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Abstract
Twin studies yield valuable insights into the sources of variation, covariation and causation in human traits. The ABCD 
Study® (abcdstudy.org) was designed to take advantage of four universities known for their twin research, neuroimaging, 
population-based sampling, and expertise in genetic epidemiology so that representative twin studies could be performed. 
In this paper we use the twin data to: (i) provide initial estimates of heritability for the wide range of phenotypes assessed 
in the ABCD Study using a consistent direct variance estimation approach, assuring that both data and methodology are 
sound; and (ii) provide an online resource for researchers that can serve as a reference point for future behavior genetic 
studies of this publicly available dataset. Data were analyzed from 772 pairs of twins aged 9–10 years at study inception, 
with zygosity determined using genotypic data, recruited and assessed at four twin hub sites. The online tool provides twin 
correlations and both standardized and unstandardized estimates of additive genetic, and environmental variation for 14,500 
continuously distributed phenotypic features, including: structural and functional neuroimaging, neurocognition, personality, 
psychopathology, substance use propensity, physical, and environmental trait variables. The estimates were obtained using an 
unconstrained variance approach, so they can be incorporated directly into meta-analyses without upwardly biasing aggregate 
estimates. The results indicated broad consistency with prior literature where available and provided novel estimates for 
phenotypes without prior twin studies or those assessed at different ages. Effects of site, self-identified race/ethnicity, age 
and sex were statistically controlled. Results from genetic modeling of all 53,172 continuous variables, including 38,672 
functional MRI variables, will be accessible via the user-friendly open-access web interface we have established, and will 
be updated as new data are released from the ABCD Study. This paper provides an overview of the initial results from the 
twin study embedded within the ABCD Study, an introduction to the primary research domains in the ABCD study and 
twin methodology, and an evaluation of the initial findings with a focus on data quality and suitability for future behavior 
genetic studies using the ABCD dataset. The broad introductory material is provided in recognition of the multidisciplinary 
appeal of the ABCD Study. While this paper focuses on univariate analyses, we emphasize the opportunities for multivariate, 
developmental and causal analyses, as well as those evaluating heterogeneity by key moderators such as sex, demographic 
factors and genetic background.

Keywords  ABCD · Adolescence · Twin · Heritability · Environment · Neuroscience · Genetics · Cognition · Cognitive 
abilities · Personality · Psychiatric disorders · Substance use · Children · Open science · FAIR data
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C	� Shared or common environment
CB	� Cognitive Battery
CC	� Corpus callosum
CTS	� Classical twin study
CUB	� University of Colorado Boulder
CBCL	� Child Behavior Checklist
D	� Dominance genetic variance
dMRI	� Diffusion magnetic resonance imaging
DTI	� Diffusion tensor imaging
DZ	� Dizygotic
E	� Specific, unique or individual environment
EEA	� Equal environment’s assumption
EF	� Executive function
FA	� Fractional anisotropy
g	� General cognitive ability
GxE	� Genotype by environment interaction
IQ	� Intelligence quotient
LMT	� The Little Man Task
MD	� Mean diffusivity
ML	� Maximum likelihood
MRI	� Magnetic resonance imaging
MZ	� Monozygotic
NDA	� National Data Archive
NIHTB	� National Institutes of Health Toolbox
RAVLT	� Rey Auditory Verbal Learning Test
rDZ(s)	� Dizygotic twin correlation(s)
rGE	� Genotype environment correlation
rMZ(s)	� Monozygotic twin correlation(s)
ROIs	� Regions of interest
SDSC	� Sleep Disturbance Scale for Children
SEM	� Structural equation modeling
SES	� Socio-economic status
sMRI	� Structural magnetic resonance imaging
UMN	� University of Minnesota
VCU	� Virginia Commonwealth University
WUSTL	� Washington University at St. Louis
WISC-V	� Wechsler Intelligence Test for Children V

Introduction

Efforts to understand the origins of human individual dif-
ferences have included an enormous variety of physical, 
behavioral and psychological traits. Part of this effort has 
focused on distinguishing between genetic and environ-
mental sources of variation and quantifying the relative 
contributions of genetic and environmental factors, which 
may be measured directly or inferred from the resemblance 
between relatives. This approach has been fruitful because 
individual differences in almost all traits are likely caused 
by both genetic and environmental factors. While twin, 
adoption and extended pedigree data may be used to disag-
gregate and estimate the relative contributions of genetic 

and environmental factors to trait variance, the classical 
twin study (CTS) has proved to be the dominant design. 
The rationale underlying the CTS is that the difference in 
phenotypic similarity between monozygotic (MZ; identi-
cal) and dizygotic (DZ; fraternal) twin pairs can be used 
to infer and distinguish the influences of environmental 
and genetic factors. An advantage of using both MZ and 
DZ twin pairs is that the effects of rearing by the same 
parents in the same household (known as shared or com-
mon environment, or ‘C’) may be separately quantified 
from the effects of environmental events that are unique 
to each twin (known as specific, unique or individual envi-
ronment, or ‘E’). These components, along with additive 
genetic variance (A), referring to the cumulative effects 
of individual genetic loci, generate the ‘ACE’ model acro-
nym. Prior estimates of additive genetic, common and 
specific environmental effects based on published studies 
were comprehensively reported (Polderman et al. 2015), 
featuring thousands of human traits varying from simple 
questionnaire items to costly neuroimaging and other in-
person assessments. Here, we contribute to the literature 
by analyzing publicly available data from the first wave 
of in-person assessments of the Adolescent Brain Cogni-
tive Development Study (ABCD Study®; abcdstudy.org) 
(Iacono et al. 2018).

The ABCD Study is the largest longitudinal study of 
child health and development in the United States. The study 
population comprises 11,880 youth who were 9–10 years 
old in September 2017 and living in the United States. The 
cohort was designed to approximate the demographics of 
the US population, except that twins were oversampled to 
generate greater statistical power to test hypotheses concern-
ing sources of variation and direction of causation among 
variables. The ABCD Study offers a heretofore unexplored 
examination of sources of cognitive and brain feature vari-
ability in children as young as 9. A key initial motivation 
for the project was to quantify the effects of substance use 
on the brain, cognition, behavior and psychiatric outcomes, 
so these domains have been carefully assessed. A unique 
aspect of ABCD is its longitudinal assessment of structural 
and functional neuroimaging, beginning in pre- or early-
adolescence. From its inception, transparency, inclusivity, 
and accessibility have been emphasized to promote public 
trust in the ABCD Study. A key component of transpar-
ency and accessibility has been an embrace of open science 
methods, thorough study documentation, and standardized 
data processing. Open-source software scripts and stand-
ardized data processing and analysis pipelines have been 
made publicly available to facilitate data use and access by 
researchers unaffiliated with ABCD. All the neuroimaging 
data, genotypic measures, and questionnaire responses have 
been processed centrally rather than by individual research 
teams or study sites. Such standardization is a critical part 
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of ensuring robust quality control. To date, no comparable 
standardized processing has been performed for the data 
from the twin study embedded within ABCD.

This paper and its companion supplementary docu-
ments detail the comprehensive and systematic data pro-
cessing and analysis performed for the 53,000 variables 
collected during the first study wave in order to create 
and introduce here to the community a novel online web 
tool that will enable scholars from many backgrounds (not 
just genetics) who are interested in the relative degrees 
to which individual variation in children’s mental, physi-
cal, or brain structural traits is likely caused by genetic 
or environmental factors to peruse the results for selected 
phenotypes on demand. Given the broad scope of the 
ABCD Study assessments, a thorough review of relevant 
literature on sources of variability (e.g., heritability) 
for all domains of measurement would be prohibitively 
long for publication in a single research article. Instead, 
interested readers can refer to concise reviews of prior 
genetically-informative studies of each primary domain, 
including structural neuroimaging, in our online supple-
mentary material.

We begin here by summarizing basic twin method-
ology and describing the ABCD twin dataset. We then 
explain our analysis methods in detail, followed by a 
results section composed of commentary on key results 
from the twin modeling, along with a link to an omnibus 
online table of results. We conclude with commentary on 
the assumptions of the classical twin study as they relate 
to ABCD data, as well as a brief discussion of similari-
ties and differences between the ABCD results and the 
extant literature for four key domains—brain structural, 
cognitive, psychiatric, and morphometric features (func-
tional imaging will be addressed in a future article)—and 
offer suggestions for future avenues of exploration. Spe-
cifically, the discussion will review previous findings on 
the components of variance of four phenotypic domains: 
structural neuroimaging, neurocognition, child psycho-
pathology, physical and other traits captured in ABCD, 
where childhood findings effectively formed our expec-
tations as we applied ACE modeling to the ABCD twin 
dataset. We then review how the results from analyzing 
the ABCD data using a consistent variance components 
approach compare with previous findings, highlight some 
novel findings and thus provide a foundation for multivar-
iate, developmental, causal and moderation applications 
evaluating the role of gender, race/ancestry and socioeco-
nomic status (SES). For additional information about the 
ABCD Study, a key literature resource for the rationale, 
instrument selection, data processing and interpretation 
of ABCD Study results is the 2018 special issue (Vol. 
32, pp. 1–164) of Developmental Cognitive Neuroscience 
(Feldstein Ewing et al. 2018). Particularly relevant to the 

present article is the Iacono et al. 2018 paper discussing 
the special value of twins in the ABCD Study.

