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Anti-myeloma efficacy of CAR-iNKT is enhanced with a long-acting
IL-7, rhIL-7-hyFc

Julie O’Neal,1,2 Matthew L. Cooper,1 Julie K. Ritchey,1 Susan Gladney,1 Jessica Niswonger,1 L. Sofía González,1 Emily Street,1

Gabriel J. Haas,1 Alun Carter,1 Parmeshwar N. Amayta,1 Feng Gao,3 Byung Ha Lee,4 Donghoon Choi,4 Melissa Berrien-Elliott,1,2

Alice Zhou,1,2 Todd A. Fehniger,1,2 Mike P. Rettig,1,2 and John F. DiPersio1,2

1Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO; 2Siteman Cancer Center, and 3Division of Public Health
Sciences, Department of Surgery, Washington University School of Medicine, Saint Louis, MO; and 4NeoImmuneTech, Inc, Rockville, MD

Key Points

• Human BCMA CAR-
iNKTs show in vivo
efficacy in a myeloma
xenograft model that
can be enhanced by a
long-acting IL-7, rhIL-7-
hyFc.

• CAR-iNKTs may have
lower CRS risk than
CAR-Ts.

Multiple myeloma (MM), a malignancy of mature plasma cells, remains incurable. B-cell

maturation antigen (BCMA) is the lead protein target for chimeric antigen receptor (CAR)

therapy because of its high expression in most MM, with limited expression in other cell types,

resulting in favorable on-target, off tumor toxicity. The response rate to autologous BCMA CAR-

T therapy is high; however, it is not curative and is associated with risks of cytokine release

syndrome (CRS) and immune effector cell–associated neurotoxicity syndrome. Outcomes in

patients treated with BCMA CAR-T cells (CAR-Ts) may improve with allogeneic CAR T-cell

therapy, which offer higher cell fitness and reduced time to treatment. However, to prevent the

risk of graft-versus-host disease (GVHD), allogenic BCMA CAR-Ts require genetic deletion of the

T-cell receptor (TCR), which has potential for unexpected functional or phenotype changes.

Invariant natural killer T cells (iNKTs) have an invariant TCR that does not cause GVHD and, as

a result, can be used in an allogeneic setting without the need for TCR gene editing. We

demonstrate significant anti-myeloma activity of BCMA CAR-iNKTs in a xenograft mouse model

of myeloma. We found that a long-acting interleukin-7 (IL-7), rhIL-7-hyFc, significantly

prolonged survival and reduced tumor burden in BCMA CAR-iNKT–treated mice in both

primary and re-challenge settings. Furthermore, in CRS in vitro assays, CAR-iNKTs induced less

IL-6 than CAR-Ts, suggesting a reduced likelihood of CAR-iNKT therapy to induce CRS in

patients. These data suggest that BCMA CAR-iNKTs are potentially a safer, effective alternative

to BCMA CAR-Ts and that BCMA CAR-iNKT efficacy is further potentiated with rhIL-7-hyFc.

Introduction

Multiple myeloma (MM), a malignancy of mature plasma cells, is the second most common blood cancer,
and although expanded treatment options have improved patient outcomes,1 it remains incurable. B-cell
maturation antigen (BCMA) is the lead immunotherapy target in MM because of high expression on
myeloma cells and limited expression on non-tumor cells (restricted to plasma and late B cells). Although
BCMA chimeric antigen receptor (CAR) T-cell response rates are high, it comes with risk of cytokine release
syndrome (CRS) and neurotoxicity, and the duration of response is limited.2-7 The reasons for the lack of
durable response by BCMA CAR-T-cell therapy are likely because of the immunosuppressive immune
environment in MM and/or reduced cell fitness of heavily pretreated lymphocytes for CAR T-cell generation
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and, therefore, activity/persistence of autologous CAR-T cells (CAR-
Ts). One strategy to improve durability is to treat with allogenic BCMA
CAR-T-cell therapy. The advantages of allogenic CAR-Ts are
improved cell fitness, streamlined logistics, reduced time to treatment
because of “off-the-shelf” production, and lower cost. However, allo-
genic CAR-Ts require genetic deletion of the endogenous T-cell
receptor (TCR) to prevent graft-versus-host disease (GVHD). An
alternative promising strategy for allogeneic CAR-Ts is to use non-αβ
T cells, including natural killer (NK), γδ T cells, or invariant natural killer
T cells (iNKTs), which do not require genetic deletion of their TCR to
prevent GVHD, alleviating concerns of potential negative impacts of
gene editing on the CAR-modified cellular product.

