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Key Points

• This first multicenter
trial of MAC haplo-
BMT with PTCy in
pediatric patients with
acute leukemias
ahowed 0% TRM and
0% grade 3 or 4
aGVHD.

• Our study shows low
CuIs of grade 2
aGVHD and moderate-
to-severe cGVHD and
similar relapse rates as
those of matched-
donor BMT.

Promising results have been reported for adult patients with high-risk hematologic

malignancies undergoing haploidentical bone marrow transplant (haploBMT) with

posttransplant cyclophosphamide (PTCy). To our knowledge, we report results from the

first multicenter trial for pediatric and young adult patients with high-risk acute leukemias

and myelodysplastic syndrome (MDS) in the Pediatric Transplantation and Cellular Therapy

Consortium. Nine centers performed transplants in 32 patients having acute leukemias or

MDS, with myeloablative conditioning (MAC), haploBMT with PTCy, mycophenolate mofetil,

and tacrolimus. The median patient age was 12 years. Diagnoses included AML (15), ALL

(11), mixed-lineage leukemia (1), and MDS (5). Transplant-related mortality (TRM) at 180

days was 0%. The cumulative incidence (CuI) of grade 2 acute graft-versus-host disease

(aGVHD) on day 100 was 13%. No patients developed grades 3-4 aGVHD. The CuI of

moderate-to-severe chronic GVHD (cGVHD) at 1 year was 4%. Donor engraftment occurred

in 27 patients (84%). Primary graft failures included 3 patients who received suboptimal

bone marrow grafts; all successfully engrafted after second transplants. The CuI of relapse

at 1 year was 32%, with more relapse among patients MRD positive pre-BMT vs MRD

negative. Overall survival rates at 1 and 2 years were 77% and 73%, and event-free survival

rate at 1 and 2 years were 68% and 64%. There was no TRM or severe aGVHD, low cGVHD,

and favorable relapse and survival rates. This successful pilot trial has led to a phase 3 trial

comparing MAC haploBMT vs HLA-matched unrelated donor BMT in the Children’s

Oncology Group. This trial was registered at www.clinicaltrials.gov as #NCT02120157.

Submitted 24 March 2023; accepted 8 May 2023; prepublished online on Blood
Advances First Edition 31 May 2023; final version published online 26 September
2023. https://doi.org/10.1182/bloodadvances.2023010281.

Deidentified individual participant data that underlie the reported results will be made
available 3 months after publication for a period of 5 years after the publication date on
the Pediatric Transplantation and Cellular Therapy Consortium website (theptctc.org).

The study protocol is available at https://www.theptctc.org/pastprotocols.

Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use
with attribution. All other rights reserved.
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Introduction

HLA-haploidentical bone marrow transplant (haplo-BMT) has
increased significantly in the past decade with the development of
novel methods to control powerful allogeneic reactions generated
in the HLA-mismatched setting. With the success of posttransplant
cyclophosphamide1-11 (PTCy) and other novel graft-versus-host
disease (GVHD) prophylaxis strategies12-16 in allowing for safe
and effective mismatched donor transplants, almost everyone in
need now has a donor option. Worldwide, studies primarily in adult
patients with hematologic malignancy have shown that related
haplo-BMT with PTCy provides results similar to those seen with
both matched related17-20 and matched unrelated donors21-25

(MUDs). Haplo-BMT with PTCy is an affordable option readily
adaptable to clinical settings around the globe and has helped fill
the donor availability gap for racial and ethnic minorities. In addition,
the incidence of donor-derived malignancies is not higher with
PTCy than without it,26 and there is no increased risk of Epstein-
Barr virus (EBV) posttransplant lymphoproliferative disease.26,27

Although haplo-BMT with PTCy has gained traction for pediatric
patients with leukemia, particularly in single-center studies,28-37

there is a paucity of prospective, multicenter trial data. As such,
enthusiasm for using haploBMT with PTCy in younger patients lags
behind our adult colleagues.

Much of the available literature on using haplo-BMT with PTCy for
adult hematologic malignancies is in the context of reduced-
intensity conditioning or nonmyeloablative (NMA) conditioning
regimens. In contrast, those performing pediatric BMTs generally
use myeloablative conditioning (MAC), with full-dose total-body
irradiation (TBI)-based conditioning for acute lymphoblastic leuke-
mia (ALL) and chemotherapy-based conditioning for acute myeloid
leukemia (AML). Potential differences in disease biology and graft
source (peripheral blood vs bone marrow) add additional concern
that data of adult haplo-BMT with PTCy are not directly translatable
to pediatric hematologic malignancies.