Methods

Twin recruitment

The ABCD Study® operates as a consortium, comprising 
21 data collection sites across the continental US to sam-
ple in an epidemiologically informed and inclusive way. By 
design, the ABCD Study® over-sampled twin pairs at four 
sites known for their curation of population-based twin sam-
ples: the University of Minnesota, Washington University 
St. Louis, the University of Colorado Boulder, and Virginia 
Commonwealth University. All four twin sites ascertained 
twins from state birth records (Iacono et al. 2018). Although 
twins were recruited opportunistically at the other 17 ABCD 
sites, their numbers are relatively modest. That data is not 
included in the current analyses. This strategy restricts our 
twin samples to those ascertained in a systematic way from 
their birth cohorts in each of the four twin site states (Min-
nesota, Missouri, Colorado, and Virginia). Also, by design, 
only same-sex twin pairs were ascertained, as it was deemed 
not feasible to obtain enough opposite-sex twin pairs to 
have sufficient power to detect qualitative sex differences in 
sources of variation.

Participants

Participants for this study include all same-sex twin pairs 
(N = 772) from the four ABCD ‘twin sites’, namely the 
University of Colorado Boulder (CUB), the University of 
Minnesota (UMN), Virginia Commonwealth University 
(VCU) and Washington University at St. Louis (WUSTL), 

Table 1   Number of twin pairs by site, zygosity and sex in the ABCD 
study

Only the four primary twin sites are shown: University of Colorado 
Boulder; University of Minnesota; Virginia Commonwealth Uni-
versity; and Washington University, St. Louis, denoted CUB, UMN, 
VCU and WUSTL, respectively
MZ monozygotic, DZ dizygotic, m male, f female, os opposite sex, na 
zygosity not available

CUB UMN VCU WUSTL Total

MZm 49 49 47 28 173
DZm 41 44 46 32 163
MZf 54 51 46 67 218
DZf 53 45 55 65 218
Total 197 (26%) 189 (24%) 194 (25%) 192 (25%) 772
DZos 0 1 1 0
na 19 27 21 25 92
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for whom zygosity was assigned using genomic data from 
the smokescreen array (Baurley et al. 2016). Sample sizes 
by site, zygosity and sex are in Table 1 and by race/eth-
nicity in Table 2. Data were included from the baseline 
assessment of 1,544 twins at 9–10 years of age. The cur-
rent twin sample was less racially diverse; their parents 
were slightly more educated, more likely to be married and 
had higher incomes than the full ABCD sample (see Sup-
plemental Table 1, and (Iacono et al. 2018) for details on 
ascertainment and power). All procedures were approved 
by a central Institutional Review Board (IRB) at the Uni-
versity of California, San Diego, and in some cases by 
individual site IRBs (e.g. WUSTL) (Auchter et al. 2018). 
Parents or guardians provided written informed consent 
after the procedures had been fully explained; children 
assented before participation in the study (Clark et al. 
2018).

Measures

In keeping with NIH’s policy of zero embargo time for 
investigators collecting the data, only publicly available 
data from the NIMH National Data Archive (NDA) are 
analyzed, specifically the baseline wave of data collec-
tion from the ABCD 3.0 data release. All continuous vari-
ables, and those with more than twelve categories were 
included in the analyses, totaling 53,172 variables. We 
focus the discussion of the results on 14,500 variables, 
covering structural neuroimaging, neurocognition, child-
hood psychopathology, physical and other traits. Note 
that below we only describe the ABCD capture of the 
most commonly-used phenotypes. Conversely, tables in 
our Supplemental Online Resource (https://​abcdt​winhub.​
shiny​apps.​io/​basel​ineTw​inRes​ults) includes results from 
all tabulated (i.e., pre-calculated) continuously distrib-
uted variables in the open access 3.0 dataset, described in 
the ABCD Data Release documentation, including those 
discussed here, and an additional 38,672 task Magnetic 
Resonance Imaging (MRI) related variables. The online 
resource includes an app that allows the user to search for 
specific variables and select specific output columns for 

display. A second app generates brain images with selected 
parameters. Additional figures graphing ACE results are 
also included.

ABCD baseline structural neuroimaging battery

Extensive details of the ABCD neuroimaging acquisition 
sequences and processing streams have been presented else-
where (Casey et al. 2018; Hagler et al. 2019). Our analyses 
focused on metrics extracted from the Desikan-Killiany 
(DK) and Destrieux Atlases implemented in Freesurfer, with 
evidence that identification of the features on which these 
atlases are based works well down to age 4 (Ghosh et al. 
2010). The ABCD imaging protocol was harmonized across 
data collection sites for three 3T scanning systems (Siemens 
Prisma, Philips, General Electric 750), all of which used 
standard adult-size multi-channel head coils and multiband 
echo planar imaging (EPI) acquisitions. The diffusion MRI 
acquisition had high resolution (1.7 mm isotropic voxels) 
and utilized multiband EPI (Hagler et al. 2019). The scan-
ning sequences that yield structural data (Casey et al. 2018) 
include a localizer, T-1 weighted scan, diffusion tensor 
imaging (DTI), and T-2 weighted scans. Real-time motion 
detection and correction during acquisition are implemented 
by customized hardware and software. Imaging parameters 
were harmonized as much as possible between scanner 
manufacturers.

ABCD baseline neurocognition battery

The NIH Toolbox®–Cognition battery (NIHTB-CB, herein 
referred to as “the Toolbox”) was administered and includes 
seven tasks that measure episodic memory (NIHTB-CB 
Picture Sequence Memory), executive function (NIHTB-
CB Dimensional Change Card Sort), attention (NIHTB-CB 
Flanker Task), working memory (NIHTB-CB List Sorting 
Working Memory), processing speed (NIHTB-CB Pat-
tern Comparison Processing Speed), and language abilities 
(NIHTB-CB Picture Vocabulary & Oral Reading Recogni-
tion). We report here on the uncorrected Toolbox scores. 
Composite indices of fluid and crystallized reasoning are 
also derived (Bleck et al. 2013; Gershon et al. 2013a, b; 
Hodes et al. 2013). The neurocognitive battery has been 
more extensively described elsewhere (Luciana et al. 2018; 
Thompson et al. 2019). The Supplemental Materials section 
provides brief descriptions of each task.

Because the Toolbox measures do not employ delayed 
recall or recognition trials as part of their memory assess-
ments, a customized automated version of the Rey Audi-
tory Verbal Learning Test (RAVLT), a widely used test of 
auditory learning and memory, was implemented for this 
purpose. An automated version of the Matrix Reasoning 
subtest from the Wechsler Intelligence Test for Children-V 

Table 2   Number of individual twins with known zygosity by site and 
race/ethnicity in the ABCD study

CUB UMN VCU WUSTL Total

White 252 296 216 259 1023 (66%)
Black 8 30 100 82 220 (14%)
Hispanic 86 23 28 15 152 (10%)
Asian 0 1 2 0 3 (0%)
Other 48 28 42 28 146 (9%)

https://abcdtwinhub.shinyapps.io/baselineTwinResults
https://abcdtwinhub.shinyapps.io/baselineTwinResults
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(WISC-V)(Wechsler 2014) was administered in standardized 
format using automated technology [Q-interactive (Daniel 
et al. 2014)]. The Little Man Task (LMT) (Acker & Acker 
1982) was used to assess visual-spatial processing, spe-
cifically mental rotation with varying degrees of difficulty. 
Members of our group have published a principal compo-
nents analysis of the battery (Thompson et al. 2019). Three 
principal components were derived from performance on 
the NIH Toolbox, RAVLT, and LMT measures: they reflect 
General Ability, Executive Function, and Learning/Memory, 
respectively.

ABCD childhood psychopathology battery

In the baseline assessment of 9- and 10-year-old chil-
dren, parents rate their children’s behavior using the Child 
Behavior Checklist [CBCL: (Achenbach & Edelbrock 1981, 
1983)]. The 112-item checklist yields an overall External-
izing and Internalizing behavior score, as well as subscale 
scores. Subscale scores include DSM5-oriented Attention-
Deficit Hyperactivity Disorder (ADHD), Anxiety Disorder, 
Conduct Disorder, Depression, Oppositional behavior, and 
Somatic Problems. Subscale syndrome scores include those 
for aggressive behavior, anxiety/depression, attention, rule 
breaking, social difficulties, somatic problems, thought 
problems, and withdrawn depression, as well as other prob-
lems and an overall total problem score. Additional scale 
scores are available for Sluggish Cognitive Tempo, Obses-
sive–Compulsive Problems, and Stress. Each scale score is 
available as a raw score summation and as a transformed 
t-score used more commonly by clinicians to provide inter-
pretive guidance. We would expect raw scores and t-scores 
to behave similarly in most applications or analyses and 
report results here for raw scores. For the teacher ratings 
[assessed with the Brief Problem Monitor (BPM): (Achen-
bach et al. 2011)], the 18-item checklist was scored for the 
overall internalizing and externalizing scales, attention prob-
lems, and a total problem score.

