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SUMMARY

We report a comprehensive proteogenomics analysis, includingwhole-genome sequencing, RNA sequencing,
and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain
cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglio-
glioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify com-
mon biological themes that span histological boundaries, suggesting that treatments used for one histological
type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape char-
acterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further
reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptom-
ics data. Kinase-substrate association and co-expression network analysis identify important biological mech-
anisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological
boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.

INTRODUCTION

Pediatric brain tumors are the leading cause of cancer-related

deaths in children (Ostrom et al., 2018). Although genomic tech-

niques have begun to illuminate the pathogenesis of many pediat-

ric brain tumors, there are some unique challenges that limit the

translation of these findings into new effective therapies. Because

pediatric brain tumors have a relatively low mutational burden

(Chalmers et al., 2017; Gröbner et al., 2018; Northcott et al.,

2017; Parsons et al., 2011; Pugh et al., 2012; Robinson et al.,
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2012), the majority of pediatric brain tumors defy treatment ap-

proaches that exploit targetable genomic events. In addition,

many pediatric brain tumors are characterized by aberrant epige-

netic landscapes, but so far there is no effectiveway to specifically

target these keyprogrammatic changes (Capper et al., 2018). RNA

profiling has identified subgroups within histological diagnoses

and highlighted pathways thought to be active in these groups,

but targeting thesepathwayshas largely beenunsuccessful. A po-

tential explanation for this lack of translation is that these mecha-

nisms reside many regulatory layers away from the primary func-

tional element of the cell, the protein (Rivero-Hinojosa et al., 2018).

In recent years, quantitative mass spectrometry and bioinfor-

matics analyses have matured, resulting in the ability to add a

quantitative proteomics facet to a primarily genomics-based

biological understanding of diseases (Clark et al., 2019; Dou

et al., 2020; Gillette et al., 2020;Mertins et al., 2016; Rivero-Hino-

josa et al., 2018; Zhang et al., 2014, 2016). These efforts have

shown a distinct uncoupling of RNA transcript abundance from

protein abundance, particularly in cancer. This fact alone could

account for a significant disconnect between genome-based

biological discovery and clinical validation. Analysis of these in-

tegrated proteogenomics datasets has the potential to aid with

identification of new therapeutic avenues.

Another challenge of translating new molecular findings into

therapeutic innovations is that the subdivision of traditional his-

tology-based entities into molecular subgroups fragments pa-

tient populations into ever smaller groups, creating existential

challenges for clinical trial design. This is especially true for

rare cancers such as pediatric brain tumors. One salient feature

of proteomics is the ability to discern biology closer to cellular

intent by virtue of its focus on the main functional moiety of the

cell, the protein. Because disparate upstream genomic events

can result in similar downstream pathway changes, by scruti-

nizing these resultant events, proteomics can identify common

biology across histological and molecular boundaries.

In anattempt to incorporate proteomics into abiological under-

standing of pediatric brain tumors, we undertook the first large-

scale comprehensive proteogenomics analysis inclusive of the

genomics, transcriptomics, and global and phosphoproteomics

of a large cohort of 218 tumor samples representing 7distinct his-

tological diagnoses, including low-grade glioma (LGG), ependy-

moma (EP), high-grade glioma (HGG), medulloblastoma (MB),

ganglioglioma, craniopharyngioma (CP), and atypical teratoid

rhabdoid tumor (ATRT). Unsupervised clustering based on the

proteome revealed surprising alignments between subsets of tu-

mor diagnoses regarded previously as biologically distinct and
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led to a number of insights described here. We seek to demon-

strate that incorporation of theproteomic andphosphoproteomic

dimensions into this large-scale multi-omics study leads to func-

tional insights that will help drive translational efforts.

RESULTS

Proteogenomics Analyses of Pediatric Brain Tumor
Specimens
For 218 fresh-frozen tumor samples from 199 patients repre-

senting 7 histological types of pediatric brain tumors, we per-

formed whole-genome sequencing (WGS), RNA sequencing

(RNA-seq), and quantitative proteomics and phosphoproteo-

mics profiling. All samples were sourced from Children’s Hospi-

tal of Philadelphia. Figure 1A illustrates the sample distribution

across 7 histological types: LGG (n = 93), EP (32), HGG (25),

MB (22), ganglioglioma (18), CP (16), and ATRT (12).

For proteomics and phosphoproteomics quantitation, all 218

tissue samples were analyzed by liquid chromatography and tri-

ple mass spectrometry with tandem mass tag (TMT) isobaric la-

beling. The number of proteins and phosphosites measured per

sample ranged from 4,661 to 5,731 (median, 5,122) and 2,155 to

3,415 (median, 2,714), respectively. In total, we identified and

quantified 8,802 proteins and 18,235 phosphosites. Among

them, 6,429 proteins and 4,548 phosphosites were observed in

more than 50% of the samples of at least one histological diag-

nosis and were considered in the downstream analysis. In addi-

tion, 440 phosphosites from ischemia-induced proteins (Mertins

et al., 2014) were excluded to avoid any artificial effect induced

by variations in sample collection.

WGS andRNA-seqwere also performed formost samples. Af-

ter quality filtering, somatic mutation, DNA copy number alter-

ations and RNA-seq-based gene expression data were derived

for 200, 190, and 188 tumor samples, respectively (Figure 1B;

STAR Methods). All processed proteogenomics datasets can

be queried, visualized, and downloaded from http://pbt.

cptac-data-view.org/.

Proteogenomics Clustering of Pediatric Brain Tumors
Consensus clustering based on global proteomics data identi-

fied eight clusters (Figure S1A) with distinct survival outcomes

(Figure 1C), stemness scores, proliferation indices, and pathway

activities (Figure 1D; Table S1). We termed the eight clusters

Ependy, Medullo, Aggressive, Cranio/LGG-BRAFV600E, HGG-

rich, Ganglio-rich, LGG BRAFWT-rich, and LGG BRAFFusion-rich.

Although some clusters coincided with histological diagnoses,

such as Medullo, other clusters contained a mixture of different

diagnoses (Figures S1B). First, the Cranio/LGG BRAFV600E clus-

ter (C4) aligned a subset of CP tumors with LGG tumors

harboring BRAFV600E mutations, whereas the rest of CPs were

aligned with the LGG BRAFWT-rich cluster (C8) (Figures 1D and

S1A). This segregation of the CP samples into two distinct clus-

ters was also supported by parallel consensus clustering anal-

ysis based on phosphorylation data (Figures S1A). Division of

CP samples, however, was not detected based on RNA data

(Figure S1A), and the sample-wise correlation between prote-

omics and RNA-seq profiles was rather low for samples in these

two proteomic clusters (Figure 1D).

Although CTNNB1 mutation is an important oncogenic factor

for pediatric CP (Campanini et al., 2010), the proteomic clusters,

C4 and C8, did not distinguish CTNNB1 mutation status (Fig-

ure 1E). Instead, they more closely resembled the patterns

induced by BRAFV600E in LGG (Figures 1D, and 5A). BRAFV600E

mutation, an oncogenic event for some adult CPs (Brastianos

et al., 2014), has not been detected previously in pediatric indi-

viduals with CP. Our findings suggest that a subset of pediatric

CP tumors, despite their lack of BRAFV600E mutations, showed

similar proteomics changes as those in BRAFV600E LGG tumors.

This motivates the hypothesis that some pediatric CPs might

benefit from MEK inhibitor (MEKi)-based treatment, a strategy

that has been used for BRAFV600E LGG tumors (Fangusaro

et al., 2019) and has shown preclinical promise in adult CPs

(Apps et al., 2018). Indeed, a group of genes suggested to be

downregulated by MEKis (Pratilas et al., 2009) has been found

to be upregulated in CP samples from C4 (Figure S1C). Further-

more, downstream proteins/substrates of MEK/ERK kinases,

including ERK1/2, were upregulated in these samples (Figures

1E, 1F, and S1C), a known consequence of BRAFV600Emutation.

In addition, central members of the AKT/mTOR pathway also

showed higher kinase activity in C4 compared with C8 CP sam-

ples (Figures 1E, 1F, and S1C), consistent with the contrast be-

tweenBRAFV600E andBRAFWT LGG tumors (Figure 5B). The AKT

Figure 1. Proteomics-Based Clustering of Pediatric Brain Tumors

(A) Summary of the pediatric brain tumor cohort.

(B) Presence of omics datasets for each of the 218 tumor samples. For each sample, the clinical status at sample collection (i.e., post-mortem, post-treatment, or

treatment-naive) is also reported.

(C) Kaplan-Meier curves for overall survival (OS) of patients stratified by proteomic cluster.

(D) Proteomic clusters and differentially expressed proteins allocated to 14 gene groups (top heatmap). Each row represents a proteomic cluster, and each

column represents a protein. Red/blue denote up/downregulation patterns of different proteins in a cluster. Distributions of diagnoses, clinical outcomes, and

mutation status among the 8 clusters (top left pie plots) and gene members of key pathways enriched in each gene group (bottom heatmap) are shown. For each

pathway, the averaged sample-specific gene set enrichment analysis (ssGSEA) score in each proteomic cluster based on global proteomics (protein) and RNA-

seq data are illustrated on the right.

(E) Heatmap of kinase activity scores for CP tumors (n = 16). Silhouette scores (top) measure the cohesiveness of tumors classified as C4 and C8 based on kinase

activity score. Kinases involved in AKT1 or ERK1/2 signaling are highlighted in the heatmap.

(F) Diagram illustrating differences between C4 and C8 CP tumors in terms of phosphorylation abundance and kinase activity for AKT and ERK1/2 signaling

members.

(G) MRM measurements validated different activities of proteins and phosphoproteins between C4 and C8 CPs. The numbers annotated under each pair of

boxplots correspond to the AUC (area under the curve) for classifying the two groups of CP using the corresponding protein/phosphosite measurement.

See also Figure S1.
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pathway has been implicated as a resistance pathway emerging

after RAF/ERK inhibition in BRAF-driven tumors (Jain et al.,

2017). Preclinical studies have demonstrated the value of coor-

dinated inhibition of MEK and mTOR, the primary AKT effector,

in LGG (Jain et al., 2017). Our findings further suggest potential

application of this rationale for some individuals with CP.

Upregulation of key MEK/ERK/AKT kinases in C4 compared

with C8 is only visible based on kinase activity assessment using

phosphoproteomics data but is not reflected in RNA/protein

abundance, suggesting the important complementary role of

phosphoproteomics data (Figure S1C).

To validate TMT measurements of proteins and phosphosites

of interest, targeted mass spectrometry experiments of a

customized protein/phosphoprotein marker panel were applied

to the same set of tumor samples following immuno-multiple re-

action monitoring (MRM) experiment protocols (Whiteaker et al.,

2018). The MRM measurements of key players in the MEK/ERK

pathways confirm the substantial differences in C4 and C8 CP

(Figure 1G). Moreover, these MRM assays can accurately clas-

sify the two subtypes of CP, as reflected by their high area under

the curve (AUC) values (Figure 1G), suggesting feasibility of clas-

sifying these subtypes in clinical practice by using MRM-based

assays.

Another proteomic cluster containing amixture of diagnoses is

the Aggressive cluster, characterized by poor survival outcomes

(Figure 1C). EPs in theAggressive cluster weremore similar to tu-

mors within the cluster, regardless of histology, than to the other

EPs in the Ependy cluster (Figure S1A). Specifically, members

belonging to the evolutionarily conserved multifunctional poly-

merase-associated factor 1 complex (PAF1C), including PAF1,

CDC73, CTR9, LEO1, and RTF1, were found to be upregulated

significantly in the Aggressive cluster compared with the Ependy

cluster (Figures S1D and S1E). PAF1C has a vital role in gene

regulation and has been implicated in tumorigenesis (Moniaux

et al., 2006; Tomson and Arndt, 2013). PAF1C regulates a variety

of factors involved in histone covalent modifications, transcrip-

tion, and mRNA 30 end processing (Karmakar et al., 2018; Fig-

ure S1D). These factors showed upregulation patterns in the

Aggressive cluster compared with the Ependy cluster based on

global and phosphoproteomics data (Figure S1E). Neither segre-

gation of EPs into different clusters nor consistent upregulation

of PAF1C members and downstream players was observed in

RNA data (Figures S1A and S1E).

Although the 9 samples from the post-mortem collection (Fig-

ure 1B) blended well with other surgically obtained samples in

the protein/RNA-based clustering results, they grouped together

in one phosphoproteomic cluster (Figure S1A), suggesting

caution when studying post-translational modification (PTM)

based on post-mortem samples. To avoid any potential artificial

effects, the post-mortem samples were not considered in down-

stream analyses involving phosphoproteomics data.

Immune Infiltration in Pediatric Brain Tumors
We performed cell type deconvolution analysis using xCell (Aran

et al., 2017) based on RNA data to infer relative abundance of

different cell types in the tumormicroenvironment (Figure 2A; Ta-

ble S2). The inferred proportion of neuronal and microglia cells

were further confirmed based on signatures derived from sin-

gle-cell RNA-seq study of glioblastoma (Figure 2A; Darmanis

et al., 2017). Consensus clustering based on inferred cell propor-

tion identified five sets of tumors with distinct immune and stro-

mal features: Cold-medullo, Cold-mixed, Neuronal, Epithelial,

and Hot (Figure 2A). Comparing this with proteomic clusters,

we observed lower immune infiltration in more aggressive

proteomic clusters such as Aggressive, Medullo, and Ependy

and higher immune infiltration in LGG BRAFWT-rich, LGG

BRAFFusion-rich, and Cranio/LGG BRAFV600E (Figures 2D

and S2A).