Unlike T cells, iNKTs express an invariant TCRα (Vα24-Jα18) chain
and thus, will not cause GVHD and, in mouse models, can even
mitigate GVHD.8,9 Although they make up <1% of peripheral blood
mononuclear cells (PBMCs), iNKTs can be extensively expanded
by stimulation with CD1d-expressing antigen-presenting cells in
the presence of the α-galactosyl ceramide glycolipid (αgc). When
engineered to express a CAR (CAR-iNKT), they demonstrate CAR-
mediated antitumor cytotoxicity.10-15 Furthermore, the iNKT TCR
can induce direct killing of CD1d-expressing tumor cells. Their
robust expansion, lack of GVHD potential, combined with both
TCR- and CAR-mediated killing make iNKTs an attractive off-the-
shelf alternative cellular therapy to CAR-T-cell therapy.

iNKTs express multiple cytokine receptors, including interleukin-7 (IL-
7),11,12 which is integral to the development and function of both NKT
and T cells.16 A recombinant human interlukin-7 (IL-7) with an
extended half-life (rhIL-7-hyFc; efineptakin α) significantly increased
expansion of T cells in patients with cancer and healthy volun-
teers.17,18 Our group demonstrated that mice with tumor engraftment
treated with CAR-Ts plus rhIL-7-hyFc had dramatic expansion of
CAR-Ts and significantly better tumor control than CAR-T–treated
mice.19 These studies provided rational for an ongoing clinical trial
combining rhIL-7-hyFc and CD19 CAR-Ts in patients with relapsed/
refractory large B-cell lymphoma (NCT05075603). Here, we show
anti-myeloma efficacy of BCMA CAR-iNKTs in an NSG/MM.1S
myeloma model. We show enhanced expansion and persistence of
BCMA CAR-iNKTs in mice with tumor engraftment that were also
treated with rhIL-7-hyFc, which led to significant reduction of tumor
burden and prolonged survival. In a model of CRS, through side-by-
side comparisons of CAR-Ts, CAR-iNKTs, and negative control
CAR memory-like (ML) NK cells, we found lower levels of secreted IL-
6 by CAR-iNKT and CAR-ML NK cells than that by CAR-Ts, sug-
gesting the possibility for reduced CRS potential of CAR-iNKTs.

Methods

CAR constructs

The CD1920 and BCMA (clone J22.xi) single-chain variable frag-
ment sequences (patent WO2014068079A1) were synthesized
(Genescripts) and cloned into PLV (Vector Builder) or PELNS
(kindly provided by Carl June, University of Pennsylvania) vectors.

Generation of CAR-iNKTs, CAR-Ts and CAR-ML NK

cells

iNKTs, T cells, NK cells, and monocytes were isolated using
leftover PBMC product from deidentified platelet donors (Barnes
Jewish Hospital) or Leukopacks (Miltenyi) and sorted using

anti-Vα24Jα18 (iNKTs), PAN-T, NK, or classical monocyte mag-
netic beads on an autoMACS (Miltenyi). Negative fraction cells
were irradiated (40 Gy) and incubated with 100 ng/mL αgc (Enzo)
for 1 hour. Two protocols were used to generate CAR-iNKTs with
similar results. Protocol 1: iNKTs were co-cultured with irradiated
PBMCs (10:1 ratio) and αgc on days 0, 5, or 6 and day ±18 of
iNKT culture in RPMI 1640 medium with 200 U/mL human IL-2
(Peprotech), 10% fetal bovine serum, Glutamax (Gibco), 50 mM
β-mercaptoethanol (Gibco), 1% penicillin/streptomycin, 1%
sodium pyruvate, and 2% N-2-hydroxyethylpiperazine-N′-2-
ethanesulfonic acid (all from Corning). iNKTs were transduced
(day +13) with lentivirus in the presence of 6 μg/mL polybrene
(Sigma) and centrifuged for 1.5 hours at 1000g. Protocol 2: iNKTs
were cocultured with irradiated PBMCs and αgc on days 0, 6,
and ±18, transduced on day +1 with 6 μg/mL polybrene, and
maintained in Optimizer media, serum replacement (Thermo
Fisher), and 200 U/mL human IL-2. CAR-Ts and CAR-ML NKs
were generated as previously described.20,21

Lentivirus production

Lentivirus was produced as previously described.21

CRS and killing assays

Monocytes were matured for 5 days into immature DCs (iDCs) by
culturing in RPMI, 10% human serum type AB (Gemini Bio), 2000
U/mL IL-4, and 2000 U/mL granulocyte-macrophage colony–
stimulating factor (GM-CSF; Peprotech). Effector cells were cocul-
tured with targets at a range of effector-to-target (E:T) ratios in
presence of iDCs for 48 hours. Luciferin (150 μg/μL) was added to
plates and imaged (AMI Imager; Spectral Instruments) to measure
photon flux. Medium from lowest E:T ratio that induced 100% killing
(most often 0.5:1 (25 000 effectors, 50 000 targets, and 5000
iDCs) was used to measure cytokines via enzyme-linked immuno-
sorbent assay (ELISA; R&D systems) or Luminex assays (Millipore-
Sigma) Killing assays were performed as above but without iDCs.

