compared with 128 and 53, respectively, evaluated in The Can-

cer Genome Atlas (TCGA)’s RPPA-based assays.27

To reveal the landscape of tumor variability in the tran-

scriptome, proteome, and phosphoproteome, we clustered

tumor samples by applying Bayesian non-negativematrix factor-

ization28–30 followed by hierarchical clustering. We resolved four

main multi-omic clusters (clusters A–D) (Figure 1C; STAR

Methods). Cluster A lacks PDAC but is enriched with HGSC

and COAD associated with a higher proportion of microsatellite

instability (MSI-high) and immune-cold samples (p values =

0.02, 1e�5, respectively, chi-squared test; STAR Methods).

Cluster B has more squamous cell carcinomas and higher im-

mune infiltration than the other clusters (p value = 1e�5, chi-

squared test). Clusters C and D are enriched in LUAD and

GBM, respectively, and share similarities, such as a higher pro-

portion of immune-warm samples (Figure 1C). Notably, some

oncogenic alterations preferentially occurred in particular clus-

ters (q value < 0.05, chi-squared test), such as KRAS mutations

in clusters C and D, and CDKN2A and TP53mutations in cluster

B (Figure 1C; Table S1). Moreover, we identified differentially
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expressed proteins (DEPs) and phosphosites (DEPPs) (Fig-

ure 1C; Table S1). Functionally, cluster A-associated DEPs are

enriched in estrogen-dependent gene expression and DEPPs

in DNA repair. The DEPs and DEPPs in cluster B are enriched

in DNA replication, innate immune system, and cell cycle,

agreeing with the high number of CDKN2A alterations. Cluster

C-associated DEPs andDEPPs relate to signaling in extracellular

matrix (ECM) organization and VEGFA-VEGFR2. Finally, cluster

D is enriched in tyrosine metabolism and MAPK1/MAPK3

signaling (Figure 1C).

Next, we quantified how representative pathways enriched in

each multi-omic cluster varied by cancer type using protein-

based single-sample gene set enrichment analysis (ssGSEA)

(Figures 1D and S1A; Table S1). For example, ccRCC showed

higher ssGSEA scores for the immune system pathway than

GBM in each cluster (Figure S1A), consistent with a known higher

immune infiltration and better response rate of ccRCC to im-

mune checkpoint blockade.31 To evaluate the clinical relevance,

we conducted survival analyses among co-clustering tumors.

Following multiple test corrections, we found that ccRCC sam-

ples in clusters C and D labeled as group A (i.e., enriched with

PDAC samples) showed a superior prognosis to their counter-

parts (i.e., ccRCC samples in clusters A and B) (Figure S1B);

this relationship was maintained after adjusting for age, sex,

and tumor purity in a Cox proportional hazard model (p value =

0.008). By comparing the protein-based ssGSEA score of inflam-

matory response between groups A and B in ccRCC, we noticed

that group A corresponded to lower immune infiltration levels

(Figure S1C). A survival benefit was noted when we grouped

the ccRCC samples based on their inflammatory response

ssGSEA score (Figure S1D). GBM scored higher than other can-

cer types for the epithelial-mesenchymal transition (EMT)

pathway, especially in cluster D (Figure 1D). The mesenchymal

subtype of GBMexpresses neural stem cell markers and is asso-

ciated with an aggressive phenotype.32–34 The subgroup of GBM

with high EMT ssGSEA scores was linked to poor patient survival

(p value = 0.0062; Figure S1E; STAR Methods). A holistic view of

all cancer cases, based on their multi-omic signatures, enabled

us to identify distinct sample clusters. However, how might the

cancer drivers in these samples be related to the molecular

pathway differences? We began by investigating the most

apparent possible effect: the impact of an altered driver gene

on its RNA and protein products.

Proteogenomic analyses reveal the heterogeneity of
cis-effects of cancer mutations
Although genetic variants can broadly impact the proteome, the

most proximal effect is at the transcriptional, translational, and

post-translational product of the mutated gene itself.35,36 To

explore such cis-effects, we assessed how putative cancer

driver gene mutations were associated with changes in their

RNA, protein, or phosphoprotein levels with linear regression

models (Figure 2A; Table S2; STARMethods). We found 265 sig-

nificant cis-events at the pan-cancer level in 59 cancer genes (q

value < 0.1, Figure 2B; Table S2). As expected, TSGs such as

ARID1A, MSH6, or RB1 tended to be downregulated at the

RNA, protein, or phosphoprotein level. Analyzed separately for

each tumor type, we found 349 cis-effects in 59 cancer genes

(q value < 0.1). Most overlapped with cis-effects from the pan-

cancer analysis. Still, some were unique, including mutations in

CUL3 in LSCC, NOTCH1 in HNSCC, and KMT2C in UCEC and

BRCA, all associated with lower protein abundance (Table S2).

Extending this analysis to paired NATs provided additional

insight into the dynamics of a subset of genes. Although the tu-

mor-focused analysis showed that somatic mutations in ARID1A

were associated with lower ARID1A protein abundance, NAT

characterization revealed that tumors lacking ARID1A muta-

tions, surprisingly, had higher ARID1A protein abundance than

NATs (p value = 1e�16, Figures 2C and S2A). The reason for

these elevated ARID1A protein levels in tumor samples without

ARID1A mutations over matching NAT is unclear. Paired NATs

also permitted further scrutiny of STK11 cis-effects. STK11 mu-

tations in LUAD correlated with diminished protein abundance.

Wild-type (WT) STK11 tumors exhibited higher STK11 protein

abundance but had lower protein abundance than the matching

NATs (p value = 1e�10, Figure 2D), suggesting that downregula-

tion of STK11 is also crucial for lung tumors lacking STK11 so-

matic mutations. Including NAT samples can contextualize

how cis-effects alter protein levels relative toWT tumors and pro-

tein abundance in corresponding normal tissues.

Although certain types of variants are expected to have a spe-

cific cis-impact on protein levels (e.g., nonsense and frameshift

indels), the consequences of other variants, like missense muta-

tions, can vary widely. To assess whether missense mutations

impact protein stability in cancer genes, we first normalized

protein abundance by regressing out contributions from RNA

expression (STAR Methods). After repeating the cis-effect

analysis for putative oncogenic missense mutations, we found

11 pan-cancer and 15 cohort-specific significant events

(q value < 0.05, Figure 2E; Table S2). As anticipated,37 TP53

missense mutations were associated with higher protein abun-

dance, whereas frameshift indel and nonsense mutations were

associated with lower protein abundance (Figure 2F). For all

other TSGs with a cis-effect, oncogenic missense mutations

were associated with lower protein abundance, as seen in

STK11, PBRM1, and PTEN (Table S2). Consistent with an impact

on protein stability, these missense mutations preferentially

occurred at buried amino acids in the protein structure (p value =

Figure 1. The landscape of pan-cancer aberrations characterizes the four multi-omic clusters

(A) The overview of cohort and data types.

(B) Quantified features in proteogenomics data types and the number of H&E images.

(C) We classified the tumor samples in this pan-cancer cohort into four multi-omic hierarchical clusters. They presented tumor variabilities in proteogenomics

such as driver alterations (top), and the DEPs and DEPPs and enriched pathways associated with each cluster (middle and bottom).

(D) Violin plots showing the ssGSEA on the proteomic data in proliferation and EMT signaling pathways, grouped bymulti-omic cluster. One-way ANOVA p values

are shown, and data are represented as mean ± CI.

See also Figure S1 and Table S1.
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0.03, Figure 2G; Table S2). For example, PTEN showed a sub-

stantial bias for putative driver missense mutations at buried

amino acids (p value = 3e�12, Figure 2H; Table S2), especially

for missense mutations computationally predicted as onco-

genic (Figure 2I). Based on previous saturation mutagenesis

screens,38,39 these computationally predicted oncogenic muta-

tions displayed low PTEN phosphatase activity like known onco-

genic mutations from OncoKB (Figure S2B). However, unlike

previously known oncogenic missensemutations, they exhibited

lower protein abundance (Figure S2C). Uniquely enabled by a

proteogenomics approach, these results highlight an underap-

preciated role of oncogenic missense mutations in lowering the

protein abundance of some tumor suppressors (Figure S2D).

Inference of altered protein-protein interactions
through protein co-variation analysis
Somatic mutations may modify protein-protein interactions

(PPIs).9,40 Although PPIs were not directly measured in

CPTAC, known protein interaction pairs were noted to display

high protein co-expression (Figure 3A).41 We found higher corre-

lation values for protein pairs that are indicated in larger numbers

of PPI databases. For example, in the BRCA cohort, randompro-

tein pairs showed an average Pearson correlation coefficient of

�0, compared with 0.23 for PPIs represented in three or more

databases (Figure 3B), such as those between MSH2 and

MSH6 (Figure S3A). We used significant correlations between

protein levels as indirect evidence of PPIs (STAR Methods).

First, the correlation between protein pairs from well-estab-

lished PPIs was calculated involving at least one cancer gene

across the CPTAC cohort (STAR Methods; Figure 3C). This re-

vealed a set of conserved core PPIs, such as MSH2/MSH6,

CTNNA1/CTNNB1, and RAD21/STAG1. Interestingly, most

PPIs involving cancer genes only correlated in a subset of co-

horts, suggesting tissue specificity. For instance, mTOR is

known to interact with both RICTOR and RPTOR,42 but we noted

a correlation of mTOR protein abundance with RICTOR but not

RPTOR in ccRCC, and the converse correlation with RPTOR

but not RICTOR in GBM (Figure 3D). Similarly, CTNNB1 and

CDH1 protein levels were seen to correlate in BRCA and

UCEC but not in ccRCC and HGSC (Figure S3B). These results

highlight the plasticity of PPIs across cancer types and the

importance of measuring protein levels alongside RNA.

Next, we extended the concept of protein co-expression as an

indicator of protein interactions to driver genes showing copy-

number alterations (CNAs). We found 32 known interactors of

driver genes significantly differentially expressed (q value < 0.1)

relative to the CNA status of the driver gene (Figure 3E;

Table S3), including deletion of SMAD4 being associated with

reduced SMAD2 protein levels and CCNE1 amplifications asso-

ciated with increased CDK2. We performed a mediation analysis

to assess if the CNA-based trans-effect was indeed mediated

through the protein abundance of the driver gene and not an un-

related gene within the CNA (Figures 3F and S3C; STAR

Methods). We found that most PPI trans-effects (66%) were

associated with protein abundance of the driver gene

(q value < 0.1, natural effect model; Table S3). For example,

copy-number amplifications in RICTOR are associated with

increased protein abundance of MAPKAP1 (Figure 3G) and

mTOR (Figure S3D) at the pan-cancer level, which could be de-

convolved into a cis-effect on RICTOR protein levels (Figure 3H)

and a trans-effect, irrespective of CNA status, between protein

levels of RICTOR and MAPKAP1/mTOR (Figures 3I and S3E).

Likewise, elevated CDK2 protein levels in CCNE1-amplified

tumors could be deconvolved into a cis-effect and trans-effect

(Figures S3F and S3G). At the phosphorylation-level, CCNE1-

amplified tumors also showed elevated activity of the CDK

protein sub-family containing CDK2 according to the Kinase

Library (Figure S3H), which provides additional corroboration

of our results.

Somatic mutations can change protein interactions by altering

the interaction interface between proteins. Using an interaction

term regression model (Figures S3I–S3K; STAR Methods), we

tested whether putative oncogenic mutations in driver genes

significantly changed the co-variation between protein interac-

tors. In a pan-cancer analysis controlling for cancer type and tu-

mor purity, we found 51 significant events (Figure 3J; Table S3)

Figure 2. cis-effects of SNVs in cancer genes across the CPTAC cohort

(A) An illustration visualizes the analysis structure for this figure. The effects of somatic mutations on RNA, protein, and phosphoproteomics were measured by

comparing mutated and wild-type samples.

(B) Overview of the different cis-effects analyzed in this manuscript at the pan-cancer (top) and cohort-specific levels (bottom). Heatmaps showing the cis-effects

for selected frequently mutated genes (x axis) at the RNA, protein, or phosphorylation levels (y axis) with effects measured at all three omics levels. Tiles are

colored according to signed log10(p) of the cis-effect from red (positive) to blue (negative). Signed log10(p): multiplying the direction of the coefficient by the log10 of

the adjusted p value (capped at ± 10).

(C) Pan-cancer comparison of the ARID1A protein levels (y axis) in tumors with ARID1Amutations (red) or without them (black) and NAT (gray), depending on the

ARID1A mutation status (x axis).

(D) Comparison of the STK11 protein levels in LUAD patients (y axis) in tumorswithSTK11mutations (red) or without them (black) and NAT (gray) depending on the

STK11 mutation status (x axis). One-way ANOVA p values are shown, and data are represented as median and interquartile range in (Figures 2C) and (D).

(E) Analysis of oncogenic missensemutations associated with a cis-effect on protein abundance after adjusting for RNA expression level, either at the pan-cancer

(top) or cohort-specific levels (bottom). Boxplots show tumor samples with a putative driver missensemutation (red) compared towild-type tumor samples (gray).

Wilcoxon rank-sum test q values are shown, and data are represented as median and interquartile range.

(F) Pan-cancer cis-effects of different types of TP53 mutations (x axis) for TP53 protein abundance.

(G) Comparison of the relative solvent accessibility (RSA) for amino acid residues that have putative driver missensemutations for oncogenes (red) comparedwith

TSGs (blue). RSA scores whether an amino acid is exposed at the surface of a protein (high score) or is buried (low score).

(H) Comparison of RSA for amino acids in PTEN with a putative driver missense mutation compared with all remaining amino acids. Wilcoxon rank-sum test

p values are shown, and data are represented as median and interquartile range in (F)–(H).

(I) Protein structure showing the RSA for predicted oncogenic missense mutations in PTEN.

See also Figure S2 and Table S2.
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affecting protein interactions. For example, oncogenicmutations

inCTNNB1 showed a substantially increased positive correlation

with LEF1 (Figure S3L), a known effector of WNT/b-catenin

pathway.43 Conversely, oncogenic mutations in PBRM1 abro-

gated the strong correlation of PBRM1 protein abundance with

ARID2 (Figure S3M), which is consistent with the known depen-

dence of PBRM1 protein stability on ARID2.44 Similarly, several

oncogenic point mutations in SMAD4 were associated with a

reduced correlation with SMAD2 (q value = 0.02; Figure 3K), sug-

gesting a possible loss of protein interaction. This hypothesis is

further supported by the localization of the missense mutations

in SMAD4 at the protein interface with SMAD2 (Figure 3L). Lastly,

oncogenic mutations in PPP2R1A, a scaffold protein for the

phosphatase 2A holoenzyme, abrogated the correlation with a

subset of regulatory subunits that control the specificity of the

phosphatase, including PPP2R2A, PPP2R5E, and PPP2R5B

(Figures 3M and S3N). The oncogenic missense mutations

were similarly located at the interface of PPP2R1A and the reg-

ulatory subunits (Figure 3N). Notably, these observations were

missed in RNA expression analysis, highlighting a unique advan-

tage of proteomics (Figure S3O).

Finally, we investigated the potential influence of phosphoryla-

tion levels on protein interactions. At the pan-cancer level, 39

PPIs involving a driver were strongly influenced by phosphoryla-

tion levels (p value < 0.001), whereas 59 PPIs were affected at the

cohort-specific level. Epidermal growth factor receptor (EGFR)

phosphorylation at T693, particularly in ccRCC, appears to influ-

ence the correlation of EGFR and multiple protein partners (Fig-

ure S3P). 3D models of EGFR showed that T693 localizes at the

intracellular interface between EGFR dimers, and phosphoryla-

tion at this site negatively impacts EGFR dimer formation (Fig-

ure S3Q).45,46 Patients exhibiting high EGFR-T693 phosphoryla-

tion exhibit diminished correlations between EGFR protein and

downstream EGFR-binding partners (Figures S3P and S3R). In

conclusion, analyzing the impact of CNA, single-nucleotide var-

iants (SNVs), and phosphorylation on protein co-variation is a

potentially powerful method to understand interaction network

rewiring in cancer.

trans-effects of somatic mutations in cancer genes
across the CPTAC cohort
The impact of somatic mutations can extend beyond their own

protein product’s cis-effects or direct interactions. These more

distant trans-effects illuminate the far-reachingmolecular pertur-

bations that can reverberate from driver gene alterations. The

aggregations of all trans-effects of a cancer gene can be consid-

ered its ‘‘molecular fingerprint.’’ We hypothesized that thesemo-

lecular fingerprints could assess the similarity between different

pairs of mutated cancer genes and infer functional relationships

(Figure 4A). To identify these gene pairs, we calculated the cor-

relation between each driver gene’s proteomic and phosphopro-

teomic trans-effects signature with one another (Figure 4B;

STARMethods). Althoughmost driver similarity scores indicated

a slightly positive correlation (r > 0), a select few pairs exhibited

more extreme positive and negative scores (Figure 4B). The two

cancer genes with the most similar mutation trans-effects were

KEAP1 and NFE2L2. KEAP1 is known to bind and subsequently

mark the transcription factor NFE2L2 for degradation.47 The high

global correlation between all trans-effects attributed to these

proteins (r > 0.63, p value < 1e�15, Figure 4C) suggests that

the overall cellular effect of mutations in either of these genes

is the same: the enhanced protein stability of NFE2L2 and the

consequent overexpression of its transcriptional targets. This

is consistent with the fact that mutations in these genes are

Figure 3. Inference of altered protein-protein interactions through protein co-variation analysis

(A) Conceptual diagram showing that known protein-protein interactions tend to have higher protein co-expression than those not known to interact.

