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ORIGINAL RESEARCH

Metabolic Signatures of Cardiac 
Dysfunction, Multimorbidity, and  
Post–Transcatheter Aortic Valve Implantation 
Death
Andrew S. Perry , MD; Shilin Zhao , PhD; Venkatesh Murthy , MD, PhD; Deepak K. Gupta , MD, MSCI; 
William F. Fearon , MD; Juyong B. Kim , MD; Samir Kapadia , MD; Dharam J. Kumbhani , MD;  
Linda Gillam , MD, MPH; Brian Whisenant , MD; Nishath Quader, MD; Alan Zajarias, MD;  
Ravinder R. Mallugari, MBBS; Daniel E. Clark , MD; Jay N. Patel , MD; Holly Gonzales, MD;  
Frederick G. Welt , MD; Anthony A. Bavry , MD; Megan Coylewright, MD, MPH; Robert N. Piana , MD; 
Anna Vatterott , MPH; Natalie Jackson , MPH; Robert E. Gerszten , MD; Brian R. Lindman , MD, MSCI*; 
Ravi Shah , MD*; Sammy Elmariah , MD, MPH*

BACKGROUND: Studies in mice and small patient subsets implicate metabolic dysfunction in cardiac remodeling in aortic steno-
sis, but no large comprehensive studies of human metabolism in aortic stenosis with long-term follow-up and characterization 
currently exist.

METHODS AND RESULTS: Within a multicenter prospective cohort study, we used principal components analysis to summarize 
12 echocardiographic measures of left ventricular structure and function pre–transcatheter aortic valve implantation in 519 
subjects (derivation). We used least absolute shrinkage and selection operator regression across 221 metabolites to define 
metabolic signatures for each structural pattern and measured their relation to death and multimorbidity in the original cohort 
and up to 2 validation cohorts (N=543 for overall validation). In the derivation cohort (519 individuals; median age, 84 years, 
45% women, 95% White individuals), we identified 3 axes of left ventricular remodeling, broadly specifying systolic function, 
diastolic function, and chamber volumes. Metabolite signatures of each axis specified both known and novel pathways in 
hypertrophy and cardiac dysfunction. Over a median of 3.1 years (205 deaths), a metabolite score for diastolic function was 
independently associated with post–transcatheter aortic valve implantation death (adjusted hazard ratio per 1 SD increase 
in score, 1.54 [95% CI, 1.25–1.90]; P<0.001), with similar effects in each validation cohort. This metabolite score of diastolic 
function was simultaneously associated with measures of multimorbidity, suggesting a metabolic link between cardiac and 
noncardiac state in aortic stenosis.

CONCLUSIONS: Metabolite profiles of cardiac structure identify individuals at high risk for death following transcatheter aortic 
valve implantation and concurrent multimorbidity. These results call for efforts to address potentially reversible metabolic biol-
ogy associated with risk to optimize post–transcatheter aortic valve implantation recovery, rehabilitation, and survival.
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While transcatheter aortic valve implantation (TAVI) 
improves outcome in individuals with symptom-
atic severe aortic stenosis (AS),1 there remains 

significant residual risk following TAVI, marked by per-
sistent poor quality of life and rehospitalization for heart 
failure (HF).2,3 As the application of TAVI in sicker popula-
tions with greater systemic comorbidity advances, iden-
tifying biological mechanisms of residual post-TAVI risk 
has become increasingly important, with risk assessment 
metrics based on clinical factors, cardiac-specific bio-
markers, myocardial structure, and systemic illness.4–11 
In this space, the growth of high-throughput methods for 
broad biochemical phenotyping (“omics”) has enabled a 
search for circulating biomarkers in a “hypothesis-free” 
discovery approach that may identify those individuals 
with reduced myocardial resilience, delineate underlying 
biological mechanisms, and identify opportunities for in-
tervention to mitigate risk following TAVI. Our group and 
others have identified a series of metabolic pathways 
potentially linked to adverse remodeling in severe AS,12,13 
several of which have been linked to systemic pheno-
types previously relevant to post-TAVI risk (eg, “frailty”).14 
Many of these “omic” studies are small, limited in phe-
notypic breadth, and lacking in significant follow-up 
to assess the relation between metabolism, adverse 

phenotypes, and long-term outcome. Here, we address 
these central limitations by quantifying a broad circulat-
ing metabolome alongside detailed echocardiographic 
quantification of cardiac structure/function in individuals 
with symptomatic severe AS to delineate metabolic sig-
natures and pathways related to cardiac remodeling and 
their relation to death and systemic multimorbidity. Our 
goal was to identify metabolic signatures of compos-
ite echocardiographic measures of cardiac remodeling 
characteristic in AS, using these metabolites to under-
stand potential pathways and prognosis in AS.

METHODS
The data underlying this article will be shared upon 
reasonable request to the corresponding author.

Clinical Characterization
Our derivation cohort is a multicenter, prospective obser-
vational cohort study of adults with symptomatic severe 
AS undergoing TAVI between May 2014 and February 
2017 (Data S1). Severe AS was defined according to 
American Society of Echocardiography guidelines: peak 
velocity ≥4 m/s, indexed aortic valve area <0.6 cm2/m2, 
or mean gradient ≥40 mm Hg.15 We included participants 
in our derivation cohort whose pre-TAVI echocardiogram 
was transferred to our core laboratory for analysis with a 
pre-TAVI blood sample available. In addition to standard 
clinical and demographic indices, measures of systemic 
multimorbidity were obtained (eg, grip strength, gait 
speed, lung function, albumin, hemoglobin). Subjects 
in the derivation cohort underwent transthoracic echo-
cardiography before TAVI (median, 39 days; interquar-
tile range, 21–72). Echocardiograms were electronically 
transferred to our core laboratory to quantify left ventric-
ular (LV) structure and function according to American 
Society of Echocardiography guidelines: LV ejection frac-
tion (LVEF), LV stroke volume index, LV internal dimen-
sions and volumes at end-diastole and end-systole, LV 
mass, relative wall thickness, mean transmitral E/e′, tis-
sue Doppler S velocity of lateral mitral annulus, left atrial 
volume, and mean aortic valve gradient.15

To test the relation of metabolic signatures of cardiac 
structure/function with death, we leveraged 2 additional 
cohorts: (1) a set of 286 individuals with blood samples 
from our parent multicenter, prospective observational 
cohort study who did not have full core lab-adjudicated 
echocardiographic phenotyping for analysis (therefore 
not included in derivation cohort); and (2) a single-
center, prospective observational cohort study of 257 
individuals with blood samples enrolled at Barnes-
Jewish Hospital (St Louis, MO) with symptomatic se-
vere AS who underwent TAVI between 2010 and 2015 
(Figure  S1). AS severity was defined according to 
American Society of Echocardiography criteria.

CLINICAL PERSPECTIVE

What Is New?
•	 Metabolite signatures identified known and 

novel pathways of cardiac remodeling across 
a large sample of individuals with severe aortic 
stenosis referred for transcatheter aortic valve 
implantation.

What Are the Clinical Implications?
•	 A metabolic signature related to diastolic func-

tion was independently associated with post–
transcatheter aortic valve implantation death 
and systemic multimorbidity (“frailty”) meas-
ures, suggesting links between cardiac and 
noncardiac states in advanced heart disease.

Nonstandard Abbreviations and Acronyms

AS	 aortic stenosis
LASSO	 least absolute shrinkage and selection 

operator
PC	 principal component
PCA	 principal components analysis
TAVI	 transcatheter aortic valve implantationD

ow
nloaded from

 http://ahajournals.org by on January 23, 2024



J Am Heart Assoc. 2023;12:e029542. DOI: 10.1161/JAHA.123.029542� 3

Perry et al� Metabolomic Correlates of Remodeling and Death

A complete assessment of vital status was per-
formed between March and June 2020 for the mul-
ticenter cohort16 (both derivation and validation) and 
between November and December 2016 for the 
single-center cohort (validation).