The Hot group, containing a mixture of LGG, HGG, and gan-

glioglioma samples, was characterized by the presence of mul-

tiple types of immune cells, including macrophages, microglia,

and dendritic cells (Figure 2A). As expected, compared with

other tumors, the Hot cluster showed upregulation of immune-

related pathways, including epithelial-mesenchymal transition

(EMT) (Lou et al., 2016; Figures 2A and 2B). Moreover, adenosine

producers (e.g., phosphatases ENTPD1 and NT5E), which have

been shown to protect against inflammatory oxidative stress,

inhibit immune activators and activate immunosuppressing cells

(Chisci et al., 2017; Kordab et al., 2018), were upregulated based

on RNA and protein data in the Hot cluster (Figures 2A and 2B),

suggesting that adenosine-reducing therapies can be investi-

gated for these tumors (Lakka and Rao, 2008; Leone and Emens,

2018; Perrot et al., 2019).

Neuronal also contained a mixture of LGG, HGG, and ganglio-

glioma tumors, but was uniquely characterized by upregulation

of glutamate receptor signaling and neurotransmitter transport

Figure 2. Immune Infiltration in Pediatric Brain Tumors

(A) Heatmap illustrating cell type compositions and activities of selected individual gene/proteins and pathways across 5 immune clusters. The heatmap in the

first section illustrates the immune/stromal signatures from xCell. The heatmap in the second section illustrates signatures of microglia, neurons, and oligo-

dendrocytes derived from single-cell sequencing data from Darmanis et al. (2017). RNA and protein abundance of key immune-related markers and ssGSEA

scores based on global proteomics data for biological pathways upregulated in different immune groups are illustrated in the remaining sections.

(B) Contour plot of two-dimensional density based on macrophage (y axis) and microglia scores (x axis) for different immune clusters. For each immune cluster,

key upregulated pathways significant at 10% false discovery rate (FDR) are reported based on RNA-seq (R), global proteomics (P), and phosphoproteomics data

(Ph) in the annotation boxes. For the Cold-mixed and Cold-medullo clusters, pathways upregulated in both clusters are reported.

(C) Distribution of pathway scores of signaling by WNT and oxidative phosphorylation based on global proteomics data and RNA stratified by immune clusters.

(D) Heatmap showing the comparison between immune clusters (columns) with proteomic clusters and different histologies (rows). Each row sums to one, with

different entries showing the proportion of tumors allocated to different immune clusters.

(E) xCell immune/stromal and antigen presentation signatures in BRAFV600E or BRAFFusion compared with BRAFWT in LGG.

(F) Distribution of RNA levels of HLA-A, HLA-B, and HLA-C in LGG tumors with different BRAF statuses.

(G) Distribution of macrophage and microglia polarization (M2-M1) in LGG tumors with different BRAF statuses.

See also Figure S2.
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pathways involved in neuron communication and activation of

cell growth (Pereira et al., 2017; Stepulak et al., 2014; Figures

2A and 2B; Table S2). This observation may support a gluta-

mate/glutamate-receptor mediated mechanism of glioma pro-

gression in these samples. Recent studies demonstrate that glu-

tamatergic synapses exist between neurons and glioma cells in

pediatric (Venkatesh et al., 2019) and adult (Venkataramani et al.,

2019) HGG. Glutamate receptors can activate Ca2+/calmodulin-

dependent protein kinase II (CaMK2A/B/G/D), which engages

phosphatidylinositol 3-kinase (PI3K; PIK3CA) and signals to

RAS through centaurin-a1 (ADAP1) (Hayashi et al., 2006).

Consistently, we found that GRIA1, CAMK2A/B/G/D, PIK3CA,

and ADAP1 showed significant upregulation in Neuronal (Table

S2), further suggesting an active role of glutamate signaling in

theNeuronal group. In addition, high levels of glutamate can pro-

mote immune evasion mechanisms (Cai et al., 2018); indeed, we

observed decreased gene expression of CD4, CD8A, and

macrophage-related genes in the Neuronal cluster compared

with the Hot cluster (Table S2). At the same time, the Neuronal

cluster was characterized by upregulation of pathways of energy

metabolism such as oxidative phosphorylation (OXPHOS), mito-

chondrial protein complex, and glycolysis solely based on prote-

omics data (Figures 2A–2C and S2C; Table S2). It has been re-

ported that glutamine blockade induces divergent metabolic

programs to overcome tumor immune evasion and that gluta-

mine antagonism could serve as a ‘‘metabolic checkpoint’’ for

tumor immunotherapy (Leone et al., 2019), which might benefit

tumors like the ones in the Neuronal cluster.

LGG tumors, which were split into the Neuronal and Hot clus-

ters, showed substantial tumor microenvironment heterogeneity

(Figure 2A). Interestingly, BRAFV600E and BRAFFusion events,

important oncogenic drivers of LGG tumors, showed significant

association with multiple immune signatures. In particular, APM

class I genes were upregulated in BRAFFusion and BRAFV600E tu-

mors compared with the wild-type (Figures 2E and 2F; Table S2).

More careful investigation of pro-inflammatory (M1) and pro-

regenerative (M2) macrophage and microglia signatures (Fig-

ure S2B; Table S2) based on markers specific to these cell types

(Dello Russo et al., 2017; Fumagalli et al., 2018; Krasemann et al.,

2017) further suggests that M1 macrophages and M2 microglia

were upregulated in BRAFFusion compared with the wild-type

(Figure 2E). The significant difference between microglia and

macrophage polarization across BRAF statuses is further illus-

trated in Figure 2G; BRAFFusion promoted more M2 microglia,

whereas BRAFV600E promoted more M2 macrophages. This

observation is in concordance with the balance between macro-

phage and microglia polarization reported for adult glioblastoma

(Darmanis et al., 2017).

The Epithelial cluster, containing, as expected, only CP tu-

mors, which originate from odontogenic epithelium, was charac-

terized by upregulation of EMT, immune-related pathways, as

well as CTLA4 and PD-1 molecules (Figures 2A and 2B; Table

S2). Therefore, CP could potentially benefit from immune check-

point therapy, as reported previously (Coy et al., 2018).

Finally, Cold-medullo and Cold-mixed exhibited upregulation

of signaling by WNT, b-catenin TCF complex assembly, regula-

tion of apoptosis, and proteasome. This is consistent with recent

reports that tumors with active WNT signaling are characterized

by lower levels of immune infiltration (Luke et al., 2019). Again,

these patterns of upregulation were observed in Cold-medullo

andCold-mixed clusters based on proteomics and phosphopro-

teomics data but not RNA data (Figures 2A–2C and S2C).

Integrative Proteogenomics Analyses Reveal Functional
Consequences of Mutation and Copy Number
Variation (CNV)
Although pediatric tumors usually have fewer genetic alterations

compared with adult tumors (Gröbner et al., 2018), a few recur-

rent DNA alterations were observed in this cohort (Figure S3A).

We first evaluated the effect of the few somatic mutations on

the corresponding RNA/protein levels. LGG tumors with

BRAFV600E mutation had significantly downregulated BRAF pro-

tein abundance comparedwithBRAFWT LGG tumors (Figure 3A),

whereas the reduction was not significant at the transcript level

(Figure S3B). CTNNB1 mutation resulted in elevated protein/

RNA levels among CP samples, whereas NF1 mutation resulted

in downregulation of cognate proteins and transcripts in HGG

(Figures 3A and S3B). SMARCB1 RNA/protein were significantly

downregulated in ATRT samples compared with other diagno-

ses as expected, and the downregulation was the result of

different types of DNA alterations, including mutation, deletion,

and copy-neutral loss of heterozygosity (LOH) (Figure S3C).

In terms of genomic instability, MB, HGG, and EP tumors

showed relatively higher genomic instability (Figure S3A). By

Figure 3. Effect of Genomic Alterations on Transcriptomic, Proteomic, and Phosphoproteomic Abundance

(A) Distribution of protein abundance of BRAF, CTNNB1, and NF1 across tumor samples stratified by different mutation status and diagnoses. *p < 0.1, **p < 0.01,

and ***p < 0.001.

(B) DNA copy number amplification/deletion frequencies along chromosome 1 among EP, HGG, and MB samples. Genes with detected CNV-RNA/protein or

CNV-RNA/protein/phospho cascade events are labeled as vertical bars in the top track.

(C) Distribution of DNA copy number (log ratio), RNA, and protein abundance of RABGAP1L, RAB3GAP2, and FDPS, stratified by their amplification statuses in

EP, MB, and HGG tumors. *p < 0.1, **p < 0.01, and ***p < 0.001. ns, not significant (p value > 0.1).

(D) Illustration of the effect of CTNNB1mutation on RNA and protein abundance in CP samples. The x axis (y axis) represents signed �log10 FDR for testing the

association between protein abundances (RNAs) and CTNNB1 mutation. The cell-cell contact zone (coagulation) pathway is enriched in the set of proteins

upregulated (downregulated) in CTNNB1 mutant samples. A few members of the WNT signaling pathway whose protein or phosphosites are associated with

CTNNB1 mutation are highlighted in red. Phosphosites are annotated with (P) in their gene symbols.

(E) Distribution of protein and phosphosite abundance among CTNNB1mutant and CTNNB1 wild-type CP tumors for known key members of the WNT signaling

pathway interacting with b-catenin and transcription factors regulated by CTNNB1. Symbols *, **, and *** correspond to an FDR of less than 0.1, 0.01 and 0.001,

respectively. ns, FDR > 0.1.

(F) Illustration of the regulatory role of b-catenin.

See also Figure S3.
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integrating copy number, RNA, and proteomics data, we de-

tected 1,541 genes whose transcript and protein abundance

were influenced simultaneously by their own CNVs in one or

more diagnosis, referred to as CNV-RNA/protein cis-cascade

events (Figure S3D; Table S3). In addition, for 515 of these

1,541 genes, we detected significant dependence between their

phosphosite abundance and CNV in one or more diagnoses,

referred to as CNV-RNA/protein/phospho cis-cascade events

(Figure S3D; Table S3). These lists of cis-cascade events facili-

tate identification of important players in frequently amplified/

deleted genome regions. One example is RABGAP1L (1q25),

an EP CNV-RNA/protein/phospho cis-cascade gene (Figures

3B and 3C), whose amplification is associated with GTPase acti-

vation and RAB-GTPase binding (Itoh et al., 2006) and has been

reported to be an independent predictor of tumor progression in

EP (Kilday et al., 2012). Another member from the RAB GTPase

gene family,RAB3GAP2 (1q41), which has a key role in neurode-

velopment (Ng and Tang, 2008), was identified to be a CNV-

RNA/Protein cis-cascade gene for EP, MB, and HGG tumors.

Our analysis further pinpoints an important player in mainte-

nance of glioblastoma stemness, FDPS, proximate to RAB-

GAP1L, as a CNV-RNA/protein cis-cascade gene for HGG

(Abate et al., 2017; Kim et al., 2018a).

Although recurrent amplification of RABGAP1L, RAB3GAP2,

and FDPS was observed in all EP, MB, and HGG tumors, a sig-

nificant influence of RABGAP1L amplification on its protein/

phosphoprotein was only observed in EP, whereas FDPS was

found to be a CNV/RNA/protein cascade event only in HGG (Fig-

ures 3B and 3C). On the other hand, for MB, only RAB3GAP2 is

identified as a CNV-RNA/protein cis-cascade gene. These ob-

servations suggest that CNV of the same genomic region could

lead to different functional perturbations in different diagnoses.

We then studied the trans-regulatory effects of somatic muta-

tions and CNVs on proteins and phosphoproteins within each

diagnosis. Besides BRAF mutation/fusion in LGG (discussed

below), the only other profound trans-regulatory effects were de-

tected between mutation of CTNNB1, which codes b-catenin,

and many proteins and phosphosites in CP (Figure 3D; Table

S3). b-Catenin is crucial for two developmental processes:

establishment and maintenance of cell-type-specific cell-to-

cell adhesion and regulation of target gene expression via the

WNT signaling pathway (Gao et al., 2017). As expected,

CTNNB1 mutation, which boosted b-catenin abundance, was

found to be associated with upregulation of proteins/phospho-

sites related to cell-to-cell adhesion as well as upregulation of

members of the WNT signaling pathway, such as APC,

GSK3A, and GSK3B (Figures 3D and 3E). Specifically, although

phosphosite abundance of APC at Ser 2812 showed significant

elevation in CTNNB1 mutation cases, this upregulation was not

observed based on protein abundance of APC (Figure 3E). It is

well known that WNT signaling results in liberation of b-catenin

and its translocation to the nucleus, where it binds to transcrip-

tion factor (TCF) complexes to activate transcription (Figure 3F).

In our data, we observed significant association between RNA

and protein/phosphosite abundance of TCF4, TCF25, and

CTNNB1 mutation in CP. The interaction of b-catenin with

TCF4 has been proposed as a target for development of anti-

cancer drugs in other tumor types (Fasolini et al., 2003).

However, we observed that RNA expression and phosphosite

abundance of TCF4 were significantly lower in the CTNNB1-

mutated group. RNA and proteomic abundance of TCF25,

another transcription factor that may play a role in cell death con-

trol (Cai et al., 2006), were upregulated in CTNNB1-mutated CP.

These results suggest that, among this group of CP, downstream

effects of mutation in CTNNB1 could be mediated by TCF25.

Phosphoproteomics Analysis of Kinase Activity
Because of the tremendous appeal of kinases as drug targets, it

is of great importance to characterize the common and differen-

tial kinase activations within and across histologies. CDK1 and

CDK2, essential cyclin-dependent kinases promoting the G2-

M transition and regulating G1 progression and the G1-S transi-

tion (Santamarı́a et al., 2007), were elevated in more proliferative

tumors, including ATRT, MB, HGG, and EP based on global

abundance and kinase activity (Figures 4A and S4B; Table S4),

the latter derived from the abundance of phosphorylated sub-

strates (STAR Methods). Activation of CDK1 and CDK2 in more

proliferative tumors was also confirmed by higher correlation be-

tween their global abundance and kinase activity scores (Fig-

ure 4A). To further characterize the dependence of individual

substrates on kinases, we constructed diagnosis-specific ki-

nase-substrate networks leveraging an experimentally validated

kinase-substrate regulation database (Hornbeck et al., 2015;

STAR Methods). Some kinase-substrate associations of CDK1/

2 were shared across different diagnoses (Figure S4A). For

example, the association between CDK2 and MCM2 at Ser

139 was detected in ATRT/MB, EP, HGG, and LGG. On the other

hand, some diagnosis-specific associations were detected,

such as CDK2 and NPM1 at Ser 70 in HGG and LGG, and

CDK2 and TERF2IP at Ser 203 in EP (Figure S4A). MCM2,

NPM1, and TERF2IP (RAP1) have important roles in cell prolifer-

ation (Box et al., 2016; Fei and Xu, 2018; Schmitt and Stork,

2001), implying diverse mechanisms used by CDK2 to influence

cell proliferation in various diagnoses.