(B) Violin plot indicating the Pearson correlation between protein-protein abundance as the number of databases supporting a protein-protein interaction in-

creases. Wilcoxon rank-sum test p values are shown. **p value < 0.01 and ***p value < 0.001. Data are represented as mean ± CI.

(C) Heatmap showing the correlation of protein abundance between cancer drivers and known protein interactors (x axis) across cancer types (y axis). Corre-

lations are colored by their signed log10 p value, with red indicating positive and blue indicating negative correlations.

(D) Scatterplots of examples that indicate the correlation between protein abundance of cancer drivers and protein interactors varies by cancer type (left, mTOR

and RPTOR; right, mTOR and RICTOR). Correlation test p values are shown.

(E) Volcano plot indicating proteins differentially expressed based on the presence of putatively oncogenic CNAs in cancer driver genes. Text labels indicate the

cancer driver on the left and the protein interactor on the right. The horizontal dashed line indicates the threshold for statistical significance (q value < 0.1).

(F) Diagram indicating that a mediation analysis tries to identify whether the trans-effect (outcome, Y) of a CNA (exposure, X) is mediated through altered protein

abundance of the putative cancer driver gene (mediator, M).

(G) Boxplot indicating the upregulation of MAPKAP1 protein abundance in RICTOR-amplified tumors (trans-effect).

(H) Boxplot indicating the upregulation of RICTOR protein abundance inRICTOR-amplified tumors (cis-effect). TheWald test assesses statistical significance and

represents data as median and interquartile range in (G) and (H).

(I) Scatterplot showing the correlation of RICTOR and MAPKAP1 protein levels in RICTOR wild-type tumor samples. The Wald test assesses statistical

significance.

(J) Volcano plot indicating proteins with either increased or decreased association with a cancer driver when the tumor contains a putative oncogenic mutation.

(K) Scatterplot showing the correlation between SMAD2 and SMAD4 protein levels, stratified by whether the tumor has an oncogenic mutation in SMAD4.

Correlation test p values are shown.

(L) Protein structure (PDB: 1U7V) of SMAD4 (tan) in complex with SMAD2 (blue). Mutated amino acid residues that are putatively oncogenic are shown in a

spherical representation.

(M) Scatterplot showing the correlation between phosphatase 2A regulatory subunits (PPP2R2A and PPP2R5E) and PPP2R1A protein levels, stratified by

whether the tumor has an oncogenic mutation in PPp2R1A. Correlation test p values are shown. r represents the Pearson correlation coefficient in (D), (I), (K),

and (M).

(N) Protein structure of the phosphatase 2A holoenzyme (PDB: 2NPP), consisting of PPP2R1A (yellow), PPP2CA (gray), and a regulatory subunit (purple). Mutated

amino acid residues that are putatively oncogenic are shown in a spherical representation.

See also Figure S3 and Table S3.
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Figure 4. Trans-effects of somatic mutations in cancer genes across the CPTAC cohort

(A) Overview of how the similarity between trans-effects of driver genes was calculated based on proteomics and phosphoproteomics data from CPTAC.

(B) Histogram showing the distribution of Pearson r values of trans-scores (i.e., signed log10(p)) between all possible pairs of cancer genes in CPTAC (x axis).

(C) Scatterplot showing the trans-effects scores (i.e., signed log10(p)) for KEAP1 (y axis) and NFE2L2 (x axis).

(legend continued on next page)
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mutually exclusive (Figure 4D). The strongest trans-effects of

both genes are the upregulation of NFE2L2 targets such as

AKR1C2 and AKR1C3 (Figure 4E).

Although most cancer genes showed positive correlations,

suggesting similar trans-effects, we also observed negative

correlations such as those between TP53/PTEN, TP53/CDH1,

EGFR/KRAS, and EGFR/STK11, with the last example having

the strongest negative correlation (r < �0.54, p value < 1e�15,

Figure 4F). The EGFR/STK11 pair has several trans-effects that

are opposite depending on whether the cancer cell has an

EGFR or STK11 mutation, including several phosphorylation

sites such as TP53BP2 S704 and IRS2 S1100 (both increased

in STK11-mutated and decreased in EGFR-mutated samples)

or WIPF S155 and PTPN11 Y62 (increased in EGFR-mutated in-

stances and vice versa, Figure 4G). Furthermore, most of these

events are statistically significant in both directions compared

withWT samples for both EGFR and STK11 (Figure 4G). Notably,

most of these effects were independent of the specific location

of the mutation within EGFR (Figure 4H). These results suggest

that EGFR and STK11 mutations could push normal cells into

opposite oncogenic states.

Next, we investigated the trans-effects of mutations on the

phosphorylation state of the cell at the pan-cancer level. We

compared the predicted kinase activities between mutated and

WT samples across all cancer types (Figures 4I and S4B;

Table S4). For example, mutations in bothACVR2A and TP53 ex-

hibited activation of cell cycle and splicing kinases; when

mutated, the well-known oncogene PIK3CA showed strong ac-

tivations of the PI3K/AKT pathway members S6Ks, RSKs,

PDK1, and SGK3; mutations in KRAS led to a significant activa-

tion of its downstream extracellular signal-regulated kinases 1/2/

5/7 (ERK1/2/5/7) (Figure 4I). Interestingly, we found that the

CAMK2 kinases were inhibited in KRAS-mutated samples,

concordant with previous studies.48 In a pan-cancer analysis,

EGFR-mutated samples showed an inverse kinase activity

pattern to those of STK11- and KRAS-mutated samples

(Figure S4B).

Furthermore, we used the Kinase Library to determine the ac-

tivity state of different kinases in EGFR-mutated and STK11-

mutated LUAD samples. We found that most activated kinases

are from the CAMK and AGC families, whereas most inhibited

kinases are from the CMGC family in EGFR-mutated samples

(Figure 4J). In agreement with the observed negative correlation

for the overall trans-effects, an opposite pattern was observed

for both STK11-mutated and KRAS-mutated samples, where

the CMGC family dominated the activated kinases, and the in-

hibited kinases were primarily members of the CAMK and AGC

families (Figure 4J). Multiple kinases from different families

showed opposite activities between EGFR-mutated samples

and STK11-mutated/KRAS-mutated samples (Figures 4K and

S4C; Table S4). These data suggest that EGFR mutation and

STK11/KRAS mutations lead to distinct phosphorylation read-

outs in cancer cells. Our kinase enrichment analysis using sub-

strate motifs around phosphosites can capture underlying

mechanisms of driver mutations in cancer, informing treatment

strategies beyond genetic testing. This has implications for

basket clinical trial design and personalized oncology drug

repurposing.

Comparative analysis between tumor and normal-
adjacent tissue identifies key protein changes for
oncogenic pathways
In contrast to other large-scale tumor characterization studies,

eight of the ten CPTAC cohorts included matched (similar cell

lineage) or unmatched (non-similar cell lineage) NATs (n = 556),

and the GBM study contained ten Genotype-Tissue Expression

(GTEx) project normal samples (Figure 5A). This allowed us to

investigate divergent expression patterns between tumors and

paired NATs. We found that tumors present distinct proteomic

and phosphoproteomic signatures compared with their homolo-

gous NATs, such as in ccRCC (Figure 5B; Table S5), and identi-

fied 6,517 DEPs elevated in tumors and 7,030 DEPs elevated in

NATs within the pan-cancer cohort. Of these 6,517 DEPs, 3,070

were differentially expressed inR2 cancer types, and the rest in

a single cancer type. Among common DEPs, we found PLOD2,

UBE2C, and MARCKSL1 in all cancer types (Figure 5C;

Table S5). Notably, we observed that high PLOD2 protein abun-

dance was significantly associated with worse overall survival in

ccRCC, LUAD, and PDAC, and a similar trend in patients with

GBM, HNSCC, and LSCC (Figure 5D). This suggests the poten-

tial value of PLOD2 as a pan-cancer prognostic biomarker.

To further investigate which cell types in the TME might

express these proteins, we used single-nuclei RNA-seq

(snRNA-seq) data and, based on correlation analysis with xCell

(D) Three-dimensional structure of the protein complex between KEAP1 and NFE2L2 (top, PDB 3WN7) and an oncoplot showing the CPTAC samples with al-

terations in these two genes.

(E) Boxplots showing the detailed protein levels (y axis) for each CPTAC sample of four proteins regulated by NFE2L2 (AKR1C2, AKR1C3, SRXN1, and AKR1B10)

stratified by mutation status of KEAP1 and NFE2L2 of the tumor (x axis).

(F) Scatterplot showing the trans-effects of STK11mutations (y axis) or EGFRmutations (x axis) on all measured proteins and phosphoproteins. Correlation test p

values are shown, and r represents the Pearson correlation coefficient in (A), (C), and (F).

(G) Boxplots showing the detailed protein levels (y axis) for each CPTAC sample of two phosphorylation events (PTPN11 pY62 and IRS2 pS1100) based on the

mutation status of EGFR and STK11 of the tumor (x axis).

(H) PTPN11 Y62 phosphorylation levels (y axis) in different CPTAC cohorts depending on the EGFRmutation status (x axis). Wilcoxon rank-sum test p values are

shown, and data are represented as median and interquartile range in (E), (G), and (H).

(I) Pan-cancer kinase activity in tumors with specific mutations based on the Kinase Library. For each kinase and condition, the bubble color (log2FF) indicates the

log2-ratio of the prediction frequency between the mutated tumors compared with WT tumors, and bubble size denotes the statistical significance by Fisher’s

exact test.

(J) Protein family distribution of kinase activity inferred from the Kinase Library in LUAD.

(K) The Kinase Library analysis of kinase activity in EGFR-mutated, KRAS-mutated, and STK11-mutated LUAD tumors.

See also Figure S4 and Table S4.
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and ESTIMATE signatures, classified the proteins into four

categories: tumor (T), immune (I), stromal (S), and mixed (M)

(Figures 5C and S5A; Table S5; STAR Methods). This allowed

us to evaluate the dysregulated signatures in TME at a higher

resolution. Pathway analysis of DEPs enriched in individual cat-

egories revealed that pathways of keratinization, EGFR, and

Warburg effect in the T subset; immune system and nonsense-

mediated mRNA decay (NMD) in the I subset; and ECM organi-

zation and collagen formation in the S subset, reflecting the

distinct characteristics of TME components (Table S5). Further-

more, we observed that MSI-high tumors showed significantly

higher NMD pathway scores thanmicrosatellite-stable (MSS) tu-

mors (Figures S5B and S5C). As reported, MSI COAD tumors ex-

pressed high levels of critical activators of the NMD system and

that inhibition of NMD in vivo using amlexanox reduced MSI tu-

mor growth.49 These results suggest that inhibition of the onco-

genic activity of NMD may provide an additional therapeutic

avenue for the personalized treatment of MSI tumors. Besides,

the protein-based cell-cycle ssGSEA score was significantly

elevated in tumors relative to NATs in seven of eight cancer types

(Figure 5E). The difference was not significant in UCEC, possibly

due to NATs of UCEC consisting mainly of the myometrium with

various levels of admixed endometrium or because these non-

tumor samples were derived from women at different stages of

their menstruation cycle (Figure 5A). Among cell-cycle pathway

proteins, we found 27 upregulated DEPs in multiple cancer types

(Figure 5E). Similarly, we detected a consistently enriched

pathway of transcriptional regulation by TP53 in tumors

compared with NATs across cancer types (Figure S5D). As for

the DEPs evaluated in specific cancer types, they contributed

to pathways such as the metabolism of lipids in UCEC and kera-

tinization in HNSCC (Figure S5E).

Finally, we used the Kinase Library to infer kinase activity pat-

terns in different cancers from our phosphoproteomics data (Fig-

ure 5F; STARMethods). We first applied protein- and RNA-based

pathway enrichment analysis to characterize shared or distinct

pathways across tissues. Interestingly, cell cycle and other repli-

cation-related pathways were enriched in most tumor types, pre-

dominantly only at the protein level (Figure 5G; Table S5). The

Kinase Library showed broad activation of multiple CDKs in

most tumor types, except ccRCC and PDAC (Figure 5H). Splicing

pathwayswere also predominantly observed at the protein level in

various tissues (Figure 5G), consistent with activated splicing ki-

nases in the corresponding tissues (Figure 5H). Furthermore, we

found agreement between kinase activity in distinct tissues and

their related enriched pathways at the protein level, such as the

PI3K-AKT-mTOR pathway was enriched only in ccRCC (Figure 5I;

Table S5). Moreover, we observed a potential feedback mecha-

nism for KRAS signaling in PDAC that was only evident at the

phosphorylation level, where upregulation of KRAS signaling

was associated with reduced activity of the ERK family protein ki-

nases. This insight may explain the reduced clinical efficacy of

therapeutic agents in KRAS-mutated pancreatic tumors50 and

further emphasize the importance of proteomic and phosphopro-

teomic characterization of cancer (Figure S5F).

Impact of somatic mutations on immunogenic
neoantigens and druggable kinases
Given the relevance of neoantigens to immunotherapy,51 we sys-

tematically predicted neoantigens that bind to the patient-spe-

cific human leukocyte antigen (HLA) class I alleles (STAR

Methods). We found the expected positive correlation of neoan-

tigen burden with tumor mutation burden52 and higher neoanti-

gen burden noted in tumor samples with mutational signatures

of smoking and MSI (Figure 6A). The predicted neoantigen

burden normalized by mutational burden was higher for MSI-

high samples, likely due to a higher frequency of insertions and

deletions resulting in frameshifts (Figure S6A). Neoantigen

burden was positively correlated with inferred T cell infiltration

(p value = 4e�4, cytotoxic T lymphocyte (CTL) score; p value =

0.002, CIBERSORTx CD8 T cells; Wald test) at the pan-cancer

level (Figure S6B). However, only cancer types that tended to

have a high baseline tumor mutation burden (COAD, UCEC,

LUAD, and BRCA) were nominally significant by themselves,

suggesting a minimal neoantigen burden threshold for

immunogenicity.

To investigate the relationship between predicted neoantigen

burden and T cell infiltration in the context of specific driver mu-

tations, we employed an interaction term regression model

(STAR Methods). Oncogenic alterations in seven driver genes

were associated with a change in the correlation between neo-

antigen burden and inferred T cell infiltration, including KRAS

(q value < 0.1; Figure 6B; Table S6). Investigating the potential

correlation between neoantigen expression level and immuno-

genicity, we observed that a subset of genes that harbored a

high number of predicted neoantigens (R20) in MSI-high tumor

Figure 5. Analysis of normal-adjacent tissue identifies key protein changes for oncogenic pathways

(A) The distribution of tumors and normal samples across cancer types.

(B) The schematic of the tumor and normal comparison is represented by selected H&E staining images of the tumor and normal pairs from ccRCC and UCEC

cohorts. The volcano plot shows such differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in ccRCC as an example.

(C) The distribution of DEP identified by tumor and NAT comparison. The pie chart indicates the distribution of cancer-type-specific DEPs and the rest.

(D) The plot shows that groups with higher PLOD2 protein abundance present increased risk in survival reflected by significantly higher hazard ratios in multiple

cancer types. Cox proportional hazards model p values are shown. Whiskers represent ± 95% confidence intervals of the hazard ratios.

(E) Cell-cycle protein-based ssGSEA scores are significantly higher expressed in tumors than in NATs in seven of eight cancer types. Wilcoxon rank-sum test p

values are shown. ,p value > 0.05; ***p value < 0.001; and ****p value < 0.0001. Data are represented as mean ± CI.

(F) Workflow of phosphoproteomics analysis based on the Kinase Library to reveal distinct activity patterns of protein kinases in tumor and normal comparison

across cancer types.

(G) Pathway analysis (GSEA) at RNA and protein levels.

(H) The Kinase Library analysis for activated kinases in tumors compared with NAT (homologous or non-homologous) across multiple tissues.

(I) Pathway analysis (GSEA) and kinase activity analysis of tissue-specific trends.

See also Figure S5 and Table S5.
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samples were also highly expressed at the protein level (protein

abundance > 1) (Figure 6C). The neoantigen burden in highly

expressed proteins vs. all proteins improved the correlation

with inferred T cell infiltration (q value = 0.03, likelihood ratio

test, Figure 6D) in COAD, where MSI is common. Notably, the

neoantigen burden for highly expressed transcripts vs. all tran-

scripts did not improve correlations (Figure S6B), highlighting

an advantage of proteomics.

Although copy-number amplifications for oncogenes were

associated with higher protein abundance than WT tumors, as

was expected (Figure S6C), they also showed higher variance

in protein abundance (p value = 0.006,Mann-Whitney U test, Fig-

ure S6D; Table S6). These findings extended to druggable tar-

gets (Figure 6E). EGFR- and ERBB2-amplified tumors had higher

protein abundance than their WT counterparts (p value = 4e�16

and 5e�9, respectively). However, there is still considerable

overlap in the distribution of protein abundance in cis (Figure 6E),

as the average precision for distinguishing ERBB2 and EGFR-

amplified from WT tumors is only 0.53 and 0.37 (of 1.0), respec-

tively. Protein abundance might provide additional information

beyond the genomic event alone for therapeutic decisions.