Metabolite Profiling
Blood samples were obtained before TAVI in all partici-
pants. Metabolite profiling was performed via standard 
liquid chromatography–mass spectrometry techniques, 
details of which are summarized in Data S2.17

Analytic Methods
Generation of Composite Patterns of Cardiac 
Remodeling

Our analytic flow is shown in Figure  1. Our goal 
was to identify those metabolites related to cardiac 
structure/function in AS. Both “supervised” (pheno-
typic measures to “supervise” selection of metabo-
lites related to that phenotype) and “unsupervised” 
methods (metabolome first reduced into sets of in-
terrelated metabolites, agnostic to phenotype) have 

been used recently in this regard to study phenotype-
metabolome relation in HF.18 To build optimized 
models for composite measures of remodeling, we 
chose least absolute shrinkage and selection oper-
ator (LASSO) regression, in which >200 metabolites 
would be independent variables in models for a com-
posite measure of cardiac structure/function (a su-
pervised analytic approach). In contrast to some prior 
approaches focused on limited measures of cardiac 
remodeling (eg, LVEF, LV mass12), our experimental 
design incorporates measurement of multiple, related 
measures of remodeling by echocardiography to pro-
vide a more holistic assessment of cardiac structure/
function. We used principal components analysis 
(PCA) to generate 3 composite axes of cardiac re-
modeling/function, resulting in participants having a 
principal component (PC) “score” for each axis (see 
Data S1 for further details).

LASSO Regression

To generate parsimonious models for each composite 
axis defined by PCA, we used LASSO regression (with 

Figure 1.  Overall study design.
FEV1 indicates forced expiratory volume in the first second; LASSO, least absolute shrinkage and selection operator; LV, left ventricular; 
and TAVI, transcatheter aortic valve implantation. Created with BioRe​nder.com.
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10-fold cross validation to optimize hyper parameters; R 
package “glmnet”19 [R project; www.rproject.org]), with 3 
PCA-based scores as the dependent variables and all me-
tabolites as independent variables for selection. Metabolites 
were log-transformed to reduce skewness and standard-
ized. LASSO models were used to generate “metabolite 
scores” (blood-based surrogates of the composite axes 
from PCA) in downstream analysis. To assess the pathway 
importance of each of the selected metabolites, we used 
pathway analysis (MetaboAnalyst 5.0; https://www.metab​
oanal​yst.ca; accessed August 18, 2022) using the KEGG 
metabolome as reference20 and literature search. The me-
tabolites quantified in the single-center validation cohort 
did not completely match the metabolites measured in our 
multicenter cohort. Accordingly, we refit the LASSO mod-
els for use in the single-center cohort (see Data S1).

Survival Analysis

We standardized PC and metabolite scores for use 
in Cox models for all-cause death. Proportionality as-
sumption for the metabolite scores were tested using the 
cox.zph function (R package “survival”) and examined 
Schoenfeld residuals for any suspected violation (by P 
value). For those with potential violations, models using 
robust standard errors were generated, yielding similar 
results to the original models. Hazard ratios (HRs) are re-
ported per 1 SD difference in score, with standard 95% 
confidence intervals. Cox models were adjusted for age, 
sex, body mass index, diabetes (defined as hemoglobin 
A1c ≥6.5% or reported history), coronary artery disease 
(defined as prior myocardial infarction, prior revasculari-
zation or atherosclerotic disease in ≥1 coronary arteries), 
history of atrial fibrillation/flutter, estimated glomerular 
filtration rate, cardiac troponin-T, and NT-proBNP (N-
terminal pro-B-type natriuretic peptide). In the single-
center validation cohort, we adjusted for the same 
variables except cardiac troponin-T or NT-proBNP due 
to unavailability) and B-type natriuretic peptide. To as-
sess whether the metabolite-based scores would be in-
dependent of key echocardiographic phenotypes of risk 
following TAVI, we further adjusted for mean aortic valve 
gradient and LVEF in a sensitivity analysis. Biomarkers 
were log-transformed for use in Cox models.

Analyses were performed in R. All subjects pro-
vided informed consent as part of this research co-
hort. Institutional review boards at Vanderbilt University 
Medical Center and Massachusetts General Hospital 
approved this study.

RESULTS
Sample Characteristics
Characteristics of the 519 participants in our multicenter 
derivation cohort are reported in Table. The median 

age was 84 years, with 45% women and 95% White 
individuals. The median Society of Thoracic Surgeons 
score was 4.2%. There was a high prevalence of both 
cardiovascular and noncardiovascular comorbidity, as 
well as abnormalities in cardiac structure (eg, LV hy-
pertrophy), systolic (eg, LVEF), and diastolic function 
(elevated NT-proBNP, elevated E/e′). Characteristics 
of the validation cohorts were similar to our derivation 
cohort (Table).

Defining Composite Axes of Remodeling 
Using PCA of Echocardiographic Data
We observed significant interrelation across echo-
cardiographic measures (Figure  S2), motivating our 
approach to use PCA as an unsupervised method to 
summarize these related measures into composite 
“axes” of remodeling (see Analytic Methods). We iden-
tified 3 PCs that explained 65% of the variance in the 
data (Figure S3). Loadings for each of the 12 individual 
echocardiographic measures for each PC are shown 
in Figure 2A. The first PC was mostly weighted on LV 
volumes and LVEF (accordingly labeled “volumes”). 
The second PC was more highly loaded on stroke 
volume index and LVEF (accordingly labeled “systolic 
function”). The third PC was mostly loaded on E/e′ and 
left atrial volume (accordingly labeled “diastolic func-
tion”). When we visualized the 12 echocardiographic 
measures across our derivation cohort (Figure  2B), 
we observed (1) significant heterogeneity across indi-
viduals in cardiac structure/function (consistent with 
clinical practice) and (2) differences in PCA-based 
scores across individuals that appeared to track with 
this heterogeneity (color patterns on horizontal color 
bars, Figure 2B). These 3 PCA-based scores of com-
posite axes of cardiac structure/function were carried 
forward to guide metabolic discovery.

Metabolic Signature of Cardiac Structure/
Function in AS
We next aimed to define metabolomic correlates for 
cardiac structure/function, using the PCA-based com-
posite axes in our derivation cohort. Sixty unique me-
tabolites were selected in LASSO models (Table S1). 
Coefficients for metabolites from LASSO models 
(Figure  S4) were used to generate metabolite-based 
scores for each PCA-based axis. We observed a mod-
erate correlation of the metabolite scores with their 
parent PC scores (Figure  S5; Spearman rho range, 
0.41–0.47). We did not observe a clinically significant 
difference in metabolite scores by sex (Figure S6) and 
only a weak correlation with age (Figure 3; Tables S2 
and S3). Individual metabolites across the 3 metab-
olite scores included metabolites previously impli-
cated in cardiac structure and metabolism (long-chain 
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Table.  Baseline Characteristics of the Multicenter Derivation, Multicenter Validation, and Single-Center Validation 
Cohorts

Characteristic Derivation (N=519) Multicenter validation (n=286) Single-center validation (n=257)

Age, y 84 (78–88) 82 (75–87) 83 (76–89)

Sex, female 233 (45) 121 (42) 128 (50)

Race

Black 17 (3.3) 1 (0.3)

Asian 6 (1.2) 2 (0.7)

White 495 (95) 282 (99) 251 (98)

Body mass index, kg/m2 27.3 (23.8–31.4) 27.7 (24.6–32.9) 27.6 (23.9–31.3)

Diabetes 184 (36); 0.2 128 (45) 100 (39)

History of atrial fibrillation or flutter 200 (39); 0.4 122 (43); 0.3 104 (40)

Coronary artery disease 368 (71) 191 (67) 218 (85)

New York Heart Association class

I 16 (3.3); 6.2 10 (3.7); 4.9

II 140 (29); 6.2 47 (17); 4.9

III 272 (56); 6.2 184 (68); 4.9

IV 59 (12); 6.2 31 (11); 4.9

Society of Thoracic Surgeons score 4.2 (2.9–6.3) 3.9 (2.6–6.3) 8.3 (5.0–12.6)