Figure 4. Phosphoproteomics Analysis of Kinase Activity

(A) Heatmaps showing the global abundance (right panel) and the kinase activity score (left panel) of selected kinases across different histologies. For each

kinase, the Pearson’s correlation between its global abundance and kinase activity within each histology is shown in the center panel.

(B) Scatterplot showing the global abundance of a particular kinase (x axis) versus the phospho-abundance of the targeted substrates (y axis). The first row is

based on data from the discovery cohort, and the second row displays data based on the validation cohort.

(C) Heatmap showing global proteomic abundance of CDK1, CDK2, and CAMK2A as well as phosphorylation abundance ofMCM2Ser 139, GJA1 Ser 325, GJA1

Ser 314, SYN1 Ser 568, and SYN1 Ser 605 among HGG in the discovery and validation cohorts.

(D) Diagram showing kinase-substrate associations involved in CNS development in LGG (top center panel). Scatterplots show the association between the

global (or phospho) abundance of each kinase (x axis) and the phospho-abundance of the corresponding substrate (y axis).

See also Figure S4.
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Another important kinase is CaMK2A (Ca2+/calmodulin-

dependent protein kinase II alpha), which is directly involved in

metastatic invasion of glioma cells (Chen et al., 2011; Cuddapah

and Sontheimer, 2010; Shin et al., 2019). Although CaMK2A was

most abundant in ganglioglioma, a higher correlation between its

kinase activity score and protein abundance was observed in

HGG (Figure 4A; Table S4). The inferred kinase-substrate

network of HGG further highlights the association between

CaMK2A and GJA1 (connexin 43) at Ser 325 and Ser 314 (Fig-

ures 4B and S4A). Phosphorylation of connexin 43 at Ser 325

and Ser 314 promotes gap junction assembly between glioma

and astrocytes (Cooper and Lampe, 2002) and drives cancer

cell migration as well as glioma invasion (Behrens et al., 2010;

Hong et al., 2015). Thus, our data suggest a potential role of

CaMK2A in glioma invasion. Moreover, in HGG, CaMK2A protein

abundance was found to be associated with SYN1 Ser 568 and

SYN1 Ser 605 (Figures 4B and S4A); the latter increases synaptic

transmission and regulates synaptic vesicle dynamics (Magu-

palli et al., 2013). This further aligns with a relevant role of

CaMK2A in glioma invasion because glioma cells form function-

ally active synapses with neurons, and neural activity mediated

by neuron-to-glioma synapses drives glioma invasion and

growth (Venkataramani et al., 2019; Venkatesh et al., 2019).

Interestingly, activation of CDK1/2 and CaMK2A, reflected by

their elevated protein abundance, tended to be exclusive of

each other, suggesting the existence of two different signaling

mechanisms among HGG tumors (Figure 4C).

To further confirm the kinase activity of CDK2 and CAMK2A in

HGG, we carried out independent TMT proteomics and phos-

phoproteomics experiments in an independent cohort of 23 pe-

diatric and young adult HGGs (STARMethods) and validated the

kinase-phosphosite associations between the aforementioned

pairs (Figure 4B). The negative correlations between CDK1/2

and CAMK2A protein abundance were also confirmed in this

validation cohort (Figure 4C), suggesting two different signaling

mechanisms among HGG tumors.

Another interesting group of kinases, CDK5 and GSK3B, were

upregulated in ganglioglioma and a subset of LGG belonging to

the Ganglio-rich cluster (Figure 4A). CDK5 and GSK3B have

been suggested to be regulators of synapse formation, neuro-

genesis, and cell proliferation (Cole, 2012; Shah and Lahiri,

2017). The kinase-phospho network revealed interesting associ-

ations between CDK5/GSK3B and their substrates in LGG (Fig-

ures 4D and S4A), such as the phosphosites of ADD2 (beta-ad-

ducin). ADD2 is highly expressed in brain regions associated

with high plasticity (e.g., the hippocampus), involved in neuronal

morphology, and required for synaptogenesis (Bednarek and

Caroni, 2011; Porro et al., 2010). Positive associations between

CDK5 and ADD2 at Ser 604 as well as GSK3B and ADD2 at Ser

693 reflected CDK5-dependent priming of GSK3B activity (Far-

ghaian et al., 2011). Moreover, it has been shown that CDK5 reg-

ulates recruitment of SYN1 to nascent synapses (Easley-Neal

et al., 2013), and phosphorylation of SYN1 by CDK5 at Ser 553

controls the efficiency of neurotransmitter release (Qiao et al.,

2014). Thus, the observed positive association between CDK5

and SYN1 Ser 553 in LGGmight support an increase in synapto-

genesis between glioma cells and neurons in LGG, which,

however, needs to be confirmed further by functional studies.

This increase also alignswith the association betweenCaMK2A1

and SYN1 at Ser 605 and Ser 568 (Figures 4D and S4A) because

phosphorylation of SYN1 at Ser 605 by CaMKII has been shown

to increase synaptic transmission (Magupalli et al., 2013).

Furthermore, the positive association between CDK5 and

STMN1 at Ser 38 highlights the importance of STMN1-mediated

synaptogenesis for pediatric gliomagenesis because stathmin

phosphorylation, including Ser 38, is essential for synaptic plas-

ticity and memory and increases synaptic strength by promoting

microtubule stability and dendritic transport of the GluA2 subunit

of AMPA-type glutamate receptors to the synapse (Uchida et al.,

2014). All of these observations are in line with findings showing

that gliomas can hijack neuronal development by creating

neuron-glioma synapses (Venkataramani et al., 2019; Venkatesh

et al., 2019) and link to the immune clustering results: the global

abundance of CDK5 and GSK3B was upregulated in the subset

of LGGs from the Neuronal immune cluster (Figure S4C).

Insights from Proteogenomics Analysis of LGG
To help discern biological insights stemming from the frequent

targetable alterations of BRAF in LGG, we identified proteins

associated with BRAFV600E mutation and BRAFFusion (Table

S5). Compared with BRAFWT tumors, BRAFV600E and BRAFFusion

cases showed common as well as alteration-type specific

changes (Figure 5A). Particularly in BRAFV600E, we observed sig-

nificant abundance changes of proteins in themitogen-activated

protein kinase (MAPK; ERK) signaling pathway (Figure 5A)

compared with BRAFWT tumors. MAPKs are the terminus of

the RAS/RAF/MAPK pathway, whose inhibitors have been

used to treat BRAF-altered tumors of multiple cancer types,

including brain tumors (Schreck et al., 2019). For instance,

MEKi monotherapy recently showed promising results in low-

grade pediatric glioma with BRAF alterations (Fangusaro et al.,

2019). Investigation of an RNA expression-based ‘‘MEKi

Figure 5. Insights from Proteogenomics Analysis of LGG

(A) Heatmap illustrating ssGSEA scores of selected pathways differentially expressed between LGG tumors with different BRAF statuses based on global

proteomics data. The dot plot on the left summarizes ssGSEA pathway scores based on RNA data among samples with different BRAF statuses.

(B) Distributions of RNA and TMT protein abundance (TMT global), and MRM protein abundance (MRM global) of AKT1, AKT2, and AKT1S1 in samples with

different BRAF alteration statuses. FDR levels of two-sample comparisons between BRAFV600E/BRAFFusion and BRAFWT are annotated.

(C) The network topology representing the LGG phosphosite co-expression network module enriched in sites upregulated in BRAFv600E compared with BRAFWT

tumors. Phosphosites mapping to genes in the HNRNP family or contained in the MYC target pathway are highlighted in red and blue, respectively.

(D) Scatterplot displaying the association between each phosphosite’s abundance with the global abundance of AKT2 (y axis) versus the association with

BRAFV600E (x axis). Phosphosites contained in the network module in (C) are highlighted in red. Boxplots illustrate the distribution of the activity scores (ssGSEA)

of the network module in (C) based on phosphoproteomics data in samples with different BRAF statuses. The pie plot shows the proportion of phosphosites

contained in the network module in (C), whose abundances are associated at 5% FDR with the global abundance of AKT2.

See also Figure S5.
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Figure 6. Insights from Proteogenomic analysis of HGG

(A) Scatterplot showing OS of individuals with HGG versus the global protein abundance of IDH1 and IDH2 in the tumors.

(B) Heatmap of the global abundance of IDH proteins in the discovery cohort.

(C and D) 95% CI of hazard ratio coefficients from Cox regression for IDH1/2 scores and other covariates based on the discovery cohort (C) and dataset 2 (D).

(legend continued on next page)
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signature’’ (Pratilas et al., 2009) in our data confirmed that genes

downstream of MEK kinases are greatly upregulated in

BRAFV600E compared with BRAFWT tumors (Figure S5B), sup-

porting the current use of MEKi therapy for these LGG tumors.

Moreover, RNA/protein abundance of the AKT serine/threonine

kinases AKT1 and AKT2 as well as RNA of AKT1S1 (Figure 5B;

Table S5) showed significant upregulation in BRAFV600E tumors.

MRM experiments measuring AKT isoforms on the same set of

tumors further validated this upregulation (Figure 5B). Indeed,

the AKT pathway has been implicated as a resistance pathway

emerging after RAF/MAPK inhibition in BRAF-driven tumors via

upregulation of receptor tyrosine kinases (Jain et al., 2017). Pre-

clinical studies have demonstrated the value of coordinated inhi-

bition of MEK and mTOR, the primary AKT effector, in LGG (Jain

et al., 2017). Our findings further strengthen this rationale for up-

coming clinical trials.

Next we employed a network-based approach to study the ef-

fect of BRAF alterations on the phosphoproteome. Co-expres-

sion network analysis resulted in 18 closely connected modules

capturing the association across phosphosites (Table S5). Inter-

estingly, two modules (Figures 5C and S5C) are significantly up-

regulated in BRAFV600E and BRAFFusion samples, respectively

(Table S5). Module 1 was significantly enriched in phosphosites

associated with MYC targets (Figure 5C) and the G2M check-

point, confirming upregulation of cell cycle-related pathways in

individuals with BRAFV600E compared with BRAFWT LGG (Fig-

ure 5A). Moreover, module 1 was significantly enriched in phos-

phosites regulated by AKT2 (Figure 5D). Specifically, it contained

phosphosites of a group of heterogeneous nuclear ribonucleo-

proteins, including HNRNPUL1 and HNRNPUL2 (Figures 5C

and 5D). Active AKT2 has been reported to suppress the interac-

tion between HNRNPU and caspase-9b, causing inhibition of

apoptosis (Vu et al., 2013). These observations further support

the concept of inhibiting mTOR/AKT in BRAFV600E LGG.

On the other hand, module 2 appeared to capture a group of

phosphosites perturbed in BRAFFusion but not in BRAFV600E

cases (Figures S5C–S5E). The top druggable kinase associated

with these phosphosites in this module is PDGFRA, which en-

codes a cell surface tyrosine kinase receptor (Figure S5D).

PDGFRA is frequently mutated/amplified in pediatric HGG and

has been suggested to serve as a treatment target for pediatric

HGG (Koschmann et al., 2016). Our data reveal a strikingly

similar upregulation of PDGFRA protein/RNA in BRAFFusion sam-

ples as in HGG tumors (Figure S5A), suggesting exploration of

PDGFRA-targeted treatment in BRAFFusion tumors as well.

Insights from Proteogenomics Analysis of HGG
Isocitrate dehydrogenases (IDHs) are enzymes that catalyze

oxidative decarboxylation of isocitrate, producing ɑ-ketogluta-
rate (KG) and CO2. Mutations of the IDH1 and IDH2 proteins,

which can be effectively targeted by drugs, have been found in

�80% of grade II and III astrocytomas, oligodendrogliomas,

and secondary glioblastomas (Bergaggio and Piva, 2019). These

mutations, however, are infrequent in pediatric HGG (�11%)

(Kim and Liau, 2012), as also observed in our data. On the other

hand, recent literature has reported prognostic and/or therapeu-

tic roles of the wild-type IDH genes/proteins in various adult

cancers, such as melanoma, glioblastoma, and kidney cancer

(Bergaggio and Piva, 2019; Tanaka et al., 2013; Calvert et al.,

2017), bringing interest to understanding their roles in pediatric

HGG tumors.

We first investigated associations between IDH protein abun-

dances and overall survival (OS) among HGG patients. Because

point mutations in histone H3.3 (H3F3A, H3K27M) have been re-

ported to lead to a worse prognosis in HGG (Karremann et al.,

2018), H3 status was adjusted when assessing the association

between OS and abundance of IDH proteins (STAR Methods).

Strikingly, all IDH proteins showed positive association with

improved OS among theH3WT group (Figures S6A and 6A; Table

S6). A parallel analysis based on RNA data detected similar as-

sociations between expression of IDH1/2/3A with OS (Fig-

ure S6B). Consistently, the oxidative phosphorylation pathway,

harboring IDH1/2/3, is one of the leading pathways whose upre-

gulation was significantly associated with improved OS among

H3WT individuals (Figure S6C).