Herein, to our knowledge, we report the results of the first pro-
spective international multicenter consortium pilot trial of haplo-
BMT with PTCy, using MAC in children, and adolescents and
young adults (AYAs) with high-risk hematologic malignancies.

Methods

Study design

This was a Pediatric Transplantation and Cellular Therapy Con-
sortium international, phase 2, single-arm, prospective clinical trial
(#NCT02120157) using MAC T-cell–replete haplo-BMT with
PTCy in children and AYA with high-risk leukemias. The study
protocol was approved by the institutional review board at each
participating center and by the Johns Hopkins Medicine Institu-
tional Review Board. Written informed consent for all patients was
obtained in accordance with the Declaration of Helsinki before the
initiation of conditioning therapy. The primary objective was
transplant-related mortality (TRM) at 180 days (TRM180), with the
hypothesis that TRM180 would be <17%. Secondary end points
included donor engraftment, time to platelet and neutrophil
recovery, acute GVHD (aGVHD), chronic GVHD (cGVHD), event-
free survival (EFS), overall survival (OS), and GVHD relapse–free
survival (GRFS).

A total of 32 patients were enrolled in this pilot trial between July
2015 and November 2017. Patients aged between 6 months and
25 years with high-risk leukemia, as previously defined within the
Children’s Oncology Group trials, in complete remission (defined
as morphology with <5% blasts and no morphological character-
istics of acute leukemia in a bone marrow with >20% cellularity), or
with myelodysplastic syndrome (MDS) and without an HLA-
matched sibling donor were eligible. Additional inclusion criteria
included left ventricular ejection fraction >50%; for patients
receiving a nonTBI regimen, a forced expiratory volume in 1 second
and forced vital capacity ≥50% of predicted and for patients
receiving a TBI-based preparative regimen, ≥60%; total bilirubin
level <2 mg/dL, alanine aminotransferase or aspartate amino-
transferase levels <3 × the laboratory upper limits of normal, and
creatinine clearance >60 mL/min; and no evidence of anti–donor
HLA antibodies. Grade 3 to 5 adverse events (AEs) possibly,
probably, or definitely related to PTCy were collected, as were
grade 3 to 5 infections, serious AEs, and unanticipated grade 3 to
5 events.

Transplant platforms

All patients received a MAC regimen with busulfan/cyclophos-
phamide (Bu/Cy), except those with ALL who received a Cy/TBI
preparative regimen. For the patients receiving Bu/Cy (Figure 1A),
Bu was given every 6 hours for 4 consecutive days, followed by Cy
at 50 mg/kg per day for 2 successive days. Bu dosing was started
at either 0.8 mg/kg per dose, 32 mg/m2 per dose, or 1.1 mg/kg per
dose IV, in accordance with the age and weight guidelines. Dosing
was adjusted for the fifth and subsequent doses based on
measured pharmacokinetic variables to achieve a targeted area
under the concentration curve from 800 to 1400 mmol × min/L
(~53-92 mg × h/L). Seizure prophylaxis with levetiracetam was
administered for all patients receiving Bu aged >10 years. For the
patients receiving Cy/TBI (Figure 1B), Cy 50 mg/kg per day was
given for 2 consecutive days followed by TBI, with a total dose of
1200 cGy (either 200 cGy twice a day for 3 days beginning on
day −3 or 150 cGy twice a day for 4 days starting on day −4). On
day 0, patients received unmanipulated bone marrow at least 24
hours after the last dose of Cy. Allografts comprised unmanipulated
bone marrow from an HLA-haploidentical (matched for at least 1
allele each of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1)
first-degree relative (full or half sibling, parent, or child), with a
targeted dose of 4 × 108 marrow total nucleated cells per kilogram
(TNC/kg) of recipient ideal body weight (IBW) and a recom-
mended minimum yield of 2.5 × 108 marrow TNC/kg of recipient
IBW. All patients received Cy 50 mg/kg per day on posttransplant
days 3 and 4 (on day 3, Cy was given 60-72 hours after the start of
bone marrow infusion). Mesna was administered with high-dose Cy
at >80% of Cy dosing, per institutional standards. Additional
GVHD prophylaxis consisted of mycophenolate mofetil 15 mg/kg
orally, 3 times per day (maximum total daily dose, 3 g) from days 5
to 35, and tacrolimus 0.015 mg/kg per dose 2 times daily, adjusted
to maintain a serum trough level of 5 to 15 ng/mL (or institutional
equivalent), initially given from days 5 to 180 but subsequently
ending as early as day 60 after the data with early cessation of
tacrolimus were published.38 Tacrolimus was given IV until the
patient tolerated oral medications. With this protocol, filgrastim was
not routinely given before engraftment. Centers were instructed to
notify the principal investigator if filgrastim was initiated and the
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reason for its start. An example of a reason to start filgrastim pro-
vided in the protocol was neutropenia with severe infection.