Echocardiographic measures before TAVI

LV mass index, g/m2 108 (91–126) 106 (91–127); 49

LV hypertrophy by ASE criteria

None 266 (51) 68 (47); 49

Mild 87 (17) 33 (23); 49

Moderate 69 (13) 20 (14); 49

Severe 97 (19) 24 (17); 49

LV ejection fraction (%) 61 (53–66) 60 (52–65); 9.1 60 (45–66); 0.4

LV ejection fraction <50% 106 (20) 55 (21); 9.1 79 (31); 0.4

Stroke volume index, mL/m2 37 (30–45) 36 (28–43); 44

Stroke volume index <35 mL/m2 222 (43) 76 (48); 44

LV end-diastolic internal diameter, mm 44 (40–49) 43 (39–49); 49

LV end-systolic internal diameter, mm 29 (25–35) 29 (25–36); 50

LV end-diastolic volume index, mL/m2 44 (35–54) 45 (34–56); 58

LV end-systolic volume index, mL/m2 17 (12–25) 17 (12–29); 58

Left atrial volume index, mL/m2 35 (27–47) 39 (31–49); 48

LV tissue Doppler S lateral annulus, cm/s 6.5 (5.3–7.8) 6.4 (5.4–7.3); 62

Average transmitral E/e′ 18 (14–24) 18 (14–24); 72

Relative wall thickness 0.54 (0.45–0.64) 0.56 (0.49–0.65); 49

Interventricular septum thickness, mm 12.6 (11.4–14.3) 13.2 (11.7–14.7); 49

Posterior wall thickness, mm 11.8 (10.6–13.3) 12.5 (10.7–13.9); 49

Aortic valve area, cm2 0.72 (0.60–0.85); 0.2 0.73 (0.59–0.89); 12 0.70 (0.50–0.80); 1.2

Aortic valve area index, cm2/m2 0.39 (0.31–0.45); 0.2 0.37 (0.30–0.46); 12

Aortic valve mean gradient, mm Hg 39 (32–50) 38 (30–48); 8.0 41 (35–47); 0.4

Peak aortic velocity, m/s 4.09 (3.65–4.58); 0.2 4.01 (3.59–4.49); 13

Moderate–severe aortic regurgitation 49 (9.4) 26 (9.1)

Moderate–severe mitral regurgitation 72 (14) 36 (13)

Laboratory measures before TAVI

eGFR, mL/min per 1.73 m2 54 (41–69); 0.4 54 (42–70); 1.0 55 (41–71)

NT-proBNP, ng/mL 1303 (622–3374); 3.5 1249 (560–2758); 2.1

 (Continued)
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acylcarnitines,12 branched-chain amino acids21), as 
well as many not previously implicated in HF or AS 
(Table S1). Examining 52 metabolites with identifiable 
Human Metabolome Database identifiers across all 
3 metabolite scores, we found several key enriched 
pathways (Figure S7): arginine metabolism (implicated 
in nitric oxide metabolism22) and pantothenate and co-
enzyme A metabolism (central to aerobic metabolic 
flux23), in addition to several others not widely previ-
ously implicated in cardiac remodeling.

Metabolite Scores of Cardiac Structure/
Function in AS Are Associated With Death
We next measured the association of PC and me-
tabolite scores with all-cause death in our derivation 
cohort (median follow-up, 3.1 years; 25th–75th per-
centile; 1.6–3.8 years; 205 deaths; Table S4). We did 
not observe meaningful violation of proportionality in 
Cox models (see Methods). While neither metabolite-
based nor PC scores of LV volumes and systolic func-
tion were strongly and consistently related to outcome 
(Figure 4A), both the PC and metabolite-based scores 
of diastolic function were related to death. After adjust-
ment for clinical risk factors and cardiac biomarkers, 
the metabolite score of diastolic function was associ-
ated with death (HR per 1 SD increase in score, 1.54 
[95% CI, 1.25–1.90]; P<0.001), which remained signifi-
cant with further adjustments for mean aortic valve gra-
dient and LVEF (HR per 1 SD increase, 1.55 [95% CI, 
1.26–1.92]; P<0.001). The PC score for diastolic func-
tion was directionally consistent (but not statistically 
significant). We observed similar results in the multi-
center validation cohort (median follow-up, 2.6 years; 
25th–75th percentile; 1.0–3.7 years; 121 deaths; 
Figure 4B). Using recalibrated metabolite scores in our 
single-center validation (recalibration fit [R2] between 
46% and 87%; Table S5; Figure S8), we observed an 

adjusted association between the metabolite score for 
PC3 (diastolic function)—but not PC1 or PC2—with 
death (median follow-up after TAVI, 1.6 years; 25th–
75th percentile; 0.9–2.8 years; 93 events; Figure  4B 
and Figure S9).

Metabolites Associated With Cardiac 
Structure/Function Are Also Related to 
Functional Impairment Across Multiple 
Noncardiac Organ Systems
Despite the focus on cardiac structure/function to post-
TAVI outcome,7,24 the importance of a holistic approach 
to assessing post-TAVI outcome (the concept of mul-
timorbidity and frailty) is increasingly recognized as a 
major contributor to post-TAVI outcome not reversed 
completely by reduction in HF and restoration of car-
diac performance.9 The finding that a metabolite score 
reflecting diastolic function (PC3)—a cardiac phenotype 
related in HF to other systems (eg, sarcopenia, obe-
sity, inflammation18)—was associated with death across 
cohorts with adjustment for known post-TAVI risk was 
intriguing (Figure  4). We tested the hypothesis that 
metabolite-based scores may reflect noncardiac meas-
ures relevant to risk (distributions of multimorbid meas-
ures are reported in Table S6). We observed a relation 
between the metabolite scores and multiorgan debility, 
particularly for the metabolite score corresponding to 
diastolic function (PC3; Figure 3, Tables S2 and S3). A 
higher metabolite score for diastolic function was re-
lated to higher uric acid (a marker of systemic inflam-
mation25), lower hemoglobin, and lower physical and 
pulmonary performance (Benjamini–Hochberg false 
discovery rate <5% for all). Given that this metabolite 
score was not strongly related to age or sex (Figure 3, 
Figure  S6), we excluded potential for confounding by 
age or sex, though other unmeasured confounders re-
main possible. Nevertheless, these analyses suggest 

Characteristic Derivation (N=519) Multicenter validation (n=286) Single-center validation (n=257)

High-sensitivity cardiac troponin, ng/mL 25 (16–41); 3.5 24 (15–42); 2.1

B-type natriuretic peptide, pg/mL 293 (154–658); 2.3

Continuous variables are reported as median (25th–75th percentile); % missing, if any. Categorical variables are reported as n (%); % missing. ASE indicates 
American Society of Echocardiography; eGFR, estimated glomerular filtration rate; LV, left ventricular; NT-proBNP, N-terminal pro-B-type natriuretic peptide; 
and TAVI, transcatheter aortic valve implantation.

Table.  Continued

Figure 2.  Interindividual heterogeneity in cardiac structure before TAVI.
A, Results of PCA of 12 echocardiographic measures. The bar plot indicates the PCA-based loadings for each echocardiographic 
measure for each PC. B, Clustered heatmap demonstrating individuals across echocardiographic measures, with PC scores for each 
individual represented as heatbars across the top of the heatmap. Each column is a participant, and rows represent phenotypes. AV 
indicates aortic valve; LA Vol, left atrium volume; LV DTI, tissue Doppler S velocity of lateral mitral annulus; LV, left ventricular; LVEDDI, 
left ventricular end-diastolic diameter index; LVEDVI, left ventricular end-diastolic volume index; LVEF, left ventricular ejection fraction; 
LVESDI, left ventricular end-systolic diameter index; LVESVI, left ventricular end-systolic volume index; LVMi, left ventricular mass 
index; PC, principal component; RWT, relative wall thickness; and SVI, stroke volume index.
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that circulating metabolites of cardiac risk may also 
reflect additional systemic multimorbidity, potentially 
accounting for the prognostic performance of these 
metabolite patterns following TAVI.