Flow cytometry

Antibodies: CD3 (UCHT1; BD Horizon), CD4 (RPA-T4; BD
Pharmingen), CD34 Pool (Beckman Coulter), anti-Jα18-vα24
(6B11; Miltenyi), and 7AAD (BD Pharmingen). Samples were run
on an Attune Cytometer and analyzed using FlowJo version 10
(TreeStar).

Animal model and in vivo efficacy

Animal protocols were compliant with Washington University
School of Medicine Animal Studies Committee regulations.
NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice, 6 to 10 weeks old,
were injected with 500 000 MM.1S-CG cells and treated with
CAR iNKTs (IV into tail veins). rhIL-7-hyFc (10 mg/kg; Neo-
ImmuneTech, Inc) was injected via subcutaneous injection on
days +1 and +14 after CAR-iNKT administration. Bioluminescent
imaging (BLI) was performed as previously described.22 Tumor
burden was described using mean and standard deviation at each
time point. Between-group differences and over-time changes
were assessed using a linear mixed model incorporating random
intercept and slope; time was centered at the median of mea-
surement days. Logarithmic transformation was performed to tumor
burden to satisfy the assumptions of normality distribution and
homogeneity of variance. All tests were 2-sided; significance was
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set at P = .05. Analyses were performed using SAS 9.4 (SAS
Institutes). Significant differences in survival were determined using
Mantel-Cox analysis.

Results

BCMA CAR-iNKT demonstrates anti-myeloma activity

in vitro and in vivo

To assess the efficacy of BCMA CAR-iNKT, we first used the same
CAR construct that showed anti-myeloma activity in our BCMA
CAR T-cell experiments (supplemental Figure 1).21 This construct
is driven by the EF-1α promoter and is composed of the single-
chain variable fragment, a CD8 hinge, a CD28 transmembrane
domain, CD28 and 4-1BB costimulatory domains, and the CD3ζ
signaling domain. A P2A self-cleaving peptide followed by a trun-
cated human CD34 protein enables detection and purification of
CAR-expressing cells.

To generate BCMA CAR-iNKTs, we co-cultured iNKT with irradi-
ated PBMCs in the presence of αgc and transduced these cells
with lentivirus encoding the BCMA CAR construct. Flow cytometry
was used to confirm iNKT purity, quantify CAR+ cells before and
after sorting (when applicable), and assess CD4 distribution
(Figure 1B). BCMA CAR-Ts were generated from T cells isolated
from the same healthy donor. BCMA-expressing MM.1S or OPM2
(modified to express a click beetle red luciferase–green fluorescent
protein fusion protein; MM.1S-CG; OPM2-CG) target cells were
co-cultured with BCMA CAR-Ts or BCMA CAR-iNKTs at various
E:T ratios; 48 hours later, killing was assessed by using BLI. Both
BCMA CAR-Ts and BCMA CAR-iNKTs efficiently killed MM.1S-
CG and OPM2-CG tumor cells, whereas nontransduced (NTD)
effectors cells did not (Figure 1C).

Next, we sought to test in vivo efficacy of BCMA CAR-iNKTs. To
this end, NSG mice were injected i.v. with 0.5 × 106 MM.1S-CG
cells, and 18 days later (BLI signal of 3 × 108), they were
treated with 10 × 106 BCMA CAR-iNKTs, 2 × 106 BCMA CAR-
iNKTs, or control CD19 CAR -iNKTs (Figure 1D). We chose the
10 × 106 dose to match published reports12,14 and the 2 × 106

dose to match our BCMA CAR-T-cell studies (supplemental
Figure 1).21 There was a significant survival benefit and reduction
of tumor burden assessed based on longitudinal BLI in mice
treated with either dose of BCMA CAR-iNKTs compared with that
in untreated or CD19 CAR-iNKT–treated negative controls
(Figure 1E-G). CAR-iNKT expansion was evaluated by measuring
CAR-iNKTs in the peripheral blood using flow cytometry. We found
low but detectable levels of circulating CAR-iNKTs at day +6 after
CAR treatment, with a return to low/undetectable levels by days 13
and 28 after CAR treatment (Figure 1H, not shown). A repeat
experiment using cells from a separate healthy donor at the 2 × 106

dose showed similar results (Figure 1I-J). Together, these data
demonstrate the antimyeloma activity of BCMA CAR-iNKTs.

rhIL-7-hyFc enhanced expansion, persistence, and

tumor efficacy of BCMA CAR-iNKTs

Although we saw significant antitumor efficacy of BCMA CAR-
iNKTs, we observed transient, low levels of circulating CAR-
iNKTs after injection. We predicted that improved expansion of
BCMA CAR -iNKTs would lead to better in vivo tumor cytotoxicity.
Our group previously showed that administration of a long-acting