Although all IDH proteins showed positive correlation with OS,

no correlation was observed between IDH1 and IDH2/3 protein

abundance (Figure 6B). Although this is not surprising, because

IDH1 is situated in the cytosol and peroxisomes whereas IDH2/3

are in the mitochondria, it implies potentially complementary in-

formation in IDH1 and IDH2/3 for prognostic prediction. Indeed,

compensatory functions between IDH1 and IDH2 have been re-

ported in acute myeloid leukemia (Zhang et al., 2019) and colo-

rectal cancer (Koseki et al., 2015). These observations motivated

us to evaluate the joint prognostic value of IDH proteins. In addi-

tion, because IDH3 proteins are highly correlated with IDH2, and

IDH3 proteins are of relatively lower abundance compared with

IDH1/2, we decided to focus on IDH1 and IDH2 to avoid collin-

earity in the analysis. Specifically, by jointly modeling IDH1 and

IDH2 proteins in one multivariate Cox regression model, we esti-

mated that, among individuals with H3WT HGG, the risk of death

has a 23.58-fold increase, with a 95% confidence interval (CI) of

[1.42, 384.6] (Figure 6C), when the combined abundance of IDH1

and IDH2 is 50% lower (i.e., a decrease of 1 in the weighted log2

abundance; STAR Methods). The extremely wide CI for the haz-

ard ratio of the IDH1/2 score is a result of the limited sample size

in the analysis (n = 19). To further verify this finding, we per-

formed TMT proteomics profiling experiments for an additional

41 pediatric HGG samples, including 23 from an independent

cohort, and 18 from the existing study cohort with the remaining

(E and F) Kaplan-Meier curves of OS for HGG H3Mut samples (gray), H3WT samples with low IDH1/2 abundance (red), and H3WT tumors with high IDH1/2

abundance (blue) for the discovery cohort (E) and the validation cohort (F).

(G) Illustration of drug target analysis results. The bottom left heatmap illustrates the targeting genes (rows) of each detected drugs (columns). For each gene, the

Z score comparing its RNA and proteomic abundances between HGG and LGG is shown in the bottom right heatmap. Mechanism of actions are annotated at the

top of the heatmap together with the resulting score from the connectivity map analysis.

(H) Distribution of kinase activity scores of CDK1, CDK2, and MAPK1 among HGG and LGG tumors, with the latter further stratified by BRAF status.

See also Figure S6.
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Figure 7. Comparison between IN and Recurrent Tumors

(A) a: clinical properties and genomic characterization of 18 pairs of IN versus RP tumors. The bar plot illustrates the number of non-synonymous mutations in IN

and RP tumors, with the number of sharedmutations represented by the shaded area. The potential driver mutation track shows the allele frequencies of somatic

mutations of known oncogenes and tumor suppressor genes. Chromosome arm aberrations of each sample and the change of tumor grade from IN to RP of each

patient are also shown. b: differences in ssGSEA score between RP and IN tumors of key molecular pathways associated with different proteomic clusters. The

annotation at the bottom indicates the diagnosis and clinical event IDs of the paired samples for each individual. For example, ‘‘Epen.496.3319’’ refers to a pair of

EP tumors with IDs 7316-496 and 7316-3319.

(legend continued on next page)
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tumor material (STAR Methods). With this second dataset, we

confirmed the association between the reduced expression of

combined IDH1/2 protein abundance and shorter OS after ac-

counting for additional confounders, such as tumor location (Fig-

ures 6D, 6F, and S6E; STAR Methods).

UnlikeH3WTHGG tumors, IDH1/2 proteins showed an adverse

effect onOS amongH3MUT tumors (Figures 6C and 6D). Because

of the small number of the H3MUT tumors (n = 7 and 12 in the dis-

covery and second datasets, respectively), further verification is

warranted.

Although the factors driving IDH1/2 protein abundance in

these pediatric HGG tumors remain largely unknown, one

possible factor is revealed by the CNV-RNA/protein cis-regula-

tion investigation, which identified IDH1 as a CNV-RNA/protein

cascade protein (Figure S3D). As illustrated in Figure S6D,

IDH1 deletion, which was observed in about 20% of HGG tu-

mors, significantly downregulated the protein abundance

of IDH1.

To nominate potential drug targets for pediatric HGG based

on new insights from proteogenomics data, we performed a

drug connectivity analysis to identify drug candidates whose

effect on the transcriptome and proteome is diametrically

opposed to the characteristics identified as central to HGG

biology. Because of the lack of adjacent normal tissue of indi-

viduals with HGG, we chose to derive RNA/proteomics signa-

tures of HGG aggressiveness by comparing HGG and LGG tu-

mors. We then leveraged the LINCS L1000 transcriptomics and

P100 phosphoproteomics perturbation-response databases to

search for candidate drugs inducing effects that oppose the

corresponding input (Litichevskiy et al., 2018; Subramanian

et al., 2017; STAR Methods; Table S6). CDK inhibitors were

predicted to reverse the aggressiveness of HGG based on

RNA and phosphoproteomics data (Figures 6G, S6F, and

S6G; Table S6). The kinase activity of CDK1 and CDK2 was up-

regulated in HGG compared with LGG (Figure 6H). MEK, pro-

teasome, and HDAC inhibitors were found to be significant

based on RNA data alone (Figures 6G, S6F, and S6G).

Although MEK substrates were not observed in the phospho-

proteomics data of HGG samples, MAPK1 kinase activity,

downstream of MEK, was found to be upregulated in HGG tu-

mors (Figure 6H). Upregulation of substrates of CDK and

MAPK1 proteins in HGG tumors supports that CDK inhibitors

and MEKis might be effective for HGG tumors.

Comparison between Initial and Recurrent Tumors
Earlier work has reported distinct patterns between initial and

recurrent tumors of the same individual (Morrissy et al., 2016).

Based on proteomics and genomics profiles of 18 pairs of surgi-

cal samples from two distinct disease occurrences of the same

individuals in our cohort, we tried to address the question of

whether the recurrent tumors should be considered independent

tumors during treatment evaluation.

In all 18 pairs, the recurrent/progressive (RP) disease was of

the same histological diagnosis as the initial (IN) tumor. RP tu-

mors carried 0%–52% (mean, 18%) of the IN tumor mutations

(Figure 7A), which was lower than that of adult GBM (Cancer

Genome Atlas Research Network, 2008) and LGG (Brat et al.,

2015; Figure S7A). Remarkably, all three MB progression sam-

ples had a TP53mutation that was absent in their paired primary

tumors (Figure 7A), consistent with the observation by Morrissy

et al. (2016). In addition, there was an increase in chromosome

arm aberrations in the RP samples, with the number of break-

points increasing, on average, from 32 to 53 (Figure 7A). In

contrast, in adult GBM and LGG tumors, CNV events from pri-

mary and recurrent tumors were similar (Figure S7A). Proteomics

profiles also revealed differences between RP and IN tumors. In

fact, most primary and recurrent samples were classified into

different proteomics clusters (Figure 7A). As an example, one

BRAFWT LGG case (pair 173.2154), with BRAF being wild-type

in its IN and RP tumors, had its IN tumor allocated to the LGG

BRAFWT-rich proteomic cluster and the RP tumor allocated to

the Cranio/LGG BRAFV600E cluster. Consistent with the charac-

teristics of these two proteomics clusters, we observed upregu-

lation of RNA transcription and splicing/EMT and coagulation

and downregulation of the gap junction in RP tumors compared

with their IN counterparts (Figures 1D and 7A; Table S7). Consis-

tent with the allocation of RP tumors to the Cranio/LGG

BRAFV600E cluster, higher kinase activity for ERK1/ERK2 was

observed in RP tumors compared with IN tumors (Figure 7C),

suggesting thatMEKi therapymight bemore beneficial for RP tu-

mors. Another LGG case (pair 350.944) had the IN tumor allo-

cated to Cranio/LGG BRAFV600E, whereas the RP sample was

allocated to the LGG BRAFWT-rich cluster, which resulted in an

opposite trend in pathway activities, followed by a reversed

trend in the activity of ERK1/ERK2 (Figures 7A and 7C). These

changes in pathway activation highlight the need for de novo

characterization of recurrent cases, whichmight affect treatment

decisions.

We also investigated the correlation between IN and RP prote-

ome profile pairs (Figures 7B and S7B). The fact that a good

number of primary-recurrent pairs were not highly correlated

with each other at the proteomics level supports the idea that

recurrence (or progression) of a tumor could have different

tumorigenesis mechanisms. Based on these observations, an

approach that assesses the molecular properties of recurrent

events independent of the IN tumor seems to be warranted.

DISCUSSION

This study represents the very first attempt to perform a large-

scale proteogenomics-integrative analysis for multiple distinct

pediatric brain tumor diagnoses to discover new effective tar-

geted therapies. High-quality genomics, transcriptomics, prote-

omics, and phosphoproteomics data were generated as a public

(B) Distribution of Spearman’s correlation between the proteomic abundance of any pair of tumors within a particular histology. Correlations between the 18

paired IN-RP samples were further labeled in the violin plots.

(C) Distribution of kinase activity scores of MAPK1/3 among all LGG samples, LGG samples allocated to C4, and LGG samples allocated to C8. IN and RP

samples of individuals LGG.350.944 and LGG.173.2154 are highlighted.

See also Figure S7.
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resource from a retrospective cohort of 218 frozen tissue sam-

ples collected by a single institution.

Although histological diagnosis remains the cornerstone of

classifying tumors into therapeutic categories, it is now well

recognized that molecular subgroups within histologically similar

tumors can be identified on the basis of transcriptomics, geno-

mics, and methylomics. Our study is based on the recognition

that proteomics/phosphoproteomics need to be integrated

with other omics to gain an improved system biology view of mo-

lecular subgroups. In addition, we advocate the importance of

characterizing biological themes that cross histological bound-

aries and unite individual tumors of disparate histologies and

cells of origin because such insights can lead to new extensions

of treatments shown to be effective in one type of tumor to other,

histologically disparate tumors sharing the same proteomics

features. For example, our proteomics/phosphoproteomics

data clustering analyses revealed two distinct subgroups of pe-

diatric CP, with one subgroup showing strikingly similar prote-

omics/phosphoproteomics characteristics as pediatric LGG

BRAFV600E tumors. This observation suggests potential use of

MEK/MAPK inhibitors in a subset of pediatric CP, which

currently has no robust chemotherapy options.

The existence of two subgroups of pediatric CP, however, is not

evident from RNA data. Similarly, we observed profound discor-

dance between RNA and protein abundance in other histologies,

such as EP and LGG. The low/moderate RNA-protein correlation

observed in thisproject isconsistentwithother large-scaleproteo-

genomicsprojects (Clarketal., 2019;Douetal., 2020;Gilletteetal.,

2020). Multiple factors, such as protein turnover and selective

translation, contribute to the low correlation between RNA and

protein abundance (Clark et al., 2019; Dou et al., 2020). Interest-

ingly, more aggressive tumors tend to show increased protein-

RNA correlation, a phenomenon observed across multiple cancer

proteogenomics studies (Clark et al., 2019; Dou et al., 2020). One

possibleexplanation is thataggressive tumorsoftenhavehighpro-

liferation, and the boosted translation activities in highly prolifera-

tive (tumor) cells result inmore correlatedRNAandprotein signals.

Thus, studying the proteome reveals insights not evident from

RNA-based analysis alone.

There is also significant value in integration of large-scale pro-

teomics and genomics data to identify the ramifications of

genomic events on biological function. A good illustration of

this contribution is the ability to discern, at the protein level,

the cis effects of copy number alterations by tracking the

cascade of abundance from gene dose to transcript level to pro-

tein/phosphosite abundance. In this way, the relevant genes in a

chromosomal region with altered copy number can be identified

for validation of their biologic contribution (e.g.,RAGBAP1L in EP

and FDPS in HGG with 1q gain).

It must be noted that a clear view of the proteomics contribu-

tion needs to acknowledge a presumed equivalence between

abundance and activity. However, investigation of kinase activity

based on phosphoproteomics showed that protein abundance

can be reduced in active signaling pathways (e.g., ERK1/3 in

CP), which could happen because of feedback loops in many

complicated regulatory processes, suggesting the important

role of phosphoproteomics data in characterizing pathway

activities.

Many molecularly targeted agents have now been sufficiently

characterized in terms of their safety and mechanisms of action

to allow combinations of these agents to enter clinical trials.

Selective targeting of multiple kinase nodes in these networks

is a common strategy to construct more effective treatments

while leaving fewer redundant escape routes for the tumor

cell. Concurrently targeting the MEK and mTOR pathways in

RAF-activated tumors is a strategy that has emerged from in-

vestigations of resistance pathways resulting from RAF/MAPK

inhibition. Our characterization of proteome and phosphopro-

teome changes because of BRAF aberrations lends further

rationale to this approach in LGG, where resistance per se is

not an issue but durability of response after treatment cessa-

tion is.

The retrospective study design enabled us to access follow-

up clinical data, including outcomes. This strategy also allowed

us to study rare diagnoses and compare primary and recurrent

tumors from the same individuals. One interesting finding was

that the protein abundance of the wild-type IDH1/2 is prognostic

in HGG tumors without H3K27M mutation. In addition, by

comparing primary and recurrent specimens, we were able to

discern significant differences between these paired specimens.

The shifts in underlying biology accompanying tumor recurrence

necessitate independent assessment and therapy decisions for

those recurrent tumors.

This project represents a significant advance in biological

interrogation of pediatric brain tumors at multiple levels of bio-

logical control and across traditional histological boundaries.

Although the limited sample sizes of some histologies pose a

significant limitation for certain investigations, as the first proteo-

genomic characterization of such histologies, the data and

analytical results from this project serve as a valuable resource.

Importantly, it is the result of a necessarily expansive partnership

between children’s hospitals, patients and families, philan-

thropic and federal funding, and physician scientists and compu-

tational biologists. Such endeavors demonstrate the potential of

large-scale proteogenomics science and the power of inclusive

collaboration to tackle a pervasive threat to our children: pediat-

ric brain tumors.