ABCD physical and other traits

We report here on physical and other traits that are meas-
ured as continuous variables in ABCD. Standardized meas-
urements following CDC guidelines were used to monitor 
health, obesity, growth and physical development [CDC 
(Division of Nutrition) 2016], including height, weight, 
body mass index, and waist circumference. Pubertal hor-
mones were assessed through the collection of a single sali-
vary biospecimen from which salimetric scores for DHEA, 
testosterone and estradiol were derived. The Sleep Distur-
bance Scale for Children (SDSC) (Bruni et al. 1996) com-
prehensively screens for a variety of sleep disturbance types 
using a 26-item Likert-type rating scale administered to a 

parent. Six scales (disorders of initiating and maintaining 
sleep, sleep breathing, arousal or nightmares, sleep wake 
transition, excessive somnolence, and sleep hyperhidrosis) 
and an overall sleep–wake disturbance symptom severity 
score were derived. A measure of visual media use (Sha-
rif et al. 2010) included questions on the overall amount of 
time that the youth spends using visual media during typi-
cal weekdays and weekend days. Extracurricular activities, 
including sports, music related activities, or hobbies, were 
assessed with the parent-reported Sports and Activities 
Involvement Questionnaire (Huppertz et al. 2016). In this 
report, we included continuous measures of years and hours 
per week of music listening and reading for pleasure. See 
(Barch et al. 2018) for more details on measures.

Statistical methods

Prior to twin modeling, the effects of sex at birth, age, race/
ethnicity (using four dummy variables comparing Black, 
Hispanic, Asian, and Other to the white reference group 
[the largest group]), and site (using three dummy variables 
comparing CUB, VCU and WUSTL to the UMN reference 
group) were regressed out for each variable. Residuals were 
then standardized and outliers (values greater than four 
standard deviations from the mean) set to missing prior to 
biometric analyses. Pearson product-moment correlations 
were calculated separately by zygosity and sex for the stand-
ardized residuals of each of the measures, adjusted for sex, 
age, race/ethnicity and site. Homogeneity of variances by 
zygosity and sex was tested with the Levene test (Soave 
& Sun 2017). Standard biometrical multi-group saturated 
and ACE models (Neale & Cardon 1992) were fitted to all 
measures, directly estimating ACE variance components, 
and likelihood-based confidence intervals for standard-
ized variance components. For each variable, we fitted five 
models: 2-group saturated and ACE models with male and 
female twins combined in MZ and DZ groups, and 4-group 
saturated and two ACE models, one allowing ACE compo-
nents to differ by sex and another constraining them to be the 
same across sex to test the significance of heterogeneity by 
sex. The comparison of the saturated with the ACE models 
assesses whether the assumptions of equal means and vari-
ances across twin order and zygosity are met. All analyses 
were performed in R version 4.1.1 (R Core Team 2017) and 
using OpenMx version 2.20.09 (Boker et al. 2011; Neale 
et al. 2016). In this article we discuss only results of variance 
component analyses with male and female pairs combined, 
although the Supplemental Online Resource contains these 
more extensive analyses.
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Variance components model

We chose to follow Verhulst & Neale’s (Verhulst et al. 2019) 
recommendation to estimate variance components instead 
of path coefficients as parameters for these analyses. This 
choice, like most, has both advantages and disadvantages. 
The key difference between the approaches is that direct esti-
mates of variance components may be negative, whereas 
estimates of path coefficients are squared and therefore 
necessarily non-negative when generating the expected 
covariance matrix. Thus, the path coefficient approach has 
an implicit lower bound of zero for variance associated 
with A, C or E. Since variance components are themselves 
squared quantities, this restriction seems rational, and has 
been applied for most behavior genetic analyses over the 
past 25 years. However, there are disadvantages to bounding 
the estimates, particularly for hypothesis testing and meta-
analyses. First, consider the distribution of estimates of A 
when the null hypothesis that A = 0 is true. MZ and DZ cor-
relations are predicted to be equal. Random sampling varia-
tion would cause the rMZ and rDZ to vary around the same 
value, with the expectation that 50% would find rMZ > rDZ 
and 50% where rMZ < rDZ. The former case would yield a 
positive estimate of A, and the latter a negative one—unless 
the path coefficient approach is used, in which case it would 
hit the effective lower bound of zero. Direct variance compo-
nent estimates across multiple studies would correctly aver-
age estimates of A to be zero. The path coefficient approach, 
however, would yield an average A that is greater than zero. 
The less precise the estimates are, the greater their variance, 
so the greater the upward bias. This trend occurs because the 
proportion of estimates that fall below zero (the lower tail 
of the estimates’ distribution) increases with the variance 
when the mean estimate is greater than zero. Before “herit-
ability deniers” complain of systematic upward bias to A 
from prior twin studies, it should be noted that estimates of 
C are subject to the exact same type of bias.

While the classical twin design can estimate two more 
components of variance (A and C) than a study of unrelated 
(and not genotyped) individuals (which estimates only E), 
it cannot simultaneously estimate a fourth, D, representing 
dominance genetic effects. These effects are expected to cor-
relate perfectly between MZ twins, and 0.25 between DZ 
twins, but they are confounded with C. Choosing between 
ACE and ADE models might be done on the basis of prior 
studies, or by inspecting the twin correlations in the current 
one. Selecting either C or D obscures the important point 
that both variance components may simultaneously con-
tribute to variation. Historically, the practice was to inspect 
the MZ and DZ correlations and to fit an ADE model if 
rDZ < 0.5rMZ, but to fit an ACE model otherwise. That pro-
cedure results in models that are more likely to fit the data 
and to produce non-zero estimates, but it unfairly capitalizes 

on the prior knowledge of the correlations. Here we chose 
to fit ACE models by direct variance estimation for all vari-
ables, regardless of the pattern of twin correlations, as it 
allows us to calculate the variance components we would 
have obtained when fitting an ADE model. The variance 
components approach is, from a statistical standpoint, much 
superior to the path coefficients approach, because its Type 
I and II error rates are correct. The apparent disadvantage, 
however, is that negative variance component estimates are 
both possible and more difficult to interpret. We therefore 
suggest that the C component be interpreted as a residual 
component of familial variance that is the sum of the effects 
of shared environment and non-additive genetic variance. 
Negative C suggests that non-additive genetic factors have 
outweighed any effects of the family environment. Positive 
C indicates the opposite. If the likelihood-based confidence 
intervals of C overlap zero, it may be because neither C 
nor D influence the phenotype, or because the two counter-
balance each other to yield a non-significant estimate. This 
apparent difficulty in interpretation should be recognized as 
an opportunity to adopt a broader perspective on the nature 
of variance component estimates from twin studies.

Interpreting classical twin study results

We now illustrate the interpretation of the results with two 
examples of applying the variance components modeling 
approach to the anthropometric data (see also Fig. 8). For 
weight, the MZ correlation (rMZ = 0.89 and the DZ correla-
tion (rDZ) = 0.46. This pattern of twin correlations is con-
sistent with a model containing A, C and E sources of vari-
ance, i.e., an ACE model, as rDZ is slightly greater than half 
rMZ. The maximum likelihood estimates of the proportions 
of variance accounted for by A, C and E are respectively 
0.88, 0.01 and 0.11, close to what one would have obtained 
by applying Falconer’s (Falconer & Mackay 1998) estimate 
of heritability as 2(rMZ-rDZ). For waist circumference, 
rMZ = 0.73 and rDZ = 0.34, which are not consistent with 
an ACE model but rather an ADE model, as rDZ is less than 
half rMZ. This pattern of correlations is reflected in a nega-
tive estimate for C (0.-09) and a larger estimate of A (0.83) 
with the E estimate is still close to 1 minus rMZ (0.26). 
However, we can calculate the corresponding estimates of 
A, D and E from the estimates of the ACE model as done 
here. The proportion of variance associated with A, under 
an ADE model, can be calculated as A + 3C divided by the 
total variance A + C + E; and, similarly, the proportion of 
variance due to D is calculated as -2C/(A + C + E). For waist 
circumference, the estimate of A would thus be 0.57 and the 
estimate of D 0.17 with E remaining at 0.26, which are more 
readily interpretable. In a similar way, one could recalcu-
late values for A, C, and E from ADE estimates if an ADE 
model had been fitted to the data instead, with C = -0.5D 
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and A’ = A + 1.5D. Ideally, data from other types of pairs of 
relatives should be collected to resolve these alternatives.

It is important to note that heritability estimates from both 
twin and genome-wide association studies are population- 
and measurement-specific. This quality makes heritability 
estimates for multiple, apparently related traits measured in 
the same cohort especially informative, as they are derived 
from the same point in time, and with the same popula-
tion. Cai et al. illustrated this phenomenon in a 2020 pub-
lication comparing heritability estimates for five different 
measures of major depression in the UK Biobank (Cai et al. 
2020). Their team observed substantially different herit-
ability estimates for clinical depression and self-reported 
depression (~ 31% and ~ 10%, respectively). These results 
indicate that these phenotypic definitions of depression are 
not interchangeable for genetic studies, which is a valuable 
insight for designing future studies. Also important is that 
the parameter estimates from twin studies should not be 
interpreted as concrete or absolute. For example, if five twin 
studies of height are conducted in regions that vastly differ 
in their access to food and health care, one should expect 
to observe differences in heritability estimates; however, 
those differences do not mean that the genetics of height 
vary by population. Heritability is a proportion. Differences 
in heritability estimates across populations indicate that the 
proportion of trait variance attributable to genetic factors 
varies with respect to the magnitude of influence from envi-
ronmental factors.