IL-7, rhIL-7-hyFc, increased the persistence and expansion of
CAR-Ts, leading to higher antitumor efficacy.23 Because iNKTs
also express the IL-7 receptor (supplemental Figure 2),11,12 we
hypothesized that CAR-iNKTs would also show enhanced expan-
sion/persistence and efficacy when combined with rhIL-7-hyFc. To
test this, we injected NSG mice with 0.5 × 106 MM.1S-CG (day 0),
and when tumor burden was established (BLI signal of 108; day
23), we treated mice with 10 × 106 BCMA CAR-iNKTs plus rhIL-7-
hyFc or vehicle control (Figure 2A). BCMA CAR-iNKT (+ vehicle)–
treated mice had significantly increased survival compared with
CD19 CAR-iNKT negative controls (P < .001), and reduced tumor
burden, compared with untreated or CD19 CAR-iNKT negative
controls; however, durability of the response was limited
(Figure 2B-D). BCMA CAR-iNKT + rhIL-7-hyFc–treated mice had
significantly longer survival than BCMA CAR-iNKT–treated mice
(P = .04) that had not reached median survival by day 200 and had
significantly reduced tumor burden (P = .028) compared with
BCMA CAR-iNKT + vehicle–treated mice (Figure 2D). Of the 10
BCMA CAR-iNKT + rhIL-7-hyFc–treated mice, 7 had no detect-
able tumor on day 200 (Figure 2C). These data demonstrate that
mice treated with BCMA CAR-iNKT + rhIL-7-hyFc had improved
anti-tumor activity and survival in a mouse model of myeloma.

To test our hypothesis that the improved efficacy of BCMA CAR-
iNKT by rhIL-7-hyFc was due to increased expansion and survival
of CAR-iNKTs, mice were subjected to bleeding longitudinally, and
flow cytometry was used to quantitate CAR-Ts (Figure 2E). One
week after injection of CAR-iNKTs (day 30), similar levels of CAR+

cells were found in BCMA CAR-iNKT – and BCMA CAR-iNKT +
rhIL-7-hyFc–treated mice. In vehicle-treated mice, we detected very
few BCMA CAR+ cells at the second time point, and undetectable
levels at the third time point. In contrast, rhIL-7-hyFc treatment
induced expansion of BCMA CAR-iNKTs to a higher degree on day
38 that was even more pronounced on day 63. These data suggest
that BCMA CAR-iNKTs expanded early and then contracted,
whereas rhIL-7-hyFc treatment prolonged and amplified expansion
of BCMA CAR-iNKTs in vivo.

In addition, we tested whether rhIL-7-hyFc enhanced the efficacy of
a second-generation BCMA CAR cells with a 4-1BB costimulatory
domain and driven by the MPSV LTR, NCR deleted, and d/587
PBS(MND) promoter 24(M-BB BCMA; Figure 2F), which are used
clinically for MM.5,25,26 NSG mice were engrafted with 0.5 × 106

MM.1S-CG, and 17 days later (BLI signal of 3 × 107), mice were
treated with 10 × 106 M-BB BCMA CAR-iNKTs + rhIL-7-hyFc or
vehicle. Mice treated with M-BB BCMA CAR-iNKTs (+ vehicle) had
significantly longer survival than mice treated with NTD iNKT (+
vehicle) (P = .002; Figure 2G). Survival was significantly improved
in mice treated with M-BB BCMA CAR-iNKTs + rhIL-7-hyFc
(median survival: M-BB BCMA CAR-iNKT, 80 days; M-BB
BCMA CAR-iNKT + rhIL-7-hyFc, not reached; P = .03). We also
observed significant reduction of tumor burden in mice treated with
M-BB BCMA CAR-iNKTs + rhIL-7-hyFc compared with mice
treated with M-BB BCMA CAR-iNKTs (P < .001; Figure 2H-I).
When given alone, hIL-7-hyFc had no direct anti-tumor activity,
confirming that the agent’s activity was directed at iNKTs
(Figure 2B; data not shown; multiple experiments).