DISCUSSION
While TAVI has revolutionized the care of individuals 
with severe AS, residual risk following TAVI remains 
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a significant clinical problem,2,3,6,26 reflecting multiple 
cardiac and noncardiac factors relevant to recovery 
and prognosis. While efforts in other advanced cardiac 
conditions (eg, HF) have been the subject of broad ef-
forts to delineate mechanisms and biomarkers of risk, 
studies in AS are limited by study size and biomarker 

and outcome characterization (beyond the short-term 
and standard clinical biomarkers). Here, we performed 
(to our knowledge) the largest study of individuals with 
symptomatic severe AS referred for TAVI before their 
procedure (1062 individuals), integrating comprehen-
sive, core laboratory–adjudicated echocardiographic 

Figure 3.  Metabolite scores are associated with measures of multimorbidity.
Spearman correlation between each metabolite PC scores and available measures of multimorbidity in the multicenter derivation 
cohort. Exemplary echocardiographic variables are also included (LVEDVI for volumes, PC1; LVEF for systolic function, PC2; Mean 
E/e′ for diastolic function, PC3) to demonstrate the relation between each metabolite score with its exemplary LV phenotype. Raw 
data are reported in Table S2. eGFR indicates estimated glomerular filtration rate; FEV1, forced expiratory volume in the first second; 
KCCQ, Kansas City Cardiomyopathy Questionnaire summary score; LVEDVI, left ventricular end-diastolic volume index; LVEF, left 
ventricular ejection fraction; Mini-Cog, Mini-Cog score for dementia; and PC, principal component. *indicates a false discovery rate 
<0.05 (Benjamini–Hochberg method).
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measures with a broad metabolome to identify met-
abolic correlates of cardiac structure/function and 
their relation to death and morbidity. Our principal 
findings were 3-fold. First, using integrative statistical 
approaches, we defined metabolite signatures of 3 
echocardiographic axes of remodeling (volumes, sys-
tolic and diastolic function), with the metabolite-based 
score corresponding to diastolic function related to 
long-term outcomes independent of known clinical risk 
factors, including markers of ischemia and hemody-
namic stress. Second, metabolites reflecting each axis 
of cardiac remodeling identified both known and novel 
pathways related to remodeling. Third, a metabolite 
score that was constructed to reflect diastolic function 
was also related to systemic measures of organ-level 

debility and dysfunction, including skeletal muscle, 
pulmonary, hematologic, and inflammatory systems. 
Collectively, in the largest cohort of individuals with 
metabolite profiling in AS, these findings underscore 
the relevance of systemic metabolism on both cardiac 
and noncardiac prognosis following TAVI.

Limited studies among patients with severe AS 
have demonstrated relationships between circulat-
ing metabolites (or their changes13,27) and markers of 
adverse LV remodeling.12,13 Based on the importance 
of metabolism on cardiac function in previous work 
from our group12 and others,28,29 we conducted one 
of the largest studies of metabolite profiling in severe 
AS, uniting detailed, core laboratory–adjudicated car-
diac phenotyping with a broad metabolome to define 

Figure 4.  Association of metabolite scores and parent phenotype scores with death.
Results of Cox models are displayed with 95% CIs (model results in Table S5). A, Phenotype-based PC scores demonstrated limited 
associations with death after adjustment. The metabolite score for diastolic function (PC3) was associated with all-cause death. B, 
The association of each metabolite score with death in our replication cohorts, demonstrating replication of the prognostic association 
of our diastolic function metabolite score (PC3) with death in the multicenter and single-center validation cohorts. The effect sizes 
appear in a similar range as with the derivation cohort. PC indicates principal component.
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metabolic features associated with the pre-TAVI car-
diac state. In our analysis, molecular signatures re-
flecting LV volumes and diastolic function (PC1 and 
PC3, respectively) included metabolites implicated in 
LV remodeling12 (choline), hypertrophy30 (uracil), sur-
vival among patients with HF31 (kynurenine), and cor-
onary artery disease32,33 (S-adenosyl-L-homocysteine, 
C18:2 acylcarnitine). The metabolite signatures reflect-
ing LV systolic function (PC2) included metabolites 
that appear protective against ischemia reperfusion 
injury34 (N-oleoyl dopamine) and pressure overload–
associated injury35 (α-ketoglutaric acid). These re-
sults are consistent with prior work demonstrating a 
relationship between long-chain acylcarnitines and LV 
remodeling in 44 patients with severe AS12 and a cor-
relation between acylcarnitines and improvement of 
LVEF after TAVI in 30 patients.27 Our results are consis-
tent with other reports suggesting a role for nitric oxide 
metabolism in AS13 and incident HF.36 A particularly 
interesting finding is the association of leucine and va-
line with diastolic function (PC3). Impaired metabolism 
of branched-chain amino acids has been implicated 
in the pathogenesis of HF, and pharmacological en-
hancement of this metabolic pathway may be of ben-
efit.21 Importantly, several metabolites have not been 
widely reported in AS-related LV remodeling, suggest-
ing potential for new discovery (Table S1).

In addition to metabolite relations, we found a strik-
ing relation between the metabolite score for PC3—
the metabolic signature related to post-TAVI all-cause 
death—and measures of multiorgan function. These 
differences did not seem to be driven by differences in 
metabolite scores by sex (Figure S6) or age (Figure 3). 
One explanation may be due to a shared inflammatory 
pathophysiology of cardiac fibrosis/diastolic impair-
ment and systemic organ function,37 especially given 
the relation of persistent diastolic dysfunction24 and 
underlying fibrosis38–40 on death following TAVI. An im-
portant corollary is the potential for reversibility in these 
cardiac phenotypes: Given the potential for rapid im-
provement in hemodynamics following TAVI, a shared 
metabolic signature between cardiac and noncardiac 
phenotypes may also identify individuals with lower 
metabolic “resiliency” to stress in noncardiac organs—
“multimorbidity frailty.”41 Indeed, studies in humans and 
mice have identified shared factors relevant to cardiac 
hypertrophy responses to pressure overload and skel-
etal muscle metabolism,14 suggesting the potential for 
shared molecular pathways common to both cardiac 
and systemic “remodeling” following TAVI.

In effect, our findings provide molecular context for 
the emerging importance of cardiac-dependent and 
cardiac-independent frailty in advanced heart dis-
ease.42 While TAVI can immediately improve hemody-
namics, it does not necessarily translate to improved 
frailty,43 which is prognostically central.9 Certainly, we 

do not advocate the use of these broad approaches to 
limit application of TAVI, given its dramatic impact on 
outcome.44–48 Nevertheless, approaches that quantify 
functional biomarkers of a systemic metabolic state 
(like this one) move the goalpost from identifying risk 
markers to limit TAVI toward efforts to understand 
potentially reversible biology associated with risk that 
represent opportunities for intervention. Whether addi-
tional interventions on this multimorbidity can reverse, 
or halt, some of these key biological processes re-
mains an area of intense interest.

The results of this study should be viewed in the 
context of its design. While we explored concurrent 
phenotypes and metabolites (potential for reverse 
causation), the association of metabolite-based scores 
with long-term outcome increases confidence as to 
their validity. We did not evaluate for the confounding 
effects of medications. In addition, we did not exam-
ine changes in cardiac structure following TAVI. While 
evidence suggests that persistent fibrosis following 
TAVI may be central to future HF,49 further studies in 
this cohort and others are required to understand how 
baseline pre-TAVI metabolism and changes following 
TAVI correspond to the capacity for reverse remodel-
ing in the heart (and other organs). The cohorts studied 
underwent TAVI ≥5 years ago, which may limit gener-
alizability to contemporary cohorts. Importantly, this 
study was performed in a predominantly White popu-
lation, limiting generalizability to other racial and ethnic 
groups. Future studies with greater racial diversity that 
are based on the effects of intervention on a broad car-
diac and noncardiac phenome will be helpful to delve 
further into the mechanistic and pathway relevance of 
selected metabolites.

In conclusion, we identified metabolite signatures 
of 3 distinct axes of cardiac structure/function, one 
of which was linked to long-term death after TAVI. 
Strikingly, a metabolic pattern of diastolic function 
was associated with multiorgan morbidity and frailty, 
highlighting an overlapping role of metabolism in car-
diac and noncardiac states in advanced heart disease 
more generally. Studies to evaluate the effect of TAVI 
on metabolism—including adjunctive interventions to 
modify specific metabolic pathways—are needed to 
expand potential routes to optimize post-TAVI outcome.
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Supplemental Methods 

 

Data S1. List of Enrolling Centers 

 

Barnes-Jewish Hospital, St. Louis, MO 

Cleveland Clinic Foundation, Cleveland, OH 

Dartmouth-Hitchcock Medical Center, Lebanon, NH 

Intermountain Heart Institute, Murray, UT 

Massachusetts General Hospital, Boston, MA 

Morristown Medical Center, Morristown, NJ 

Stanford Medical Center, Palo Alto, CA 

University of Texas Southwestern Medical Center, Dallas, TX 

University of Utah Hospital, Salt Lake City, UT 

Vanderbilt University Medical Center, Nashville, TN 

  

D
ow

nloaded from
 http://ahajournals.org by on January 23, 2024



Data S2.  

 

Metabolite profiling using liquid chromatography-mass spectrometry.  

 

Methods for metabolite quantification were reproduced directly from other work to 

enhance rigor and reproducibility 

(https://www.patentsencyclopedia.com/app/20080261317; Date Accessed 1 May 

2023)50. Venous blood was processed within 30 minutes of collection and stored at -80°C. 