Limitations and Future Directions
Although this project represents the most comprehensive multi-

omics analysis of pediatric brain tumors ever undertaken, there

are nevertheless a number of limitations that are the result of

the rarity of the tumor types studied and the nature of the sam-

ples available. (1) There are additional layers of cellular regulation

not included in this initiative, such as methylation profiling, his-

tone mark profiling, ribosome sequencing, metabolomics, and

acetyl-proteomics. (2) This study was structured within tissue

access limitations to provide the ability to discern common

biology across major histological types of pediatric brain cancer.

Therefore, we sacrificed the ability to perform in-depth proteo-

mic analyses within the tumor types that were represented by

smaller sample sizes. A future study gathering larger cohorts of

the less common brain tumor types would be instructive in iden-

tifying the biology that is unique to those tumors. (3) This study

leveraged retrospective tissue collection, which allowed analysis

of survival outcome and IN/progressive tumor pairs and made it
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feasible to study rare tumors. The cost of this approach, howev-

er, was that the samples were not fully exploited for phospho-

proteomics, and our phosphosite data, although significant

and high quality, considering the amount of tissue available,

would have been deeper if we had samples that had been ac-

quired prospectively with a phospho-proteomics-specific

collection protocol.

Acknowledging these limitations, we can also see some tanta-

lizing future possibilities made more clear by the findings of this

project. (1) Our study demonstrates the ability of proteomics,

phospho-proteomics, and kinase activity scores to elucidate

active signaling processes within tumors. Applying these capa-

bilities to tissue samples in a clinical trial context could yield valu-

able information regarding the biology of individual tumors that

respond to a given therapy. (2) As these determinant proteomic

signatures are identified, MRM signatures can be developed to

identify individuals in real time whose tumors display particular

biologic features and, thus, may respond to a treatment. (3) His-

tologically similar tumors are frequently treated differently in pe-

diatric and adult settings. Although they often differ in their

genomic features, this study has shown that they do not always

drive biology. A unique opportunity building on this work will be

to use proteomics platforms to interrogate tumors whose inci-

dence spans a large age range to answer questions regarding

how biology changes across the spectrum and whether treat-

ments can be realigned for maximum benefit. In summary, this

large multi-omics study of pediatric brain tumors represents an

entrée for integration of proteomics into data science modeling

of pediatric cancer; therefore, it sets the stage for more applied

research to come.
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Rabbit monoclonal anti-TP53 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-TP53-1; RRID: AB_2877664

Rabbit monoclonal anti-CDK1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-CDK1-1; RRID: AB_2877655

Rabbit monoclonal anti-TUBB CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-TUBB-1; RRID: AB_2877665

Rabbit monoclonal anti-RAF1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-RAF1-3; RRID: AB_2827856

Rabbit monoclonal anti-KRT7 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-KRT7-1; RRID: AB_2820264

Rabbit monoclonal anti-KRT7 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-KRT7-1; RRID: AB_2820264

Rabbit monoclonal anti-KRT5 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-KRT5-1; RRID: AB_2820262

Rabbit monoclonal anti-KRT5 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-KRT5-2; RRID: AB_2820263

Rabbit monoclonal anti-FBN1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-FBN1-1; RRID: AB_2877658

Rabbit monoclonal anti-FBN1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-FBN1-2; RRID: AB_2877659

Rabbit monoclonal anti-PCNA CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-PCNA-2; RRID: AB_2877661

Rabbit monoclonal anti-PCNA CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-PCNA-2; RRID: AB_2877661

Rabbit monoclonal anti-ATM CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-ATM-3; RRID: AB_2877654

Rabbit monoclonal anti-ATM CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-ATM-1; RRID: AB_2877653

Rabbit monoclonal anti-FAAP100 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-FAAP100-1; RRID: AB_2877656

Rabbit monoclonal anti-FAAP100 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-FAAP100-2; RRID: AB_2877657

Rabbit monoclonal anti-RIF1 Fred Hutchinson Cancer Research Center custom monoclonal; RRID: AB_2877666

Mouse monoclonal anti-PTEN CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-PTEN-4; RRID: AB_2722096

Mouse monoclonal anti-PTEN CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-PTEN-7; RRID: AB_2722099

Mouse monoclonal anti-CCND1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-CCND1-5; RRID: AB_2722035

Mouse monoclonal anti-RPTOR CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-RPTOR-2; RRID: AB_2722104

Mouse monoclonal anti-RPTOR CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-RPTOR-1; RRID: AB_2722103

Mouse monoclonal anti-FOS CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-FOS-2; RRID: AB_2722059

Mouse monoclonal anti-FOS CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-FOS-3; RRID: AB_2722060

(Continued on next page)

ll
OPEN ACCESS

e1 Cell 183, 1962–1985.e1–e19, December 23, 2020

Resource

https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/
https://antibodies.cancer.gov/


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse monoclonal anti-AKT2 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-AKT2-3; RRID: AB_2722017

Mouse monoclonal anti-CDH1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-CDH1-1; RRID: AB_2722037

Mouse monoclonal anti-CDH1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-CDH1-2; RRID: AB_2722038

Mouse monoclonal anti-BRAF CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-BRAF-1; RRID: AB_2722024

Mouse monoclonal anti-RAF1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-RAF1-1; RRID: AB_2877663

Mouse monoclonal anti-MTOR CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-MTOR-5; RRID: AB_2722089

Mouse monoclonal anti-MTOR CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-MTOR-4; RRID: AB_2722088

Mouse monoclonal anti-MTOR CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-MTOR-3; RRID: AB_2722087

Mouse monoclonal anti-MTOR CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-MTOR-7; RRID: AB_2722091

Mouse monoclonal anti-ERBB2 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-ERBB2-3; RRID: AB_2722053

Mouse monoclonal anti-ERBB2 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-ERBB2-2; RRID: AB_2722052

Mouse monoclonal anti-AKT1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-AKT1-1; RRID: AB_2722012

Mouse monoclonal anti-AKT1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-AKT1-3; RRID: AB_2722014

Mouse monoclonal anti-AKT3 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-AKT3-6; RRID: AB_2814779

Rabbit monoclonal anti-EGFR CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-EGFR-8; RRID: AB_2827847

Rabbit monoclonal anti-EGFR CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-EGFR-9; RRID: AB_2827848

Rabbit monoclonal anti-GSK3B CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-GSK3B-10; RRID: AB_2827872

Rabbit monoclonal anti-GSK3B CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-GSK3B-9; RRID: AB_2827863

Rabbit monoclonal anti-MAPK1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-MAPK1-2; RRID: AB_2827853

Rabbit monoclonal anti-MAPK3 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-MAPK1-2; RRID: AB_2827853

Rabbit monoclonal anti-MTOR CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-MTOR-9; RRID: AB_2820270

Rabbit monoclonal anti-MAPK1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-MAPK3-4; RRID: AB_2827841

Rabbit monoclonal anti-MAPK3 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-MAPK3-4; RRID: AB_2827841

Rabbit monoclonal anti-RIF1 Fred Hutchinson Cancer Research Center custom monoclonal; RRID: AB_2877666

Rabbit monoclonal anti-ERBB2 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-ERBB2-1; RRID: AB_2617255

Rabbit monoclonal anti-JUN CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-JUN-4; RRID: AB_2877660

Rabbit monoclonal anti-JUN CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-JUN-4; RRID: AB_2877660

(Continued on next page)
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Continued
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Rabbit monoclonal anti-RB1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-RB1-2; RRID: AB_2820275

Rabbit monoclonal anti-ANXA1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-ANXA1-4; RRID: AB_2617223

Rabbit monoclonal anti-CALR CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-CALR-1; RRID: AB_2617228

Rabbit monoclonal anti-GSTP1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-GSTP1-1; RRID: AB_2617266

Rabbit monoclonal anti-PCNA CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-PCNA-1; RRID: AB_2617307

Rabbit monoclonal anti-RRM2 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-RRM2-1; RRID: AB_2617333

Rabbit monoclonal anti-FSCN1 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-FSCN1-1; RRID: AB_1553796

Rabbit monoclonal anti-PRDX4 CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-PRDX4-5; RRID: AB_2877662

Rabbit monoclonal anti-UBE2C CPTAC Antibody Portal (https://antibodies.

cancer.gov/)

CPTC-UBE2C-2; RRID: AB_2617367

Biological Samples

Fresh frozen tissue samples See STAR Methods N/A

Chemicals, Peptides, and Recombinant Proteins

Papain SciQuest Catalog: LS003124

Ovomucoid SciQuest Catalog: 542000

DNase Sigma Catalog: 10104159001

RNase A QIAGEN Catalog: 19101

TMT 11plex reagents Thermo Fisher Scientific Catalog: A34808

IMAC resin kit Thermo Fisher Scientific Catalog: A32992

BCA protein assay Thermo Fisher Scientific Catalog: 23221

Stable isotope-labeled synthetic peptide

standards

New England Peptide Custom synthesis, > 95% pure by HPLC

Aprotinin Sigma Catalog: A6103

Leupeptin Roche Catalog: 11017101001

Phenylmethylsulfonyl fluoride Sigma Catalog: 93482

Phosphatase Inhibitor Cocktail 2 Sigma Catalog: P5726

Phosphatase Inhibitor Cocktail 3 Sigma Catalog: P0044

PUGNAc Sigma Catalog: A7229

Sodium butyrate Sigma Catalog: 303410

Ni-NTA Superflow Agarose Beads QIAGEN Catalog: 30410

Lysyl Endopeptidase Wako Chemicals Catalog 129-02541

Sequencing grade modified trypsin Promega Catalog: V517

Critical Commercial Assays

TruSeq RNA Sample Prep Kit Illumina Catalog: FC-122-1001

KAPA Library Preparation Kit Roche Catalog: KK8201

DNA/RNA AllPrep Kit QIAGEN Catalog: 80204

AllPrep DNA/RNA/miRNA Universal kit QIAGEN Catalog: 80224

QIAsymphony DSP DNA Midi Kit QIAGEN Catalog: 937255

KAPA Hyper prep kit Roche Catalog: KK8541

KAPA Stranded RNA-Seq with RiboErase kit Roche Catalog: KK8484

(Continued on next page)
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Pei Wang (pei.wang@

mssm.edu).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

PhosphoSitePlus Hornbeck et al., 2015 https://www.phosphosite.org

TCGA – GBM Cancer Genome Atlas Research

Network, 2008

https://portal.gdc.cancer.gov/

TCGA – LGG Brat et al., 2015 https://portal.gdc.cancer.gov/

Software and Algorithms

Philosopher Alexey Nesvizhskii Lab https://philosopher.nesvilab.org/

PeptideProphet Keller et al., 2002 http://peptideprophet.sourceforge.net/

ComBat (v3.20.0) Johnson et al., 2007 https://bioconductor.org/packages/release/

bioc/html/sva.html

DreamAI Ma et. al., 2020 https://github.com/WangLab-MSSM/

DreamAI

GISTIC2.0 Mermel et al., 2011 ftp://ftp.broadinstitute.org/pub/GISTIC2.0/

GISTIC_2_0_23.tar.gz

iProFun Song et al., 2019 https://github.com/WangLab-MSSM/

iProFun

ESTIMATE Yoshihara et al., 2013 https://bioinformatics.mdanderson.org/

public-software/estimate/

Joint Random Forest Petralia et al., 2016 https://rdrr.io/cran/JRF/man/JRF.html

TSNet Petralia et al., 2018 https://github.com/WangLab-MSSM/TSNet

xCell Aran et al., 2017 https://xcell.ucsf.edu/

CPTAC Data Viewer Pei Wang Lab http://pbt.cptac-data-view.org/

iCAVE Liluashvili et al., 2017 https://labs.icahn.mssm.edu/gumuslab/

software

ConsensusClusterPlus Monti et al., 2003; Wilkerson and Hayes, 2010 http://bioconductor.org/packages/release/

bioc/html/CancerSubtypes.html

Strelka2 v2.9.3 Kim et al., 2018b https://github.com/Illumina/strelka

CNVkit v. 2.9.3 Talevich et al., 2016 https://github.com/etal/cnvkit

STAR v2.6.1d Dobin et al., 2013 https://github.com/alexdobin/STAR

GENCODE v27 GENCODE consortium https://www.gencodegenes.org/human/

release_27.html

RSEM v1.3.1 Li and Dewey, 2011 https://github.com/deweylab/RSEM

Sumer Savage et al., 2019 https://github.com/bzhanglab/sumer

TCGAbiolinks Colaprico et al., 2016 https://bioconductor.org/packages/release/

bioc/html/TCGAbiolinks.html

MoonlightR Colaprico et al., 2020 https://bioconductor.org/packages/release/

bioc/html/MoonlightR.html

Music Wang et al., 2019 https://github.com/xuranw/MuSiC

Ascore v1.0.6858 Beausoleil et al., 2006 https://github.com/

PNNL-Comp-Mass-Spec/AScore

MASIC Monroe et al., 2008 https://github.com/

PNNL-Comp-Mass-Spec/MASIC

MS-GF+ v9981 Kim and Pevzner, 2014 https://github.com/MSGFPlus/msgfplus

mzRefinery (Gibbons et al., 2015) https://omics.pnl.gov/software/mzrefinery
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Materials Availability
N/A

Data and Code Availability
All raw genomic data is available upon access request through the Children’s Brain Tumor Network (www.cbtn.org) and can be ac-

cessed through the Gabriella Miller Kids First Portal (https://kidsfirstdrc.org/). Processed genomic data is available through the Open

Pediatric Brain Tumor Atlas (https://github.com/AlexsLemonade/OpenPBTA-analysis). All raw proteomics data and processed pro-

teogenomic data are available through the Clinical Proteomic Tumor Analysis Consortium Data Portal (https://cptac-data-portal.

georgetown.edu/cptacPublic/) and the Proteomics Data Commons (https://pdc.cancer.gov/pdc/). In addition, all processed proteo-

genomic datasets as well as clinical meta information can be queried, visualized and downloaded from an interactive ProTrack data

portal (http://pbt.cptac-data-view.org/), as well as through the PedcBioPortal (https://pedcbioportal.kidsfirstdrc.org:443/saml/

discovery?entityID=d3b-center.auth0.com&returnIDParam=idp).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient selection for the discovery cohort
The samples were obtained from the Children’s Brain Tumor Network (CBTN) at the Children’s Hospital of Philadelphia (CHOP). The

patient selection was built based on specimen availability and defined two broad classes of tumors: (1) High grade tumors driven by

epigenetic dysregulation (HGG, DIPG, ATRT and/or other embryonal tumors) and (2) Low grade tumors defined by receptor-tyrosine

kinase and MAPK signaling alterations including kinase fusions. Additional associated clinical determinants for cohort selection

included: (A) Tumor histologies for which there is more than one therapeutic standard of care and for which a multidimensional pro-

teogenomic analysis could further inform an assessment of therapeutic response; (B) Tumor histologies for which genomic alter-

ations and/or classification have failed to provide differential prognosis; (C) Tumor cohorts for which comprehensive profiling could

inform the course of metastasis. These considerations led to the selection of 226 samples from 204 pediatric subjects treated sur-

gically and clinically at the Children’s Hospital of Philadelphia for whom deep longitudinal, clinical data is available.