We tracked exogenously administered effector cells in vivo and
observed a small expansion of M-BB BCMA CAR-iNKTs early
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(day +6 CAR) that was reduced a week later, similar to that in our
prior experiment (Figure 2E). Mice treated with M-BB BCMA CAR-
iNKT + rhIL-7-hyFc showed higher expansion and persistence of
CAR-iNKTs on days 52, 66, and 80 after MM.1S-CG injection
(Figure 2J). Our negative control cells were NTD, so we additionally
tracked the expansion of total iNKTs, which showed similar trends
(supplemental Figure 3). In addition to the expansion of CAR+ cells in
both experiments, we observed expansion of negative control iNKTs in
rhIL-7-hyFc–treated mice (Figure 2E, J; supplemental Figure 3).
Together, these data demonstrate enhanced anti-myeloma activity by
rhIL-7-hyFc due to increased expansion and persistence of BCMA
CAR-iNKTs with 2 different BCMA CAR constructs.

rhIL-7-hyFc enhances re-expansion and anti-

myeloma efficacy of BCMA CAR-iNKTs in vivo

To evaluate the duration of BCMA CAR-iNKT function, we sub-
jected the 7 living, tumor-free mice that were treated with BCMA
CAR-iNKTs + rhIL-7-hyFc (in the experiment described earlier in
Figure 2C) to re-challenge with 0.5 × 106 MM.1S-CG cells. To test
our hypothesis that rhIL-7-hyFc would improve the efficacy of
BCMA CAR-iNKTs in the tumor challenge setting, mice were
treated with vehicle (n = 3) or a second course of rhIL-7-hyFc (n =
4). As a control, 5 NSG mice were injected with 5 × 105

MM.1S-CG cells and received no treatment. Vehicle-treated, re-
challenged mice showed a modest reduction of tumor burden
(Figure 3A-B) and a trend toward survival benefit compared with
NSG controls (Figure 3C). These results suggest some persis-
tence of functional long-lived BCMA CAR-iNKTs in vivo at the time
of re-challenge in mice treated with BCMA CAR-iNKTs + rhIL-7-
hyFc. Moreover, mice treated with BCMA CAR-INKT + rhIL-7-
hyFc and then treated again with rhIL-7-hyFc at the time of tumor
re-challenge had a significant survival benefit (compared with
control NSG treated mice; P = .006; Figure 3A-C) and improved
tumor control compared with vehicle-treated mice.

To test our hypothesis that the enhanced cytotoxicity of re-
challenge MM.1S-CG tumor cells was due to the expansion of
BCMA CAR-iNKTs by rhIL-7-hyFc, we quantitated circulating
BCMA CAR-iNKTs. Vehicle-treated mice showed few BCMA
CAR-iNKTs, consistent with the more limited anti-tumor response
during re-challenge (Figure 3D). Although the kinetics were vari-
able, 3 of 4 mice had dramatic re-expansion of BCMA CAR-iNKTs
in the blood after re-treatment with rhIL-7-hyFc (Figure 3D). These
data suggest that BCMA CAR-iNKTs can persist long term in vivo,
retain anti-tumor function, and that rhIL-7-hyFc can re-expand long-
lived BCMA CAR-iNKTs and improve outcomes in the setting of
tumor re-challenge.

CAR-iNKTs may have lower CRS potential compared

with CAR-Ts

A major safety concern of CAR-Tcell therapy is severe (grade 3-4)
CRS and neurotoxicity, which occurs in 15% and 18% of patients
treated with BCMA CAR-Ts, respectively.27 It is currently unknown
whether BCMA CAR-iNKTs will induce CRS in patients with
myeloma, so we tested this using an in vitro model developed in our
laboratory (Figure 4A). To assess CRS, BLI killing assays are
performed by co-culturing effector and target cells but in the
presence of monocytes that have been differentiated into iDCs. In
the presence of tumor cytotoxic CRS−inducing effector cells, iDCs
secrete IL-6. Quantitation of IL-6 levels in the media is used as a
measure of potential CRS.

NK cell therapies do not cause CRS,28 shown in multiple clinical trials
with ML-NK cells,29-31 and a trial using cord blood–derived CD19
CAR-NK cells.32 We, therefore, used CAR-ML NK cells that specif-
ically kill CAR-antigen–positive targets33 as a key clinical negative
control for CRS in vitro experiments. Because CAR-ML NK cells have
optimal CAR expression and signaling using the MND promoter with a
4-1BB costimulatory domain,33 we used the M-BB BCMA CAR for
these studies. We isolated monocytes, T cells, iNKTs, and ML NK
cells from the same donor to remove donor-to-donor variability within
each experiment and performed assays to directly compare the CRS
potential of M-BB-BCMA CAR-Ts, M-BB-BCMA CAR-iNKTs, and M-
BB-BCMA CAR-ML NK cells using MM.1S-CG target cells. We
found efficient killing by all 3 effector cell types and highest secreted
IL-6 induced by M-BB BCMA CAR-Ts compared with M-BB BCMA
CAR-iNKTs and M-BB BCMA CAR-ML NK cells in 2 separate
experiments (Figure 4B-C). To extend these results, we directly
compared the CRS potential of M-BB BCMA CAR-Ts and MND
BCMA CAR-iNKTs isolated from 3 other matched donors (Figure 4D)
and observed similar trends, that is, the CAR-Ts induced higher IL-6
secretion than CAR-iNKTs.