Amino acids and amines, sugars and ribonucleotides, and organic acids were separated 

by liquid chromatography. Columns were connected in parallel with an automated 

switching valve on a robotic sample loader (Leap Technologies). A triple-quadrupole 

mass spectrometer (API4000, Applied Biosystem/ Sciex) operated in automated 

switching polarity mode with a turbo ion spray LC-MS interface under selected reaction 

monitoring conditions. Either positive or negative ions were selected for targeted 

tandem mass spectrometry (MS/MS) analysis using selective reaction conditions. 

Quantification was performed by integrating peak areas for parent/daughter ion pairs. 

Metabolite concentrations ≤0 were treated as missing (0.001%). We excluded 

metabolites with ≥10% missingness (4/225), and imputed missing values for any 

metabolite with <10% missingness by half of the minimum value detected for that 

metabolite (0.1% of metabolite measurements). Two subjects had metabolite 

quantification duplicated, we used the mean concentration for these subjects in 

analysis. 
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Principal components analysis to summarize echocardiographic data into 3 axes 

of cardiac structure/function. Given the relatedness among the different echocardiographic 

measures (Figure S2), we elected to summarize echocardiographic measures into different, 

related “axes” of remodeling/function using principal components analysis (PCA; with 

echocardiographic measures log-transformed to reduce skewness and standardized to unit 

variance). In this unsupervised PCA approach, the relations among phenotypes were used to 

collapse the 12 echocardiographic measures into 3 composite axes in an unbiased manner 

(selected based on examination of variance explained on a scree plot). Broadly, the contribution 

of each of the 12 echocardiographic measures to each of 3 PCs was quantitated as the loading 

for the PC (Figure 2A). Study participants had a score for each of the 3 PCs that summarized 

the aspect of their cardiac structure/function captured by that PC. Varimax post-rotation for 3 

PCs was used to improve interpretability of loadings across PCs. Scores for each participant 

represented composite axes of cardiac structure/function and used as the dependent variable in 

subsequent LASSO models, thereby capturing a broad array of related echocardiographic 

measures to supervise selection of metabolites most closely related to those axes. While we 

acknowledge there are many different additional approaches that could be used here (e.g., pre-

selecting phenotypes and using those for penalized regression, clustering methods, etc.), we 

felt that this approach would preserve power to develop optimal models for discovery while 

limiting type 1 error (due to multiple biomarker testing) that may reduce reproducibility. 

 

Recalibration of LASSO models for use in the single center validation cohort. Given that 

the metabolites quantified in the single-center validation cohort did not completely match the 

metabolites measured in our multi-center cohort, we used the metabolites that overlapped 

between the single-center validation and the multi-center cohort (78 metabolites) to refit models 

in the multi-center derivation cohort. In these models, the original metabolite score (based on 
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the “full” LASSO regressions across all metabolites in derivation) was the dependent variable, 

and the overlapping metabolites were the independent variables. We used a LASSO model for 

this recalibration effort to mitigate overfitting, generating coefficients that could be applied to 

overlapping metabolites in the single-center validation cohort to generate the 3 metabolite 

scores.   
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Table S1: Metabolite Correlation with Echocardiographic Parameters from LASSO 

Metabolite HMDP 
LASSO Coefficient 

Biological Significance 
PC1 PC2 PC3 

Phosphocreatine HMDB0001511 -0.084 - - 

Derivative of amino acid 
creatine. Plays important role 
in ATP generation for cardiac 

contraction51,52. 

Nicotinamide N-Oxide HMDB0002730 -0.087 - -0.014 
Antagonizes CXCR2 which 

recruits granulocytes53. 

N-Docosanoyl Taurine NA 0.072 - - Taurine-conjugated fatty acid. 

Adenine HMDB0000034 0.068 - - Nucleic acid. 

Serine HMDB0000187 0.053 0.019 - Amino acid. 

N-Palmitoyltaurine HMDB0240594 0.059 - - 
Derivative of hexadecenoic 

acid (fatty acid). 

Tryptophan HMDB0000929 0.045 - - Amino acid. 

N-Acetyl-L-Phenylalanine HMDB0000512 0.052 - - 
Derivative of amino acid 

phenylalanine. 

Aconitic acid HMDB0000072 -0.044 - - 
TCA cycle intermediate. 

Associated with aortic 
stenosis54. 

Bilirubin HMDB0000054 0.043 - - 
Derivative of heme. Associated 

with mortality among subjects 
undergoing TAVI55. 

C9 acylcarnitine HMDB0013288 0.045 - - Medium chain acylcarnitine. 

Oleoyl glycine HMDB0013631 -0.038 - - Long chain fatty acyl glycine. 

Creatine HMDB0000064 -0.039 0.051 0.036 
Amino acid with role in 

myocardial contraction52. 

Phosphocholine HMDB0001565 -0.038 - - 
Product of choline kinase to 

dephosphorylate ATP. 

2’-deoxycytidine HMDB0000014 0.045 - - Deoxyribonucloeside. 

N-Acetyl-L-Glutamic acid HMDB0001138 -0.032 - - Derivative of L-glutamic acid. 

Aspartic acid HMDB0000191 0.031 0.074 - Amino acid. 

N-Acetyl-L-Ornithine HMDB0003357 -0.020 - - 
Derivative of amino acids 

arginine and proline. 

2-Hydroxybutyric acid HMDB0000008 -0.024 - - 

Organic acid from amino acid 
metabolism (threonine and 

methionine). A marker of 
insulin resistance56. 

Sarcosine HMDB0000271 -0.020 - - 
Derivative of amino acid 

glycine. 

C26 acylcarnitine HMDB0002356 0.020 - - 

Long chain acylcarnitine. An 
intermediate of fatty acid 

metabolism, associated with 
LV remodeling in AS12. 

Saccharopine HMDB0000279 -0.025 - - Derivative of amino acid lysine. 

Glycocholic acid HMDB0000138 -0.023 - - 
Bile acid conjugate of glycine 

and choline. 

Kynurenine HMDB0000684 0.033 - - 
Metabolite of tryptophan 

(amino acid) that has been 
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shown to suppress immune 
response57. Associated with 
survival among patients with 

heart failure31. 

Lactic acid HMDB0000190 -0.030 - - 

Organic acid derivative of 
glucose metabolism. May play 

a in modulating hypertrophy 
and heart failure58. 

Choline HMDB0000097 0.013 - - 
Associated with cardiovascular 

disease36,59. Associated with 
LV remodeling in AS12. 

DDHAP / Glyceraldehyde 3-
phosphate 

HMDB0001112 -0.019 -0.037 - 
Derivative of glucose 

metabolism. 

DiHOME HMDB0004705 -0.018 - - 
Linoleic acid metabolite. 

Increases fatty acid uptake in 
skeletal muscle60. 

Dihomo-γ-Linolenoyl 
Ethanolamide 

HMDB0013625 0.020 0.008 - Endocannabinoid. 

Uracil HMDB0000300 -0.008 - - 
Nucleobase of RNA. May play 

a role in cardiac hypertrophy30. 

Glucose/Fructose/Galactose 
HMDB0000122 

(glucose) 
-0.022 - - Monosaccharides. 

Cystine HMDB0000192 -0.010 - - 
Amino acid. Associated with 

diastolic dysfunction61. 

Glycochenodeoxycholic acid HMDB0304944 -0.003 - - Bile salt. 

N-carbomoyl-beta-alanine HMDB0000026 0.009 -0.028 - Derivative of amino acid uracil. 

C18.2 carnitine HMDB0006469 0.017 - - 

An intermediate of fatty acid 
metabolism, associated with 

LV remodeling in AS12. Related 
to coronary artery disease33. 

Histamine HMDB0000870 -0.001 - - 

Imidazole. May play a role in 
the development of heart 

failure and cardiac fibrosis 
after MI62,63. 

Cyclic AMP HMDB0000058 -0.007 - - 

Derivative of adenosine 
triphosphate used in 

intracellular signaling for a 
variety of pathways. 

Anserine HMDB0000194 -0.004 - - 
A dipeptide derivative of 

carnosine. 

Cytidine HMDB0000089 0.003 - - 
Nucleoside component of 

RNA. 