Because a limited number of oncogenes are directly targetable,

an analysis of the trans-effects of a CNA might further expand

potentially druggable targets. Using the Kinase Library, we

analyzed CNA events that might activate druggable kinases (Fig-

ure S6E). We found that multiple CNA events led to the activation

of CDKs (Figure 6F; Table S6), including the deletion ofCDKN2A,

which has previous experimental and clinical support as a poten-

tial biomarker for CDK4/6i treatment.53–55 Beyond CDKN2A

deletion, we found additional CNA events within and outside

the core cell-cycle pathway associated with CDK activation

(Figures 6F and S6E). Tumors with oncogenic alterations for

RB1 were associated with marked upregulation of CDK2 at

both the RNA and protein levels (Figure 6G; Table S6), possibly

related to the loss of RB1 and its known role in transcriptional

repression (Figures S6F and S6G).56 In contrast, RB1-altered tu-

mors also showed substantial downregulation of CDK6 at both

the RNA and protein levels (Figure 6G). Thus, the signal of CDK

activation from the Kinase Library may reflect the activation of

distinct CDKs depending on the driver alteration.

To distinguish scenarios where CDK activation represents a

cancer dependency, we expanded our analysis of potential ther-

apeutic vulnerabilities by analyzing cell-line drug-response data

concerning the proteomic signatures of driver alterations,

including somatic mutations and CNAs. We calculated normal-

ized drug connectivity scores between proteomic signatures of

64 driver alterations and drug-response signatures (CMAP Li-

brary of Integrated Network-Based Cellular Signatures [LINCS]

database57) for compounds that are either FDA-approved or un-

der active clinical investigation (Figure 6H; Table S6; STAR

Methods). Interestingly, in agreement with the Kinase Library re-

sults (Figures 6F, S5C, and S6F), we found pan-cancer proteo-

mic signatures related to genes within and outside the cell-cycle

pathway to be associated with drug connectivity to multiple CDK

inhibitors (CDKi) (Figure 6H, top). These findings could also be

seen for tissue-specific signatures of driver alterations (Fig-

ure 6H, bottom).

In some cases, such as for RB1 deletions, strong CDK

activation was seen in the Kinase Library but a relatively lower

association with CDKi drug-response profiles (Figure 6I). This

may be related to a known role for RB1 mutations in primary

and acquired resistance to CDK4/6i, such as palbociclib.58,59

Consistent with this, examining CRISPR gene KO screens

(DepMap)60 showed RB1 altered cancer cell lines were

less dependent on CDK4/6 but more dependent on CDK2

(q value < 0.1, Wald test; Figures 6J, S6H, and S6I; Table S6).

Although not included in CMAP, recently developed small

molecules selective for CDK261 could be more effective in

RB1-altered tumors. Cumulatively, most driver alterations that

showed CDK activation in the Kinase Library exhibited high

Figure 6. Immunogenicity and druggability analysis of somatic alterations

(A) Pearson correlation of the number of mutations in a tumor with neoantigen burden, stratified by mutational signatures (Smoking signature weights) or DNA

repair deficiency (POLE, POLE mutant; MMRD, mismatch repair deficient).

(B) Pearson correlation of neoantigen burden and cytotoxic T lymphocyte (CTL) score stratified by driver mutation status of KRAS in LUAD. Wald test p value

is shown.

(C) Scatterplot indicating genes with more predicted neoantigens simultaneously present in highly expressed proteins. Dashed lines indicate > 1 protein

abundance (y axis) and > 20 neoantigens (x axis).

(D) Heatmap showing Spearman’s correlation of CTL score with neoantigen burden using different subsets of proteins based on protein abundance.

(E) Boxplot indicating the cis-effect of CNAs on protein levels for two druggable targets. Wilcoxon rank-sum test p values are shown, and data are represented as

median and interquartile range.

(F) Kinase activity for different CNAs at the pan-cancer level. For each kinase and condition, the color of the bubble (log2FF) indicates the log2-ratio of the

prediction frequency for that kinase between the tumors with the CNA compared to theWT tumors, and the size of the bubble denotes the statistical significance

by Fisher’s exact test.

(G) Top, volcano plot showing the DEGs of tumors containing oncogenic RB1-alterations. Green dots indicate cell-cycle-related genes (CDK1-6). Bottom,

heatmap showing the differential expression at the RNA and protein level for cell-cycle related genes (Wald test). Positive t statistic (red) indicates upregulation;

negative t statistic (blue) indicates downregulation.

(H) Heatmap showing the normalized drug connectivity scores between protein abundance signatures (derived from driver alterations) and the drug-response

signatures from the CMAP LINCS 2020 dataset. Negative connectivity scores (blue) indicate the predicted sensitivity of a signature to a particular drug.

(I) Average drug connectivity between seven CDK inhibitors used in the L1000 assay and pan-cancer (top) and cancer-specific (bottom) driver alteration sig-

natures. CDK activation status was inferred using the Kinase Library.

(J) Top, boxplots showing cancer cell-line dependencies for two genes (CDK2 and CDK6) from CRISPR KO screens (DepMap) depending on the presence of

pLOF mutation in the RB1 gene. Wilcoxon rank-sum test p values are shown, and data are represented as median and interquartile range. Bottom, heatmap

showing the differential gene dependencies (t statistic, Wald test) for cell-cycle-related genes (CDK1-6).

See also Figure S6 and Table S6.
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(negative) drug connectivity to CDKi by using independent

proteomic signatures (Figure 6I). These results suggest

the potential therapeutic benefits of CDKi for treating

tumors harboring genomic alterations (MCL1 or ERBB2 amplifi-

cation) that are not necessarily directly linked to the cell-cycle

pathway.

Integrative multi-genomic scoring provides evidence on
how somatic alterations alter cancer hallmarks
Individual gene alteration can impact the proteomic landscape in

cis, trans, andmediator settings. However, we wished to explore

the global effect of all somatic mutations on the overall protein

variability within cancer types. To address this question, we built

a combined polygenetic protein abundance prediction algorithm

for oncology, called C3PO, as a theoretical exercise. This tool

applies polygenic mathematics to describe protein variability

instead of disease status, like polygenic risk scores (PRS).62–64

To calculate a polygenic predictor, one measures changes in

protein abundance in the altered or unaltered state (Figure S7A).

The effect sizes can be summed across multiple alterations to

produce a polygenic risk score based on which alterations are

present. Typical applications of PRS generate effect sizes by

comparing mutated samples to non-mutated samples for a

phenotype of interest. However, because of the large number

of infrequently mutated driver genes in cancer (Figure S1E),

we aggregated mutations into NeSTed protein systems65

(Table S7; STARMethods). Doing so provided broader coverage

of the possible mutational impacts on protein. Results from

C3PO suggest that somatic mutations and copy-number events

alone account for, on average, 7.2%–27.5% (range 0%– 91.9%)

of the protein abundance variability across these ten cancer

types (Figures S7B and S7C). When applied to an orthogonal da-

taset, C3PO could only collectively account for 0.7%–2.6% of

global protein variability in HGSC (Figures S7D and S7E; 1.5%

CNA amplification, 1.5% CNA deletion, and 0.8% somatic

mutations, range 0%–19%),20 BRCA (2.0% CNA amplification,

2.0% CNA deletion, and 2.3% somatic mutations, range

0%–31.2%),19 and COAD (2.2% CNA amplification, 2.0% CNA

deletion, and 2.6% somatic mutation, range 0%–38.8%).13

Further analysis of our correlations showed that combining sub-

strate scores improved predictions (Figures S7F and S7G). This

average range (0.7%–27.5%) represents a cumulative ceiling

(overfit) and floor (unoptimized) of our tool and suggests the

need for proteomic measures to understand the consequences

of mutational events better.

Although it may be difficult to predict individual proteins,

consistent changes across many proteins in a pathway might

reveal biologically meaningful results. To illustrate this, we

aggregated C3PO scores across cancer hallmark genes66,67

(Figures 7A, 7B, and S7I; Table S7; STAR Methods). C3PO

was designed to assess variability between tumors. Hence, in-

stances where nearly all tumors show pathway dysregulation,

such as�95%of PDACs being KRASmutants, are not expected

to be captured in this analysis. We explored hallmark variability

between cancer types contributed by genomic variants by as-

sessing entropy among the top three hallmark scores produced

by C3PO for each sample (Figure 7C). From these predictions,

we found certain cancer types showed lower hallmark variability

(Figure 7D) than others (Figure 7E). For example, in LUAD, C3PO

hallmark scores for adaptive immunity and DNA repair were

consistently high, with enrichment of higher smoking scores68

in the chromatin modification pathway (p value = 3.8 3 10�7,

chi-squared test) (Figure 7D; STAR Methods). In contrast,

UCEC had substantially more heterogeneity for top hallmarks

in each sample (Figure 7E), including DNA repair and pathways,

such as NOTCH, not seen in LUAD. Thus, our current systematic

understanding of genomics data can capture at least some vari-

ability in the protein levels of cancer hallmarks.

In addition to hallmark scores produced by C3PO, we used

an established pathway enrichment tool, ssGSEA, to identify

enrichment directly from protein abundance69 (Figures 7A and

7F; Table S7; STARMethods).We observed higher pathway vari-

ability in the top hallmarks per sample (Figure 7G). Similar hall-

mark uniformity was observed across all LUAD for DNA repair,

cell cycle and apoptosis, and cancer drivers shared with

C3PO, butmany other hallmarks displayedmuch higher diversity

(Figure S7H). Similarly, DNA repair, cell cycle and apoptosis,

chromatin modification, and cancer driver hallmarks clustered

together for C3PO and ssGSEA, but ssGSEAmore diversely rep-

resented the remaining hallmarks. Upon further analysis, both

LUAD (Figure 7H) and UCEC (Figure 7I) contained subgroups

of samples with higher EMT and ECM activity—a hallmark not

typically associated with known driver events (n = 19 and

n = 21, respectively). The proteins most differentially expressed

within these subgroupswere VPS13A, FSTL1, and TMEM30B for

UCEC (p values = 5.1 3 10�7, 2.6 3 10�5, and 6.3 3 10�5,

Figure 7. C3PO tool to investigate the multi-genomic impact on cancer endophenotypes

(A) Overview of C3PO. Left indicates the theoretical contribution of genomic alterations to protein levels (CNA and mutations); right provides a protein-only

perspective of cancer hallmarks.

(B) Circos plot shows 21 cancer hallmark pathways. Icons indicate relationships to the original hallmarks outlined by Hanahan andWeinberg.66,67 Every sample in

CPTAC is represented by the links connecting hallmarks and is colored according to cancer type. Each sample is displayed using three lines according to their top

three hallmark activity scores generated by C3PO. The histogram indicates the distribution of C3PO hallmark scores.

(C) Diversity among the top three hallmarks for each cancer type was quantified using Shannon entropy. Each bar shows the ranked hallmark entropy for the top

three hallmarks in each sample and cancer type. Cancers are ordered by the lowest entropy measures of their sample’s top hallmarks.

(D) Heatmap displays LUAD samples and their C3PO hallmark scores for each of the 21 hallmarks. Rows and columns are ordered using unsupervised clustering.

Bottom annotations include neoantigen count estimation, total mutation counts, and smoking scores.

(E) Similar to Figure 7D, displays UCEC samples.

(F) Similar to Figure 7B, each sample is displayed with one line that links their top two hallmark scores produced by ssGSEA.

(G) Similar to Figure 7C, Shannon entropy calculations were made on ssGSEA scores.

(H–I) Similar to Figures 7D and 7E but show scores generated by ssGSEA.

See also Figure S7 and Table S7.
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respectively; two-sided t test) and SLPI, TSPAN1, and CALD1 for

LUAD (p values = 1.6 3 10�5, 2.6 3 10�5, and 4.4 3 10�5,

respectively; two-sided t test). This result, specific to our pro-

tein-only analysis from ssGSEA, implies that protein variability

within tumors can reflect the aggregation of different alterations

at the DNA, RNA, and protein levels. These can yield similar

downstream effects and be independent of somatic alterations,

possibly due to extracellular or microenvironment interactions.

These findings complement genomics and highlight the proteo-

mic contribution to tumor phenotype characterization.

DISCUSSION

Discovery and functional characterization of oncogenic drivers,

accelerated by high-throughput genomic analyses, have

advanced our mechanistic understanding of carcinogenesis,

leading to more effective therapies.25 Initially, targeted therapies

were restricted to specific tumor types. However, the discovery

of shared, therapeutically actionable drivers across different

cancers has led to FDA drug approvals that are tumor-type

agnostic. Subsequently, the FDA has approved the testing of

broad gene panels to reveal clinically actionable variants,70

where specific alterations are matched with targeted thera-

pies.71,72 These developments have spurred analyses of molec-

ular underpinnings of pan-cancer drivers. TCGA pan-cancer

atlas73 represents an initial framework for integrating molecular

genomic data from multiple tumor types, providing novel in-

sights.74–76 This also highlighted the need to expand the charac-

terization of functional, mechanistic, and phenotypic correlates

of driver alterations across additional layers of molecular data.

Here,weusedproteomicandphosphoproteomic readouts from

ten cancer types, integrated with genomic and transcriptomic

data, to assess the pan-cancer consequences of 5,443 putative

driver alterations across the CPTAC cohort. Our proteogenomic

analyses provide insights into themolecularmechanisms of onco-

genic mutations, from individual proteins to cancer hallmarks,

revealing potentially novel therapeutic avenues. To precisely

dissect how the cancer proteome is shaped, we analyzed the

impact of oncogenic variants across different layers of biological

regulation, starting with the effect on the same protein (cis-effect),

moving to protein interactions and complexes, leading up to the

entire (phospho-)proteome including trans-effects and polygenic

predictive framework. To assess the rewiring of protein-protein in-

teractions (PPI) in cancer,40,77 we used proteomic co-expression

data as an indirect readout of PPIs. We found candidate PPIs

that differ by cancer type or driver alterations. Interestingly, many

drivers were noted to display driver alterations at the interface be-

tween known interacting proteins, including PIK3R1-PIK3CA,

SMAD4-SMAD2, and PPP2R1A-PPP2R2A. Importantly, similar

analysis with the RNA data yielded only a subset of the PPI effects

detected at the protein level, highlighting the importance of prote-

omic analysis. Given the emerging role of network medicine,78 we

trust that our use of pan-cancer proteomics data to associatemu-

tations with the PPI network indirectly will be enlightening.

Our use of trans-effects of driver events revealed that different

cancergenes in apathway tend todisplay similarmolecular finger-

prints. This suggests that their molecular effects are similar, for

example, NFE2L2 and KEAP1, and KMT2B and CREBBP. Such

molecular convergence explains the mutual exclusivity of a signif-

icant fraction of oncogenic drivers. However, we also found some

cases where the molecular fingerprints are negatively correlated,

and these often overlapped with mutually exclusive driver genes

such as EGFR and STK11, CDH1 and TP53, or EGFR and

KRAS. It is conceivable that these pairs of genes are mutually

exclusive because a mutation in one gene moves the cell toward

a state where a mutation in the second gene is incompatible with

oncogenesis (among other possible explanations). These genes

(EGFR and STK11) are divergently incompatible rather than onco-

genically convergent and redundant. These divergent incompati-

bilities could represent synthetic lethal vulnerabilities, as shown

for EGFR and KRAS in lung cancer.79 Drugs that exploit this phe-

nomenon by activating genes divergently incompatible could be

contemplated. Thus, the results from the Kinase Library, showing

how EGFR-mutated and STK11/KRAS-mutated tumors activate

opposite sets of kinases, could provide such drug targets.

To examine the cumulative impact of tumor genomic variants

on the proteome, we built C3PO, a polygenic predictive frame-

work trained to predict protein abundance. The predictive

capacity is currently limited to �27% of the global proteomic

landscape, likely due to cellular plasticity80 and transcriptomic

fluctuations caused by the TME.81 Nevertheless, this tool en-

ables assessment of the genomic contribution to protein hall-

mark variability in tumors across space and time.82

In summary, this study highlights critical insights provided by

proteomics to systematically assess the consequences of onco-

genic drivers on the functional states of cancers. Going forward,

a broader characterization of PTMs and the metabolome could

further reveal how driver alterations perturb the activity of pro-

teins such as E3 ubiquitin ligases. Furthermore, by applying sin-

gle-cell proteomics,83–85 spatial proteomics,86 and multiple

intra-/inter-tumor samples per patient, the proteomic contribu-

tions to tumor heterogeneity and interaction with the TME could

be elucidated more comprehensively. Finally, clinical trials that

couple proteomics to both pre- and post-treatment samples

could reveal determinants of response and resistance to thera-

pies and inform combination treatments at a level more directly

related to the action of drugs: the proteome. This could lead to

clinically implementable proteogenomic panels. Our findings

support the proteome as a missing link between the genotype

of oncogenic drivers and their functional states.

Limitations of the study
The pan-cancer proteogenomics study comprised ten tumor

types previously analyzed individually as part of CPTAC con-

sortium flagship studies.13–22 This cohort is highly disparate,

including three female-specific cancers, BRCA, HGSC, and

UCEC,but not themostcommonmalecancer, prostateadenocar-

cinoma. Also, GBM represents a relatively less common and bio-

logically more distinct tumor type than the rest of the cohort. Addi-

tional planned cohorts will ameliorate these limitations of cohort

composition. Some of the tumors in this study have cognate

NAT composed of a cell lineage closely related to that of cancer.

For others, this was unavailable. The pan-cancer analysis of

drug sensitivity seems to focus on cell-cycle-related proteins,

motivated in considerable measure by the interest in the commu-

nity to target this core hallmark of cancer therapeutically. Although
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finding that a kinase has elevated activity in tumorsmight suggest

a potential drug target, careful consideration of the essentiality of

that kinase in normal tissues is needed toestablish a possible ther-

apeuticwindow.Nevertheless, apan-cancer proteomic readout of

other hallmark phenotypes may yet be therapeutically informative

and would merit in-depth assessment in future studies.
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López-Bigas, N. (2016). OncodriveFML: A general framework to identify

coding and non-coding regions with cancer driver mutations. Genome

Biol. 17, 128. https://doi.org/10.1186/s13059-016-0994-0.