In addition to testing the M-BB BCMA CAR, we assessed the original
BCMA CAR construct (EF-1α BCMA-CD28-41BB) by comparing
BCMACAR-Ts and BCMACAR-iNKTs in CRS assays using MM.1S-
CG targets from 3 separate donors (matched; Figure 4E) or OPM2-
CG targets (2 matched donors; Figure 4F). BCMA CAR-Ts induced
higher levels of IL-6 compared with BCMA CAR-iNKTs. To confirm
that these results were not specific to BCMA, we ran CRS assays
using CD19 CAR-Ts and CD19 CAR-iNKTs (EF-1α-CD19-CD28 4-
1BB) and NALM-CG (CD19+) targets and, again, found that CAR-Ts
induced higher IL-6 secretion than CAR-iNKTs (Figure 4G). Further-
more, we measured levels of secreted GM-CSF, also implicated in
CRS,34 and found mostly lower levels induced by CAR-iNKTs

Figure 1. BCMA CAR-iNKTs demonstrate anti-myeloma activity in vitro and in vivo. (A) Constructs. Third-generation CARs comprised the single-chain variable fragment

(scFv), a CD8 hinge, a CD28 transmembrane domain, CD28 and 4-1BB intracellular domains, and a CD3ζ chain. The extracellular domain of human CD34 protein (trCD34)

after a P2A peptide was incorporated into the construct to enable detection of CAR+ T cells and purification of CAR+ cells for use in functional assays. (B) Flow cytometry

showing iNKT purity, CAR+ cell levels, and CD4 distribution. Transduction efficiency before cell sorting was 10% BCMA CAR-iNKTs and 15% CD19 CAR-iNKTs. Data shown are

the cells used in panels D to G. (C) BLI-based killing assay of MM.1S-CG and OPM2-CG targets by BCMA CAR-Ts and BCMA CAR-iNKTs 48 hours after coculture. (D) In vivo

schema. (E) Kaplan-Meier survival analysis. (F) Normalized BLI images of mice. The asterisk denotes a mouse treated with BCMA CAR-iNKTs (10 × 106) that had low

tumor burden but was euthanized because of suffering from a likely neck injury/ataxia. (G) Quantitation of tumor burden over time using BLI. (H) Flow cytometry of mouse blood

was used to quantitate the absolute number of CAR-iNKTs per μL blood on day 24 (day 6 after BCMA CAR-iNKT administration) and day 31 after MM.1S-CG engraftment (day

13 after BCMA CAR-iNKT treatment). (I) Kaplan-Meier survival curve of a repeat experiment with mice treated with 2 × 106 BCMA CAR-iNKTs or controls. (J) Quantitation of

tumor burden over time using BLI. P values for BLI were comparisons of either CD19 CAR-iNKTs or NTD iNKTs with BCMA CAR-iNKTs. TMD, transmembrane domain.
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Figure 2. Anti-tumor efficacy of BCMA CAR-iNKTs is enhanced with rhIL-7-hyFc. (A) In vivo schema. Actively growing BCMA CAR-Ts, CD19 CAR-Ts, BCMA

CAR-iNKTs and CD19 CAR-iNKTs were used in this experiment. rhIL-7-hyFc (10 mg/kg; NeoImmuneTech, Inc) was injected subcutaneously on days +1 and +14 after CAR-iNKT

administration. (B) Kaplan-Meier survival curve. (C) Normalized longitudinal BLI images. (D) Quantitation of photon flux. (E) Absolute number of CAR-iNKTs per μL blood. Because
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compared with that by CAR-Ts, albeit with some variability
(supplemental Figure 5). Although there was some variability of
absolute IL-6 levels across donors, together, these data suggest lower
CRS potential of CAR iNKTs than that of CAR-Ts, assessed using 2
separate BCMA CAR designs and a CD19 CAR.

To determine whether rhIL-7-hyFc affected IL-6 levels in our CRS
assays, we added 1000 ng/mL rhIL-7-hyFc or vehicle into CRS
assays using BCMA CAR-T and BCMA CAR-iNKT effectors and
MM.1S-CG targets. We found that rhIL-7-hyFc did not negatively
affect cytotoxicity or IL-6 levels (Figure 4H).