Results

Structural neuroimaging

Regional measures of morphometry (Figs. 1, 2, 3)

As shown in heritability estimates tabulated in Supple-
mental Online Resource at https://​abcdt​winhub.​shiny​apps.​
io/​basel​ineTw​inRes​ults, ABCD data were consistent with 
prior findings of high heritability of overall measures of 
brain morphometry, with rMZ being about twice rDZ, and 
genetic variance accounting for close to 90% of the vari-
ance for overall brain volume (h2 = 94%) and surface area 
(h2 = 95%). There was lower genetic influence on cortical 
thickness (h2 = 66%), consistent with prior reports of devel-
opmental effects and lower h2 in childhood than adulthood 
(Rimol et al. 2010; Schmitt et al. 2014; Teeuw et al. 2019). 
Of interest is whether these genetic effects on cortical thick-
ness differ for posterior brain regions that develop earlier as 
compared to later developing frontal regions. In this sample 
there was no evidence to suggest such a difference (left fron-
tal h2 = 58%, right frontal h2 = 61%; left occipital h2 = 58%, 
right occipital h2 = 54%; left parietal h2 = 56%, right parietal 
h2 = 55%).

Variance components for selected subcortical, ventricular, 
corpus callosum (CC), and posterior fossa volumes are sum-
marized in Fig. 1. Similar to prior studies (Blokland et al. 

Fig. 1   Genetic influences on subcortical, callosal, ventricular, and posterior fossa volumes

https://abcdtwinhub.shinyapps.io/baselineTwinResults
https://abcdtwinhub.shinyapps.io/baselineTwinResults
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2012; Peper et al. 2007; Schmitt et al. 2007a, b), volumes 
of the deep gray nuclei were, in general, highly heritable. 
Approximately 65% of the phenotypic variation in thalamic 
volumes could be attributed to genetic effects, as compared 
to estimates of 52% in an adult meta-analysis (Blokland 
et al. 2012) and 64% in the NIH pediatric sample (Schmitt 
et al. 2007a, b). Heritability of the corpus striatum (caudate 

h2 > 70%, putamen h2 = 80%) and hippocampi (h2 =  ~ 75%) 
was even higher. In comparison, the NIH sample reported a 
heritability of basal ganglia of 69%, and hippocampal herit-
ability has been reported as high as 80% (Patel et al. 2017). 
The CC, brainstem, and cerebellum also all were highly her-
itable, with over 70% of the variance attributable to genetic 

Fig. 2   Regional heritability maps for cortical volume, thickness, and surface area. Results using the Desikan-Killiany and Destrieux anatomic 
parcellations are both provided

Fig. 3   Regional heritability maps for average convexity (a measure of cortical folding), and T1 and T2 contrast (both related to cortical myelina-
tion) using the Destrieux parcellation
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factors. In general, the ventricles had more modest herit-
ability estimates.

Regional heritability maps for the most commonly 
measured cerebral surface metrics (cortical volume, thick-
ness, and surface area) are provided in Fig. 2. Heritabil-
ity estimates for cortical (parcel) volumes tended to be 
greater in the right hemisphere for both atlases. As for 
global measures, regional measures of cortical thickness 
were lower relative to other structural endophenotypes, 
and lower relative to prior adult studies of thickness for 
both atlases. The higher-resolution Destrieux atlas found 
that thickness was most heritable in the left supramarginal 
gyrus, right superior frontal gyrus, right temporal, peri-
calcarine, and peri-Rolandic cortex. In general, heritability 
estimates for thickness were higher in the right hemisphere 
relative to left. Estimates were also higher in gyri rela-
tive to sulci, giving the brain a tigroid appearance in the 
Destrieux parcellation; mean ROI differences in gyral-sul-
cal heritability were statistically significant ( F1

145
 = 16.1, 

p-value < 0.0001). Maps of cerebral surface area showed 
very high heritability estimates for both atlases, In particu-
lar, the Destrieux atlas found strong heritability in peri-
calcarine cortex extending along the ‘what’ and ‘where’ 
pathways of the precuneus and occipitotemporal cortex, as 
well as in the peri-sagittal frontal lobes. Similar patterns 
were observed for cortical volumes.

Results from less commonly investigated structural 
measures (average convexity, T1 contrast, T2 contrast) are 
provided in Fig. 3. The heritability of average convexity (a 
measure of cortical folding) was relatively modest, with 
h2 estimates for the majority of the cerebrum < 0.40. The 
principal exceptions were near the central sulcus, calcarine 
sulcus, and cingulate. T1 and T2 contrast, both potential 
proxies for cortical myelination, showed high heritability 
in peri-Rolandic cortex, superior frontal gyri, and peri-
cingulate cortex. The T2 contrast heritability estimate was 
substantially higher than T1’s. There were some similar 
patterns between T1 and T2 contrast, although with dis-
proportionately higher heritability estimates in the lateral 
parietal lobes based on T2 image data.

Anatomical measures of connectivity (Figs. 4 and 5)

For FA values within major white matter tracts, the average 
estimate of h2 ranged from 40 to 88% (see Fig. 4) with an 
average of 62%. For most tracts, rMZs were roughly double 
rDZs, although dominant genetic effects were suggested for 
regions such as CC and cingulate gyrus. Heritabilities were 
highest for regions such as CC, corticospinal tract, superior 
corticostriate, superior longitudinal fasciculus and uncinate 
fasiculus. For these latter three pathways, heritabilities were 
higher for right versus left hemisphere tracts. Heritabilities 
were lower for anterior thalamic radiation, fornix, inferior 

Fig. 4   Estimates of genetic (%A), shared (%C) and specific (%E) environmental variance components and MZ and DZ twin correlations for frac-
tional anisotropy
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longitudinal fasciculus, and inferior frontal-occipital fascicu-
lus. The average heritability for MD across the tracts listed 
in Fig. 5 was 73%, and values were particularly high for 
CC and adjacent tracts as well as the superior corticostriate 
tract, inferior longitudinal fasciculus, superior longitudinal 
fasciculus, and uncinate fasciculus. Although there were 
some hemispheric variations in heritability magnitudes, 
these were not as marked as for FA. For both FA and MD, 
variations due to shared environmental influences were small 
while those attributable to unshared environmental factors 
were moderate ranging from 23 to 56% for FA and from 18 
to 49% for MD.

Neurocognition (Fig. 6)

Figure 6 presents findings for key neurocognitive vari-
ables, highlighting the primary performance metrics from 
each task. rMZs (0.17–0.84) were generally higher than 
rDZs (0.03–0.64), consistent with genetic influence on 
cognitive performance. Highest rMZs were for the NIH 
Toolbox crystallized (0.68) and fluid composite (0.54), 
and derived principal components of general ability (0.85), 
learning/ memory (0.82), and EF (0.63). However, for the 
principal components, rDZs are greater than half rMZs, 
suggesting an impact of shared environment. Notably, 
rMZs were rather low for some tasks (e.g., Flanker Task; 
LMT reaction times; Matrix Reasoning Scaled Scores), 
suggesting substantial influences of unshared environment 

or measurement error on aspects of EF and visuo-spatial 
reasoning. There was also some evidence for non-addi-
tive genetic influences for the Flanker Task, Dimensional 
Change Card Sort, Picture Sequencing and performance 
on several learning trials of the RAVLT.

ACE modeling estimates showed moderate genetic influ-
ences on crystallized ability (h2 = 58%), aggregated fluid 
abilities (h2 = 57%), and principal-components-based general 
ability (h2 = 36%). Genetic influences appeared less salient 
for EF (h2 = 22%) and learning/memory (h2 = 29%). Shared 
environment estimates were substantial for the three prin-
cipal components (c2 = 40–50%) but close to zero for the 
NIH Toolbox uncorrected crystallized and fluid reasoning 
composites. Non-shared environmental influences were sub-
stantial for all composite measures (e2 = 18–47%).

When specific abilities were modeled, heritability 
estimates were highest for NIH Toolbox Oral Reading 
(h2 = 74%), Picture Vocabulary (h2 = 40%), Dimensional 
Change Card Sort (h2 = 44%), and Picture Sequencing 
(h2 = 61%) tasks. Estimates were low for measures of spa-
tial reasoning (e.g., Matrix Reasoning, Little Man Task: 
h2 = 16–40%), inhibitory control (Flanker Task: h2 = 24%), 
processing speed (Pattern Comparison Processing Speed: 
h2 = 29%) and performance on discrete trials of the RAVLT. 
The cash choice task (Sparks et al. 2014) was not analyzed 
here as the measures are ordinal rather than continuous. 
Shared environmental influences were generally negligible. 

Fig. 5   Estimates of genetic (%A), shared (%C) and specific (%E) environmental variance components and MZ and DZ twin correlations for 
mean diffusivity
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Consistent with other reports, unshared environmental influ-
ences were substantial and, in many cases, relatively large 
compared to other sources of variation (e2 = 31–81%).