α-Ketoglutaric acid 
 

HMDB0000208 - -0.100 - 

TCA cycle intermediate. In a 
murine model, 

supplementation lessened 
pressure-overload cardiac 

hypertrophy and preserved 
systolic function35. 

Beta-alanine HMDB0000056 - -0.086 - 

Amino acid. 
Supplementation 

shown to improve 
response to strength 
training in humans64 

and functional capacity 
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in a murine model of 
heart failure65. 

Glutamate HMDB0000148 - -0.059 - 

Amino acid and a common 
neurotransmitter. Used in 

some formulations of 
cardioplegia due to possible 

improvements in outcomes66. 
Shown to reduce oxidative 
injury in a murine model of 

myocardial infarction67. 
Associated with increased risk 

of stroke68. 

Uridine HMDB0000296 - 0.058 - Nucleic acid. Supplementation 
reduced ischemic reperfusion 

injury in a murine model69. 
Associated with incident heart 

failure in the Jackson Heart 
Study36. 

Uridine (anode) HMDB0000296 - 0.018 - 

Arginine HMDB0000517 - 0.052 - 

Amino acid and precursor of 
nitric oxide in the vascular 

endothelium. Supplementation 
in subjects with ischemic heart 

failure had improved function 
and dimensions70. 

Glycine HMDB0000123 - 0.057 - 

Amino acid. Elevated in 
subjects with severe heart 

failure71. Glycine metabolism is 
different after exercise in 

subjects with hypertrophic 
cardiomyopathy72. 

UDP-glucose / UDP-
galactose 

HMDB0000286 
(glucose) 

- -0.050 - 

Nucleotide sugar. Involved in 
carbohydrate metabolism. 

Implicated as a coronary 
vasoconstrictor73. 

Spermidine HMDB0001257 - -0.046 - 

Polyamine. Elevated in murine 
models of pressure overload 
and infract hearts74. May be 

helpful in prognosticating 
outcomes in heart failure28. 

2-aminoadipic acid HMDB0302754 - -0.031 - 

Product of lysine metabolism. 
Associated with incident heart 

failure in the Jackson Heart 
Study36 and development of 

T2DM75 and atherosclerosis76. 

N-oleoyl dopamine HMDB0255218 - 0.020 - 
Fatty amide. Protective against 

ischemia-reperfusion injury34. 

Tyrosine HMDB0000158 - -0.023 - 

Amino acid. A disorder of 
tyrosine catabolism, 

alkaptonuria, is associated with 
aortic stenosis77. 

N-Carbamoyl-BAIBA NA - - 0.102 Product of thymine catabolism 

S-adenosyl-L-homocysteine HMDB0000939 - - 0.076 
Sole metabolic precursor to 

homocysteine and a derivative 
of amino acids methionine and 
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cysteine. Associated with 
coronary heart disease32. 

20-Hydroxy N-Arachidonoyl-
Taurine 

NA - - 0.012 
Fatty acid amide of amino acid 

taurine. 

Histidine HMDB0000177 - - -0.069 
Amino acid. Improved 

functional capacity in a murine 
model of heart failure65. 

N-acetyl-L-methionine HMDB0011745 - - 0.055 

Derivative of amino acid 
methionine. May be helpful in 

reducing ischemia-reperfusion 
injury78 

Valine HMDB0000883 - - -0.044 

Branched chain amino acid. 
Defective metabolism may be 

implicated in heart failure 
pathogenesis21 and cardiac 

insulin resistance79. 

Oxaloacetic acid HMDB0000223 - - 0.028 
Organic acid involved in 

numerous metabolic pathways. 

Leucine HMDB0000687 - - -0.006 

Branched chain amino acid. 
Defective metabolism may be 

implicated in heart failure 
pathogenesis21 and cardiac 

insulin resistance79. 

Malic acid HMDB0000156 - - 0.004 

TCA cycle intermediate. 
Associated with atrial 

fibrillation and heart failure80. 
Reduced ischemia reperfusion 

injury in mice81. 

 
 
ATP = adenosine triphosphate; CXCR2 = chemokine (CXC motif) receptor 2; TCA = 

tricarboxylic acid; TAVI = transcatheter aortic valve implantation; LV = left ventriclular; 

AS = aortic stenosis; RNA = Ribonucleic acid; MI = myocardial infarction; T2DM = type 

2 diabetes mellitus. 
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Table S2: Spearman correlation between phenotype scores, metabolite scores, select echocardiographic variables 

(exemplary of each PC-based phenotype category), and multi-morbidity measures from the multi-center derivation cohort. 

N represents the number of observations on which the correlation is based (not all individuals had every measure). The P-

value reported is the nominal P-value for the correlation, Figure 4 in the manuscript uses an asterisk to indicate which P-

values passed a false discovery rate of 5% (Benjamini-Hochberg). Of note, phenotype scores were not calculated in the 

multi-center validation cohort due to incomplete echocardiographic data (see Table 1). eGFR = estimate glomerular 

filtration rate, FEV1 = Forced expiratory volume in the first second; PC = principal component; LVEDVI = left ventricular 

end-diastolic volume index; LVEF = left ventricular ejection fraction. 

 

Correlation coefficient 

 PC1 Metabolite
-PC1 

LVEDVI PC2 Metabolite
-PC2 

LVEF PC3 Metabolite
-PC3 

Mean 
E/e' 

Age (N=519) -0.002 0.022 -0.107 0.045 0.108 0.009 0.141 0.067 0.036 

Kansas City Cardiomyopathy 
Questionnaire summary score (N=487) 

-0.033 -0.044 -0.038 0.167 0.236 0.130 -0.222 -0.286 -0.169 

Average grip strength (N=475) 0.141 0.116 0.207 -0.118 -0.253 -0.190 -0.164 -0.138 -0.195 

Average gait speed (N=458) 0.116 -0.036 0.127 0.005 0.141 -0.031 -0.182 -0.281 -0.173 

Mini-Cog total score (N=484) -0.024 0.013 0.023 -0.037 -0.006 -0.031 -0.102 -0.051 -0.030 

FEV1, % Predicted (N=410) -0.103 -0.166 -0.121 0.204 0.256 0.218 -0.085 -0.157 -0.082 

Hemoglobin (N=516) -0.059 -0.147 -0.083 -0.142 -0.088 -0.033 -0.216 -0.359 -0.242 

Platelets (N=515) -0.020 -0.097 -0.043 -0.035 0.030 -0.014 -0.020 0.016 0.064 

Uric Acid (N=504) 0.058 0.170 0.096 -0.054 -0.199 -0.096 0.129 0.299 0.045 

eGFR (N=517) -0.019 -0.158 -0.033 -0.041 0.042 0.038 -0.211 -0.509 -0.203 
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P-value of correlation  

Age 9.69E-
01 

6.10E-01 1.49E-02 3.06E-
01 

1.37E-02 8.39E-
01 

1.26E-03 1.25E-01 4.15E-01 

Kansas City Cardiomyopathy 
Questionnaire summary score 

4.63E-
01 

3.36E-01 4.01E-01 2.16E-
04 

1.45E-07 3.94E-
03 

7.58E-07 1.22E-10 1.80E-04 

Average grip strength 2.04E-
03 

1.11E-02 5.49E-06 1.04E-
02 

2.35E-08 3.02E-
05 

3.18E-04 2.67E-03 1.83E-05 

Average gait speed 1.30E-
02 

4.37E-01 6.37E-03 9.15E-
01 

2.48E-03 5.04E-
01 

8.95E-05 8.67E-10 1.95E-04 

Mini-Cog total score 5.92E-
01 

7.72E-01 6.09E-01 4.18E-
01 

8.94E-01 5.02E-
01 

2.44E-02 2.62E-01 5.05E-01 

FEV1, % Predicted 3.66E-
02 

7.29E-04 1.39E-02 3.29E-
05 

1.52E-07 8.81E-
06 

8.67E-02 1.45E-03 9.75E-02 

Hemoglobin 1.83E-
01 

7.95E-04 5.84E-02 1.20E-
03 

4.66E-02 4.53E-
01 

7.60E-07 <2.20E-16 2.56E-08 

Platelets 6.43E-
01 

2.76E-02 3.31E-01 4.24E-
01 

4.90E-01 7.53E-
01 

6.45E-01 7.10E-01 1.45E-01 

Uric Acid 1.97E-
01 

1.26E-04 3.07E-02 2.25E-
01 

6.94E-06 3.18E-
02 

3.82E-03 7.08E-12 3.17E-01 

eGFR 6.61E-
01 

3.11E-04 4.52E-01 3.51E-
01 

3.37E-01 3.90E-
01 

1.31E-06 <2.20E-16 3.13E-06 

 

  

D
ow

nloaded from
 http://ahajournals.org by on January 23, 2024



Table S3: Spearman correlation between phenotype scores, metabolite scores, select echocardiographic variables 

(exemplary of each PC-based phenotype category), and multi-morbidity measures in the multi-center validation cohort. N 

represents the number of observations on which the correlation is based (not all individuals had every measure). The P-

value reported is the nominal P-value for the correlation, Figure 4 in the manuscript uses an asterisk to indicate which P-

values passed a false discovery rate of 5% (Benjamini-Hochberg). Of note, phenotype scores were not calculated in the 

multi-center validation cohort due to incomplete echocardiographic data (see Table 1). eGFR = estimate glomerular 

filtration rate, FEV1 = Forced expiratory volume in the first second. 