INF-γ, TNF, and IL-2 secreted by BCMA CAR-Ts

compared with BCMA CAR-iNKTs and BCMA CAR-ML

NK cells

Next, we compared effector cytokine secretion induced by BCMA
CAR-Ts, CAR-iNKTs, and CAR-ML NK cells (all donor matched;

M-BB BCMA CAR). To this end, we harvested media from killing
assays shown in Figure 4 and quantitated secreted interferon γ
(INF-γ), tumor necrosis factor (TNF), and IL-2. M-BB BCMA
CAR-Ts secreted the highest levels of all 3 cytokines (donor 5) and
highest IL-2 levels (donor 6). M-BB BCMA CAR-Ts and CAR-
iNKTs secreted similar levels of TNF and INF-γ (donor 6), whereas
M-BB BCMA CAR-ML NK cells showed the lowest levels of
secreted cytokines (Figure 5A-B). To expand these results, we
compared levels of effector cytokine secretion by BCMA CAR-Ts
and BCMA CAR-iNKTs in our CRS assay using effector cells
generated from 2 other separate, matched donors and either
MM.1S-CG or OPM2-CG target cells. Although total cytokine
levels showed some variability, in most studies shown, BCMA
CAR-Ts induced higher levels of all 3 cytokines compared with
BCMA CAR-iNKTs (Figure 5C). We also saw no major changes of
effector cytokines by rhIL-7-hyFc in these short-term assays
(Figure 5D).
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was expanded and confirmed that all CD4+ cells were Vα24-Jα18+. (F) In vivo schema. Previously expanded and cryopreserved NTD and M-BB BCMA CAR-iNKTs were
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The mechanisms of CRS are not completely defined. We
hypothesized that the difference in effector cytokine levels may
partly be responsible for the differences in IL-6 production in our
CRS assay. Because INF-γ is implicated in CRS,35 we tested
whether adding recombinant INF-γ to CRS assays would lead to
increased IL-6. We found no increase in IL-6 when INF-γ was
added, suggesting exogenous INF-γ alone was not sufficient to
induce IL-6 secretion by iDCs in this assay (supplemental
Figure 4). We ran similar assays testing addition of TNF or IL-2,
and found no significant increase of IL-6 by either CAR-Ts or
CAR-iNKTs nor any effects on killing efficiency (supplemental
Figure 4). These results suggest that the overall cytokine milieu
and/or direct cell-to-cell interactions both likely contribute to
mechanisms of CRS.

Discussion

Here, we demonstrate anti-myeloma activity of BCMA CAR-iNKTs,
a natural off-the-shelf cell source, in a xenograft mouse model of
myeloma. We found that mice treated with BCMA CAR-iNKTs +
rhIL-7-hyFc had enhanced expansion and persistence of BCMA
CAR-iNKTs compared with mice treated with BCMA CAR-iNKTs
alone, leading to superior tumor control. We also found that CAR
iNKTs may have a lower risk of CRS compared with CAR-Ts.

We first demonstrated anti-myeloma activity of BCMA CAR-iNKTs
using 2 treatment doses. We used 2 × 106 per mouse to match
typical preclinical doses of CAR-Ts21 and 10 × 106 per mouse to
match the few published CAR-iNKT studies.12,14 At the 2 × 106

dose, we observed anti-myeloma efficacy; however, it was inferior
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Figure 3. rhIL-7-hyFc enhances re-expansion and anti-myeloma efficacy of BCMA CAR-iNKTs in vivo. (A) The 7 rhIL-7-hyFc–treated tumor-free mice at the end of the

experiment shown in Figure 2C (BCMA+ rh-IL7-hyFc) were subjected to re-challenge with MM.1S-CG cells and treated with vehicle or again with hIL-7-hyFc (10 mg/kg
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(C) Kaplan-Meier survival analysis. (D) Absolute numbers of BCMA CAR-iNKTs per μL blood (CD45 CD3 Vα24-Jα18 CD34) in re-challenged mice.
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to 2 × 106 CAR-Ts (Figures 1-2; supplement Figure 1), suggesting
that in our model, the potency of CAR-iNKTs was inferior. Because
MM1S-CG cells are not CD1d+, our studies specifically assessed
CAR-dependent anti-myeloma activity but not the contribution of the
invariant TCR, which we, and others, have shown to mediate direct
killing of CD1d+ tumor targets (supplemental Figure 6).14 These
studies demonstrate that the CD1d-TCR axis is functional in CAR
iNKTs, and although CD1d is not universally expressed on human
myeloma cells,36 in human patients BCMA CAR-iNKTs are pre-
dicted to kill heterogenous tumor populations expressing BCMA
and/or CD1d proteins. That, combined with the ability of iNKTs to
promote antitumor activity of T cells and NK cells37 and studies
showing higher efficacy of CAR-iNKTs in allogeneic settings,38

predicts the efficacy of CAR-iNKT activity in human patients.