Sample collection for the discovery cohort
Samples were collected at the time of surgery (217 samples) or autopsy (9 samples), flash-frozen, and stored in BioRC (Biorepository

Resource Center) at Children’s Hospital of Philadelphia. Frozen tissue pieces �75mg were cut off using disposable scalpels on dry

ice and delivered to Fred Hutchinson Cancer Research Center for sample preparation for proteomics profiling.�20 mg frozen tissue

and up to 0.4-1ml of blood was used for nucleic acid extractions, which were performed at the Biorepository Resource Center at

Children’s Hospital of Philadelphia.

Sample collection for the HGG validation study
For the validation studies, the specimens from 41 patient subjects were collected through Children’s Brain Tumor Network (CBTN)

sites including Children’s Hospital of Philadelphia (CHOP), Seattle Children’s Hospital, Meyer Children’s Hospital, UCSFBenioff Chil-

dren’s Hospital, University of Pittsburgh, Lurie Children’s Hospital, Children’s National Medical Center) and through the HUP-CHOP

Neurosurgery Tumor Tissue Bank Collaborative at the Hospital of University of Pennsylvania. Among the 41, 18 were part of the dis-

covery cohort who had remaining tumor materials. All samples were fresh frozen collected at the time of surgery, shipped and stored

in BioRC (Biorepository Resource Center) at Children’s Hospital of Philadelphia. �30mg tissue pieces were cut/chipped off using

disposable scalpels on dry ice and delivered to Fred Hutchinson Cancer Research Center for sample preparation for proteomics

profiling.

METHOD DETAILS

Nucleic acid extractions, WGS and RNaseq
Tissues were lysed with QIAGEN TissueLyser II (QIAGEN) using 5 mm steel beads (cat# 69989, QIAGEN) 2 3 30 s at 18Hz settings,

and processed with CHCl3 extraction and run on the QiaCube automated platform (QIAGEN) using the AllPrep DNA/RNA/miRNA

Universal kit (cat# 80224, QIAGEN). Thawed blood was RNase A (cat#, 19101, QIAGEN) treated and processed using the

QIAGEN QIAsymphony automated platform (QIAGEN) using the QIAsymphony DSP DNA Midi Kit (cat# 937255, QIAGEN). DNA

and RNA quantity and quality was assessed by PerkinElmer DropletQuant UV-VIS spectrophotometer (PerkinElmer) and an Agilent

4200 TapeStation (Agilent, USA) for RINe and DINe (RNA Integrity Number equivalent and DNA Integrity Number equivalent respec-

tively). Library preparation and sequencing was performed by the NantHealth sequencing center. Briefly, DNA sequencing libraries

were prepared for both tumor tissue andmatched-germline (blood) DNA using the KAPAHyper prep kit (cat# KK8541, Roche); Whole

genome sequencing (WGS) was performed at an average coverage of 60X for tumor samples and 30X for matched-germline. The

panel tumor sample was sequenced to 470X and the normal panel sample was sequenced to 308X. Tumor RNA-Seq libraries

were prepared using KAPA Stranded RNA-Seq with RiboErase kit (cat# KK8484, Roche). RNA samples were sequenced to an

average of 200M reads. All sequencing was performed on the Illumina HiSeq platform (X/400) (Illumina) with 23 150bp read length.
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Somatic Mutation and CNV calling
Strelka2 (Kim et al., 2018b) v2.9.3 was run for canonical chromosomes (chr1-22, X,Y,M) using default parameters and the resulting

VCF was filtered for PASS variants. Gene level mutation status were summarized based on somatic mutations detected in coding

regions, having minimum sequencing depth of 30, and minimum alternative variant count of 5.

CNVkit v. 2.9.3 (Talevich et al., 2016) was run in batch wgs mode, paired tumor-normal, using the hg38 annotation reference from

UCSC (http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/refFlat.txt.gz). All output files, such as seg, gain/loss, and scat-

ter/diagram plots were generated using CNVkit’s export and other built-in functions.

RNaseq data preprocessing
STAR v2.6.1d (Dobin et al., 2013) was used to align paired-end RNA-seq reads against the ENSEMBL GENCODE 27 ‘‘Comprehen-

sive gene annotation’’ reference (https://www.gencodegenes.org/human/release_27.html). RSEM v1.3.1 (Li and Dewey, 2011) was

used to generate both FPKM and TPM transcript- and gene-level expression values. Then, log2(x+1) transformwas applied and sam-

ples with replicates were averaged.

Proteomic experiments for Discovery Cohort
11-Plex Preparation

Sample preparation for MS analysis was performed as described previously (Navarrete-Perea et al., 2018). Lysates were prepared

from 226 Cryo-pulverized human Pediatric Brain Tumor samples in lysis buffer (6M Urea, 25 mM Tris, pH8.0, 1 mM EDTA, 1 mM

EGTA, Sigma Protease Inhibitor Cat# P8340, Sigma Phosphatase Cocktail Cat# P5726, Sigma Phosphatase Cocktail Cat#

P0044) supplied by Fred Hutch. Lysates were reduced with 5 mM neutralized TCEP (Pierce, #77720) for 15 min., alkylated with

10 mM Iodoacetamide (Sigma, #A3221) for 30 minutes in the dark and quenched with 5 mM Dithiothreitol (Thermo Scientific,

#20291) for 15 mins. Protein was precipitated with methanol-chloroform, and the protein pellet was resuspended in 200 mM

EPPS (pH 8.0). The samples were digested sequentially with Lys-C protease (Wako, 129-02541, 2 mg/mL Stock) at a 100:1 pro-

tein-to-protease ratio with constant shaking overnight at room temperature followed by Trypsin (Pierce, 90305, 1 mg/mL stock)

digestion at a 100:1 protein-to-protease ratio for another 6 h at 37�C. Digested peptides were assayed for peptide concentration

with Pierce Quantitative Colorimetric Peptide Assay (#23275) as per Manufacturer’s protocol.

11-plex Experimental Layout

Proteome and Phosphoproteome analysis of pediatric brain cancer samples were structured as TMT11-plex experiments. 226

unique samples plus a few replicates andQC samples were arranged in twenty-three 11-plex experiments with 10 individual samples

occupying the first 10 channels of each experiment and the 11th channel being ‘‘Bridge Channel’’ i.e., Common Reference Sample,

used for quantitative comparison across all sample sets. To prepare the bridge channel which broadly represents the population of

pediatric brain cancer samples in our experiment, digested peptides from indicated samples were pooled together.

TMT Labeling of Peptides and Quality Check

About 100 mg of digested peptides per sample were labeled with TMT11-plex reagent according to the manufacturer’s instructions

(Thermo Scientific, Pierce Biotechnology, Germany). About 2 mg of each sample from each 11-plex experiment was removed and

combined in 100 ml of 1% formic acid (FA) for a quality control check. The remaining samples were frozen immediately at �80�C
for future quenching and HPLC fractionation. The combined samples in 100 ml of 1% FA from each 11-plex experiment were desalted

by StageTip containing 4 small (0.9mm) discs of 3MEmpore C18material following standard procedure. Elutedmaterial was dried by

speedvac, resuspended in 5% ACN/5% FA and analyzed by a mass spectrometer to check (a) digestion efficiency, (b) labeling ef-

ficiency & (c) summed signal-to-noise ratios among samples. As a standard of quality check (QC), minimum of 97% labeled MS/MS

spectra, a maximum of 5% missed cleavage rate, and summed signal-to-noise ratio variations of < 1.5-fold within each plex were

required to proceed further. Following successful QC checks, unwanted TMT labeling of tyrosine residues was reversed with a final

concentration of �0.3% (v/v) hydroxylamine (Sigma, 467804, 50% stock) for 15 mins and finally quenched with 50% TFA to a final

concentration of�0.5% (v/v). Labeled peptides from each of the twenty three 11-plex experiments were combined into 23 samples,

acidified, and subsequently desalted on C18 Sep-Pak columns. Eluates were dried by SpeedVac in preparation for Phosphopeptide

Enrichment.

Phosphopeptide Enrichment

High-Select Fe-NTA Phosphopeptide Enrichment Kits (Thermo Scientific; #A32992) were used for phosphopeptide enrichment step

(‘‘mini-phos’’) as per protocol described (Navarrete-Perea et al., 2018). Lyophilized labeled peptide sample was completely dissolved

in 200 mL of Binding/Wash buffer with vortexing, and pHwas confirmed to be below 3. Samples were loaded onto spin columns equil-

ibrated perManufacturer‘s method andmixed by gentle tapping until the resin was in suspension. Samples were incubated for 30mi-

nutes at room temperature with gentle mixing every 5 minutes. Following incubation, the spin columns were placed in a microfuge

tube, centrifuged at 10003 g for 30 s, and washed thrice with a Binding/Wash buffer. All flow-through fractions were collected in the

same tube, desalted, dried, resuspended and directed to basic-pH HPLC for global proteome analysis. Phosphopeptide-bound spin

columns were placed in a new microfuge tube, containing 1% FA and Phosphopeptides were eluted with an Elution buffer and dried

immediately by speedvac. For phosphoproteome analysis, phosphopeptide enriched samples were resuspended in 1% FA, de-

salted by stage tip and eluted into Agilent deactivated glass vial inserts, dried by speedvac and finally phosphopeptide enriched sam-

ples were resuspended with 10 mL of 5% FA and made ready to be analyzed by LC-MS/MS analysis.
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Offline fractionation of peptides

To reduce sample complexity, peptide sampleswere separated by high pH reversed phase (RP) fractionation. Phosphopeptide Flow-

Through fractions were checked for pH (pH < 3) and desalted on C18 Sep-Pak columns. Eluates were dried in a Speed Vacuum

Concentrator, reconstituted in 500 mL of Buffer A (10 mM ammonium bicarbonate, 5% Acetonitrile, pH 8), loaded onto an Agilent

300Extend C18 column (3.5 mm bead size, 4.6 mm ID and 220 mm long), and separated on an Agilent 1200 HPLC instrument at a

flow rate of 0.6 mL/min with a 60 min linear gradient from 13% to 42% buffer B (10 mM ammonium bicarbonate, 90% ACN, pH 8)

into a total of 96 fractions. Each fraction contained�500uL, at�37 s per fraction. All 96 fractions were consolidated into 12 final frac-

tions by column, desalted with stage-tip, resuspended with 10 mL of 5% ACN - 5%FA andmade ready to be analyzed by LC-MS/MS

analysis.

Mass Spectrometry (MS) Instrument

Global proteome analyses were performed on an Orbitrap Fusion Tribrid Mass Spectrometer and phosphoproteome analyses were

performed on an Orbitrap Fusion Lumos Tribrid Mass Spectrometer (Thermo Scientific) both in-line with a NanoSpray Flex NG ion

source using MS3-based TMT centric mass spectrometer method. Both the instruments are online with a Liquid Chromatography

System (EASY-nLC 1200 System).

Online Liquid Chromatography

Online separation was performed on a nano-flow UHPLC EASY-nLC 1200 system (Thermo Scientific). In this set up, the LC system

with a column in (IDxL 20mm x 550mm; LC 560) from sample valve and a column out (IDxL 75mm x 550mm; LC 562) to waste valve,

a Fused Silica Capillary Tubing, that delivers sample to MS were connected via a stainless-steel cross union (Micro-Cross Assay-SS

360 mm UH-906/ Western Analytical products). A platinum wire was used to deliver electrospray source voltage. The column was

heated to 60�C using a column heater sleeve (Phoenix-ST) to prevent over-pressuring of columns during UHPLC separation. The

capillary tubing (Inner Diameter: 100mm, Outer Diameter: 375mm) was pulled to an opening of 10 mm and packed in-house with

2.6 mm beads (90 A Pore diameter, Thermo Scientific) slurry made in Buffer B (90% Acetonitrile, 0.1% FA). Each analysis, �1 mg

of peptide in a 1-5 mL injection volume based on the sample dilution, and for each Phosphoproteome sample in a 5 ml, were loaded

onto the column in Mobile phase, comprised of 0.1% FA (Buffer A). LC-MS/MS method consisted of an initial 10 min column-equil-

ibration procedure and a 20 min sample-loading procedure, both at 800 bar. For global proteome analyses, the peptides were sepa-

rated using a 150 min gradient of 5 to 42% Acetonitrile in 0.1% FA and respective flow rate was adjusted to separate the fraction

within a pressure difference of 300 – 400 bar. Phosphopeptides were separated over 160 min with gradient of 3 to 30% Acetonitrile

in 0.1% FA.