 

Correlation coefficient 
 

Metabolite-PC1 Metabolite-PC2 Metabolite-PC3 

Age (N=286) 
0.150 0.100 0.093 

Left ventricular ejection fraction (N=260) 
-0.177 0.158 -0.273 

Left ventricular end diastolic volume index (N=120) 
0.139 -0.173 0.237 

Mean E/e' (N=79) 
0.170 0.005 0.359 

Average gait speed (N=226) 
-0.065 0.151 -0.316 

Average grip strength (N=251) 
0.033 -0.142 -0.114 

Kansas City Cardiomyopathy Questionnaire 
summary score (N=267) 

-0.017 0.170 -0.200 

FEV1, % predicted (N=192) 
0.023 0.189 -0.225 

Mini-Cog total score (N=265) 
0.066 0.062 0.010 
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Hemoglobin (N=284) 
-0.168 -0.114 -0.298 

Platelets (N=284) 
-0.080 0.018 0.033 

Uric acid (N=276) 
0.192 -0.202 0.300 

eGFR (N=283) 
-0.202 0.146 -0.523 

P-value of correlation 

Age 
1.11E-02 9.18E-02 1.18E-01 

Left ventricular ejection fraction 
4.17E-03 1.08E-02 8.13E-06 

Left ventricular end diastolic volume index 
1.31E-01 5.94E-02 9.11E-03 

Mean E/e' 
1.34E-01 9.66E-01 1.17E-03 

Average gait speed 
3.31E-01 2.30E-02 1.28E-06 

Average grip strength 
6.03E-01 2.48E-02 7.15E-02 

Kansas City Cardiomyopathy Questionnaire 
summary score 

7.88E-01 5.45E-03 1.05E-03 

FEV1, % predicted 
7.56E-01 8.69E-03 1.74E-03 

Mini-Cog total score 
2.81E-01 3.15E-01 8.75E-01 

Hemoglobin  
4.46E-03 5.56E-02 3.04E-07 

Platelets  
1.78E-01 7.58E-01 5.81E-01 

Uric acid 
1.34E-03 7.29E-04 3.87E-07 

eGFR 
6.42E-04 1.43E-02 <2.20E-16 
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Table S4: Cox models for all-cause mortality. Hazard ratios represent risk for a 1 

standard deviation increase. “Adjusted” models in the derivation and multi-center 

validation cohorts were adjusted for age, sex, body mass index, history of diabetes 

mellitus, history of coronary artery disease, history of atrial fibrillation or flutter, 

estimated glomerular filtration rate, high sensitivity troponin, and N-terminal pro 

hormone B-type natriuretic peptide. “Adjusted” models in the single-center validation 

cohort were adjusted for age, sex, body mass index, history of diabetes mellitus, history 

of coronary artery disease, history of atrial fibrillation or flutter, estimated glomerular 

filtration rate, and B-type natriuretic peptide. “Sensitivity” models include additional 

adjustments for mean aortic valve gradient and left ventricular ejection fraction. PC = 

principal component. 

  Metabolite-based Phenotype-based 

  
N Deaths 

Hazard Ratio (95% 
CI) 

P-value N Deaths 
Hazard Ratio (95% 

CI) 
P-value 

D
e
ri

v
a

ti
o

n
 

Unadjusted          

PC1  516 205 1.27 (1.11-1.45) 0.001 516 205 1.01 (0.88 – 1.16) 0.88 

PC2  516 205 0.84 (0.73-0.97) 0.02 516 205 0.84 (0.73 – 0.96) 0.01 

PC3  516 205 1.75 (1.55-1.99) <0.001 516 205 1.40 (1.22 – 1.62) <0.001 

Adjusted          

PC1  494 198 0.98 (0.84-1.15) 0.81 494 198 0.83 (0.70 – 0.98) 0.02 

PC2  494 198 0.94 (0.80-1.10) 0.42 494 198 0.90 (0.78 – 1.05) 0.18 

PC3  494 198 1.54 (1.25-1.90) <0.001 494 198 1.09 (0.91 – 1.29) 0.34 

Sensitivity         

PC1  494 198 1.01 (0.86-1.19) 0.87   -  

PC2  494 198 0.95 (0.81-1.12) 0.53   -  

PC3  494 198 1.55 (1.26-1.92) <0.001   -  

M
u

lt
i-

c
e

n
te

r 

V
a

li
d

a
ti

o
n

 

Unadjusted         

PC1  282 121 1.10 (0.92-1.33) 0.28   -  

PC2  282 121 0.77 (0.64-0.93) 0.008   -  

PC3  282 121 1.58 (1.34-1.87) <0.001   -  

Adjusted          

PC1  274 116 0.94 (0.76-1.16) 0.58   -  

PC2  274 116 0.90 (0.73-1.11) 0.32   -  

PC3  274 116 1.37 (1.05-1.78) 0.02   -  

S
in

g
le

-c
e

n
te

r 

V
a

li
d

a
ti

o
n

 

Unadjusted         

PC1  257 93 1.17 (0.94-1.44) 0.16   -  

PC2  257 93 0.93 (0.76-1.13) 0.44   -  

PC3  257 93 1.37 (1.13-1.67) 0.001   -  

Adjusted          

PC1  251 91 1.11 (0.86-1.43) 0.43   -  

PC2  251 91 0.88 (0.72-1.09) 0.25   -  

PC3  251 91 1.43 (1.06-1.92) 0.02   -  
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Table S5: Results of the "recalibrated" LASSO model using metabolites common to 

both internal derivation and external validation cohorts. LASSO = least absolute 

shrinkage and selection operator; PC = principal component. 

 LASSO Coefficient 

metabolite PC1 PC2 PC3 

glycine 0.01494987 0.139102307 0.030239001 

alanine -0.251512522 -0.113791394 0.024166223 

serine 0.143051865 0.106803934 -0.041300673 

threonine 0.050589769 0.033504175 0.040275094 

methionine - -0.05081661 - 

aspartate 0.015995975 - 0.080618582 

glutamate - -0.16867989 -0.033268046 

asparagine - 0.042200172 -0.086920091 

glutamine -0.005139735 0.022095756 - 

histidine -0.069711788 0.074003134 -0.332893973 

arginine -0.030562809 0.212603096 -0.016608614 

lysine - 0.041159659 -0.001146626 

valine -0.101041903 0.000266757 -0.167696977 

leucine - 0.045187493 -0.110701583 

phenylalanine 0.084663329 - 0.048414897 

tyrosine - -0.114599243 0.002947603 

tryptophan 0.101032064 -0.013813357 -0.029229131 

proline -0.053258912 -0.012065449 -0.01105175 

cis.trans.hydroxyproline - - - 

ornithine - -0.068995475 - 

citrulline 0.016689991 0.029839466 0.012033922 

taurine 0.025119423 - - 

5.hydroxytryptophan - - -0.017393582 

5.HIAA - -0.006672996 0.042201013 

cystamine -0.062069023 0.013839851 -0.001509095 

cysteamine 0.030232505 -0.000299186 -0.007223417 

GABA - -0.01236756 -0.013089138 

dimethylglycine 0.017769162 - - 

homocysteine - -0.008340423 -0.001346062 

ADMA.SDMA 0.010550956 0.052037309 0.166046764 

NMMA - - - 

allantoin - 0.005085548 0.115265873 
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aminoisobutyric.acid 0.008684823 0.020307994 - 