Child Psychopathology (Fig. 7)

Results for child psychiatric assessments are presented in 
Fig. 7. For the CBCL Total, Externalizing, and Internal-
izing scale scores, the overall MZ correlations for these 
parent-rated traits were 0.74, 0.65, and 0.50, respectively, 
and the DZ correlations were 0.47, 0.41, and 0.33. As 
the model fitting confirmed, the estimates were consistent 
with moderate heritability, some influence of the shared 
family environment and/or rater effects, and non-shared 
environmental influences and/or unreliability. The cor-
responding correlations for the teacher ratings, based on 
the shorter BPM, were smaller than parental ratings. They 
suggested substantial broad heritability, and no effects of 
the shared environment. Note that parental ratings some-
times involve contrast effects, where the twins are scored 

more differently than their observed behavior suggests 
they should be. Such effects typically also generate dif-
ferent phenotypic variances for MZ and DZ twins. Social, 
Aggression and Externalizing scales had the lowest p-val-
ues for the equal variance tests. For Attention problems, 
whether rated by the parents (CBCL) or teachers (BPM), 
MZ correlations were again consistent with substantial 
broad heritability including non-additive genetic variation 
that overwhelmed any shared environmental influence. For 
all other subscale scores on the CBCL, we saw correla-
tions consistent with moderate heritability, and varying 
degrees of shared environmental and/or rater effects and, 
in some cases, evidence for non-additive genetic variance.

Physical and other traits (Fig. 8)

Estimated proportions of variance for physical and other 
traits are presented in Fig. 8. Heritability estimates for 
anthropometric measures (height, weight, and BMI) were 
around 90%. Negative estimates for shared environment 
suggested small contributions of non-additivity for waist 

Fig. 6   Estimates of genetic (%A), shared (%C) and specific (%E) environmental variance components and MZ and DZ twin correlations for neu-
rocognitive measures
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Fig. 7   Estimates of genetic (%A), shared (%C) and specific (%E) environmental variance components and MZ and DZ twin correlations for child 
psychiatric assessments

Fig. 8   Estimates of genetic (%A), shared (%C) and specific (%E) environmental variance components and MZ and DZ twin correlations for 
physical and other traits
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circumference. Genetic factors explained ~ 60% of the vari-
ance of hormone levels. Twin correlations for the six sub-
scales of the Sleep Disturbance Scale for Children and the 
sleep disorder total score were varied, resulting in h2 esti-
mates ranging from 20 to 80% and high heritability for the 
sleep disorder total score (70%).

Individual differences in screen time in 9–10-year-old 
twins showed very low heritability: h2 = 18% for weekdays 
and h2 = 16% for weekend. For number of years listening to 
music, genetic contributions were also small (h2 = 7%), with 
a substantial estimate of variation associated with shared 
environmental factors (c2 = 79%). However, for number of 
hours per week spent listening to music, heritability was low 
(h2 = 39%) and shared environment substantial (c2 = 45%). 
The corresponding figures for ‘number of years reading for 
pleasure’ were h2 = 44% and c2 = 46%. Shared environmental 
factors explained most (c2 = 56%) of individual differences 
in number of hours per week reading for pleasure.

Discussion

General findings

In general, we found that univariate heritability estimates 
for brain, behavioral, psychiatric and anthropomorphic 
metrics, assessed at baseline in the ABCD study of 772 
pairs of 9–10 year-old twins, are similar to those reported 
in previous child-focused twin studies. These consistent 
baseline findings were evident in a study with a rich palette 
of neurobehavioral, psychosocial, and brain variables, and 
one that is just beginning its longitudinal progression from 
pre-adolescence to adulthood. Thus, we can already offer 
variance component estimates for thousands of continuous 
variables, which can be consulted directly in the searchable 
Supplemental Online Resource at https://​abcdt​winhub.​shiny​
apps.​io/​basel​ineTw​inRes​ults, which will be expanded as new 
waves of data are released. The replication of univariate 
findings illustrates the robustness of the estimated variance 
components across studies, despite any methodological con-
siderations in both ABCD data acquisition or caveats about 
our statistical approach. These considerations are discussed 
below, followed by summaries of convergence of find-
ings with previous work in different phenotypic domains. 
Of note, these initial findings provide a standard reference 
against which comparisons can be made in multivariate and 
longitudinal analyses of the interrelationships between brain 
and behavior.

Methodological considerations

By design, the ABCD Study® over-sampled twin pairs 
by incorporating four sites known for their curation of 

population-based samples of twins. These data provide a 
close match to the populations previously used for estimating 
genetic and environmental sources of variation across a wide 
variety of traits in the United States. The strategy yielded 
391 MZ and 381 DZ same-sex twin pairs, with almost equal 
numbers of males and females, who had confirmed zygosi-
ties based on whole genome array genotyping; we expect 
that there will be additional pairs available in future data 
releases. This sample size provides sufficient power to detect 
additive genetic and shared environmental factors (Martin 
et al. 1978; Visscher et al. 2008). More concretely, with the 
current sample of twins with genotypically confirmed zygo-
sity (N MZ twins = 391 pairs, N DZ twins = 381 pairs), we 
have 80% power to detect an additive genetic variance (VA) 
component explaining 20% of the variance or more, when 
unique environmental variance (VE) accounts for 30% or 
less of the remaining variance, or a VA component of 30% 
when VE <  = 50%. The current sample is also sufficient to 
detect a shared environmental variance (VC) component of 
30% or more with 80% power. However, we have limited 
power to detect dominance genetic (VD) variance compo-
nents unless they explain 50–60% of the variance (see Sup-
plementary Fig. 1 for more details). We elected to limit our 
analyses to twin pairs from these four sites due to the close 
matching of their ascertainment methods and testing condi-
tions. Although joint analysis with non-twins in the sam-
ple is possible, differences between population-based and 
school-based ascertainment methods risk biasing the results 
relative to other twin studies. The ABCD design permits 
comparison of the twin and non-twin populations’ means 
and variances, which do differ for some variables, but these 
analyses are not reported here.

Our primary focus is on the association of individual dif-
ferences with additive and non-additive genetic, shared and 
non-shared environmental sources of variance. The analyti-
cal approach of estimating variance components without a 
lower bound of zero was selected to assist potential future 
meta-analyses of the data. The standard approach to mode-
ling twin data from their (co)variances confounds the effects 
of non-additive genetic sources of variance (dominance and 
epistasis) with those of the shared environment. Estimates 
of C are therefore an aggregate of these components, with 
negative estimates suggesting a greater role of non-additivity 
than of C. Negative estimates of additive genetic variance 
are seen for 254 of the  analyzed variables, reflecting lower 
MZ than DZ correlations. Results of this type seem likely 
to be due to sampling variation in the estimate of A when 
its true value is close to zero. Another possibility is that MZ 
and DZ variances differ appreciably, which in turn may be 
due to sibling interaction, or parental rating contrast effects.

The fixed effects of age, sex, race/ethnicity and site were 
regressed out, but not scanner (Magnetic Resonance Imaging 
instrument) as it was confounded with site. Random effects 

https://abcdtwinhub.shinyapps.io/baselineTwinResults
https://abcdtwinhub.shinyapps.io/baselineTwinResults
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of scanner or site might be included if the twin and non-
twin data were combined, but the non-twin data were not 
modeled here, due to the different ascertainment methods. 
Future analyses aim to include twin and non-twin data, thus 
allowing us to estimate how scanner type may impact vari-
ance decomposition. Similarly, we will be able to evaluate 
heterogeneity in variance or variance decomposition by sex, 
race/ethnicity and age, especially with the availability of lon-
gitudinal data.

Self-report race and ethnicity are socially-defined vari-
ables that proxy social advantages/ disadvantages and only 
weakly correlate with the quantitative genetic principal com-
ponents based on differences in allele frequencies. In the US, 
Black and Hispanic Americans are at increased likelihood 
of exposure to a variety of environmental adversities due to 
institutionalized racism (e.g., housing segregation, education 
in under-resourced schools, victimization by the police and 
criminal justice systems, poverty). Thus, by regressing out 
the effects of sex, race/ethnicity (and correlated SES) and 
site in our twin models, we are partitioning the remainder of 
the variance in genetic and environmental sources. That said, 
we understand that controlling for self-identified race may 
not remove all influences of race on trait variance since it is 
an inaccurate measure. It is entirely possible that we would 
observe different heritability estimates across race catego-
ries, but those differences would not necessarily imply or 
suggest that different genes or biological mechanisms are 
the cause.

Many influential scientists in the history of behavior 
genetics, such as Galton, Charles Davenport, Margaret 
Sanger and others, were proponents of eugenics (in which 
those with positive traits should self-select to reproduce 
(positive eugenics) and those perceived as having less 
desirable traits discouraged or prevented from reproduction 
(negative eugenics)) and scientific racism, (i.e., the misuse 
of science, medicine, and statistics to promote the superior-
ity of select social groups). The use of eugenics by the Nazis 
as a rationale for the attempted genocide in World War II 
stands as one of the most well-known atrocities, but many 
other atrocities and human rights violations have occurred 
and some of them were bolstered by pro-eugenics scientists. 
The American Eugenics Society actively campaigned to pro-
mote eugenics in US public education programs and coordi-
nated with the Eugenics Record Office at Cold Spring Har-
bor Laboratory to push for the adoption of eugenic policies 
like forced sterilization [see the Virginia Sterilization Act of 
1924 and subsequent US Supreme Court case Buck vs Bell 
(1927)]. The impacts of racist ideologies and policies con-
tinue to besmerch behavior genetics—which has the noble 
scientific goal of understanding the sources of individual 
differences—and are partially responsible for the dramatic 
underrepresentation of non-white individuals in behavioral 
and psychiatric genetic research cohorts (Martin et al. 2019).