Supportive care was provided per standard institutional practice.
Post-BMT central nervous system prophylaxis was per institutional
practice.

Definitions and end points

Neutrophil engraftment was defined as the number of days from
BMT to the first of 3 consecutive days with an absolute neutrophil
count >0.5 × 109/L. Platelet recovery time was defined as the
number of days from BMT until the platelet count was >20 × 109/L
without platelet transfusion in the preceding 7 days. Primary graft
failure was defined as <5% donor chimerism in the blood or bone
marrow by ~day 60 and upon all subsequent measurements.
Secondary graft failure was determined based on an initial
achievement of >5% donor chimerism, followed by its sustained
loss with <5% donor chimerism in the blood or bone marrow. The
definition and grading of aGVHD and cGVHD were in accordance
with the Blood and Marrow Transplant Clinical Transplant Net-
work’s Manual of Procedures.39 Pretransplant disease evaluation
included, at minimum, bone marrow aspirate and flow cytometry.
Minimal residual disease (MRD) was defined as any evidence
of malignant cells via flow cytometry, fluorescence in-situ

hybridization, polymerase chain reaction, or other techniques
without morphological or cytogenetic evidence of disease in the
blood or bone marrow.

Per the protocol, posttransplant disease evaluation was first per-
formed on day 60. Relapse was defined as the reappearance of
leukemic blast cells in the peripheral blood; or >5% blasts in the
bone marrow, not attributable to another cause (eg, bone marrow
regeneration); the appearance of previous new dysplastic changes
(MDS-specific) within the bone marrow; the development of
extramedullary leukemia or the presence of leukemic cells in the
cerebral spinal fluid, or the reappearance of cytogenetic or
molecular abnormalities present before transplant. Standard
relapse-prevention therapies after BMT, such as tyrosine kinase
inhibitors for Ph+ leukemias, and sorafenib for FLT3–internal tan-
dem duplication leukemias, were allowed.

EFS was defined as the time from transplant to the first occurrence
of any disease progression or relapse, an unplanned therapeutic
maneuver for disease persistence, or death from any cause. Data of
patients without any event were censored at the last clinic visit at
which they were known to be disease free. OS was defined as the
time from transplant to death from any cause. TRM was defined as
death without evidence of disease progression or relapse after
transplant. TRM was considered a competing risk for relapse and
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Figure 1. Conditioning regimens. (A) Chemotherapy-based; (B) TBI-based.
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vice versa. Competing risks for GVHD included graft failure,
relapse, or death. GRFS was defined as the time from BMT to the
onset of grade 3 or 4 aGVHD, cGVHD requiring systemic immu-
nosuppression, disease relapse, or death.

Statistical analysis

The proportion of patients with TRM180 was reported with an exact
95% confidence interval (CI). The cumulative incidence (CuI) of
relapse and GVHD were estimated via subdistribution functions
with 95% CIs via the Aalen method.40,41 Specifically, relapse was
further compared using disease (myeloid vs lymphoid), disease risk
index (DRI; low, intermediate, high), and pre-BMT MRD (positive vs
negative). EFS and OS were estimated with the Kaplan and Meier
method, and patient subgroups were compared using the log-rank
statistic or Cox proportional hazards regression models. Outcomes
with competing risks were assessed with the proportional sub-
distribution hazard regression model for competing risks.42

Statistical analyses were performed using SAS version 9.2 (SAS
Institute Inc, Cary, NC) and R version 4.2.2 (R Foundation for
Statistical Computing, Vienna, Austria).