carnitine - -0.015765839 -0.056224754 

1.methylhistamine - -0.027932122 0.023886073 

5..adenosylhomocysteine - - 0.01108117 

3.hydroxyanthranilic.acid - - -0.05508892 

N.carbomoyl.beta.alanine 0.113717016 -0.18009016 0.281661982 

niacinamide -0.157019631 0.006085806 - 

betaine 0.016686918 0.011834496 -0.011957004 

choline 0.009601636 - 0.006595445 

phosphocholine -0.1747666 - -0.021421928 

alpha.glycerophosphocholine - 0.037644223 0.005717554 

spermidine -0.04104223 -0.191238112 -0.095427795 

creatine -0.158601676 0.132805505 0.188000128 

creatinine 0.086683549 - 0.114546392 

adenosine 0.037085836 0.003767399 -0.022240968 

cytosine - 0.010832363 - 

xanthosine 0.00130912 -0.063711329 0.024627807 

cAMP -0.060711268 -0.034277629 -0.001141732 

isoleucine - -0.021463649 0.017886777 

xanthine -0.048163564 0.032269234 -0.038850884 

xanthurenate 0.11585772 -0.095660451 - 

kynurenine 0.172680721 0.033820158 0.086083182 

uridine -0.012756245 0.24380548 -0.079669817 

citicholine -0.00029907 -0.134291446 - 

beta.alanine -0.089808244 -0.305192791 - 

C2.carnitine -0.073445173 -0.008632177 - 

C3.carnitine - - -0.048265682 

C3.malonyl.carnitine - -0.067866411 - 

C4.butyryl.carnitines 0.053656022 0.000160457 0.056067457 

C4.methylmalonyl.carnitine -0.063571497 -0.016661022 0.017603944 

C5.valeryl.carnitines - - - 

C5.glutaryl.carnitine 0.013413055 - 0.073555365 

C6.carnitine - - 0.014374416 

C7.carnitine - -0.038240411 0.005419971 

C8.carnitine - 0.035161499 -0.016166012 

C9.carnitine 0.17198752 - 0.02357368 

C10.carnitine -0.03710882 - - 

C12.carnitine - - 0.04619551 

C14.carnitine 0.075879056 0.038998555 -0.038372988 
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C16.carnitine - - 0.005230519 

C18.carnitine -0.034616529 0.024214834 -0.081105255 

C18.1.carnitine - -0.090844535 0.06323825 

C18.2.carnitine 0.14104691 - 0.043582665 

C26.carnitine 0.051564122 0.044507161 -0.024568913 

anandamide -0.046417867 - - 

Cystine -0.059824958 -0.034687137 -0.025504188 
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Table S6: Measures of multimorbidity and frailty in the derivation and multi-center 

validation cohort. Continuous variables are reported as median (25th, 75th percentile); % 

missing. Categorical variables are reported as n (%); % missing. FEV1 = Forced 

expiratory volume in the first second. 

  
 

 
 

 

 
  

Characteristic 
Derivation 

N = 519 
Multi-center Validation  

N = 286 

Kansas City Cardiomyopathy 
Questionnaire Score  

47 (29, 66); 6.2% 46 (30, 64); 6.6% 

Gait speed average (m/s)  0.72 (0.55, 0.88); 12% 0.67 (0.51, 0.84); 21% 

Grip strength average (kg)  19 (14, 26); 8.5% 19 (13, 27); 12% 

Mini-Cog total score  3.00 (2.00, 5.00); 6.7% 3.00 (2.00, 4.00); 7.3% 

Percent predicted FEV1 82 (67, 102); 21% 75 (60, 90); 33% 

Hemoglobin (mg/dL)  
12.20 (10.90, 13.30); 

0.6% 
12.50 (11.20, 13.72); 

0.7% 

Platelets (per liter)  199 (158, 244); 0.8% 190 (156, 239); 0.7% 

Uric acid (mg/dL) 6.30 (5.00, 7.70); 2.9% 6.30 (5.10, 8.00); 3.5% 
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Figure S1: CONSORT diagram 

 

LC-MS = liquid chromatography – mass spectrometry  

Multi-center observational 
cohort of participants with 
symptomatic severe aortic 

stenosis
Nparticipants=805

Single-center observational 
cohort of participants with 
symptomatic severe aortic 

stenosis
Nparticipants=257

Measurement of circulating 
metabolites via LC-MS

Nmetabolites = 221

Participants with complete data 
on 12 echo measures

Nparticipants = 519

Participants with incomplete 
data on 12 echo measures

Nparticipants = 286

Derivation Cohort:
Generate phenotype and 

metabolite scores
Nparticipants = 519
Nmetabolites = 221

Multi-center Validation Cohort:
Test metabolite scores

Nparticipants = 286
Nmetabolites = 221

Measurement of circulating 
metabolites via LC-MS. 

Nmetabolites = 78
(metabolites common to the 

multi-center cohort)

Single-center Validation Cohort:
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Figure S2: Correlation of echocardiographic parameters 

 

Spearman correlation across 12 echocardiographic parameters used in principal 

components analysis. LA Vol = left atrium volume index; LVMi = left ventricular mass 

index; LVESVI = left ventricular end-systolic volume index; LVEDVI = left ventricular 

end-diastolic volume index; LVESDI = left ventricular end-systolic diameter index; 

LVEDDI = left ventricular end-diastolic diameter index; RWT = relative wall thickness; 

LVEF = left ventricular ejection fraction; LV DTI = tissue Doppler S velocity of lateral 

mitral annulus; SVI = stroke volume index; AV = aortic valve. 
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Figure S3: Scree plot from principal components analysis 

 
 
Scree plot demonstrating proportion of variance explained (bars) and cumulative 

variance explained (red line), suggesting 3 principal components. PC = principal 

component. 
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Figure S4: Relationship between circulating metabolites and echocardiographic 

PCs.  

 

 
 
All 60 metabolites selected by LASSO are shown with their corresponding loading with 

each echocardiographic PC (see Table S1 for coefficients). LASSO = least absolute 

shrinkage and selection operator; PC = principal component. *HILIC negative ion mode. 
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Figure S5: Relation of metabolite scores to parent phenotypes 

 

 

Relation of parent phenotype PC scores with metabolite scores. The associations were 

moderate in magnitude. Reported R2 is from model optimization at the optimal lambda. 

PC = principal component. 

 

  

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
2

−
1

0
1

2
3

PC1

Metabolite score for PC1

P
C

1

Spearman Correlation=0.459; P<0.001

−1.0 −0.5 0.0 0.5

−
3

−
1

0
1

2
3

PC2

Metabolite score for PC2

P
C

2

Spearman Correlation=0.465; P<0.001

−0.5 0.0 0.5 1.0

−
3

−
2

−
1

0
1

2

PC3

Metabolite score for PC3

P
C

3

Spearman Correlation=0.407; P<0.001

D
ow

nloaded from
 http://ahajournals.org by on January 23, 2024



Figure S6: Comparison of metabolite scores across sex. 

 

Box-plots for metabolite scores across sex (comparison by Wilxocon test). While we 

observed statistically significant differences by sex, there was a broad degree of overlap 

suggesting no clinical meaningful differences in metabolite score by sex. PC = principal 

component. 
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Figure S7: Pathway analysis of metabolite scores 

 

Metabolic pathway analysis of 52 metabolites with Human Metabolome Database 

(HMDB) identifiers (out of 60 metabolites across all identified metabolite scores). 

Pathways with an FDR <0.05 are shown. FDR = false discovery rate. 
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Figure S8: Correlation of recalibrated metabolite scores with original metabolite 

scores 

 

Recalibration of scores for the single-center validation cohort (as described in Methods 

and Results). Axes correspond to the full score (Y axis; based on all metabolites in our 

derivation sample) versus the recalibrated “reduced” score (X-axis; based on 

metabolites that overlap between the multi-center derivation cohort and the single-

center validation cohort). R2 is moderate to excellent (up to 87% for PC3). PC = 

principal component. 
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Figure S9: Validation of the prognostic utility of the metabolite score for PC3 in 

separate cohorts.  

Figure S9A 
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Figure S9B 
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Figure S9C 
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Kaplan-Meier estimates of survival among the multi-center derivation cohort (A), multi-

center validation cohort (B), and single-center validation cohort (C) stratified by tertiles of 

PC3 metabolite score. For visualization plots are truncated at 1500 days. P-values from 

logrank tests are reported. PC = principal component. 
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