Twin studies, which were first suggested by Galton, have 
undesirable historical associations with individuals who 
held socio-political beliefs that are now widely regarded as 
inhumane, immoral, and inherently racist. Acknowledging 
this history is a critical part of combating scientific rac-
ism. Twin studies can provide valuable insight regarding 
how environmental and genetic factors jointly contribute 
to the composition of phenotypic variance, and behavioral 
geneticists must emphasize accurate interpretations of their 
research and promote comprehensive and nuanced under-
standings of the results so that neither the public nor other 
scientists derive gross misunderstandings about the nature of 
heritability or human health. One example of emphasizing 
greater nuance and understanding is clarifying the relation-
ship between social constructs like self-identified race and 
biological constructs like genetic ancestry/variation. These 
constructs are not interchangeable. The US race categories 
are based on US Census options, categorical, and correlated 
with social advantages/disadvantages and experiences of 
racism. Genetic ancestry/variation is continuous and based 
on differences in allele frequencies. Neither self-identified 
race nor continental ancestry assignments capture the full 
range of genetic variation. Given these shortcomings, we 
should embrace a multidimensional, continuous view of 
genetic variation and ancestry rather than using continental 
ancestry categories as suggested by a recent policy forum 
in Science (Lewis et al. 2022). We applaud the efforts of 
groups like All of Us (https://​allof​us.​nih.​gov/​about/​progr​
am-​overv​iew), NIH (https://​www.​genome.​gov/​about-​genom​
ics/​fact-​sheets/​Eugen​ics-​and-​Scien​tific-​Racism) and Pan 
UK Biobank (https://​pan.​ukbb.​broad​insti​tute.​org/) for high-
lighting the impacts of institutional racism on science and 
contribute this work and the related online resource to the 
ABCD Study’s own proclamation of their values, including 
anti-racism, inclusivity, equity, and diversity (https://​abcds​
tudy.​org/​famil​ies/​better-​toget​her).

Assumptions of the twin method

Any large-scale analysis of data collected from twins should 
consider the assumptions of the statistical models being 
used. Three assumptions are most relevant: i) the pheno-
typic distribution of the variables; ii) the independence of 
the sources of variance; and iii) the equal environmental 
sharing assumption. First, the maximum likelihood (ML) 
model-fitting method used assumes that the data from twins 
conform to the bivariate normal distribution, albeit with dif-
ferent correlations for MZ and DZ pairs. This assumption 
was not explicitly tested, and was certainly violated at times, 
particularly when scale scores are derived as factor or sum 
scores of items where most items are rarely endorsed—such 
as happens with scales designed to detect clinical diagnosis 
or severity. Fortunately, ML is robust to failures of this type, 

https://allofus.nih.gov/about/program-overview
https://allofus.nih.gov/about/program-overview
https://www.genome.gov/about-genomics/fact-sheets/Eugenics-and-Scientific-Racism
https://www.genome.gov/about-genomics/fact-sheets/Eugenics-and-Scientific-Racism
https://pan.ukbb.broadinstitute.org/
https://abcdstudy.org/families/better-together
https://abcdstudy.org/families/better-together
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but some underestimation of correlations is likely, compared 
to treating the variables as ordinal (Verhulst & Neale 2021). 
Such underestimation would decrease estimates of A and C 
or D and inflate the estimate of E.

The next two major assumptions are that there is nei-
ther covariation (rGE) nor interaction (GxE) between the 
variance components. The no covariance assumption would 
fail if, e.g., allele frequencies systematically differ between 
those living in low and high SES environments. Since SES 
covaries with race, and race differences in allele frequencies 
are well known (Devlin & Roeder 1999; Smith et al. 2009), 
this assumption is likely violated for several of the reported 
phenotypes. Similarly, the no interaction assumption would 
fail if, e.g., the effects of high SES and those of alleles asso-
ciated with high cognitive ability operate synergistically to 
generate greater improvement than the sum of their parts. 
Both assumptions seem likely to have some degree of failure 
for some, but not all, of the traits studied. The consequences 
of such failures have been discussed elsewhere (Verhulst & 
Neale 2016). Failure of either the rGE or GxE assumption 
may reduce the generality of the results, require reassigning 
of some variance to covariance, or requiring different herit-
ability estimates for different parts of the population distri-
bution. Note also that absent genetic variation, neither GxE 
nor rGE could occur. Fortunately, features of the ABCD 
Study®, particularly the longitudinal assessments and col-
lection of DNA samples for genotyping, enable testing of 
these assumptions in future work. A simple examination of 
GxE is possible by covarying MZ pair sums with their abso-
lute differences (Jinks & Fulker 1970), and more powerful 
tests have been described (Molenaar et al. 2012; van der 
Sluis et al. 2008). Adding a relevant polygenic score to the 
ACE model enables estimation of covariance between A and 
C variance components (Dolan et al. 2021). The ongoing 
longitudinal assessments in ABCD will also enable direct 
modeling of ‘niche selection,’ where an individual’s pheno-
type on one occasion changes their environment (or that of 
their cotwin) on the next (Dolan et al. 2014).

The equal sharing of trait-relevant environmental factors 
(known as the equal environments assumption or EEA) is 
a key assumption of modeling data from a classical twin 
study. Many critics of the twin method ascribe findings of 
greater MZ than DZ correlation to violations of the assump-
tion, citing evidence of greater environmental sharing by MZ 
twins than by DZ twins as sufficient evidence that it causes 
MZ correlations to be greater than DZ ones. However, two 
arguments counter this claim. First, the environments shared 
must be trait-relevant; if they are, then within either MZ or 
DZ pairs greater sharing should associate with greater phe-
notypic similarity. Historically, this phenomenon has rarely 
been observed, but improved measures of trait-relevant 
environmental factors are possible. Second, EEA violations 
upwardly bias estimates of A only when the environmental 

factors subject to greater sharing by MZs are not elicited by 
the twins themselves. If DZ pairs select or elicit different 
environments to a greater degree than do MZ pairs simply 
because their genotypes differ more, the attribution to the 
distal cause of A is appropriate. Most behavior geneticists 
accept that the pathways from genotype to behavior may 
include ‘outside the body’ environmental mediators—con-
sistent with the concept of the extended phenotype (Dawkins 
& Dennett 2008; Kendler et al. 2012). Multivariate behavior 
genetic designs that incorporate measures of environmental 
factors and outcome phenotypes have great potential to dis-
sect genetic from non-genetic sources of variation and to 
identify causal pathways. Modern genomic-based methods 
can help, too, as genotyped DZ twin pairs may be used to 
test the EEA in a twin study (Hwang et al. 2021). Unfortu-
nately, very large samples of DZ pairs (perhaps ten times as 
many as are in ABCD) may be needed for accurate estima-
tion of the different environmental correlations of MZ and 
DZ pairs—but this may be possible in future meta-analyses.

The ACE model assumes random mating in the parental 
generation; and in the presence of phenotypic assortative 
mating, may lead to underestimation of A and overesti-
mation of C. While random mating may be a reasonable 
assumption for structural neuroimaging measures, it is cer-
tainly not for neurocognitive measures, a limitation that 
should be considered when viewing positive estimates of 
shared environmental variance. Conversely, unless interac-
tions with specific environmental modifiers are explicitly 
modeled, variance due to A and AxC are confounded in the 
classical twin study design and a component of the estimated 
A for such neurocognitive variables may plausibly represent 
genotype x shared environment interaction effects (Eaves 
1979, 1977).

Substantive considerations

Structural neuroimaging

Variance component patterns for sMRI endophenotypes 
were, in general, remarkably consistent with the extant lit-
erature (Blokland et al. 2012; Peper et al. 2007). As with 
prior studies, we observed that phenotypic variation in most 
global pediatric brain volumes was attributable to genetic 
influences. Strong genetic influences on whole brain vol-
umes, cortical parcels and subcortical nuclei have been a 
relatively consistent observation across the life cycle. Shared 
environmental influences appeared to be relatively modest 
for most large volumetric endophenotypes. The observed 
high heritability estimates for volumetric measures makes 
them prime targets for molecular genetic analyses in large 
samples, as well as for multivariate modeling of genetically-
mediated brain-behavior relationships.
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We further observed substantial regional variability in 
the heritability of cortical thickness and surface area. Herit-
ability patterns for cerebral surface area were subjectively 
similar to prior studies on newborn, childhood, adolescent, 
and young adult samples (Jha et al. 2018; Schmitt et al. 
2019; Strike et al. 2019; Yoon et al. 2012) despite multiple 
methodological differences in image acquisition and image 
processing (e.g., FreeSurfer versus CIVET image process-
ing pipelines). For example, consistent with prior reports 
(Lenroot et al. 2009; Yoon et al. 2010), genetic influences 
on cortical thickness were more modest relative to both sur-
face area and volume. In general, gyral cortical thickness 
was more heritable than that observed within sulci. Regional 
heritability patterns were in many aspects similar to prior 
pediatric studies (Lenroot et al. 2009; Yoon et al. 2010), 
with the highest heritability estimates observed in peri-
Sylvian, peri-Rolandic, and frontal cortex. The most herit-
able regions had about half of their variability explained by 
additive genetic factors. Posterior and inferior cerebral corti-
cal thickness ROIs had relatively weak genetic influences. 
The most noteworthy discrepancy with the extant literature 
was a rightward-predominance in heritability estimates in 
ABCD data, particularly in the supramarginal gyrus. Stud-
ies of cortical thickness in other genetically-informative 
pediatric samples (NIMH, QNTS) find particularly strong 
genetic influences in similar regions, but with a leftward-
predominance, i.e., preferentially influencing language cent-
ers. Leftward-predominant heritability in language centers is 
conceptually appealing, as it may be indicative of recent evo-
lutionary influences in humans. The reasons for the observed 
discrepancies between the studies are unclear. Differences 
in cerebral parcellation have a relatively large influence on 
thickness heritability estimates and may partially explain the 
observed differences. There is also strong evidence that the 
heritability of thickness actively changes during childhood 
(Schmitt et al. 2014; Teeuw et al. 2019), and differences 
in sample age may also influence parameter estimates. The 
observed regional variability in thickness becomes less pro-
nounced in adulthood, while the overall strength of genetic 
factors increases substantially (possibly due to fewer move-
ment artifacts in scans from older children). Thus, neurode-
velopmental considerations are important when analyzing 
cortical thickness data, particularly in childhood.