Results

Patient, donor, and allograft characteristics

Patient characteristics are summarized in Table 1. In total, 32
patients were enrolled in the study. The median recipient age was
12 years (range, 1-23 years), and the median donor age was 35
years (range, 4-53 years). Of the patients, 18 (59%) were male.
The median HLA mismatch was 5 of 10 alleles. A total of 24
patients (75%) received their graft from parents, and 8 (25%) from
siblings. The median (interquartile range [IQR]) TNC/kg of recipient
IBW was 5.2 × 108 (2.8 × 108-6.3 × 108), and the median (IQR) of
CD34+ cells per kilogram of recipient IBW was 4 × 106 (2.8 × 106-
6.3 × 106). All patients received T-cell–replete, haploidentical bone
marrow. The conditioning regimen for all patients consisted of
MAC therapy. Twenty patients (62%) received a Bu-based pre-
parative regimen, whereas 12 received a TBI-based regimen. The
Center for International Blood and Marrow Transplant Research
Pediatric DRI assignments43 included 1 patient (3%) at the low
risk, 16 patients (50%) at intermediate risk, and 15 patients (47%)
at high risk. Four patients with AML and 1 with ALL had evidence of
MRD before BMT. Five patients with MDS had evidence of disease,
including 3 with multilineage dysplasia and 2 with excess blasts.

NRM

The primary objective of our study was TRM180. The incidence of
TRM at 6 and 12 months was 0% (exact 95% CI, 0-10.9).

Engraftment/chimerism

The median day of neutrophil engraftment was 22 days (range, 14-
58 days) and 21 days (range, 12-44 days) for platelets. Engraft-
ment of donor cells with donor chimerism of >95% at 60 days was
achieved in 27 patients (84%). Of these patients, 2 received fil-
grastim (both for slow count recovery at the discretion of the
treating physicians).

Patients who did not achieve >95% donor chimerism included 3
patients with MDS, who did not undergo pretransplant disease
reduction, and 2 patients with AML. The median (IQR) TNC/kg of
recipient IBW for those patients who did not achieve engraftment
was statistically significantly lower at 2.6 × 108 (2.0 × 108-2.9 ×
108) than those who achieved engraftment, at 5.2 × 108 (3.9 ×
108-6.7 × 108; P = .0147). All patients who failed to achieve
engraftment received a salvage haplo-BMT, which engrafted, and
at the time of analysis, all 5 patients were alive, 4 of them with no
evidence of disease.

GVHD, relapse, and transplant-related complications

The CuI of grade 2 aGVHD at 1 year was 13% (95% CI, 1-25;
Figure 2A). No patients experienced grade 3 to 4 aGVHD. Two
patients developed moderate-to-severe cGVHD with a CuI at 1 and
2 years of 3% (95% CI, 0-10) and 11% (95% CI, 0-28), respectively
(Figure 2B). The CuI of relapse at 1 and 2 years was 32% (95% CI,
15-48) and 36% (95% CI, 18-54), respectively (Figure 3A).
Although not statistically significant, patients with pre-BMT positive
MRD results and high DRI had higher relapse incidences than

Table 1. Patient, donor, and graft characteristics

Variable Entire cohort (n = 32)

Sex, n (%)

Male 18 (59)

Female 14 (41)

Median age, Y (range)

Recipient 12 (1-23)

Donor 35 (4-53)

MRD results, n (%)

Negative 22 (69)

Positive 10 (31)

DRI, n (%)

Low/intermediate 17 (53)

High 15 (47)

Diagnosis, n (%)

AML 15 (47)

MDS 5 (16)

ALL 11 (34)

Mixed lineage 1 (3)

Donor relation, n (%)

Sibling 8 (25)

Parent 24 (75)

HLA alleles, n (range)

Median HLA match 5/10 (5-8/10)

No. of HLA alleles match n (%)

8/10 2 (6)

7/10 2 (6)

6/10 6 (19)

5/10 22 (69)

Cell dose infused, n (range)

TNC/kg BM infused 4.8 × 108 (1.2 × 108-6.8 × 108)

CD34+/kg BM infused 4.3 × 106 (0.9 × 106-9.3 × 106)

Conditioning regimen, n (%)