Mass Spectrometry Analyses

For data-dependent experiments (MS2 and MS3), all instrument operational parameters were specified through the instrument

method editor. Data-dependent acquisition was performed using Xcalibur v2.1 software in positive ion mode at a spray voltage of

2.6 kV and 300oC ion transfer tube temperature. For 276 Peptide fractions analyses, MS1 Spectra was detected with Orbitrap at

a resolution of 120K, scan range (m/z) being 350 – 1350 and AGC target being 1.0e6 with 50 ms maximum ion injection time. For

MS2 analysis, top ten precursors were selected with peptide as monoisotopic peak determination, intensity threshold of 1.0e3,

and charge state screening was enabled to include only precursor charge states 2-6. Peptides that triggered MS/MS scans were

dynamically excluded from further MS/MS scans for 90 s, with a ± 10 ppmmass tolerance. Perform dependent scan on single charge

state per precursor only and Exclude within the cycle were enabled. In data-dependent charge specific MS2 analysis, ions were first

isolated by Quadruple with an isolation window of 0.7 or 0.5 (based on instruments used) and activated at ion Trap with CID collision

Energy being 35% in 10 ms and activation Q of 0.25. Ion trap detection were set to normal scan range mode with rapid ion trap scan

rate, 9.0e3 AGC target and 80 ms ion injection time. Following the acquisition of each MS2 fragment ion, precursors were selected

with amass range (m/z) between 400 – 2000with amass exclusion width 50 (low) and 5 (high). About 10 precursor fragment ionswere

simultaneously isolated by SPS selection at a time for every MS3 precursor population, which then fragmented by HCD with HCD

collision energy of 55% and fragmented reporter ions with a normal scan range mode were analyzed in Orbitrap at a resolution of

50K, AGC Target 1.0e5 and 120 ms maximum ion injection time. To further minimize the influence of co-eluting species, peptides

with isolation specificities less than 1.2 for + 2 charge, 1.0 for + 3 charge and 0.8 for 4 - 6 charge.

Each of the 23 Phosphopeptide enriched samples were directed to both CID and High Resolution HCD activation using similar

multinotch MS3-based TMT methods. For CID activation, both multistage activation and injections for all available parallelization

time were enabled with ion trap scan rate set to Turbo and neutral loss mass to 97.9763. For HCD activation during MS2 analysis,

HCD collision energy was set to 32%. Both CID and HCD activation are considered as two fractions from each of the 23 Phospho-

peptides enriched samples, totaling 46 Peptide fractions.

Protein Identification and Quantification
Proteomics processing of whole proteome and phosphopeptide-enriched datasets was performed as described previously (Clark

et al., 2019; Djomehri et al., 2020). MSFragger version 20190628 (Kong et al., 2017) was used to search a CPTAC harmonized RefSeq

protein sequence database appended with an equal number of decoy sequences. Specifically, the RefSeq-based sequence data-

base containing 41,457 proteins mapped to the human reference genome (GRCh38/hg38) obtained via the UCSC Table Browser

(https://genome.ucsc.edu/cgi-bin/hgTables) on June 29, 2018, with the addition of 13 proteins encoded in the human mitochondrial

genome, and 264 common laboratory contaminant proteins. MS/MS spectra were searched using a precursor-ion mass tolerance of
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20 ppm, fragment mass tolerance of 0.7 Da, and allowing C12/C13 isotope errors (�1/0/1/2/3 for global, and 0/1/2/3 for phospho-

peptide-enriched). Cysteine carbamidomethylation (+57.0215) and lysine TMT labeling (+229.1629) were specified as fixed modifi-

cations, andmethionine oxidation (+15.9949), N-terminal protein acetylation (+42.0106), and TMT labeling of the peptide N terminus.

For the whole proteome database search, TMT labeling on Serine residues was also specified as a variable modification. The search

was restricted to fully tryptic peptides, allowing up to two missed cleavage sites. Phosphopeptide-enriched searches also included

the phosphorylation modification of serine, threonine, and tyrosine residues (+79.9663). The search results were then processed us-

ing the Philosopher toolkit version v1.2.3 (da Veiga Leprevost et al., 2020), including PeptideProphet (Keller et al., 2002), PTMProphet

(Shteynberg et al., 2019), and ProteinProphet (Nesvizhskii et al., 2003). The data was filtered to 1%PSM-level (for each 11-plex), and

1% protein-level (global) FDR using Philosopher filter command. TMT-Integrator version v1.0.4 (http://tmt-integrator.nesvilab.org/)

was used for generation of quantification matrices as described previously (Clark et al., 2019; Djomehri et al., 2020), except its pa-

rameters were adjusted to process 11 channels, a minimum peptide probability of 0.5 for quantification, and minimum site localiza-

tion probability of 0.75 (phosphopeptide-enriched datasets only). Quantification results (log2 ratios) were summarized at protein and

gene levels, and for phosphopeptide enriched data also at the site-level.

Preprocessing of TMT proteomic data
8802 unique genes and 18235 phosphosites were identified and quantified from the global proteomic and phopshoproteomic exper-

iments. Global normalization was performed on the gene-level abundancematrix (log2 ratio) for global proteomic and on the site-level

abundance matrix (log2 ratio) for phosphoproteomic data. Specifically, each sample was shifted to have the same median, and

scaled to have the same median absolute deviation.

We then applied an ‘Intra TMT-multiplex t test’ to detect and remove outlier TMT multiplexes for each protein/phosphosite. For

each TMT multiplex, we performed t test of the protein/phosphosite abundance of samples inside against the protein/phosphosite

abundance of samples outside the multiplex. TMT multiplexes with a p value lower than 10e-7 were flagged as outliers and removed

from the dataset. Accordingly, a total of 164 and 156 multiplexes or 1612 and 1557 data points were removed in the global protein

abundance and phosphosite datasets respectively.

Before performing any downstream analysis, we applied diagnosis-specific batch correction on both global and phospho abun-

dance to remove the technical difference between different TMT 10-plex. For each data type, batch correction was performed on the

subset of markers with more than 50% observed in at least one of the subtypes. After filtering markers with missing rates > 50% in all

subtypes, there were 6429 genes and 4988 phosphosites with an overall missing rates of 20.2% and 40.8% for the diagnosis-wide

global protein and phospho abundance datasets respectively.

As a first step to batch correction, we performed KNN imputation separately on the data from each diagnosis using the ‘‘impu-

te.knn’’ function from the ‘‘impute’’ R package. After merging the data across diagnoses, we then applied the R tool ComBat,

with the tumor diagnosis as covariate to remove batch effects (Johnson et al., 2007). Finally, we replaced the missing data structure

from before KNN imputation.

For the formal imputation of missing values, we adopted a novel tool DreamAI (Ma et al., 2020; https://github.com/

WangLab-MSSM/DreamAI), an ensemble algorithm developed during the NCI-CPTAC Dream Proteomics Imputation Challenge

(https://www.synapse.org/#!Synapse:syn8228304/wiki/413428). Imputation was done: 1) separately on the data from each tumor

type, and 2) across the entire dataset including all tumors. Tumor-subtype specific imputation was done for the subset of markers

with missing < 50% in each subtype. Subtype-wide imputation was done for the subset of markers that appeared in at least 50% of

samples in any one subtype (the same set of markers used in the batch correction). Finally, for the phospho abundance dataset, we

filtered out 440 additional markers associated with cold-regulated ischemia genes.

QC check for proteogenomic profiles
Integration of these multi-layers of omics data enhances our understanding about complex molecular mechanisms in biological sys-

tems. However, unintended errors in annotations and sample sables often occur in generation or management of large-scale data

(Alyass et al., 2015). Since integrative analysis based on error-containing data could provide wrong scientific conclusions, data qual-

ity and sample-labeling check is a critical QC step before actual integration. In this study, we performed systematic quality control

procedure to confirm that all annotations in clinical information and sample names are consistent as annotated.

1. Diagnosis type check and filtering Among the 226 samples, 7 samples were identified to have either incorrect or ambiguous

histologic diagnosis based on an independent clinical report review and were removed from the downstream analysis.

2. Gender label check Expression of two gender representative genes, XIST and RPS4Y1 from chromosomes X and Y, respec-

tively (Staedtler et al., 2013), were used to infer genders based on RNaseq data.

3. Genotypemapping check based onWGS andRNaseq data To ensure the highest data quality, genotypemapping analysis was

performed to flag samples with potential contamination, low sequencing quality, or sample labeling issues. Specifically, using

NGSCheckMate (Lee et al., 2017), the genotype correlation were compared between paired tumor WGS versus normal WGS

as well as tumor WGS versus tumor RNaseq profiles for all patients. The tool utilized 20,000+ common SNP sites based on

dbSNP138, and a stringent cutoff of 0.8 was applied to flag low-quality or contaminated samples.
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4. Proteo-genomic sample labeling mapping We employed similar procedures applied to our recent kidney cancer study (Clark

et al., 2019) to confirm that RNaseq, global proteomics, and phosphoproteomic data with the same labels were from the same

individuals (Yoo et al., 2014). Cis pairs among global proteomics, phosphosite proteomic, and RNaseq data were determined

based on their correlation strength (cis correlation > 0.6) and 832, 1341, and 521 pairs were selected for global-phosphosite,

RNaseq-global, and RNaseq-phosphosite alignments, respectively. Then the values of the selected features (genes or pro-

teins) were rank-transformed to evaluate sample-wise similarity scores. If two profiles of a sample are matched, the similarity

score between the two profiles is expected to be significantly higher than the score of random pairs. Based on this approach,

we identified potentially mis-aligned samples from pairwise alignment among global proteomic, phosphoproteomic, and RNa-

seq data.

For flagged samples, same subject tumor tissue and blood specimen DNA was further extracted and sent to Guardian Forensic

Sciences (Abington, PA) for short tandem repeat (STR) testing using the GenePrint 24 assay (Promega, #B1870). Pattern of amplified

polymorphic loci was used for matching analysis between tissue and blood for each case.

After filtering data files according to all above quality assessments, the resulting datasets consisting of 218 global proteomics pro-

files, 217 phosphoproteomics profiles, 188 RNaseq profiles, 200 mutation profiles and 190 CNV profiles were considered for down-

stream analyses (Table S1).

Proteomics experiment of the validation cohort
Protein Extraction and Lys-C/Trypsin Tandem Digestion

Approximately 50 mg of each of brain tumor tissues were cryopulverized and lysed separately in 800 mL of lysis buffer (6 M urea,

25 mM Tris, pH 8.0, 1 mM EDTA, 1 mM EGTA, 1:100 v/v Sigma protease inhibitor, 1:100 v/v Sigma phosphatase inhibitor cocktail

2, and 1:100 v/v Sigma phosphatase inhibitor cocktail 3). Lysates were precleared by centrifugation at 20,000 g for 10 min at 4�C
and protein concentrations were determined by BCA assay and adjusted to approximately 1.5 mg/mL with lysis buffer. Proteins

were reduced with 5 mM dithiothreitol for 1 h at 37�C, and subsequently alkylated with 10 mM iodoacetamide for 45 min at 25�C
in the dark. Samples were diluted to 2 M urea concentration with 25 mM Tris, pH 8.0 and digested with Lys-C (Wako) at 1:50 enzy-

me-to-substrate ratio. After 2 h of digestion at 25�C, aliquot of sequencing grade modified trypsin (Promega, V5117) at 1:25 enzy-

me-to-substrate ratio was added to the samples and further incubated at 25�C for 14 h. The digested samples were then acidified

with 100% formic acid to 1% of final concentration of formic acid and centrifuged for 15 min at 1,500 g to clear digest from precip-

itation. Tryptic peptides were desalted on C18 SPE (Waters tC18 SepPak, WAT054925) and dried using Speed-Vac.

TMT-11 Labeling of Peptides

Desalted peptides from each sample were labeled with 11-plex TMT reagents. Peptides (400 mg) from each of the samples were dis-

solved in 80 mL of 50 mMHEPES, pH 8.5 solution, and mixed with 400 mg of TMT reagent that was dissolved freshly in 20 mL of anhy-

drous acetonitrile according to the optimized TMT labeling protocol described previously (Zecha et al., 2019). Channel 126 was used

for labeling the internal reference sample (pooled from 100 adult GBM tumor and 10 GTEx normal samples (Wang et al., 2020))

throughout the sample analysis. After 1 h incubation at RT, 60 mL 50 mM HEPES pH8.5, 20% ACN solution was added to dilute

the samples, and 12 mL of 5% hydroxylamine was added and incubated for 15 min at RT to quench the labeling reaction. Peptides

labeled by different TMT reagents were thenmixed, dried using Speed-Vac, reconstituted with 3% acetonitrile, 0.1% formic acid and

desalted on tC18 SepPak SPE columns.

Peptide Fractionation by bRPLC

Approximately 3.5 mg of 11-plex TMT labeled sample was separated on a reversed phase Agilent Zorbax 300 Extend-C18 column

(250 mm 3 4.6 mm column containing 3.5-mm particles) using the Agilent 1200 HPLC System. Solvent A was 4.5 mM ammonium

formate, pH 10, 2% acetonitrile and solvent B was 4.5 mM ammonium formate, pH 10, 90% acetonitrile. The flow rate was 1 mL/

min and the injection volume was 900 mL. The LC gradient started with a linear increase of solvent B to 16% in 6 min, then linearly

increased to 40%B in 60min, 4min to 44%B, 5min to 60%B and another 14 of 60% solvent B. A total of 96 fractions were collected

into a 96 well plate throughout the LC gradient. These fractions were concatenated into 24 fractions by combining 4 fractions that are

24 fractions apart (i.e., combining fractions #1, #25, #49, and #73; #2, #26, #50, and #74; and so on). For proteome analysis, 5% of

each concatenated fraction was dried down and re-suspended in 2% acetonitrile, 0.1% formic acid to a peptide concentration of

0.1 mg/mL for LC-MS/MS analysis. The rest of the fractions (95%) were further concatenated into 12 fractions (i.e., by combining

fractions #1 and #13; #3 and #15; and so on), dried down, and subjected to immobilized metal affinity chromatography (IMAC) for

phosphopeptide enrichment.