Unlike most prior twin neuroimaging studies, we provide 
heritability estimates using two distinct cortical parcella-
tion maps, but with otherwise identical image processing, 
sample, and quantitative genetic models. Therefore, it may 
be worthwhile to briefly comment on the observed differ-
ences in heritability patterns between these two parcella-
tions (e.g., Fig. 3). In general, heritability estimates were 
lower and more variable for the Destrieux atlas than the 
Desikan-Killiany one. The reasons for these differences are 
likely multiple. The Desikan-Killiany parcellation ROIs 

are substantially larger than Destrieux. Larger ROIs gener-
ally result in decreased measurement error (at the cost of 
decreased regional specificity), which in turn likely influ-
ences heritability estimates. Differences in measurement 
error also likely contribute to higher global heritability esti-
mates (e.g. total brain volume) relative to regional measures. 
Second, ROIs for both atlases are not uniformly distributed 
across the cortical sheet, but rather conform to gyral and 
sulcal anatomy. While the Destrieux atlas attempts to distin-
guish between vertices within sulci versus gyri, the Desikan-
Killiany does not. Given that prior studies have demonstrated 
co-localization between sulcal depth and the heritability of 
cortical thickness in older samples (Alexander-Bloch et al. 
2020; Schmitt et al. 2021), proportional differences in the 
fraction of vertices in gyri and sulci between the two atlases 
may also contribute to the observed differences. The rela-
tionships between genetics, traditional brain measures (e.g. 
surface area), and brain shape (e.g. sulcation patterns) is a 
relatively unexplored research topic—particularly in chil-
dren. Imaging data in ABCD will facilitate further investiga-
tions in this domain.

A major strength of ABCD is the availability of numer-
ous imaging endophenotypes measured with standardized 
parcellations, facilitating neuroanatomic comparisons and 
multivariate analyses. In addition to more well-known meas-
ures such as thickness, we also highlight results of univariate 
analyses on several less commonly-investigated structural 
metrics. We find that sulcal depth is most heritable near 
the primary sulci and fissures of the brain. These sulci are 
the first to form during neuro-development and are the old-
est evolutionarily (Armstrong et al. 1995). Lohmann et al. 
observed that deeper, ontologically older sulci were more 
alike in MZ twins relative to unrelated individuals, sug-
gesting that genetic influences were stronger than those of 
secondary and tertiary sulci (Lohmann et al. 1999). These 
observations have subsequently been supported by several 
additional studies using more traditional quantitative genetic 
analysis and numerous measures of sulcation (Le Guen et al. 
2018). Genetically-informative studies on T1/T2 image 
contrast are more limited. Although T1 contrast has previ-
ously been reported as a heritable phenotype in older adults 
(Panizzon et al. 2012), here we report similar findings in a 
pediatric sample. Furthermore, to our knowledge this study 
represents the first to observe similar patterns for T2 con-
trast, but with substantially increased genetic signal relative 
to T1 contrast. Heritability maps for both T1 and T2 contrast 
are very similar to those based on cortical myelination (as 
defined by T1/T2 ratio), with a pattern of greater heritability 
in posterior regions (Schmitt et al. 2020). In humans, more 
evolutionarily expanded regions of the cortex (relative to 
other primates) tend to be less myelinated than more onto-
logically stable areas (Glasser et al. 2014).
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There is pronounced development of white matter dur-
ing adolescence. The most commonly observed patterns in 
dMRI studies are observations of age- and puberty-related 
maturational increases in FA and decreases in MD across 
major fiber tracts (Lebel & Beaulieu 2011; Tamnes et al. 
2018). Developmental changes appear steepest during child-
hood with decelerations in adolescence followed by a pla-
teau in early-to-mid adulthood (Tamnes et al. 2018). Sex 
differences have been observed with some suggestion of 
steeper changes in males relative to females, perhaps due to 
the influence of gonadal hormones on neurodevelopmental 
processes (Herting et al. 2012; Simmonds et al. 2014). Thus, 
it would not be surprising to find age-related differences 
in heritability patterns moderated by other characteristics. 
However, prior studies have consistently reported moderate 
to high heritabilities of white matter metrics such as FA 
and MD within major fiber tracts that, when aggregated, 
vary relatively little from childhood to adulthood (Chiang 
et al. 2011; Gustavson et al. 2019; Kochunov et al. 2015; 
Zhao et al. 2019). Diffusion MRI findings from the current 
study are broadly consistent with those from previous stud-
ies, which is notable considering that ABCD is a multi-site 
study that includes three scanner platforms, varying acquisi-
tion sequences specific to each platform, and a challenging 
9–10-year-old sample. Such variations might be expected 
to impact the quality of dMRI data and reliability estimates 
(Tamnes et al. 2018). Our replication of prior dMRI herit-
ability findings is reassuring. Similar to what was observed 
for cortical thickness, heritability estimates were often 
higher for right hemisphere tracts and particularly for FA. 
The reasons for this patterning are unclear given that the 
right hemisphere is non-dominant for most individuals in 
the population. Although not explored here, others have 
found modulatory effects of sex, IQ, and SES on FA and 
MD heritabilities (Chiang et al. 2011; Kochunov et al. 2015). 
This area merits further exploration within the ABCD data-
set. The lack of shared environmental influences on dMRI 
metrics that we observed is consistent with other reports 
(Gustavson et al. 2019), as is the finding that unshared 
environment exerts a moderate influence on white matter 
microstructure.

Neurocognition

The ABCD cognitive battery was designed with several 
principles in mind (Luciana et al. 2018). Measures were 
selected to be neuroscientifically informed, psychometri-
cally sound, and relevant to substance use outcomes. The 
battery had to be amenable to longitudinal assessment with 
minimal practice effects. Tasks were selected to be sensi-
tive to developmental effects with minimal floor and ceiling 
effects. In addition, the psychometric integrity of selected 
measures is crucial to reliable measurement, so selection 

criteria emphasized that measures must show adequate reli-
ability and validity. The battery was computerized to pro-
mote standardization and facilitate multi-site administration. 
Measures that require minimal training were used to reduce 
staff burden and likelihood of measurement error. The end 
result is a set of measures that do not necessarily approxi-
mate, in length or breadth, those that have been used in other 
behavior genetic studies of cognition. For instance, a full 
IQ battery was not administered, and measures of discrete 
abilities such as EF were truncated versions of measures.

As an alternative to a full IQ battery, composite indices 
of crystallized and fluid abilities were derived from the NIH 
Toolbox. These measures show patterns of genetic influence 
that cohere with other studies of children and adolescents. 
Findings for discrete abilities such as EF, learning, memory 
and spatial ability are less clear cut and more variable, which 
is true in the literature as a whole. There are relatively few 
studies in children against which to benchmark the current 
findings. However, the low heritability for the principal com-
ponent that reflects EF contradicts some studies, in which 
variance common to EF tasks was 100% heritable (Engel-
hardt et al. 2015; Friedman et al. 2008) but is consistent with 
others that estimated near zero heritability for the Flanker 
Task (Stins et al. 2004). Note that all EF tests in ABCD are 
timed tasks, and the influence of processing speed remains 
to be seen.

The observed heritabilities for measures of spatial ability 
in ABCD are low relative to the published literature. A meta-
analysis of visuospatial reasoning studies (King et al. 2019) 
in twins found considerably higher heritability estimates for 
Matrix Reasoning (58%) and Mental Rotation (65%). Across 
visuospatial domains, heritabilities were close to 47% for 
children. A possible reason for the difference is that the 
ACE model may be inappropriate for ABCD cognitive data. 
However, the model we used allows variance component 
estimates to be negative, so substantial non-additive genetic 
variance would emerge as a negative estimate of C, unless 
C itself was also sizable. We do observe negative estimates 
of C for many measures. In the event that the shared envi-
ronment has near zero effect, minus twice the negative esti-
mate of C could be interpreted as genetic non-additivity, and 
added to the revised estimate of A (A’ = A + 3C) to obtain 
an estimate of broad heritability. One solution to the prob-
lem of confounded parameters is to improve the research 
design to resolve them, for example by adding different types 
of relatives, such as half-siblings or adoptees or extended 
pedigrees (Truett et al. 1994). However, in the present case, 
many estimates of E are high (driven by relatively low MZ 
correlations) and would not decline by adding different types 
of relatives.