Bu/Cy 20 (62)

Cy/TBI 12 (38)
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patients with MRD-negative results and those with a low/intermedi-
ate DRI (Figure 3B-C). The CuI of relapse at 1 year in patients with
pre-BMT MRD positive results was 50% (95% CI, 17-83) compared
with 23% (95% CI, 5-42) in patients with MRD-negative results.
Patients with a high DRI had a CuI of relapse at 1 year of 41%
(95% CI, 15-68) vs 24% (95% CI, 3-44) in patients with a low/
Intermediate DRI. The estimated CuI of relapse at 1 year in ALL was
18% (95% CI, 6-42), in AML it was 35% (95% CI, 9-60), and in
AML+ MDS it was 41% (95% CI, 18-64) (Figure 3D). Infections
were the most common transplant-related complication and included
catheter-associated grade 3–related infections (n = 5), enterocolitis
(n = 2), Clostridium difficile (n = 2), bacteremia (n = 3), sepsis (n =
1), cytomegalovirus reactivation (n = 2), EBV reactivation (n = 1),
parainfluenza (n = 1), and varicella-zoster virus infection (n = 1).
Sinusoidal obstruction syndrome (SOS) occurred in 4 patients
(common terminology criteria for AEs, grade 3 = 3 and grade 4 = 1),
which fully resolved. Two patients developed grade 3 hemorrhagic
cystitis, both cases BK virus-positive that presented on days 27 and
40 after transplantation, respectively. Grade 3 mucositis was
reported in 13 patients. Most importantly, none of these complica-
tions resulted in mortality. No patients with transplant-associated
thrombotic microangiopathy (TA-TMA) were reported.

OS, EFS, and GRFS

The median follow-up was 15 months, ranging from 5 months to 3.1
years. The OS probabilities at 1 and 2 years were 77% (95% CI,
64-94) and 73% (95% CI, 59-91), respectively. The estimated 1-
year and 2-year EFSs were 68% (95% CI, 54-87) and 64%
(95% CI, 49-84), respectively, and GRFSs were 65% (95% CI, 50-
84) and 52% (95% CI, 34-79), respectively (Figure 4).

Discussion

We report the results from the first international, multicenter phase
2 Pediatric Transplantation and Cellular Therapy Consortium trial

using MAC, T-cell–replete haplo-BMT, and PTCy in children and
AYA patients with high-risk hematologic malignancies. Impres-
sively, for our primary end point, we had no TRM, supporting the
safety and tolerability of this regimen. Albeit with small numbers,
having a CuI of 0% TRM compares very favorably with other
published regimens.15,44,45 Moreover, the CuIs of severe aGVHD
and moderate-to-severe cGVHD requiring systemic immunosup-
pression are lower than those of other successful BMT platforms
and donor sources.15,45-48 This provides an opportunity to continue
to shorten the duration of posttransplant tacrolimus for all patients
in future trials using MAC regimens, as has already been safely
accomplished in the NMA setting.38 This is especially important
given that relapse remains challenging after BMT regardless of
donor type, graft source, or conditioning regimen intensity. Incor-
porating novel agents early after the transplant to prevent or treat
relapse is optimized when patients discontinue immunosuppres-
sion and are without GVHD.49 We did not collect data on the use
of posttransplant relapse–prevention therapy in this trial.

Several aspects of our data warrant further discussion. Firstly, graft
failure was higher than expected in this trial: 3 patients with
untreated MDS and 2 with AML, all receiving chemotherapy-based
conditioning with Bu/Cy, failed to engraft. These patients under-
score 2 key factors when using haploidentical donors: (1) the
importance of graft cell dose and (2) the challenge of engraftment
for patients who are naive to any cytoreductive therapy, even after
MAC. All 5 patients received a TNC/kg cell dose lower than the
recommended target yield; in fact, the 2 patients with AML
received a TNC/kg lower than the minimum recommended target
yield (2.5 × 108 TNC/kg of recipient IBW). The necessity of
adequate cell dose to facilitate engraftment is evident in this small
data set, as in other trials.50 Continuing to provide harvest training
and education regarding the importance of graft cell dose will be
important for future trials. Three patients with MDS also had not
received any pretransplant disease reduction therapy before BMT.
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Strategies to improve engraftment for these patients could also
include using peripheral blood stem cells (PBSCs) or pretransplant
therapy with agents such as azacytidine, as has been used in the
NMA setting, or both.38,51 Ultimately, all 5 patients achieved
engraftment after salvage haplo-BMT. Four of them received
PBSCs, 2 from the same donor, 2 from a second donor, and one
of the patients received bone marrow stem cells from the same
donor. Salvage conditioning regimens included alemtuzumab
(0.2 mg/kg per dose), fludarabine (flu; 30 mg/m2 per dose), Cy (2
grams/m2 per dose), and 200 cGy TBI (n = 2), all on day −1;
antithymocyte globulin (3.5 mg/kg divided over 2 doses) and flu
(200 mg/m2 divided over 5 doses; n = 1); flu (150 mg/m2 divided
over 5 doses), Cy (28 mg/kg divided over 2 doses), and 200 cGy