8. Kamburov, A., Lawrence, M.S., Polak, P., Leshchiner, I., Lage, K., Golub,

T.R., Lander, E.S., and Getz, G. (2015). Comprehensive assessment of

cancer missense mutation clustering in protein structures. Proc. Natl.

Acad. Sci. USA. 112, E5486–E5495. https://doi.org/10.1073/pnas.

1516373112.

9. Porta-Pardo, E., Garcia-Alonso, L., Hrabe, T., Dopazo, J., and Godzik, A.

(2015). A pan-cancer catalogue of cancer driver protein interaction inter-

faces. PLoS Comput. Biol. 11, e1004518. https://doi.org/10.1371/jour-

nal.pcbi.1004518.

10. Tokheim, C., Bhattacharya, R., Niknafs, N., Gygax, D.M., Kim, R., Ryan,

M., Masica, D.L., and Karchin, R. (2016). Exome-scale discovery of

hotspot mutation regions in human cancer using 3D protein structure.

Cancer Res. 76, 3719–3731. https://doi.org/10.1158/0008-5472.CAN-

15-3190.

11. Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M.,

Zhang, Q., McMichael, J.F., Wyczalkowski, M.A., et al. (2013). Mutational

landscape and significance across 12 major cancer types. Nature 502,

333–339. https://doi.org/10.1038/nature12634.

12. Grandér, D. (1998). How do mutated oncogenes and tumor suppressor

genes cause cancer? Med. Oncol. 15, 20–26. https://doi.org/10.1007/

BF02787340.

13. Vasaikar, S., Huang, C., Wang, X., Petyuk, V.A., Savage, S.R., Wen, B.,

Dou, Y., Zhang, Y., Shi, Z., Arshad, O.A., et al. (2019). Proteogenomic

analysis of human colon cancer reveals new therapeutic opportunities.

Cell 177, 1035–1049.e19. https://doi.org/10.1016/j.cell.2019.03.030.

14. Clark, D.J., Dhanasekaran, S.M., Petralia, F., Pan, J., Song, X., Hu, Y., da

Veiga Leprevost, F., Reva, B., Lih, T.M., Chang, H.Y., et al. (2019). Inte-

grated proteogenomic characterization of clear cell renal cell carcinoma.

Cell 179, 964–983.e31. https://doi.org/10.1016/j.cell.2019.10.007.

15. Dou, Y., Kawaler, E.A., Cui Zhou, D., Gritsenko, M.A., Huang, C., Blu-

menberg, L., Karpova, A., Petyuk, V.A., Savage, S.R., Satpathy, S.,

et al. (2020). Proteogenomic characterization of endometrial carcinoma.

Cell 180, 729–748.e26. https://doi.org/10.1016/j.cell.2020.01.026.

16. Wang, L.B., Karpova, A., Gritsenko, M.A., Kyle, J.E., Cao, S., Li, Y., Ry-

kunov, D., Colaprico, A., Rothstein, J.H., Hong, R., et al. (2021). Proteo-

genomic and metabolomic characterization of human glioblastoma.

Cancer Cell 39, 509–528.e20. https://doi.org/10.1016/j.ccell.2021.

01.006.

17. Gillette, M.A., Satpathy, S., Cao, S., Dhanasekaran, S.M., Vasaikar, S.V.,

Krug, K., Petralia, F., Li, Y., Liang, W.W., Reva, B., et al. (2020). Proteo-

genomic characterization reveals therapeutic vulnerabilities in lung

adenocarcinoma. Cell 182, 200–225.e35. https://doi.org/10.1016/j.cell.

2020.06.013.

18. Huang, C., Chen, L., Savage, S.R., Eguez, R.V., Dou, Y., Li, Y., da Veiga

Leprevost, F., Jaehnig, E.J., Lei, J.T., Wen, B., et al. (2021). Proteoge-

nomic insights into the biology and treatment of HPV-negative head

ll
OPEN ACCESS

Cell 186, 3921–3944, August 31, 2023 3939

Article

https://doi.org/10.1016/j.cell.2018.02.060
https://doi.org/10.1016/j.cell.2018.02.060
https://doi.org/10.1038/nature12213
https://doi.org/10.1038/nature12213
https://doi.org/10.1093/bioinformatics/btu499
https://doi.org/10.1093/bioinformatics/btu499
https://doi.org/10.1016/j.cels.2019.05.005
https://doi.org/10.1038/s41586-021-03771-1
https://doi.org/10.1016/j.ccell.2019.08.002
https://doi.org/10.1016/j.ccell.2019.08.002
https://doi.org/10.1186/s13059-016-0994-0
https://doi.org/10.1073/pnas.1516373112
https://doi.org/10.1073/pnas.1516373112
https://doi.org/10.1371/journal.pcbi.1004518
https://doi.org/10.1371/journal.pcbi.1004518
https://doi.org/10.1158/0008-5472.CAN-15-3190
https://doi.org/10.1158/0008-5472.CAN-15-3190
https://doi.org/10.1038/nature12634
https://doi.org/10.1007/BF02787340
https://doi.org/10.1007/BF02787340
https://doi.org/10.1016/j.cell.2019.03.030
https://doi.org/10.1016/j.cell.2019.10.007
https://doi.org/10.1016/j.cell.2020.01.026
https://doi.org/10.1016/j.ccell.2021.01.006
https://doi.org/10.1016/j.ccell.2021.01.006
https://doi.org/10.1016/j.cell.2020.06.013
https://doi.org/10.1016/j.cell.2020.06.013


and neck squamous cell carcinoma. Cancer Cell 39, 361–379.e16.

https://doi.org/10.1016/j.ccell.2020.12.007.

19. Krug, K., Jaehnig, E.J., Satpathy, S., Blumenberg, L., Karpova, A.,

Anurag, M., Miles, G., Mertins, P., Geffen, Y., Tang, L.C., et al. (2020).

Proteogenomic landscape of breast cancer tumorigenesis and targeted

therapy. Cell 183, 1436–1456.e31. https://doi.org/10.1016/j.cell.2020.

10.036.

20. McDermott, J.E., Arshad, O.A., Petyuk, V.A., Fu, Y., Gritsenko, M.A.,

Clauss, T.R., Moore, R.J., Schepmoes, A.A., Zhao, R., Monroe, M.E.,

et al. (2020). Proteogenomic characterization of ovarian HGSC implicates

mitotic kinases, replication stress in observed chromosomal instability.

Cell Rep. Med. 1, 100004. https://doi.org/10.1016/j.xcrm.2020.100004.

21. Cao, L., Huang, C., Cui Zhou, D., Hu, Y., Lih, T.M., Savage, S.R., Krug, K.,

Clark, D.J., Schnaubelt, M., Chen, L., et al. (2021). Proteogenomic char-

acterization of pancreatic ductal adenocarcinoma. Cell 184, 5031–

5052.e26. https://doi.org/10.1016/j.cell.2021.08.023.

22. Satpathy, S., Krug, K., Jean Beltran, P.M., Savage, S.R., Petralia, F., Ku-

mar-Sinha, C., Dou, Y., Reva, B., Kane, M.H., Avanessian, S.C., et al.

(2021). A proteogenomic portrait of lung squamous cell carcinoma. Cell

184, 4348–4371.e40. https://doi.org/10.1016/j.cell.2021.07.016.

23. Cao, Y., Zhou, W., Li, L., Wang, J., Gao, Z., Jiang, Y., Jiang, X., Shan, A.,

Bailey, M.H., Huang, K.L., et al. (2018). Pan-cancer analysis of somatic

mutations across 21 neuroendocrine tumor types. Cell Res. 28,

601–604. https://doi.org/10.1038/s41422-018-0019-5.

24. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (2020). Pan-can-

cer analysis of whole genomes. Nature 578, 82–93. https://doi.org/10.

1038/s41586-020-1969-6.

25. Chen, F., Wendl, M.C., Wyczalkowski, M.A., Bailey, M.H., Li, Y., and

Ding, L. (2021). Moving pan-cancer studies from basic research toward

the clinic. Nat. Cancer 2, 879–890. https://doi.org/10.1038/s43018-

021-00250-4.

26. Bailey, M.H., Meyerson, W.U., Dursi, L.J., Wang, L.B., Dong, G., Liang,

W.W.,Weerasinghe, A., Li, S., Li, Y., Kelso, S., et al. (2020). Retrospective

evaluation of whole exome and genome mutation calls in 746 cancer

samples. Nat. Commun. 11, 4748. https://doi.org/10.1038/s41467-

020-18151-y.

27. Akbani, R., Ng, P.K., Werner, H.M., Shahmoradgoli, M., Zhang, F., Ju, Z.,

Liu, W., Yang, J.Y., Yoshihara, K., Li, J., et al. (2014). A pan-cancer pro-

teomic perspective on The Cancer Genome Atlas. Nat. Commun. 5,

3887. https://doi.org/10.1038/ncomms4887.

28. Kim, J., Mouw, K.W., Polak, P., Braunstein, L.Z., Kamburov, A., Kwiat-

kowski, D.J., Rosenberg, J.E., Van Allen, E.M., D’Andrea, A., and Getz,

G. (2016). Somatic ERCC2 mutations are associated with a distinct

genomic signature in urothelial tumors. Nat. Genet. 48, 600–606.

https://doi.org/10.1038/ng.3557.

29. Kasar, S., Kim, J., Improgo, R., Tiao, G., Polak, P., Haradhvala, N., Law-

rence, M.S., Kiezun, A., Fernandes, S.M., Bahl, S., et al. (2015). Whole-

genome sequencing reveals activation-induced cytidine deaminase sig-

natures during indolent chronic lymphocytic leukaemia evolution. Nat.

Commun. 6, 8866. https://doi.org/10.1038/ncomms9866.

30. Taylor-Weiner, A., Aguet, F., Haradhvala, N.J., Gosai, S., Anand, S., Kim,

J., Ardlie, K., Van Allen, E.M., and Getz, G. (2019). Scaling computational

genomics to millions of individuals with GPUs. Genome Biol. 20, 228.

https://doi.org/10.1186/s13059-019-1836-7.

31. Thorsson, V., Gibbs, D.L., Brown, S.D., Wolf, D., Bortone, D.S., Ou Yang,

T.H., Porta-Pardo, E., Gao, G.F., Plaisier, C.L., Eddy, J.A., et al. (2018).

The immune landscape of cancer. Immunity 48, 812–830.e14. https://

doi.org/10.1016/j.immuni.2018.03.023.

32. Phillips, H.S., Kharbanda, S., Chen, R., Forrest, W.F., Soriano, R.H., Wu,

T.D., Misra, A., Nigro, J.M., Colman, H., Soroceanu, L., et al. (2006). Mo-

lecular subclasses of high-grade glioma predict prognosis, delineate a

pattern of disease progression, and resemble stages in neurogenesis.

Cancer Cell 9, 157–173. https://doi.org/10.1016/j.ccr.2006.02.019.

33. Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson,

M.D., Miller, C.R., Ding, L., Golub, T., Mesirov, J.P., et al. (2010). Inte-

grated genomic analysis identifies clinically relevant subtypes of glio-

blastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and

NF1. Cancer Cell 17, 98–110. https://doi.org/10.1016/j.ccr.2009.12.020.

34. Zarkoob, H., Taube, J.H., Singh, S.K., Mani, S.A., and Kohandel, M.

(2013). Investigating the link between molecular subtypes of glioblas-

toma, epithelial-mesenchymal transition, and CD133 cell surface protein.

PLoS One 8, e64169. https://doi.org/10.1371/journal.pone.0064169.

35. Pietzner, M., Wheeler, E., Carrasco-Zanini, J., Kerrison, N.D., Oerton, E.,

Koprulu, M., Luan, J., Hingorani, A.D.,Williams, S.A., Wareham, N.J., and

Langenberg, C. (2021). Synergistic insights into human health from ap-

tamer- and antibody-based proteomic profiling. Nat. Commun. 12,

6822. https://doi.org/10.1038/s41467-021-27164-0.

36. Chick, J.M., Munger, S.C., Simecek, P., Huttlin, E.L., Choi, K., Gatti,

D.M., Raghupathy, N., Svenson, K.L., Churchill, G.A., and Gygi, S.P.

(2016). Defining the consequences of genetic variation on a proteome-

wide scale. Nature 534, 500–505. https://doi.org/10.1038/nature18270.

37. Freed-Pastor, W.A., and Prives, C. (2012). Mutant p53: one name,

many proteins. Genes Dev. 26, 1268–1286. https://doi.org/10.1101/

gad.190678.112.

38. Mighell, T.L., Evans-Dutson, S., and O’Roak, B.J. (2018). A saturation

mutagenesis approach to understanding PTEN lipid phosphatase activ-

ity and genotype-phenotype relationships. Am. J. Hum. Genet. 102,

943–955. https://doi.org/10.1016/j.ajhg.2018.03.018.

39. Matreyek, K.A., Starita, L.M., Stephany, J.J., Martin, B., Chiasson, M.A.,

Gray, V.E., Kircher, M., Khechaduri, A., Dines, J.N., Hause, R.J., et al.

(2018). Multiplex assessment of protein variant abundance by massively

parallel sequencing. Nat. Genet. 50, 874–882. https://doi.org/10.1038/

s41588-018-0122-z.

40. Mo, X., Niu, Q., Ivanov, A.A., Tsang, Y.H., Tang, C., Shu, C., Li, Q., Qian,

K., Wahafu, A., Doyle, S.P., et al. (2022). Systematic discovery of

mutation-directed neo-protein-protein interactions in cancer. Cell 185,

1974–1985.e12. https://doi.org/10.1016/j.cell.2022.04.014.

41. Romanov, N., Kuhn, M., Aebersold, R., Ori, A., Beck, M., and Bork, P.

(2019). Disentangling genetic and environmental effects on the proteo-

types of individuals. Cell 177, 1308–1318.e10. https://doi.org/10.1016/

j.cell.2019.03.015.

42. Sarbassov, D.D., Ali, S.M., Kim, D.H., Guertin, D.A., Latek, R.R., Erdju-

ment-Bromage, H., Tempst, P., and Sabatini, D.M. (2004). Rictor, a novel

binding partner of mTOR, defines a rapamycin-insensitive and raptor-in-

dependent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–

1302. https://doi.org/10.1016/j.cub.2004.06.054.

43. van der Wal, T., and van Amerongen, R. (2020). Walking the tight wire be-

tween cell adhesion andWNT signalling: a balancing act for beta-catenin.

Open Biol. 10, 200267. https://doi.org/10.1098/rsob.200267.

44. Schick, S., Rendeiro, A.F., Runggatscher, K., Ringler, A., Boidol, B.,
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Li Ding

(lding@wustl.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Raw and processed proteomics as well as open-access genomic data, can be obtained via Proteomic Data Commons (PDC) at

https://pdc.cancer.gov/pdc/cptac-pancancer. Raw genomic and transcriptomic data files can be accessed via the Genomic

Data Commons (GDC) Data Portal at https://portal.gdc.cancer.gov with dbGaP Study Accession: phs001287.v16.p6. Com-

plete CPTAC pan-cancer controlled and processed data can be accessed via the Cancer Data Service (CDS: https://

dataservice.datacommons.cancer.gov/). The CPTAC pan-cancer data hosted in CDS is controlled data and can be accessed

through the NCI DAC approved, dbGaP compiled whitelists. Users can access the data for analysis through the Seven Bridges

Cancer Genomics Cloud (SB-CGC) which is one of the NCI-funded Cloud Resource/platform for compute intensive analysis.

Instructions to access data: 1. Create an account on CGC, Seven Bridges (https://cgc-accounts.sbgenomics.com/auth/

register 2. Get approval from dbGaP to access the controlled study (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs001287.v16.p6 ) 3. Log into CGC to access Cancer Data Service (CDS) File Explore 4. Copy data

into your own space and start analysis and exploration 5. Visit the CDS page on CGC to see what studies are available and

instructions and guides to use the resources. (https://docs.cancergenomicscloud.org/page/cds-data). We focused on the

CPTAC samples with both genomic and proteomic data available to investigate the pan-cancer proteogenomic impacts of

oncogenic drivers.

d All original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
A total of 1064 participants were included in this study. Prospective biospecimen collection (tumor, germline blood and adjacent

normal samples where feasible) followed a tumor type specific protocol and standard operating procedures (SOPs), where sample

collection, qualification and processing were optimized for both genomics and proteomics.13–22 CPTAC samples were collected by

30+ tissue source sites from both domestic and international locations and processed by a central biospecimen core resource. The

samples were pathology qualified by a general pathologist and later reconfirmed by a disease-specific expert pathologist through

histopathology image review and immunohistochemistry assays where applicable.
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Python v3.7 Python Software

Foundation

https://www.python.org/

R v3.6 R Development

Core Team

https://www.R-project.org

R-rollup Polpitiya et al.105 https://omics.pnl.gov/software/danter

Samtools v1.2 Li et al.106 https://www.htslib.org/

SignatureAnalyzer Alexandrov et al.97 https://github.com/broadinstitute/getzlab-SignatureAnalyzer

somaticwrapper v1.6 Li Ding Lab https://github.com/ding-lab/somaticwrapper

STAR-Fusion v1.5.0 Haas et al.107 https://github.com/STAR-Fusion/STAR-Fusion

Strelka v2.9.2 Kim et al.108 https://github.com/Illumina/strelka

the Kinase Library 2.4.0 Johnson et al.109 https://kinase-library.phosphosite.org/

UpSetR Conway et al.110 https://github.com/hms-dbmi/UpSetR/

VarScan v2.3.8 Koboldt et al.111 https://dkoboldt.github.io/varscan/

xCell v1.2 Aran et al.112 http://xcell.ucsf.edu/
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Clinical data annotation
Clinical datawere obtained from TSS and aggregated by the Biospecimen Core Resource (BCR, Van Andel Research Institute (Grand

Rapids, MI)). Data forms were stored as Microsoft Excel files (.xls). Clinical data can be accessed and downloaded from the CPTAC

Data Portal and https://pdc.cancer.gov/pdc/cptac-pancancer as described in Li et al.87.