It is possible that the proportion of measurement error 
in some of the assessments is large; if it is, the test–retest 
correlations across waves should also be low, which is not 
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uniformly the case. Prior assessments of test–retest cor-
relations for the NIH Toolbox have been few but suggest 
highly stable measures (Gershon et al. 2014; Gershon et al. 
2013; Mungas et al. 2014). For instance, in validation test-
ing with children and adolescents (Zelazo et  al. 2013), 
the Flanker task showed excellent test–retest reliability 
(ICC = 0.92). For the RAVLT test–retest reliability is lower 
(r-values ~ 0.60–0.70; (van den Burg & Kingma 1999). The 
‘gold standard’ Matrix Reasoning measure has a retest cor-
relation of r = 0.78 for 9–10-year-old children based on the 
standardization sample (Wechsler 2014). For the Little Man 
task suitable reliability data seem not to exist, but test–retest 
correlations of EF appear to be in the 0.70–0.90 range (Beck 
et al. 2011). A recent report on longitudinal test–retest sta-
bility of individual differences in ABCD participants’ base-
line to year 2 data [Anokhin, (under review)] indicates that 
retest stability ranges from fair (Flanker test: r = 0.43) to 
excellent (Crystallized Intelligence composite: r = 0.82). 
ABCD’s observed stability estimates for the NIH TB are 
highly consistent with a three-year longitudinal study of NIH 
TB in youth aged 9 to 15 (Taylor et al. 2020).

Heritabilities of performance on the NIH Toolbox seem 
roughly on par with the results in adults (Pinto et al. 2020), 
where general aggregate cognition metrics showed herita-
bilities around 50%, with individual task or cognitive factor 
score heritabilities generally lower. The findings are consist-
ent with expectations for the composite measures of fluid 
and crystallized ability. However, when discrete tasks are 
examined, unexpected but intriguing patterns emerge, pri-
marily for measures of executive function such as inhibitory 
control. Studies reporting on the heritabilities of discrete 
executive functions, based on twin samples, are rare and 
usually based on small sample sizes.

Childhood psychopathology

For the CBCL parental ratings of their children’s behavior, 
and for teacher ratings of the children, the patterns of twin 
resemblance were largely as expected for our 9–10-year-olds 
at this baseline assessment. MZ correlations in all instances 
exceeded those of DZ pairs and did so to an extent con-
sistent with moderate heritability, some evidence of shared 
environmental influences for parental ratings, but no evi-
dence of shared environmental influences based on teacher 
ratings. For attention problems, heritability may be higher 
than for other behaviors, though multivariate analyses would 
be required to compare them statistically. The difference in 
variance components for ratings by parents and teachers may 
reflect rater effects, inflated shared environmental variance 
for parental ratings (Hewitt et al. 1992), or  that problem 
behavior is situation specific and less correlated for twins 
or siblings in the school situation than in the home (Haber-
stick et al. 2005, 2006). Furthermore, there may exist rater 

or sibling interaction effects on the Sociability, Aggression, 
and Externalizing scales. The univariate analyses of these 
ABCD Study® baseline assessments are consistent with the 
patterns of genetic and environmental influences on problem 
behaviors observed in the previous behavior genetic litera-
ture. The project will provide a robust basis for exploring the 
development of problem behavior in different situations. We 
have not yet addressed differences between boys and girls.

Physical and other traits

The heritability estimates for height, weight, and BMI 
were high to very high and in line with those from previous 
studies. However, rather than small shared environmental 
contributions to anthropometric measures, the negative esti-
mates for C suggested non-additive influences. For hormone 
levels, current heritability estimates appeared on par with 
previously reported estimates, and consistent with genetic 
influences explaining a significant proportion of the varia-
tion. Genetic factors associated with most of the variation 
in the items of the Sleep Disturbance Scale for Children, 
with heritability estimates higher than those reported on 
sleep characteristics in adolescence. For a number of meas-
ures, such as screen time, and various recreational activities 
such as listening to music and reading, the ABCD Study® 
is generating the first estimates of the role of genetic and 
environmental factors to the observed variation among 9- 
and 10-year-old twins.

Supplemental online resources

The supplemental online resources (https://​abcdt​winhub.​
shiny​apps.​io/​basel​ineTw​inRes​ults) include a searchable data 
dashboard that displays the twin model results for all tested 
baseline continuous variables. Users can adjust the output 
to display the twin correlations by zygosity and sex, and 
the standardized and unstandardized parameter estimates 
of the ACE model either for the full sample or by sex, or 
both. Due to the size of the data and a desire to minimize 
loading time, the results have been organized by research 
domain, which users can select at the top left of the screen 
in the section “Select a Variable Category”. The dashboard 
also hosts the figures from this manuscript and background 
content salient to the ABCD Study and twin methods. A link 
to three-dimensional visualizations of parameter estimates 
for brain regions can be viewed using either the Desikan-
Killiany or the Destrieux atlas at https://​schmi​ttje.​shiny​apps.​
io/​ABCD_​brain​viz (linked in the ABCD dashboard in the 
section entitled “3D Brain Images”). To launch the applica-
tion, users select the parameter and participant subset (i.e., 
all participants, males only, or females only) of interest, a 
brain atlas for plotting, and click “Render Plot”. A concise 
overview of the abbreviations is included as a reference 

https://abcdtwinhub.shinyapps.io/baselineTwinResults
https://abcdtwinhub.shinyapps.io/baselineTwinResults
https://schmittje.shinyapps.io/ABCD_brainviz
https://schmittje.shinyapps.io/ABCD_brainviz
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under “Additional Information”. Users should note that the 
Destrieux atlas takes considerably longer to render than the 
Desikan-Killiany atlas, owing to the greater level of detail 
in the former.

Future opportunities

These analyses of 14,500 variables using the twin study site 
ABCD data are only an initial exploration of the sources 
of variation in the 3.0 dataset. There is enormous potential 
for future analyses of many types. Within the twin sites’ 
data, sex or race/ethnicity and SES differences in means and 
sources of variation could be estimated, although the sample 
size is modest for comparison of variance components. Twin 
versus non-twin comparisons can be made, both within the 
four twin sites and across all sites. The fact that non-twins 
also are assessed at the four twin sites is another useful fea-
ture that will help to distinguish twin versus non-twin dif-
ferences from site effects.

The ABCD dataset contains around 50,000 additional 
variables—ordinal data or continuous measures taken as 
part of functional MRI tests—that are not discussed in this 
article. The ordinal data will be addressed in a future paper, 
using Bayesian methods to estimate site variance together 
with parameters of the variance components models used 
here. Indeed, reanalysis using the entire ABCD dataset 
promises to be interesting, since there appear to be some 
systematic differences between the population-based sam-
pling in twin sites and the school-based sampling used by the 
majority of ABCD Study sites. For example, the variance of 
height differs between twins and non-twins, such that a com-
bined analysis would yield a lower heritability estimate and 
some evidence of shared environmental factors. However, 
the optimal joint analysis of the twin site and non-twin site 
data has yet to be determined. While it is possible that lower 
estimates of genetic variance components better represent 
the population as a whole, the population-based sampling 
used by the four twin sites may provide a more accurate 
estimate of population variance.

Variance components of task-fMRI activations are not 
discussed in this article for two main reasons. First, we 
observed very low twin correlations for many of these meas-
ures, and preliminary analyses of the longitudinal data sug-
gest low test–retest reliability (Kennedy et al. 2022). The 
greater noise introduced by frequent incidence and more 
severe head motion in 9–10 year-old children will most cer-
tainly complicate modeling of variance components in task 
fMRI. A related limitation is the potential for segmenta-
tion errors in Freesurfer, shown to be increased in motion-
degraded structural scans (Reuter et al. 2015). It will be 
important to analyze change in variance components of 

structural MRI metrics with development in future releases 
controlling for likely reduction in head-motion as children 
age. Low correlations may also arise from contrast-based 
derived task fMRI data. When two traits’ variance com-
ponents correlate highly the genetic variance of the differ-
ence scores will be close to zero. Unfortunately, raw scores 
from which differences are derived are not included in the 
ABCD 3.0 data release. The Supplemental Online Resource 
includes analyses of all available continuous measures, 
including functional neuroimaging.

Perhaps most exciting is the potential for multivari-
ate analyses. A major part of the rationale for including 
the twin data is that they help to test hypotheses about 
direction of causation (Heath et al. 1993). Opportunities 
to evaluate the moderating effects of sex, race/ethnicity/
ancestry, SES and other potential covariates are abundant. 
This capability improves with both longitudinal assess-
ments and genetic marker data, both of which are integral 
parts of the ABCD Study®. The complexity and diversity 
of measures in ABCD will support not only brain-wide 
association scans but also genome-wide association stud-
ies once the genotype data is available. Moreover, as the 
breadth and depth of the longitudinal data increases, so 
too will opportunities to apply and develop new analytic 
approaches to characterize developmental trajectories, 
predict outcomes, and investigate the interplay of genetic, 
neurological, social, behavioral, and cognitive factors.
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