TBI (n = 1); and alemtuzumab, flu, and Cy (n = 1, doses not
provided).

Secondly, the incidences of transplant-related complications in this
study are similar to those in other published allogeneic BMT
studies in the HLA-matched and haploBMT with PTCy set-
tings.35,52-54 Infections were the most common transplant-related
complication. They included bacterial infections; BK virus–
associated hemorrhagic cystitis and viral reactivations of EBV,
cytomegalovirus, and varicella-zoster virus with no end-organ dis-
ease. SOS was reported in 4 patients. In this pilot trial, we did not
collect data of which SOS diagnostic criteria were used. Most
importantly, none of these complications resulted in mortality. There
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were no reports of TA-TMA; it is possible that the collection of our
AEs/serious AEs, as stated in “Methods,” was not conducive to
capturing these patients, and we did not specifically ask centers to
report TA-TMA in this trial. Thus, we cannot conclusively report its
incidence. A prior publication using haplo-BMT with PTCy reported
an extremely low TA-TMA incidence (1.4%).55 Therefore, it is also
possible that there were no patients with TA-TMA.

The pediatric BMT community has expressed general concern
regarding the CuI of relapse using PTCy. The CuI of relapse
reported in published studies using haploidentical donors, MUDs,
cord, and matched sibling donors has ranged from 12% to
70%15,44-46,51,56-60 with pre-BMT MRD positivity and a high DRI
associated with a higher incidence of relapse. The CuI of relapse of
32% and 36% at 1 and 2 years, respectively, in our small, multi-
center study, with lower but not statistically significant CuI of
relapse in MRD negative and low-intermediate DRI patients, is
directly comparable with that reported in the pediatric BMT pub-
lished literature and does not support that haplo-BMT with PTCy is
inferior. It is important to remember that more than one-third of our
patients MRD positive before transplant, almost one-half had a high
DRI, and patients with MDS with >10% blasts were eligible and
enrolled. Other single-center haplo-BMT trials suggest similar
supporting evidence.28,29,32-37 The current standard of dis-
continuing tacrolimus at day 60 after haplo-BMT was implemented
toward the end of this trial, and consideration of PBSC grafts for
patients with high-risk disease may provide additional relapse
prevention.

Limitations of this study include patient heterogeneity and small
numbers. It is difficult to directly compare our results with that of

other haplo-BMT platforms, such as the megadose CD34+ selec-
tion61 and α-β T-cell–depleted haplo-BMT13,15 without randomized
controlled trials. Nevertheless, the absolute number of longitudinal
experiences with pediatric patients who have undergone haplo-
BMT after MAC is low compared with the number of longitudinal
experiences among those who have received MAC allogeneic BMT
from HLA-matched donors and cord blood. This underscores the
importance of continuing to study MAC haplo-BMT with PTCy,
laying the groundwork for prospective randomized controlled BMT
trials using MAC, different donor sources, and other haploidentical
graft methods, especially for pediatric and AYA populations.

In conclusion, this first (to our knowledge) multicenter, international
consortium trial demonstrates that myeloablative HLA–haplo-BMT
with PTCy for pediatric and AYA high-risk acute leukemias offers a
widely available platform that is safe and feasible. Our findings are
an essential contribution to the literature, serving as background for
the recently opened Children’s Oncology Group randomized
controlled trial of haplo (using both PTCy and α-β T-cell–depleted
platforms) vs MUD hematopoietic cell transplants in pediatric
patients with high-risk hematologic malignancies.
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