METHOD DETAILS

Harmonized genome alignment
WGS, WES, and RNA-Seq sequence data were harmonized by NCI Genomic Data Commons (GDC) https://gdc.cancer.gov/

about-data/gdc-data-harmonization, which included alignment to GDC’s hg38 human reference genome (GRCh38.d1.vd1) and

additional quality checks. All the downstream genomic processing was based on the GDC-aligned BAMs to ensure reproducibility.

Somatic mutation calling
Somatic Mutation Calling (pipeline from Washington University in St Louis)

Somatic mutations were called by the Somaticwrapper pipeline v1.6 (https://github.com/ding-lab/somaticwrapper), which includes

four different callers, i.e., Strelka v.2,108 MUTECT v1.1.7,103 VarScan v.2.3.8,111 and Pindel v.0.2.5104 fromWES. We kept the exonic

SNVs called by any two callers amongMUTECT v1.7, VarScan v.2.3.8, and Strelka v.2.9.2 and indels called by any two callers among

VarScan v.2.3.8, Strelka v.2, and Pindel v.0.2.5. For the merged SNVs and indels, we applied a 14X and 8X coverage cutoff for tumor

and normal, separately. We also filtered SNVs and indels by a minimal variant allele frequency (VAF) of 0.05 in tumors and a maximal

VAF of 0.02 in normal samples. We filtered any SNV within 10bp of an indel found in the same tumor sample. Finally, we rescued the

rare mutations with VAF of [0.015, 0.05) in ccRCC driver genes based on the gene consensus list.1

Somatic mutation calling (pipeline from Broad Institute of MIT and Harvard)

In parallel, patient whole-exome sequencing (WES) data for matched tumor/normal samples were analyzed using the Getz Lab’s pro-

duction hg38 WES characterization pipeline. The hg38 characterization pipeline runs on the Terra cloud-based analysis platform

(https://terra.bio/). This pipeline is the Getz Lab’s standard computational workflow, and the analysis steps are organized into five

modules: (1) DNA Sequence Data Quality Control (including GATK4’s CalculateContamination [ver GATK 4.1.4.1] and GATK4 Picard

tools [ver GATK 4.0.5.1]). (2) Somatic CopyNumber Analysis (GATK4Best PracticesWorkflow [ver GATK 4.1.4.1]). (3) Somatic Variant

Discovery, which includes the discovery of single-nucleotide variants (SNVs) and insertions/deletions (indels), using MuTect103 and

Manta+Strelka v2.102,108 Next, deTiN v1.8.994 is run to account for and rescue tumor-in-normal contamination. The resulting SNV and

indel VCFs are each run through the GATK4 Funcotator (ver GATK 4.1.4.1). (4) Post-Discovery Filtering, which employs a collection of

filters to remove alignment artifacts, germline variants, and common sequencing artifacts that occur in normal panels. (5) Merging of

adjacent somatic Single Nucleotide Polymorphisms (SNPs) into di-nucleotide polymorphisms (DNPs), trinucleotide polymorphisms

(TNPs), and Oligo-nucleotide polymorphisms (ONPs).

Somatic mutation callset harmonization (pipeline from Broad Institute of MIT and Harvard)

The per-patient variant calls employed by the CPTAC PanCan working group are derived from the harmonization of variant calls made

independently by the Broad andWashthe U teams. First, we filter calls outside of the inosine chemical erasing (ICE) interval (Genomics

Platform at the Broad Institute) and apply a ‘‘panel-of-normals’’ built from aggregating CPTAC and TCGA cohorts for consistency be-

tween the two pipelines. In addition, to account for differences in the two mutation call sets, we: (i) removed all calls with Variant Allele

Frequency (VAF)<0.05 from both pipelines and rescued only high confident calls and (ii) long ONPs were collapsed to shorter ONPs by

imposingamore stringentmerging criterion that requires a 2bpgap lengthatmax.Next, weusedAsymtools2113 to identify a sequencing

artifact affecting CPTAC2 whole-exome sequencing. We then corrected for the sequencing artifact by ranking context-specific muta-

tions by their allelic fractions. Finally, the functional impact of harmonized calls was annotated using GATK Funcotator.

Germline variant calling and pathogenicity classification
Germline variant calling was performed using the GermlineWrapper v1.1 pipeline, which implements multiple tools for detecting

germline INDELs and SNVs. Germline SNVs were identified using VarScan v2.3.8111 (with parameters:-min-var-freq 0.10, -p-value

0.10, -min-coverage 3, -strand-filter 1) operating on a mpileup stream produced by samtools v1.2 (with parameters: -q 1 -Q 13)

and GATK v4.0.0.0114 using its haplotype caller in single-sample mode with duplicate and unmapped reads removed and retaining

calls with aminimum quality threshold of 10. Germline INDELs were called using VarScan, GATK, and Pindel104 (version 0.2.5b9, with

default parameters except -m 6, -w 1, excluding centromere regions (genome.ucsc.edu)). INDELs were required to be called by at

least two out of the three callers. All resulting variants were limited to coding regions of full-length transcripts obtained from Ensembl

release 100 plus additional two base pairs flanking each exon to cover splice sites. We required variants to have Allelic Depth (AD)R

5 reads for the alternative allele and filtered out any INDELs longer than 100bps. Germline variants passing filters were then annotated

using the Ensembl Variant effect Predictor (VEP)115 (version 100 with default parameters, except -everything) and their pathogenicity

was determined with our automated pipeline CharGer92 (version 0.5.4), which classifies germline variants based on guidelines pub-

lished by the American College of Medical Genetics (ACMG).116 Briefly, CharGer applies 12 pathogenic and four benign evidence

levels using information from several databases, such as gnomAD and ClinVAr, and in silico tools, such as SIFT117 and Polyphen.118

Further details on implementation, scores of each evidence level, and parameters used are the same as those in our previous
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pan-cancer TCGA germline study.92,119 Variants classified by CharGer were then filtered for rare variants with minor allele frequency

(MAF)% 0.05% in gnomAD r.2.1.1120 and/or The 1000 Genomes Project.121 Further, we used bam-readcount v0.8 for reference and

alternative alleles quantification (with parameters: -q 10 -b 15) in both normal and tumor samples and required at least five counts for

the alternative allele and 20% variant allele frequency (VAF) in both tumor and normal samples. Variants passing these filters were =

manually reviewed with the Integrative Genomics Viewer (IGV) software (version 2.12.3) using = tumor and normal data.

Copy number variant calling
Genomic data post-processing and GISTIC (pipeline from Broad Institute of MIT and Harvard)

The Genomic Identification of Significant Targets in Cancer (GISTIC2.0) algorithm95 was used to identify significantly amplified or

deleted focal-level and arm-level events, with q-value<0.25 considered significant (default parameters were used).

WGS copy number variant calling (pipeline from Washington University in St Louis)

We used BIC-seq2,122 a read-depth-based CNA calling algorithm, to detect somatic copy number alteration (CNAs) from the WGS

data of tumors. Briefly, BIC-seq2 divides genomic regions into disjoint bins and counts uniquely aligned reads in each bin. Then, it

combines neighboring bins into genomic segmentswith similar copy numbers iteratively based onBay’sian Information Criteria (BIC),

a statistical criterion measuring a statistical model’s fitness and complexity. We used paired-sample CNA calling that takes samples

as input and detects genomic regions with different copy numbers between the two samples. We used a bin size of �100 bp and a

lambda of 3 (a smoothing parameter for CNA segmentation). We recommend calling segments as copy, gain, or loss when their log2
copy ratios are larger than 0.2 or smaller than �0.2, respectively (according to the BIC-seq publication).

DNA methylation microarray processing
Raw methylation idat files were downloaded from CPTAC DCC and GDC. Beta values of CpG loci were reported after functional

normalization, quality check, common SNP filtering, and probe annotation using the Li Ding Lab’s methylation pipeline v1.1

https://github.com/ding-lab/cptac_methylation.

Gene-level DNA methylation data were generated using the beta values of all probes harboring in the islands of promoter and

5 UTR regions of the genes. Samples with a missing rate>10% across all probes were excluded, the mean and median levels

were calculated, and the analyses were performed separately on the discovery cohort of seven cancer types. For five cancer types

(ccRCC, LUAD, LSCC, HNSCC, and PDAC) that have DNA methylation data in both NAT and tumor samples, consensus clustering

analysis was performed as a quality control procedure to evaluate the separation of clusters on NAT vs. tumor samples. The misclas-

sified samples were checked for clustering uncertainty and sample labeling. We identified aberrant DNAmethylation associated with

transcriptional and/or translational changes using the published RESET pipeline.123 Within the promoter region (TSS +- 300 bp).

RNA data processing and quantification
We obtained the gene-level read count, Fragments Per Kilobase of transcript per Million mapped reads (FPKM), and FPKM Upper

Quartile (FPKM-UQ) values by following the GDC’s RNA-Seq pipeline (Expression mRNA Pipeline) https://docs.gdc.cancer.gov/

Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/, except running the quantification tools in the stranded mode. We

used HTSeq v0.11.2100 to calculate the gene-level stranded read count (parameters: -r pos -f bam -a 10 -s reverse -t exon -i gene_id

-m intersection-nonempty –nonunique=none) using GENCODE v22 (Ensembl v79) annotation downloaded from GDC (gencode.ge-

ne.info.v22.tsv). The read count was then converted to FPKM and FPKM-UQ using the formula described in GDC’s Expression

mRNA Pipeline documentation.

RNA fusion detection
We used three callers, STAR-Fusion v1.5.0,107 INTEGRATE v0.2.6,101 and EricScript v0.5.5,99 to call consensus fusion/chimeric

events in our samples. Calls by each tool using tumor and normal RNA-Seq data were then merged into a single file, and extensive

filtering was done. As STAR-Fusion has higher sensitivity, calls made by this tool with higher supporting evidence (defined by fusion

fragments per million total reads, or FFPM>0.1) were required, or a given fusion must be reported by at least two callers. We then

removed the fusions present in our panel of blacklisted or normal fusions, which included uncharacterized genes, immunoglobulin

genes, mitochondrial genes, and others, as well as fusions from the same gene or paralog genes and fusions reported in TCGA

normal samples,124 GTEx tissues (reported in STAR-Fusion output), and non-cancer cell studies.125 Finally, we removed normal fu-

sions from the tumor fusions to curate the final set.

Cell-type annotation on differentially expressed markers
We applied a comprehensive analysis strategy to annotate the cell-type expression of differentially expressed markers. As the pri-

mary approach, we utilized the published expression data at the single-cell resolution16,88–90 and separated the populations into

threemain categories (e.g., Tumor, Immune, and Stromal). Differentially expressed genes corresponding to each category were iden-

tified by the FindMarkers function in Seurat.126 Wilcoxon rank-sum test was used. log2FC>1 and q-value<0.05 were used to filter

DEGs and classify the differentially expressed markers into Tumor (T), Immune (I), Stromal (S), or Mixed (M) categories. For those

that were not quantified in the data described above or did not pass through the cutoffs, we applied secondary annotation by per-

forming the correlation analysis between themarker expression and cell-type-signature (e.g., ESTIMATE127 and xCell112) and applied
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the cutoffs of correlation difference>0.5 and q-value<0.05. For example, if a marker has significant correlations (e.g., q-value<0.05)

with tumor purity of 0.7, with an immune score of -0.3, and with a stromal score of -0.05, it will be considered as the category of (T).

Moreover, for the small subset that was not evaluable by the primary and secondary annotation, we referred to the Human Protein

Atlas for their expression profiles as a part of the multi-layer annotations.

Tumor microenvironment inference
The ESTIMATE scores reflecting the overall immune and stromal infiltration were calculated by the R package ESTIMATE127 using the

normalized RNA expression data (FPKM-UQ).

Cell type enrichment deconvolution using gene expression
The abundance of each cell type was inferred by the xCell web tool,112 which performed the cell type enrichment analysis from gene

expression data for 64 immune and stromal cell types (default xCell signature). xCell is a gene signatures-basedmethod learned from

thousands of pure cell types from various sources.We used the FPKM-UQ expressionmatrix as the input of xCell. xCell generated an

immune score per sample that integrates the enrichment scores of B cells, CD4+ T-cells, CD8+ T-cells, DC, eosinophils, macro-

phages, monocytes, mast cells, neutrophils, and NK cells; a micro-environment score which was the sum of the immune score

and stroma score. Besides, we applied CIBERSORTx93 to compute immune cell fractions from bulk gene expression data.

Survival analysis
The R package ‘‘survival’’ was used to perform survival analysis. The Kaplan-Meier curve of overall survival was used to compare the

prognosis among subtypes (function survfit). Log-rank test (from the R package survminer) was used to test the differential survival

outcomes between categorical variables. The standard multivariate Cox-proportional hazard modeling was applied to estimate the

hazard ratio among subtypes (function coxph).

Ancestry prediction using SNPs from 1000 genomes project
We used a reference panel of genotypes and a clustering based on principal components to identify likely ancestry. We selected

107,765 coding SNPs with a minor allele frequency>0.02 from the final phase release of The 1000 Genomes Project.128 From this

set of loci, we measured the depth and allele counts of each sample in our cohort using bam-readcount v0.8.0. Genotypes were

then called for each sample based on the following criteria: 0/0 if reference count R 8 and alternate count<4; 0/1 if reference count

R 4 and alternate count R 4; 1/1 if reference count<4 and alternate count R 8; and./. (missing) otherwise. After excluding markers

with missingness>5%, 70,968 markers were kept for analysis. We performed PCA on the 1000 Genomes samples to identify the top

20 principal components. We then projected our cohort onto the 20-dimensional space representing the 1000 Genomes data. We

then trained a random forest classifier with the 1000 Genomes dataset using these 20 principal components. The 1000 Genomes

dataset was split 80/20 for training and validation, respectively. On the validation dataset, our classifier achieved 99.6% accuracy.

We then used the fitted classifier to predict the likely ancestry of our cohort. Each prediction file contains classification probabilities

for each sample for five ancestries (EUS - European, EAS - East Asian, SAS - South Asian, AFR - African, AMR - American Admixture)

GitHub: https://github.com/ding-lab/ancestry.

MSI prediction
MSI scores were calculated by MSIsensor (https://github.com/ding-lab/msisensor) and interpreted as the percentage of microsat-

ellite sites (with deep enough sequencing coverage) that have a lesion. Samples with an MSI score>3.5 are classified as "MSI-high"

and the rest will be classified as "MSS." An intermediate class with 1.0<=score<=3.5 can be defined as "MSI-low."

HLA typing and neoantigen prediction
The wild-type/variant protein sequences are obtained from the Refseq database. We constructed different epitope lengths

(8-11-mer) from the translated protein sequence. Each sample’s HLA type comes from OptiType prediction. We predicted

the binding affinity between epitopes and the major histocompatibility complex (MHC) using NetMHC4.129 Epitopes with binding

affinity % 500nM, also not present in the wild-type transcript, are reported as neoantigens.

Oncogenicity annotation
OncoKB oncogenicity annotation

OncoKB is an extensive knowledge base that curates the literature on whether specific alterations are either known to be oncogenic

or are likely oncogenic.71 To utilize themost up-to-date annotations, we used the OncoKB API through their Python-based command

line interface (https://github.com/oncokb/oncokb-annotator) for point mutations (MafAnnotator.py), copy number alterations

(CnaAnnotator.py) and gene fusions (FusionAnnotator.py). To obtain cancer type-specific oncogenicity annotations, we provided

the corresponding cancer type for each mutation using standardized OncoTree code names,130 which only differed from CPTAC

code names for three cancer types (LUSC instead of LSCC, HNSC instead of HNSCC, and PAAD instead of PDAC). Somatic point
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mutations were annotated based on the genomic change in theMAF file as input. For copy number alterations, OncoKB directly used

the GISTIC 2.0 results as input. Lastly, for gene fusions, only the identity of the genes in a fusion pair was provided since OncoKB

does not consider breakpoints.

Annotating putative driver missense mutations

As the primary goal of our study was to identify the proteomic correlates of driver alterations and not to identify driver events per se, to

explore the consequences of driver events, we defined putative driver alterations by combining two curated knowledge bases

(OncoKB71 and Cancer Gene Census131) with computational predictions. We focused on 299 cancer driver genes,1 supplemented

with known oncogenic mutations and computational predictions of driver missense mutations by six methods (Figures S1F–S1H),

known mutational hotspots for in-frame indels, and manual curation of less-studied alterations, such as gene fusions. This strategy

identified 3,083 somatic point mutations, 2,311 copy number events, and 49 gene fusions as putatively oncogenic for downstream

analysis (Figures S1I–S1L; Table S1).

1,289 missense mutations labeled as ‘‘Oncogenic’’ or ‘‘Likely Oncogenic’’ by OncoKB were considered putative driver mutations.