To enhance CAR-iNKT efficacy, we tested our prediction that long-
acting IL-7 would increase the expansion/persistence of CAR-iNKT
and, therefore, tumor control. We saw a modest expansion of
BCMA CAR-iNKTs with or without rhIL-7-hyFc that contracted by
2 weeks. In contrast, rhIL-7-hyFc induced a second, delayed
expansion of BCMA CAR-iNKTs, responsible for the longer-term
tumor control. The resultant persisting BCMA CAR-iNKTs better
controlled MM1S-CG tumor in a re-challenge setting, when mice
were treated with rhIL-7-hyFc again. Donor variability is a known

property of iNKTs,8 affecting in vitro expansion and immunophe-
notype. CD4 distribution on iNKTs is typically a mix of CD4− and
CD4+ cells, or a mostly CD4+ cell population. The immunophe-
notype of the CAR-iNKTs that responded to rhIL-7-hyFc in vivo was
100% CD4+; 63% CD62L+ (Figure 2A-E), and 100% CD4+ and
62% CD62L+ (Figure 2F-J). CD4+ and/or CD62L+ CAR- iNKTs
are reported to have better in vivo persistence, cytolytic activity,
and higher IL-7R+ expression12,39 and may explain why we
observed a response to rhIL-7-hyFc. Future experiments aimed at
characterizing the immunophenotype and cytokine secretion of
CAR-iNKTs before and after rhIL-7-HyFc will clarify mechanisms of
response of iNKT subsets to IL-7 as will studies testing the effects
in immunophenotypic-sorted iNKT subsets. Prior studies showed
higher efficacy of CAR-iNKTs in allogeneic mouse models
compared with that in autologous models because of CAR-iNKT
interactions with host dendritic cells (DCs) and CD8 T cells
contributing to sustained tumor control.38 rhIL-7-hyFc, in this
setting, would enhance CAR-iNKT expansion/persistence and also
expand host T cells, which may potentiate these indirect effects of
CAR-iNKTs on the host immune system.

Although iNKT do not cause GVHD, similar to other allogeneic
products (eg, CAR-Tand stem cell transplantation), methods to
prevent rejection of CAR-iNKTs by the host immune system, such
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Figure 5. High effector cytokine secretion by BCMA CAR-Ts compared with that by BCMA CAR-iNKTs and BCMA CAR-ML NK cells. (A) Media from CRS assays

shown in Figure 4A was used to measure INF-γ, TNF, and IL-2 effector cytokines. Direct comparison of M-BB BCMA CAR-Ts, CAR-ML NK cells, and CAR-iNKTs (1:1 E:T ratio).

(B) A similar experiment shown in panel A from separate donor (0.5:1 E:T ratio) and from the experiment shown in Figure 4B. (C) Effector cytokines secretion in CRS assays from

2 separate donors and either MM.1S-CG or OPM2-CG target cells. Media obtained from the CRS assay shown in Figure 4D-E. (D) rhIL-7-hyFc (1000 ng/mL) was added to

standard CRS assays, and effector cytokine levels were measured.
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as lymphodepletion with fludarabine and cyclophosphamide, are
essential. The first clinical trial testing allogeneic CD19–specific
CAR-iNKTs (NCT03774654) uses fludarabine/cyclophosphamide
conditioning plus short interfering RNA–mediated reduction of
β2M (HLA class I) and CD74 (HLA class II) to prevent rejection.
Treatment with IL-7 potentially adds a layer of complexity to allo-
geneic CAR-iNKTs. The NSG model represents aspects of the
lymphodepletion setting in which competition from normal lym-
phocytes would be minimal. However, because IL-7 accelerates
immune reconstitution, this could increase host rejection of CAR
iNKTs and may lower IL-7–mediated expansion of CAR-iNKTs via
competition for IL-7. A prior study by our group23 showed that rhIL-
7-hyFc enhanced CAR-T cell expansion in immunodeficient and
immunocompetent models, but expansion levels were tempered in
the immunocompetent model, presumably because of competition
for rhIL-7-hyFc by endogenous T cells. Testing CAR-iNKTs + rhIL-
7-hyFc in immunocompetent tumor models with lymphodepletion
will be useful for clarifying protocols moving forward.

Our CRS model consistently demonstrated highest IL-6 induced by
CAR-Ts40 and lowest/no IL-6 secretion by NK cell–derived CAR
cells, known clinically to not cause CRS in humans.28-31 We
recognize further studies are needed to assess the correlation of
our model to clinical CRS. We found that CAR-iNKTs induced
intermediate IL-6 levels that were consistently lower than those
induced by CAR-Ts, suggestive of the possibility for reduced
incidence and/or severity of CRS by CAR-iNKTs. Importantly, rhIL-
7-hyFc had no major effect on IL-6, GM-CSF, or other cytokines
tested in our CRS model (Figure 4). In an ongoing trial, GD2 CAR
iNKTs has so far not caused CRS,10 and in another study
(NCT03774654), grade 1 CRS occurred in 1 of 5 patients.41

Together, we demonstrate anti-myeloma activity of BCMA-
targeted CAR-iNKTs that was enhanced by rhIL-7-hyFc, suggest-
ing rationale for the development of BCMA CAR-iNKTs combined
with rhIL-7-hyFc for the treatment of MM.
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