However, because existing annotations like OncoKB often miss rare driver missense mutations, we augmented our analysis with the

union of computational predictions from six different methods (CHASMplus tissue-specific and pan-cancer models, BoostDM,

CTAT-cancer, CTAT-general, and protein structure hotspot), which have complementary strengths (see section: computational

methods to predict driver missense mutations). We added the union of computational predictions because all methods were highly

conservative in predicting drivermissensemutations (Figure S1F), highly consistent with each other (Figure S1G), andmostmissense

mutations predicted by multiple methods were already annotated by OncoKB as (likely) oncogenic variants (Figure S1H). This re-

sulted in 1,814 candidate driver missense mutations for further analysis. This number (n = 1,814) results from the union of all muta-

tions annotated as ‘‘Oncogenic’’ or ‘‘Likely Oncogenic’’ in OncoKB (n = 1,289) with any mutation identified by any of the six compu-

tational methods (n = 1,699).

Computational methods to predict driver missense mutations

CHASMplus. CHASMplus is a random forest machine learning algorithm that predicts driver missense mutations based on 95 fea-

tures.4 Given the larger sample size, a CHASMplus model was trained on data from The Cancer Genome Atlas (TCGA)132 rather than

directly from CPTAC. Because driver missense mutations may be highly cancer type-specific or found at a low frequency across

multiple cancer types, predictions from both a cancer type-specific model and a pan-cancer model were used. CHASMplus scores

and p-values were obtained through OpenCRAVAT,133 which can notably score missense mutations even if they were never found in

TCGA. Missensemutations were regarded as putative driver missensemutations if the Benjamini-Hochberg FDRwas less than 0.01.

BoostDM. We downloaded the BoostDM5 predictions for almost all possible mutations in 250 gene-tissue-specific pairs from the

IntOgen website (www.intogen.org/boostdm). This tool, BoostDM, is a machine learning algorithm that can predict, in a tissue-spe-

cific manner, whether a mutation in a cancer gene is likely to be oncogenic or not. We kept only the gene models that matched the

cancer types studied in CPTAC and labeled each mutation according to the boost_dm flag of the model. This flag is true if the model

predicts the mutation as oncogenic and false otherwise. We then matched the CPTACmutations to the specific isoform analyzed by

BoostDM.

CTAT-cancer, CTAT-general, and protein structure hotspots. The results of three driver missense methods (CTAT-cancer, CTAT-

general, and protein structure hotspots) were obtained from our previous analysis of TCGA.1 CTAT-population is a consensus of four

machine learning methods (SIFT,134 PolyPhen2,118 VEST,135 and MutationAssessor136) that predict the pathogenicity of missense

mutations by scoring each variant using a PCA-based strategy. A drawback of CTAT-general was that it was not tailored for analyzing

somatic mutations. To overcome this weakness, using a similar PCA-based strategy, CTAT-cancer is a consensus of four machine

learning methods (CanDrA,137 fathmm,138 CHASM,139 and TransFIC140) that predicts the oncogenicity of missense mutations, rather

than general pathogenicity. Lastly, structural clustering is a consensus of at least two out of four clustering algorithms (HotMAPS,10

HotSpot3D,141 3DHotSpot.org,142 and e-Driver3D9) that identify mutations that cluster in 3D protein structures.

Annotating putative driver in-frame indels

To overcome the limited number of computational approaches to predict whether an in-frame indel is likely a cancer driver mutation,

we took a multi-stage strategy. Similar to missense mutations, we first included all ‘‘Oncogenic’’ or ‘‘Likely Oncogenic’’ mutations

from OncoKB as putative driver mutations. We also included any in-frame indels in mutational hotspots from Chang et al.143 The first

two steps resulted in the annotation of 89 in-frame indels as putative drivers. Lastly, we manually reviewed the literature for 176 in-

frame indels that were found in 299 previously implicated driver genes, which resulted in the rescue of 16 additional putative drivers in

frame indels based on proximity to similar mutations known to have a functional effect in experimental assays (Table S1).

Annotating driver putative Loss-of-Function (pLOF) mutations

Putative Loss-of-Function mutations (including nonsense, frameshift indels, translation start site, and stop-loss mutations) are

commonly regarded as driver mutations if they occur in known tumor suppressor genes.144 OncoKB utilizes this rule of thumb in

a cancer-type-agnostic manner for annotating pLOF mutations as oncogenic.71 However, we found such a strategy likely resulted

in elevated false positive driver mutation calls, as evidenced by a substantial correlation between gene length and the frequency

of pLOFmutations (Figure S1D). We, therefore, annotated pLOFmutations based on cancer type-specific annotations of TSGs using

the 20/20+method.145 Briefly, we regarded a driver gene as a TSG for a cancer type if it was at least nominally statistically significant

for having a high TSG score (p-value<0.05) based on data from TCGA.1 Notably, the cancer type-specific TSG annotations eliminated

the correlation between gene length and pLOF mutation frequency (Figure S1I), suggesting that most false positives were removed.
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Annotating driver copy number alterations

Copy Number Alterations (CNA) were summarized at the gene level through GISTIC 2.0, with only ‘‘high-level’’ amplifications and

deletions used for further analysis, which already adjusts for broad arm-level differences that may not be specific to the gene. Driver

CNAs were defined fromtwo sources (OncoKB and the Cancer Gene Census) that consider whether the directionality of the CNA

(amplification vs. deletion) is consistent with the gene’s known role in tumorigenesis (oncogene vs. tumor suppressor gene, respec-

tively). For OncoKB, only CNAs annotated as ‘‘Oncogenic’’ were considered drivers. For Cancer Gene Census,131 we regarded any

high-level amplification/deletion ina CGC gene annotated as appropriate for amplification/deletion, respectively, as a putative driver

CNA. Because both annotations from OncoKB and CGC were highly consistent (Figure S1K), we regarded a CNA in a gene as a pu-

tative driver if either of the approaches indicated it.

Driver annotation of gene fusions

We regarded fusions annotated as ‘‘Oncogenic’’ or ‘‘Likely Oncogenic’’ fusions from OncoKB as putative drivers. To reduce the po-

tential for passenger fusion events being erroneously labeled as a driver, we only used OncoKB annotations where the precise gene

fusion that contained both genes was known to be likely/oncogenic rather than imprecisely defined gene fusions (e.g., ALK fusions

without a defined fusion partner). We thenmanually reviewed cases to rescue oncogenic fusions where a known oncogene driven by

fusion events may have had a non-canonical fusion partner. Given the importance of kinase fusions in cancer,124 we focused on ki-

nase fusions that resulted in an in-frame fusion event with the kinase domain intact. To do this, we used agfusion to annotate the

consequence of gene fusions on the protein,146 including in-frame status and protein domains that were lost or retained. Notably,

as expected, fusions containing a known oncogene were enriched for in-frame fusion events (Figure S1L), which was not the

case for tumor suppressor genes. This resulted in the inclusion of 49 fusion events as putative drivers across CPTAC.

Normalization of protein abundance by RNA expression
To analyze the cis-effects that happen specifically at the protein level rather than iption level, we first performed a linear regression

between RNA expression (log2(FPKM+1)) and protein abundance of each gene using the Python statsmodels package. We then

computed the Pearson residual for each sample, which normalizes the difference between the observed protein abundance and ex-

pected value based on RNA expression (residual) by their standard deviation. The cis-effect analysis (see section: Genetic driver al-

terations’ cis impact on RNA, proteome, and PTMs) was then repeated using the Pearson residual rather than protein abundance

directly.

Calculation of relative solvent accessibility of amino acid residues
Relative Solvent Accessibility (RSA) is a continuous score to characterize whether an amino acid is buried vs. accessible on the pro-

tein surface. RSA is calculated as the fraction of the surface area of an amino acid residue that is solvent-accessible based on an

available protein structure. To systematically calculate RSA across the proteome, we used predicted protein structures from

AlphaFold (version 1, downloaded from https://alphafold.ebi.ac.uk/).147 Using default parameters, RSA values were computed using

DSSP148 via the BioPython API using default parameters. Notably, as RSA depends on normalizing the accessible surface area by a

theoretical maximum for each residue, the BioPython implementation uses the approach by Sander and Rost.149

Protein-protein interaction databases
We integrated protein-protein interactions from the following sources: STRING150 (minimum score above 700), MINT,151 BioGrid,152

IntAct,153 CORUM154 and the unbiased experimental interactome.155While the union of all these databases had 710,748 interactions,

for the rest of the analyses, we only kept those interactions described in at least three databases (n=14,768).

Driver mutation interaction term regression model for protein-protein interactions
As outlined previously, protein-protein interactions supported bymultiple databases (see above) displayed higher protein co-expres-

sion than compared to random protein pairs. To statistically test whether putative driver mutationsmay alter protein co-expression of

the driver gene (g) with a known PPI partner, we used a linear regression model with a non-linear interaction term. Interaction terms

are a widely used technique to capture when the relationship between the outcome (e.g., protein abundance of a PPI partner) and an

independent variable (e.g., protein abundance of a cancer driver gene) depends on a third variable (e.g., mutation status).156 After

including additional covariates, this resulted in the following regression model to learn the b coefficients:

Y = b0 + b1Xg + b2Mg + b3

�
Xg �Mg

�
+ b4P + b5C+ e (Equation 1)

where Y is a (n x 1) vector representing the protein abundance of the PPI partner, X is a vector representing the protein abundance

of the cancer driver gene of interest (g), M is a binary vector indicating the driver mutation status for that particular driver gene (g) in a

tumor sample, (X*M) is the interaction term composed of the element-wise product of X andM, and the tumor purity (P) calculated by

ESTIMATE127 was also included as a covariate. For pan-cancer analyses, cancer type was one-hot encoded and was included as an

additional covariate (C). Lastly, the error ε is assumed to be normally distributed with a constant variance s.

To assess for non-zero b coefficients, indicating a potential trans-effect of a driver mutation on a PPI partner, we performed aWald

test for b2 and b3, which resulted in p-values P2 and P3. To summarize the overall impact of the driver mutation, we then used Fisher’s
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method to obtain a single combined p-value. Fisher’s method assumes the log-transformed p-values follow a chi-squared distribu-

tion with 2*(number of hypotheses, |K|) degrees of freedom.

c2
2jKj � � 2

X
k˛K

logðPkÞ = � 2 logðP2Þ � 2 logðP3Þ (Equation 2)

This procedure was applied for all genes with at least five putative driver mutations and all PPI partners that are supported by at

least three databases. Only proteins with less than 50% missing values were tested. The Benjamin-Hochberg false discovery rate

(FDR) approach was then applied, and all events with a q-value less than 0.1 were deemed statistically significant. Notably, repeating

the same analysis using RNA instead of protein abundance levels, we could only recover approximately half of all correlations be-

tween interacting pairs (�52% on average across the ten cancer types), ranging from 44% in BRCA to 73% in COAD.

Robustness and subsampling analysis of the interaction term regression model for protein-protein interactions
While including a product interaction term in a regression model is well established, at least two factors could adversely impact the

proper control of the false discovery rate for our data in practice. First, p-values from theWald testmay not be independent and there-

fore lead to an inflated p-value estimate when combined using Fisher’s method. Secondly, protein abundance outliers may have high

leverage in the regression model and potentially drive spurious associations. To assess the robustness of the interaction term regres-

sion model, we randomly permuted the samples labeled as driver mutant (M vector) in our pan-cancer analysis driver mutant labeled

samples permuted, and all statistically significant trans-effects would be false positives. Consistent with the interaction term regres-

sionmodel controlling the Type I error, QQ plots show that the permuted labels closely match the null hypothesis of a uniform p-value

distribution (Figure S3I). In contrast, on the observed (unpermuted) data, the interaction term regression model identifies events with

p-values much lower than expected based on the null hypothesis. We then repeated the permutation 1,000 times to generate a dis-

tribution of the number of significant events (Figure S3J). We found that the mean number of false positives from the permutation

analysis closely matched the estimated FDR threshold (�4 mean false positives, 51 events as statistically significant). This suggests

that the interaction term regression model was appropriately controlling the Type I error rate.

We next performed a subsampling analysis to identify how sample size impacted our PanCan analysis. To do this, we randomly

subsampled tumors without replacement for sizes ranging from 2% to 100% of the full data. For each subsampled dataset, we

repeated the analysis described in the section interaction term regression model for protein-protein interactions. After 100 sub-

sampled analyses, we found a roughly linear increase in the number of significant events as the sample size increased (Figure S3K).

Copy number mediation analysis
Because copy number events may impact more than one gene, a central question is whether the protein product of a particular gene

might mediate the downstream impact on a phenotype. To address this question, we posed the problem in terms of amediation anal-

ysis where the copy number status of an arbitrary Gene A within the CNA is assessed for impact on the expression level of Protein A,

which would then have a trans-impact on the expression level of Protein B (Figure 3F). To restrain testing all potential pairs of A and B,

we restrict our analysis to those with protein interaction support from at least three databases (see the section titled ‘‘Protein-protein

interaction databases’’). In causal inference theory, mediation analysis is typically formulated in terms of exposure (X), mediator (M),

covariates (C), and outcome (Y). For our application, X is a binary variable indicating a putative oncogenic CNA event for Gene A, M is

the expression level of Protein A, C is a one-hot encoding of the cancer type, and Y is a vector of the expression level of Protein B. One

commonly used statistical approach to reject the null hypothesis of no mediation is the product-of-coefficients method,157 which

leverages the following two regression equations:

bM = ch1 + baX + bz1 C (Equation 3)

bY = ch2 + btX + bb M+ bz2 C (Equation 4)

where dh1� 2 are intercept terms, dz1� 2 are coefficients for the covariates, and ba and bb are the estimated coefficients of interest. In

the product-of-coefficients method, the product of the two terms (babb) is then tested for being non-zero. This is usually done by

repeated bootstrapping or dividing by the standard error of babb by a first-order approximation and comparison to a standard normal

distribution.157 A more recent approach to mediation analysis is to use a natural effect model that reformulates Equation two (e.g.,

Equation 4) in terms of counterfactuals. For the CNA mediation analysis, we, therefore, used a natural effect model in the MedFlex R

package using the imputation-based approach,158 which, unlike the product-of-coefficient method, handles missing values in the

outcome variable. To assess whether the null hypothesis of no mediation could be rejected, we used a Wald test based on the stan-

dard error estimate by the sandwich estimator.

Phosphorylation interaction term regression model for protein-protein interactions
We also statistically tested whether phosphorylation levels at protein interfaces may influence protein co-expression of the phos-

phorylated protein (p) with a known PPI partner. We first identified phosphorylation sites at interaction domains on proteins using
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3DMapper, a tool that locates protein positions on protein interfaces (https://github.com/vicruiser/3Dmapper). Cross-referencing

these interface-mapped sites with known protein regulatory phosphorylation sites documented in PhosphoSitePlus159 revealed

that 58 of the 212 total interface phosphorylation sites detected by 3DMapper are, indeed, involved in regulatory mechanisms

according to PhosphoSitePlus annotations. To binarize the extent of phosphorylation levels for more straightforward testing, we con-

verted interface phosphorylation levels to 1 for patients with phosphorylation levels in the upper quartile, 0 for patients with phosphor-

ylation levels in themiddle 50%ofmeasures at the site, and -1 for patients with lower quartile phosphorylation levels.We used a linear

regression model with a non-linear interaction term, similar to what was implemented for the driver mutation PPI analysis, to ask

whether patients with high phosphorylation at a given site exhibited different protein-protein correlations from patients with interme-

diate or low phosphorylation levels at the same site. After including additional covariates, this resulted in the following regression

model to learn the b coefficients:

Y = b0 + b1Xp + b2Mp + b3

�
Xg � Php

�
+ b4P + b5C+ e (Equation 5)

where Y is a (n x 1) vector representing the protein abundance of the PPI partner, X is a vector representing the protein abundance

of the phosphorylated cancer driver of interest (p), Ph is a binary vector indicating the binary-converted phosphorylation levels for a

given interface site in that particular driver protein (p) in a tumor sample, (X*Ph) is the interaction term composed of the element-wise

product of X and Ph, and the tumor purity (P) calculated by ESTIMATE127 was also included as a covariate. For pan-cancer analyses,

cancer type was one-hot encoded and was included as an additional covariate (C). Lastly, the error ε is assumed to be normally

distributed with a constant variance s.

Regression analysis of neoantigens and inferred immune infiltration
To analyze factors that may influence the immunogenicity of neoantigens, we examined the correlation of the number of neoantigens

(log2 transformed) within a tumor (neoantigen burden) with inferred T-cell infiltration. Two methods for inferring CD8 T-cell infiltration

were tested,CIBERSORTxabsolute160 andacytotoxic t lymphocyte (CTL) scorecomposedof theaverageexpressionof severalmarker

genes (CD8A, CD8B, GZMA, GZMB, and PRF1).161 At the pan-cancer level controlling for cancer type, bothmethodswere significantly

correlatedwithneoantigenburden (CIBERSORTabsoluteCD8T-cell: p-value=0.002,CTL: p-value=4e-4;Wald test),with four individual

cancer types (COAD, UCEC, LUAD, and BRCA) being nominally significant in both analyses. To analyzewhether driver alterationsmay

alter thecorrelationbetweenneoantigenburdenand inferredT-cell infiltration,weuseda linear regressionmodelwithan interaction term

between driver alteration status and neoantigen burden and inferred T-cell infiltration to analyzewhether driver alterationsmay alter the

correlation between neoantigen burden and inferred T-cell infiltration. Like the interaction term regression model in the section ‘‘Inter-

action term regressionmodel for protein-protein interactions’’, we assessed statistical significance using aWald test (q-value<0.1). To

assess whether consideration of the protein / RNA expression of a gene improves the correlation of neoantigen burden with CTL, we

recalculatedneoantigenburdenbasedonpredictedneoantigens found ingeneswithat leastcertain levels ofRNAorproteinabundance

in each tumor. To assess whether this improved the correlation with CTL, we performed a likelihood ratio test that compared a model

with the original neoantigen burden feature to a model that also included expression-filtered neoantigen burden.

Analysis of RB1 oncogenic alterations
To further analyze the impact of oncogenic alterations in RB1, we performed three downstream analyses on expression data (RNA-

seq and proteomics), ChIP-seq data162–164 and crispr screens (DepMAP). First, we performed differential expression analysis of

putatively oncogenic alterations inRB1, either point mutations or CNAs, versus wild-type by using a linear regressionmodel that con-

trols for tumor type and tumor purity (ESTIMATE). A Wald test assessed statistical significance at a q-value<0.1. Differential expres-

sion was done separately for RNA-seq (based on log2 FPKM values) and proteomics. Secondly, given that RB1 is known to aid tran-

scriptional repression of target genes,56 we next examined RB1 ChIP-seq from three different studies.162–164 We downloaded

uniformly processed ChIP-seq coverage files from CistromeDB (ids: 101666, 1872, and 49416),165 as well as regulatory potential

(RP) scores166 that describe how close ChIP-seq peaks are to the transcriptional start site of a gene. We then normalized the RP

scores based on the maximum RP observed in each dataset. Lastly, we analyzed which genes might be preferentially essential in

RB1-altered cell lines from large-scale CRISPR screens. We downloaded quantified essentiality scores andmutation calls from Dep-

MAP.60 Given the absence of CNA calls for deletions, we only used point mutations that were putatively loss-of-function (i.e.,

nonsense, frameshift indels, etc.) in RB1. Using a linear regression model that adjusts for cell lineage, we then used a Wald test

to assess whether RB1 alteration status was associated with differential gene dependencies (q-value<0.1).

Drug connectivity
Differentially Expressed Proteins (DEPs) were identified using Limma (trend=True) between various clinical, driver genemutation sta-

tus, and pan-cancer proteogenomic groups after filtering for proteins with adjusted p-value<0.05. The identified DEPs were then

filtered for gene symbols measured in the L1000 assay (978 landmark genes + 9122 Best Inferred Genes). These driver-gene-specific

signatures were input to calculate normalized weighted connectivity scores (WTCS) against the Library of Integrated Network-Based

Cellular Signatures (LINCS) L1000 perturbation-response signatures. The scores were computed using the sig_queryl1k_tool pipe-

line (https://hub.docker.com/u/cmap) and the LINCS L1000 Level 5 compound (trt_cp) signatures from CLUE (https://clue.io, ‘‘2021
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Release’’). The resulting normalized connectivity scores were summarized across cell lines using the maximum quantile of all the

scores of the same compound (Qhi=67, Qlow=33) as previously described.57 The corresponding compoundmetadata were obtained

from CLUE (clue.io, ‘‘Expanded CMap LINCS Resource 2020 Release’’) and were used to filter and identify compounds with existing

clinical annotations (have been evaluated in at least a Phase I trial). The normalized drug connectivity scores of each driver gene

signature were then used to calculate individual MOA and Drug Target enrichment scores by applying the Gene Set Enrichment Anal-

ysis of the ‘‘fgsea’’ R package and by utilizing the compounds’ respective MOA and Drug Target Annotations from CLUE.

Gene Set Enrichment Analysis (GSEA) on signature gene coefficients
We submitted the signature gene coefficients to Gene Set Enrichment Analysis (GSEA) on a subset of the GO terms that reduced

redundancy between pathways while retaining the gene coverage.167 TheMSigDB c5 v7.4 gene set was first filtered to remove terms

with less than 15 or more than 200 genes, and reduction was carried out using the authors’ implementation (https://github.com/

RuthStoney/set-cover-and-set-packing-to-reduce-redundancy-in-pathway-data) with unweighted coverage, resulting in a reduced

set of 698 terms. After GSEA on the reduced set, 633 terms with enrichment scores were clustered based on term semantics using

the SimplifyEnrichment R package (Gu and Hübschmann, 2021), and the term groups were manually annotated.

The Kinase Library enrichment analysis
Full description of the substrate specificities atlas of the Ser/Thr kinome can be found in the KL paper.109 The phosphorylation sites

detected in this study were scored by all the characterized kinases (303 S/T kinases), and their ranks in the known phosphoproteome

score distribution were determined as described above (percentile score). For every non-duplicate, singly phosphorylated site, ki-

nases ranked within the top 15 kinases for the S/T kinases were considered biochemically predicted kinases for that phosphorylation

site. Towards assessing a kinasemotif enrichment, we compared the percentage of phosphorylation sites for which each kinase was

predicted among the downregulated/upregulated phosphorylation sites (sites with a q-value of 0.1 or below) versus the percentage

of biochemically favored phosphorylation sites for that kinase within the set of unregulated sites in this study (sites with q-value above

0.1). Contingency tables were corrected using Haldane correction (adding 0.5 to the cases with zero in one of the counts). Statistical

significance was determined using a one-sided Fisher’s exact test, and the corresponding p-values were adjusted using the

Benjamini-Hochberg procedure. Then, for every kinase, the most significant enrichment side (upregulated or downregulated) was

selected based on the adjusted p-value and presented in the volcano plots and bubblemaps. In the volcano plots, significant kinases

(q-value<=0.1) for both upregulated and downregulated analysis were plotted on both sides. Bubble maps were generated with size

and color strength representing the q-values and frequency factors, respectively, only displaying significant kinases (q-value<=0.1).

Significant kinases (q-value<=0.1) for both upregulated and downregulated analysis were plotted using the parameters of the more

significant side. For example, as shown in Figure 5I, immune signaling in the protein-based pathway analysis matched the activity of

known immune-related kinases, such as MAPKAPK2/3/5, IKKB/E, and TBK1. Hypoxia was enriched at the protein level only in

ccRCC, similar to the activity pattern of the stress-related kinases PAK1-6.

Genetic driver alterations’ cis impact on RNA, proteome, and PTMs
Cis-effects are here defined to be the effect of mutations in a particular cancer driver gene on the levels of RNA, protein, and phos-

phorylation corresponding to the same gene. To assess the impact of cancer driver mutations on RNA, protein, and phosphorylation,

scores were calculated for each driver event for cis effects. The cis-effect scores were calculated using the outputs of a linear regres-

sion modeling the effects of a particular driver gene mutation status on the protein abundance, RNA expression, or phosphorylation

corresponding to the gene.

Y = b0 + b1Mg + b2P+ b3C+ e (Equation 6)

where Y denotes an (n x 1) vector containing either the protein abundance, the RNA expression, or phosphoproteomic level at a

residue pertaining to the driver gene, M is a binary vector indicating the driver mutation status for that particular driver gene (g) in a

tumor sample, and the tumor purity (P) calculated by ESTIMATE127 was also included as a covariate. For pan-cancer analyses, can-

cer type was one-hot encoded and was included as additional covariates C. The error ε is assumed to be normally distributed with a

constant variance s.

After running themodel for each driver and determining the associated correlation andBenjamini-Hochberg FDR adjusted p-values

within each cancer type at each level of omics data, the cis-effect score was determined bymultiplying the -log10(p-adj) by the sign of

the correlation coefficient between themutated driver and the effect on the omics. This retains the directionality of themutated driver

on the target of interest, relative to samples that are wild-type for that cancer driver gene. This procedure was conducted broadly on

the pan-cancer level as well as in a tissue-specific manner. The top results for the pan-cancer cis-effects and the cohort-specific re-

sults are depicted in Figure 2B. In the case of phosphoproteomics, we kept the absolute highest score for each gene.

Similarity of drivers through trans-effects on proteome and PTMs
As opposed to cis-effects, trans-effects denote the impact that drivermutations have onRNA, protein, and phosphorylation levels not

corresponding to that of the mutated driver gene. Trans-effects were determined in this study by running a linear regression for each
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cancer driver, similar to the process described above for the cis-effect score determination and the trans-effect regression model for

protein-protein interactions. For each cancer driver, all trans protein levels and PTM were tested with the following model:

Y = b0 + b1Mg + b2P+ b3C+ e (Equation 7)

where Y is a (n x 1) vector representing the protein abundance of a given protein or the phosphorylation levels of a specific residue,

M is a binary vector indicating the driver mutation status for that particular driver gene (g) in a tumor sample, and the tumor purity

(P) calculated by ESTIMATE127 was also included as a covariate. For pan-cancer analyses, cancer type was one-hot encoded

and was included as an additional covariate (C). Lastly, the error ε is assumed to be normally distributed with a constant variance s.

For each driver, scores were assigned to all corresponding trans proteomic and phosphorylation events bymultiplying the -log10(p)

of the association with driver mutation by the sign of the coefficient, as was conducted for the cis-effect scores. To determine cancer

drivers that are associated with similar proteomic and phosphorylation changes when mutated, a ‘‘driverness similarity’’ calculation

was conducted for each pair of drivers. The scores of all the drivers’ events were compared to determine a holistic correlation be-

tween the two drivers, and the trans-events with scores more extreme than 5 or -5 for both drivers were highlighted (Figure 4A). The

distribution of similarity scores for all driver pairs is shown in Figure 4B.

Multi-omic signatures and clusterings
In this pan-cancer cohort, shared data types available for clustering were whole transcriptome RNA-seq, proteome, and phospho-

proteome. To harmonize the RNA data with the normally distributed proteomic data, we applied a normal inverse transformation,

median-centered the data, and stabilized using median absolute deviation. We subsetted for samples that had matched RNA, pro-

tein, and phosphoprotein in the entire dataset and concatenated these three matrices. To reduce the transcriptome space to a com-

parable feature size to the intersected proteome data, we selected the top 5,000 highly variable genes, ranked by the coefficient of

variation. The combined matrix contained gene expression for 5,000 highly variable mRNA genes, 5,716 proteins, and 3,341 phos-

phoproteins. The description of SignatureAnalyzer conveyed the following details: (i) The overall rationale for the tool; (ii) Examples of

papers where the tool was successfully applied; (iii) The utilization of the tool in this paper; and (iv) Analysis of the robustness of sig-

natures concerning the cohort size which was provided in Geffen et al.168

C3PO
To explore the overall contribution of genomic variants to protein variability within cancer types, we built a combined polygenetic

protein abundance prediction algorithm for oncology, called C3PO. C3PO is largely based on polygenic risk scores (PRS),62–64 a

mathematical approach typically used to provide an additive germline polygenic score that correlates with disease risk in an individ-

ual. In other words, the PRS for any individual sample is calculated by summing the genome-wide genotypes, weighted by that ge-

notype’s effect size estimate. This can be represented by the following equation,

PR Si = S GijSj (Equation 8)

wherePRSi is the polygenic risk score for a single sample i;G is the genotype for the i-th sample at genomic position j (and can take

the values of 0, 1, or 2), multiplied by Sj the effect size thatGj contributes to disease. Thus, generating a summative sample-level risk

profile score of disease for that sample.

Building on the PRS framework, we sought to determine the polygenic abundance prediction score for all of the proteins measured

in the proteome. A simple mathematic model to represent this step would be as follows:

C3POik = S GijSjk (Equation 9)

where a C3PO score is calculated for each sample i and protein k as the sum of any somatic mutations G in a gene-network j

weighted by Gj‘s effect size (S) on protein k. Here Gj can take values of 0 or 1 as somatically mutated or not mutated. The range

of S takes the normalized units of protein abundance calculated by the CPTAC consortia. See above. Before moving on it is sufficient

to expound on the methodology to calculate both G and S.

The concept of somaticmutationsG acrossmany samples breaks as a viable additivemodel because of the issue of a right-skewed

tail of somatic mutations in cancer genomes (Figure S1J). In other words, unlike common germline mutations where many samples

share the same germline mutations, shared somatic mutations are infrequent. To overcome this issue of rare mutations, as is often

performed with rare mutation analysis, we aggregated mutations into burden units based on NeSTed protein systems according to

Zhenget al.65 (Step 1, FigureS7A, variableG in equation). Briefly, this hierarchical nested networkwas generated by integrating spatial

proximitymeasures fromaggregate spatial transcriptomic andco-immunoprecipitation assays to generate nests of genes thatwork in

concert within the cell. Doing so provided broader coverage of the possible mutational impacts on protein (Figure S7A).

The second piece, effect size (S), of the standard PRS calculation was also altered in C3PO calculations. These are typically gener-

ated from population-based case-control datasets using genome-wide association studies (GWAS). Here, instead of a GWASmodel

of cases and controls, C3PO estimates protein abundance effect sizes. More specifically, we used the Cohen’s D difference between

protein levels in altered vs. wild-type tumor samples from each cancer type and across all samples in CPTAC, i.e., pan-cancer mea-

sures (Step 2, Figure S7B, variable S in equation). Cohen’s D is generated by comparing samples with mutations in a NeSTed protein

system to those without mutations.
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Step 3 in our theoretical C3PO model was, to sum up our estimates to build a protein prediction score, or C3PO-score, for every

protein (k) in each sample (i). To perform this task, we built two matrices based on the previous two steps. We built these matrices

to avoid using computationally expensive for-loops. Our first matrix captured genetically mutated NeSTs for each sample, i.e., a

0,1 matrix (Sample x Mutated-NeSTs). We then generated a second matrix capturing the effect sizes (Cohen’s D statistics) for each

NeST’s effect on protein abundance (NeST x Protein-abundance). In other words, we generated a weighted matrix that could be

used to supply the weights to our C3PO score. Only weights with p-values less than 0.1 were included (Step 3, Figure S7A). This al-

lowed for the aggregation of genetic alterations with smaller effects on protein levels to influence our model. Finally, the two observed

matrices were multiplied to produce a global proteomic prediction for each sample, i.e., a sample by protein matrix of C3PO scores.

This exercisewas repeated for each substrate (DNA, CNA amplification, andCNA deletion) and ultimately combined into a cumulative

CP3O prediction. Despite gross overtraining of this model, we estimated the Pearson correlation of C3PO and measured correlation

coefficients for each substrate individually (Figure S7B) and collectively (Figure S7C). The explained variance reported in the manu-

script was calculated by taking the mean floor and mean ceiling of each C3PO substrate prediction. The trained weight matrix from

CPTAC was applied to somatic alterations from CCLE and CPTAC retrospective samples not included in this analysis.

Enrichment analysis was performed to associate high smoking scores with high C3PO scores in the chromatin modification

pathway for LUAD samples. This was performed by taking the root-mean-squared of the smoking scores and chromatin modification

scores generated by C3PO. Samples were classified as high if scaled scores were greater than zero and low if scores were less than

or equal to zero. Samples were placed in a 2x2 table for comparison using Pearson’s chi-squared test with Yates’ continuity correc-

tion. C3PO is available at https://github.com/MHBailey/C3PO_polygenic.

Proteomics data processing
The details are provided in Geffen et al.168

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA and protein quantification
The process of RNA data processing and quantification, as well as proteome quantification, has been outlined in the sections titled

"RNA data processing and quantification" and "Proteomics data processing", respectively. The statistical analysis methodology and

its corresponding details can be found both within the main text and in the relevant sections of the STAR Methods.

Gene expression, proteomic, and phosphoproteomic feature-associated markers
Proteogenomic data was used to perform pairwise differential analysis between groups of samples. We performed the T-test, Wil-

coxon rank-sum test, and limma-trend test to do the differential expression analysis for protein, phosphoprotein, and gene expres-

sion between the groups with and without a given feature at the cohort-specific level and pan-cancer level (adjusted by cancer type).

This analysis requires at least five samples in each group with non-missing values. P-values were adjusted using the Benjamini-

Hochberg FDR method.

Statistical power analysis of driver gene discovery
We compared the statistical power to identify genes with a significantly elevated mutation rate (‘‘significantly mutated genes’’) for

cancer types in common between TheCancer GenomeAtlas (TCGA) andCPTAC. The statistical power calculations used the cancer-

SeqStudy R package (https://github.com/KarchinLab/cancerSeqStudy).145 Similar to previous power calculations,1,169 we assumed

that the number of genemutations followed a binomial distribution. The backgroundmutation rate parameter (p=mutations per base)

was estimated for each cancer type by calculating the median exome-wide mutation rate across tumor samples, assuming for

simplicity �30,000,000 nucleotide bases in coding regions as potentially mutable. In line with our previous statistical power ana-

lyses,1,169 a weighting factor (default parameter) was used to correct for variability in mutation rate across genes and that not all mu-

tations can generate a non-silent mutation. A gene was considered statistically significant at a family-wise error rate of 0.1. Calcu-

lations of the sample size required to achieve 90% statistical power were carried out for various mutation frequencies above the

background mutation rate, including 20%, 10%, 5%, and 2% of mutated tumor samples above the background mutation rate

(i.e., effect size=0.2, 0.1, 0.05, and 0.02, respectively) (Figure S1M).

ADDITIONAL RESOURCES

Comprehensive information about the CPTAC program, including program initiatives, investigators, and datasets, are available at the

CPTAC program website: https://proteomics.cancer.gov/programs/cptac.

For the Pan-Cancer proteogenomics collection papers, along with links to the data and supplementary materials associated with

these publications, please visit the Proteomic Data Commons (PDC) at https://pdc.cancer.gov/pdc/cptac-pancancer.
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Supplemental figures

(legend on next page)

ll
OPEN ACCESSArticle



Figure S1. Driver mutation annotation process and multi-omic clusters, related to Figure 1

(A) Violin plots showing the cancer-type pathway enrichment score distributions derived from single-sample gene set enrichment analysis (ssGSEA) on the

proteomic data in the immune system pathway, grouped by multi-omic clusters. One-way ANOVA p values are shown, and data are represented as mean ± CI.

(B) Overall survival (i.e., OS) difference between group A (i.e., clusters C and D) and group B (i.e., clusters A and B as the counterpart) in ccRCC indicated by

Kaplan-Meier plot. Log-rank test p = 0.01. A Cox proportional hazards model p value of 0.008 is attained after adjusting for age, sex, and tumor purity. Whiskers

represent ± 95% confidence intervals of the hazard ratios.

(C) The violin plots compare the distribution of protein-based ssGSEA score (i.e., inflammatory response hallmark pathway) between the two ccRCC groups

depicted in B). A Wilcoxon signed-rank test p value of 0.00011 is attained. Data are represented as mean ± CI.

(D) Overall survival (i.e., OS) difference between the high group (inflammatory response ssGSEA upper quartile) and the low group (e.g., lower quartile) of the entire

ccRCCcohort indicated by the Kaplan-Meier plot. Log-rank test p value = 0.0027. ACox proportional hazardsmodel p value of 0.011 is attained after adjusting for

age, sex, and tumor purity. High, inflammatory response ssGSEA upper quartile; low, inflammatory response ssGSEA lower quartile.

(E) Kaplan-Meier plot indicating the association between overall survival and EMT ssGSEA score expression in the CPTAC GBM cohort. The high EMT ssGSEA

score (upper quartile of the cohort) is significantly associated with poor survival, as indicated by the Log-rank test p value.

(F) Bar plot showing the number of predicted driver missense mutations by each of six methods, which is further stratified by whether themutation was previously

known (blue) or not known (orange) to be oncogenic by OncoKB.

(G) Upset plot indicating the overlap in driver missense mutation predictions between computational methods.

(H) Bar plot showing the relationship between the number of computational methods predicting a missense mutation to be oncogenic and its support in OncoKB.

We used all six computational methods (STARMethods) independently to classify themissensemutations and then tallied eachmutation according to howmany

independent callers identified it. The x axis indicates how many of these six methods identified an individual mutation as a putative driver. Missense mutations

called by more computational methods include a higher proportion of driver aberrations. The left panel shows the absolute numbers of mutations, and the right

panel presents the percentages of mutations in each category.

(I) Left, Venn diagram indicating overlap between the labeling of putative loss-of-function (pLOF) variants as oncogenic by either OncoKB (cancer type-agnostic)

or by tumor suppressor gene (TSG) classifications by the TCGA PancanAtlas (cancer-type-specific). Right, the correlation between gene length and frequency of

pLOF variants for the two pLOF oncogenicity annotation approaches. The shaded area represents 95% confidence intervals.

(J) Bar plot showing the frequency of annotated driver mutations by gene, stratified by the type of mutation (pLOF, in-frame indel, or missense mutation).

(K) Venn diagram showing the overlap between oncogenicity annotations for copy-number alterations (CNAs) between OncoKB and the Cancer Gene

Census (CGC).

(L) Bar plot showing the log-odds ratio for gene fusions resulting in in-frame events, stratified by the type of driver gene (oncogene or tumor suppressor, TSG) and

by frequency of fusion event. Error bars represent ±1 SEM.

(M) Statistical power for detecting cancer driver genes at defined fractions of tumor samples above the background mutation rate (effect size with 90% power) is

depicted. Circles indicate the ten cancer types in CPTAC and TCGA placed according to the study sample size and median background mutation rate.
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Figure S2. Supporting evidence for cis-effect of missense mutations, related to Figure 2

(A) Comparison of ARID1A protein abundance between the matched NATs and WT-tumor samples highlighted the consistency of our original pan-cancer

observation at the cohort level for most cancer types. Wilcoxon signed-rank test p values are shown. Boxes represent the interquartile range (IQR, e.g., median,

0.25, and 0.75 quantiles), and whiskers represent the largest and smallest values within the 1.5 3 IQR range.

(B) Boxplot showing PTEN phosphatase activity from a saturation mutagenesis screen in Mighell et al.38 for missensemutations with varying degrees of evidence

for oncogenicity in CPTAC. Wilcoxon signed-rank test p values are shown. **, p value < 0.01 and ****, p value < 0.0001. Boxes represent the interquartile range

(IQR, e.g., median, 0.25, and 0.75 quantiles), and whiskers represent the largest and smallest values within the 1.5 3 IQR range.

(C) Boxplot showing PTEN protein abundance from a saturationmutagenesis screen inMatreyek et al.39 for missensemutations with varying degrees of evidence

for oncogenicity in CPTAC. Wilcoxon signed-rank test p values are shown. *, p value < 0.05. Boxes represent the interquartile range (IQR, e.g., median, 0.25, and

0.75 quantiles), and whiskers represent the largest and smallest values within the 1.5 3 IQR range.

(D) Bar plot showing the cis-effect of missense mutations that are only computationally predicted to be oncogenic on protein abundance (normalized by RNA

expression). The dashed line indicates statistical significance (q value < 0.05).
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(legend on next page)
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Figure S3. Inference of altered protein-protein interactions through protein co-variation analysis, related to Figure 3

(A) Pearson correlation of protein abundance between MSH2 and MSH6 in breast carcinoma (BRCA). The shaded area indicates the 95% confidence interval of

the regression line. The correlation test p value is shown.

(B) Pearson correlation of protein abundance between CTNNB1 and CDH1 in four cancer types. The shaded area indicates the 95% confidence interval of the

regression line. Correlation test p values are shown.

(C) Bar plot showing the statistical significance from themediation analysis for each driver gene (left side of label) impacted by copy-number alterations (CNAs) on

the abundance of a protein interactor (right side of label).

(D) Boxplot showing the distribution of mTOR protein abundance stratified by RICTOR copy-number status. Wilcoxon signed-rank test q value is shown. Boxes

represent the interquartile range (IQR, e.g., median, 0.25, and 0.75 quantiles), and whiskers represent the largest and smallest values within the 1.53 IQR range.

(E) Pearson correlation between the protein abundance of RICTOR and mTOR in tumor samples without a RICTOR amplification.

(F) Distribution of CDK2 (left) and CCNE1 (right) protein abundance stratified by CCNE1 copy-number status. Wilcoxon signed-rank test q values are shown.

Boxes represent the interquartile range (IQR, e.g., median, 0.25, and 0.75 quantiles), and whiskers represent the largest and smallest values within the 1.5 3

IQR range.

(G) Pearson correlation between the protein abundance of CDK2 and CCNE1 in tumor samples without a CCNE1 amplification. Correlation test p values are

shown, and r represents the Pearson correlation coefficient.

(H) The Kinase Library enrichment for samples with CCNE1 amplification vs. WT. Cell-cycle-related CDKs (CDK1-6) are significantly enriched among samples

with CCNE1 amplification. The x axis (log2FF) indicates the log2-ratio of the prediction frequency for each kinase between samples with CCNE1 amplification vs.

WT, and the y axis indicates the statistical significance based on Fisher’s exact test.

(I) Quantile-quantile plots for the p value distribution on permuted (left) or observed (right) data for the interaction term regression model for the influence of driver

mutations on protein-protein interactions.

(J) Distribution of the number of significant events from the interaction term regression model on 1,000 permuted data sets (blue) vs. the observed (red line).

(K) Subsampling analysis showing the number of significant events from the interaction term regression model as the data size increases.

(L) Scatterplot showing the correlation between LEF1 and CTNNB1 protein levels, stratified by whether the tumor has an oncogenic mutation in CTNNB1.

(M) Scatterplot showing the correlation between ARID2 and PBRM1 protein levels, stratified by whether the tumor has an oncogenic mutation in PBRM1.

(N) Scatterplot showing the correlation between phosphatase 2A regulatory subunits (PPP2R5D andPPP2R5B) and PPP2R1A protein levels, stratified bywhether

the tumor has an oncogenic mutation in PPP2R1A. Correlation test p values are shown, and r represents the Pearson correlation coefficient in Figures S3L–S3N.

(O) Overlap in significant events from the interaction term regression model when using proteomics vs. RNA-seq data.

(P) Volcano plot to summarize the PPIs significantly influenced by phosphorylation levels at an interface site in one of the corresponding proteins, with the site

indicated in parenthesis. Pan-cancer tests accounted for the cohort as a covariate in the model.

(Q) Mapping the EGFR T693 phosphorylation site onto a 3Dmodel of the EGFR homodimer shows that the site falls on the intracellular interface where the dimers

interact.

(R) A scatterplot indicates how phosphorylation at EGFR T693 influences the correlation between EGFR and GRK2 protein levels. Correlation test p values are

shown, and r represents the Pearson correlation coefficient.
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Figure S4. Kinase activity analysis of driver genes across different tissues and at the pan-cancer level, related to Figure 4

(A) Lolliplot showing the alterations in EGFR observed in CPTAC. Numbers in lollipops indicate the number of tumor samples with that alteration in the entire

cohort.

(B) Full Kinase Library enrichment analysis landscape across multiple driver genes at the pan-cancer level. For each kinase and driver, the color of the bubble

(log2FF) indicates the log2-ratio of the prediction frequency for that kinase between the mutated tumor compared with the WT tumor at the pan-cancer level, and

the size of the bubble denotes the statistical significance based on Fisher’s exact test.

(C) Full landscape of the Kinase Library enrichment analysis of EGFR-, KRAS-, and STK11-mutated tumors compared toWT in LUAD. For each kinase and driver,

the color of the bubble (log2FF) indicates the log2-ratio of the prediction frequency for that kinase between the mutated tumor compared with the WT tumor in

LUAD, and the size of the bubble denotes the statistical significance based on Fisher’s exact test.
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Figure S5. Analysis of normal-adjacent tissue identifies key protein changes for oncogenic pathways, related to Figure 5

(A) The ssGSEA scores of the immune system and extracellular matrix organization show statistically significant Pearson correlations with the immune score, and

stromal score from ESTIMATE, respectively. Correlation test p values are shown, and r represents the Pearson correlation coefficient.

(B) The distribution of the MSI category in each cancer type is displayed in the boxplot colored by the categories of microsatellite stable (MSS) vs. microsatellite

instable (MSI-high). Boxes represent the interquartile range (IQR, e.g., median, 0.25, and 0.75 quantiles), and whiskers represent the largest and smallest values

within the 1.5 3 IQR range.

(C) The nonsense-mediated decay ssGSEA pathway score is enriched in the MSI-high group, followed by the MSS group. Wilcoxon signed-rank test p value of

9.6e�06 is attained.

(legend continued on next page)
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(D) Protein-based ssGSEA scores of transcriptional regulation by TP53 are significantly more highly expressed in tumors than that of NATs of all eight cancer

types and in GBM compared with GTEx normal samples. Wilcoxon signed-rank test p values are shown. Within the violin plots, the dots represent the mean, and

solid lines indicate the error limit defined by the 95% confidence interval. The violin plot outlines demonstrate the kernel probability.

(E) Different enriched pathways in each cancer type based on the DEPs detected only in the corresponding cancer type. Hypergeometric test false discovery rate

(FDR)-adjusted p value was attained.

(F) Full landscape of kinase activity across eight cancer types based on the Kinase Library, comparing tumors to their corresponding NATs. For each kinase and

tumor type, the color of the bubble (log2FF) indicates the log2-ratio of the prediction frequency for that kinase between the tumor and its corresponding NAT, and

the size of the bubble denotes the statistical significance based on Fisher’s exact test.
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Figure S6. Analysis of neoantigen burden, kinase activity, and drug sensitivity, related to Figure 6

(A) Left, Violin plot showing the distribution of the fraction of somatic mutations indels for MSS vs.MSI-high tumors. Right, the cumulative number of the predicted

neoantigens for single-nucleotide variants (SNV) comparedwith indels.Wilcoxon signed-rank test p values are shown. ****p value < 0.0001.Within the violin plots,

the dots represent the mean, and solid lines indicate the error limit defined by the 95% confidence interval. The violin plot outlines demonstrate the kernel

probability.

(B) Left, cytotoxic T lymphocyte (CTL) score correlation with log2-transformed neoantigen burden. The p value reflects a Wald test after adjusting for cancer type

as a covariate. The shaded area represents 95% confidence intervals (left); right, correlation of CD8 T cell score from CIBERSORT (Absolute) with log2-trans-

formed neoantigen burden. The p value reflects a Wald test after adjusting for cancer type as a covariate. The shaded area represents 95% confidence intervals.

(C) Pearson correlation of neoantigen burden and inferred T cell infiltration (CTL score) for genes expressed at different RNA levels.

(D) Cis-effect of copy-number amplifications on the RNA-, protein- and the phosphorylation-level. Red indicates increased expression, while blue indicates

decreased expression. Tiles are colored according to the score of the cis-effect from red (positive scores) to blue (negative scores). Signed log10(p), multiplying

the direction of the coefficient by the log10 of the adjusted p value (capped at ±10).

(E) Boxplot comparing the variability in expression for proteins that have amplifications (oncogenes) or deletions (tumor suppressors) compared with wild-type

tumors. Each dot represents the standard deviation of protein abundance for a particular oncogene/tumor suppressor. Wilcoxon signed-rank test p values are

shown. Boxes represent the interquartile range (IQR, e.g., median, 0.25, and 0.75 quantiles), and whiskers represent the largest and smallest values within the

1.5 3 IQR range.

(F) Full landscape of the Kinase Library enrichment results across multiple CNAs at the pan-cancer level. For each kinase and driver, the color of the bubble

(log2FF) indicates the log2-ratio of the prediction frequency for that kinase between the tumor with the CNA compared to the WT tumor at the pan-cancer level,

and the size of the bubble denotes the statistical significance based on Fisher’s exact test.

(G) Genome track of the CDK2 locus for RB1 chromatin immunoprecipitation (ChIP) sequencing from three previous studies. Normalized coverage means reads

per million.

(H) Heatmap scoring how close RB1 ChIP-seq peaks are to cell-cycle-related genes (CDK1-6, cyclins A–E). The potential regulatory score weights the number

and proximity of ChIP-seq peaks to the gene’s transcription start site. The potential regulatory score was normalized for each dataset, so the maximum is 1.

(I) Volcano plot showing genes with differential dependencies inRB1-altered cell lines fromDepMap’s CRISPRKO screens. Effect size is the beta coefficient from

the linear regression model used in the statistical test. Green dots indicate cell-cycle-related genes (CDK1-6, cyclins A–E).
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Figure S7. Overview of C3PO and its performance in orthogonal datasets, related to Figure 7

(A) The overview of the C3PO process includes the following step: (1) We used a nested gene relationship architecture to classify altered and unaltered genes. We

do ’his to improve upon the long tail of altered genes in cancer; (2) The Cohen’s D statistic is used to proxy the effect size in each altered nest and substrate; (3)

Effect size matrices are calculated for each genomic substrate (DNA, can amplification, and can deletions); (4) We validated this process in multiple independent

cohorts [cancer cell-line encyclopedia (CCLE) and TCGA]; (5) The circle displays howwe translate protein activity into hallmark-level scores. The equations within

the circle indicate the combined polygenic equations used to generate the various scores.

(B) C3PO protein activity scores were correlated for all proteins measured in CPTAC. Displayed is the distribution of the correlation coefficients attributable to

each substrate: DNA (blue), copy-number amplification (AMP, pink), and copy-number deletion (DEL, green) for each cancer type, including the aggregate pan-

cancer-trained predictions. The vertical red bar indicates zero correlation.

(C) Combined C3PO protein activity scores were also calculated and correlated with measured protein. Distributions of correlation coefficients are presented for

each cancer type, including pan-cancer-trained predictions. The vertical red bar indicates zero correlation.

(D) Similar to (B), C3PO weighted activity matrices were applied to two orthogonal datasets, CPTAC-retrospective samples (TCGA) and 350 cancer cell-line

encyclopedia (CCLE) for three cancer types: ovarian (HGSC), breast carcinoma (BRCA), and colorectal tumors (COAD). Similar to (B), predicted protein activity

was correlated with measured protein. The vertical red bar indicates zero correlation.

(E) Like (C), combined protein activity predictions were correlated with measured protein. The vertical red bar indicates zero correlation.

(F) QQ plots were used to display all p values generated from Pearson correlations in (D) and (E) for ovarian samples. QQ plots for each substrate were plotted

(DNA, top-left; copy-number amplification, top-right; copy-number deletion, bottom-left; and combined scores, bottom-right). Inflated p values were interpreted

as the capacity of C3PO to accurately predict protein activity above the expected p value distribution for the number of tests performed. Thus, the higher the p

value inflation, the more accurate C3PO predictions are in identifying correlations with genomic alteration and protein activity. Lambda provides the inflations.

Lambda (l) values measure p value distributions above the expected distribution of tests performed.

(G) Similar to (F). QQ plots and lambda values are presented for each substrate in breast cancer.

(H) The circos plots show 21 cancer hallmark pathways for each cancer type. Icons indicate relationships to the original hallmarks outlined by Hanahan and

Weinberg66. Every sample in CPTAC is represented by the links connecting hallmarks and is colored according to cancer type. Each sample is displayed using

one line according to their top two hallmark activity scores generated by ssGSEA.

(I) The circos plots show 21 cancer hallmark pathways for each cancer type. Icons indicate relationships to the original hallmarks outlined by Hanahan and

Weinberg66. Every sample in CPTAC is represented by the links connecting hallmarks and is colored according to cancer type. Each sample is displayed using

three lines according to their top three hallmark activity scores generated by C3PO.
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