Phosphopeptide Enrichment Using IMAC

Fe3+-NTA-agarose beads were freshly prepared using the Ni-NTA Superflow agarose beads (QIAGEN, #30410) for phosphopeptide

enrichment. For each of the 12 fractions, peptides were reconstituted to 0.5 mg/mL IMAC binding/wash buffer (80% acetonitrile, 0.1%

trifluoroacetic acid) and incubated with 10 mL of the bead suspension for 30 min at RT. After incubation, the beads were sequentially

washedwith 50 mL of wash buffer (1X), 50 mL of 50%acetonitrile, 0.1% trifluoroacetic acid (1X), 50 mL of wash buffer (1X), and 50 mL of

1% formic acid (1X) on the stage tip packedwith 2 discs of Empore C18material (Empore Octadecyl C18, 47mm; Supleco, 66883-U).

Phosphopeptides were eluted from the beads on C18 using 70 mL of elution buffer (500mMK2HPO4, pH 7.0). Sixty microliter of 50%

acetonitrile, 0.1% formic acid was used for elution of phosphopeptides from the C18 stage tips after two washes with 100 mL of 1%
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formic acid. Samples were dried using Speed-Vac and later reconstituted with 12 mL of 3% acetonitrile, 0.1% formic acid for LC-MS/

MS analysis.

LC-MS/MS Analysis

Fractionated samples prepared for whole proteome and phosphoproteome analysis were separated using a nanoACQUITY UPLC

system (Waters) by reversed-phase HPLC. The analytical column was manufactured in-house using ReproSil-Pur 120 C18-AQ

1.9 mm stationary phase (Dr. Maisch GmbH) and slurry packed into a 25-cm length of 360 mm o.d. x 75 mm i.d. fused silica picofrit

capillary tubing (New Objective). The analytical column was heated to 50�C using an AgileSLEEVE column heater (Analytical Sales

and Services). The analytical column was equilibrated to 98%Mobile Phase A (MP A, 0.1% formic acid/3% acetonitrile) and 2%Mo-

bile Phase B (MP B, 0.1% formic acid/90% acetonitrile) and maintained at a constant column flow of 200 nL/min. The sample was

injected into a 5 mL loop placed in-line with the analytical column which initiated the gradient profile (min:%MP B): 0:2, 1:6, 85:30,

94:60, 95:90, 100:90, 101:50, 110:50. The column was allowed to equilibrate at start conditions for 30 minutes between analyt-

ical runs.

MS analysis was performed using an Orbitrap Fusion Lumos mass spectrometer (ThermoFisher Scientific). The whole proteome

and phosphoproteome samples were analyzed under identical conditions. Electrospray voltage (1.8 kV) was applied at a carbon

composite union (Valco Instruments) coupling a 360 mm o.d. x 20 mm i.d. fused silica extension from the LC gradient pump to the

analytical column and the ion transfer tube was set at 250�C. Following a 25-min delay from the time of sample injection, Orbitrap

precursor spectra (AGC 4 3 105) were collected from 350-1800 m/z for 110 min at a resolution of 60K along with data dependent

Orbitrap HCD MS/MS spectra (centroid) at a resolution of 50K (AGC 1 3 105) and max ion time of 105 ms for a total duty cycle of

2 s. Masses selected for MS/MS were isolated (quadrupole) at a width of 0.7 m/z and fragmented using a collision energy of

30%. Peptide mode was selected for monoisotopic precursor scan and charge state screening was enabled to reject unassigned

1+, 7+, 8+, and > 8+ ions with a dynamic exclusion time of 45 s to discriminate against previously analyzed ions between ± 10 ppm.

Quantification of TMT Whole Proteomic Data

The Thermo RAW files were processed with mzRefinery to characterize and correct for any instrument calibration errors, and then

with MS-GF+ v9881 (Gibbons et al., 2015; Kim et al., 2008; Kim and Pevzner, 2014) to match against the RefSeq human protein

sequence database downloaded on June 29, 2018 (hg38; 41,734 proteins), combined with 264 contaminants (e.g., trypsin, keratin).

The partially tryptic search used a ± 10 ppmparent ion tolerance, allowed for isotopic error in precursor ion selection, and searched a

decoy database composed of the forward and reversed protein sequences. MS-GF+ considered static carbamidomethylation

(+57.0215 Da) on Cys residues and TMT modification (+229.1629 Da) on the peptide N terminus and Lys residues, and dynamic

oxidation (+15.9949 Da) on Met residues for searching the global proteome data (Monroe et al., 2008). Next, PSMs passing the con-

fidence thresholds described above were linked to the extracted reporter ion intensities by scan number. The reporter ion intensities

from different scans and different bRPLC fractions corresponding to the same gene were grouped. Relative protein abundance was

calculated as the ratio of sample abundance to reference abundance using the summed reporter ion intensities from peptides that

could be uniquely mapped to a gene. The pooled reference sample was labeled with TMT 126 reagent, allowing comparison of rela-

tive protein abundances across different TMT-11 plexes. The relative abundances were log2 transformed and zero-centered for each

gene to obtain final relative abundance values. Small differences in laboratory conditions and sample handling can result in system-

atic, sample-specific bias in the quantification of protein levels. In order to mitigate these effects, we computed the median, log2

relative protein abundance for each sample and re-centered to achieve a common median of 0.

Quantification of Phosphopeptides

Phosphopeptide identification for the phosphoproteomic data files were performed as in thewhole proteomedata analysis described

above (e.g., peptide level FDR < 1%), with an additional dynamic phosphorylation (+79.9663 Da) on Ser, Thr, or Tyr residues. The

phosphoproteome data were further processed by the Ascore algorithm (Beausoleil et al., 2006) for phosphorylation site localization,

and the top-scoring sequences were reported. For phosphoproteomic datasets, the TMT-11 quantitative data were not summarized

by protein but left at the phosphopeptide level. To account for sample-specific biases in the phosphoproteome analysis, we applied

the correction factors derived from median-centering the whole proteomic dataset. Preprocessing of the proteomic tables of the

Project Hope sample analysis were performed in the same fashion in the pediatric sample analysis described above.

Targeted Mass Spectrometry Methods
For targeted mass spectrometry measurements, tissue lysates were reduced, alkylated with iodoacetamide, and digested by the

addition of trypsin at a 1:50 trypsin:protein ratio (by mass), as previously described (Whiteaker et al., 2018). After 2 hours, a second

trypsin aliquot was added at a 1:100 trypsin:protein ratio and incubated overnight at 37�C with shaking. After 16 hours, the reaction

was quenched with formic acid (final concentration 1% by volume). A mix of stable isotope-labeled peptide standards was added to

the digest at 80 fmol/mg per peptide.

Peptide immunoaffinity enrichment was performed as previously described (Zhao et al., 2011), using a mixture of 50 antibodies

crosslinked on protein G beads targeting 75 peptides (21 modifications, 40 proteins). LC-MRM was performed as previously

described (Whiteaker et al., 2018).

Targeted MRM Assay Characterization

Response curves were generated in a background matrix of pooled brain tumor lysates. Five hundred microgram aliquots of the

pooled lysate were digested by trypsin, and the heavy stable isotope-labeled peptides were added to aliquots in triplicate by serial
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dilution covering the amounts 1000, 200, 40, 8, 3.2, 1.28, 0.512, 0.205 fmol/mg with light spiked into the pool at 80 fmol/mg. Blanks

were prepared using a background matrix with light peptide (no heavy spike). All points were analyzed in triplicate (including peptide

addition, immunoaffinity enrichment, andmass spectrometry). Data analysis was performed using Skyline. The Lower Limit of Quan-

tification (LLOQ) was obtained by empirically finding the lowest point on the curve with a CV < 20% in the curve replicates. All mea-

surements were filtered by the LLOQ (i.e., all measurements were required to be above the LLOQ). The upper limit of quantification

(ULOQ) was determined by the highest concentration point of the response curve that was maintained in the linear range. For curves

that maintained linearity at the highest concentration measured, the ULOQ is a minimum estimate.

Repeatability was determined using the same pooled lysate matrix used to generate the response curves with heavy peptides

spiked in at three concentrations (0.8, 80, 800 fmol/mg) and light peptides added at 200 fmol/mg. Complete process triplicates

(including digestion, capture, and mass spectrometry) were prepared and analyzed on five independent days. Intra-assay variation

was calculated as the mean CV obtained within each day. Inter-assay variation was the CV calculated from the mean values of the

five days.

Targeted MRM Data Results

The median LLOQ was 1.6 fmol/mg and the median linear range > 2.8 orders of magnitude. In repeatability experiments, the median

CV at the medium spike level was 8.6% (intra-assay CV) and 26% (inter-assay CV).

Each data point is the peak area ratio (light:heavy) filtered by the LLOQ. The unfiltered data points are also available in the table. For

each sample 500 ug aliquots were analyzed in complete process replicate (including digestion, capture, andmass spectrometry). The

number of replicates available for processing was determined by the amount of lysate available. Overall, 68 out of the 75 peptide

analytes were detected in > 50% of the samples above the LLOQ. Five peptides were not detected in any samples (TNF10.pan.N-

GELVIHEK, ATM pS2996, ATMpS367, RIF1 pS1542, RIF1.pan.ASQGLLSSIENSESDSSEAK). For peptides with replicates available,

the median CV was 12.9%. The correlation of peak area ratios for peptides originating from the same protein was high (RPTOR: R2 =

0.9047, ERBB2: R2 = 0.9536, K25: R2 = 0.9964) indicating good quality for multiple measurements of the same protein.

QUANTIFICATION AND STATISTICAL ANALYSIS

Kinase Activity Score Calculation
Substrates of every kinase were collected from the PhosphoSitePlus database (version 052819). We only considered kinases with at

least five substrates observed in our phosphoproteomic data. To calculate the kinase activity score for each sample, we run a Wil-

coxon rank sum test comparing the abundance of substrates of a particular kinase with that of the remaining phosphosites observed

in our data. This test was performed for each kinase and each of the 209 samples (i.e., excluding the post-mortem samples). The

normalized test statistic of the Wilcoxon test was utilized as the activity score for each kinase.

Consensus clustering analysis
Proteomic cluster

Consensus clustering was performed to identify proteo-typical clusters of childhood brain tumors. Based on gene level global prote-

omics data, features (genes) were first filtered according to the coefficient of variation (CV) and standard deviation (SD) across samples.

Specifically, the CV was calculated using the raw intensity data; features with CV less than 0.1 were filtered resulting in the exclusion of

583 genes for consideration; finally, 3000 genes with the highest standard deviation across 218 samples were selected for clustering.

Consensus clustering was performed using the ConsensusClusterPlus package in R (Wilkerson and Hayes, 2010). Prior to clus-

tering the data matrix was scaled so that each peptide had a mean 0 and a sd of 1 across samples. K-means clustering based on

an Euclidean distance metric was conducted across 500 repetitions for cluster numbers ranging from 2 through 10 using otherwise

default parameters.

Phosphoproteomic and transcriptomic cluster

To compare proteomic clusters with those derived from alternative -omic data types, RNA-seq and phosphosite clusters were iden-

tified using a similar procedure. Specifically, phosphosite data from 217 samples were clustered using the 3000 phosphosites with

the largest SD after first filtering 830 phospho-sites with CV > 0.1. For the clustering of RNA-seq data, ½ of the genes with the highest

standard deviation were selected corresponding to 9104 features from 188 tumor samples.

Inspection of the CDF distribution, as well as patterns of concordance across data types and with histological diagnosis, led to the

selection of 8 clusters for further analysis.

Comparison across single-omic clusters

To evaluate and compare the cohesiveness of allocations derived using single-omic clustering, we utilized silhouette scores.

Silhouette scores, which measure the similarity of a given sample to the other samples in the same cluster, were calculated using

the silhouette function from the ‘cluster’ package in R. For each single-omic dataset, the Euclidean distance matrix used in the

consensus clustering and the respective single-omic clustering allocations were included as inputs to the silhouette function.To

further compare clustering allocations across single-omic datasets and with histological diagnoses, the percentage of each diag-

nostic type falling into each cluster was calculated for each set of allocations. This data is summarized in Figure S1B.
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Survival analysis for proteomic clusters
The association of proteomic clusters and overall survival was evaluated using a Coxmodel based on 198 patients with surgical sam-

ples and overall survival information (Figure 1C). Overall survival values were truncated to a maximum of 3750 days.

Stemness Score
The stemness indices are used for assessing the degree of oncogenic dedifferentiation, as previously described (Malta et al., 2018).

Stemness can be considered to be the ability of the tumor to phenocopy a normal stem cell. Higher values for stemness indices were

associated with biological processes active in cancer stem cells and with greater tumor dedifferentiation, as reflected in histopath-

ological grade (Malta et al., 2018). Recently several signaling pathways associated with stemness have been reported for each of the

mentioned CBTN PBT diagnoses (Chang et al., 2017; Liu et al., 2020; Meel et al., 2018).

Stemness scores were calculated as previously described (Malta et al., 2018). First, we used MoonlightR (Colaprico et al., 2020) to

query, download, and preprocess the pluripotent stem cell samples (ESC and iPSC) from the Progenitor Cell Biology Consortium

(PCBC) dataset (Daily et al., 2017; Salomonis et al., 2016). Second, to calculate the stemness scores based on mRNA expression,

we built a predictive model using one-class logistic regression (OCLR) (Sokolov et al., 2016) on PCBC dataset. To calculate mRNA

based stemness index (mRNASi), we used the FPKM (Fragments Per Kilobase Million) mRNA expression values for all the 188 CBTN

PB tumors. We used the function TCGAanalyze_Stemness from the package TCGAbiolinks (Colaprico et al., 2016) and following our

previously-described workflow (Mounir et al., 2019), with ‘‘stemSig’’ argument set to PCBC_stemSig.

Proliferative Index
Proliferative indexwas calculated based on gene expression data of 40 genes contained in the proliferation gene signature fromYuan

et al., (Yuan et al., 2018). The proliferative index was computed via sample-specific gene set enrichment analysis (ssGSEA) score

using the package GSVA (Hänzelmann et al., 2013).

Investigation of two subtypes of Cranio
To better characterize the biological features differentiating the CP allocated to different proteomic clusters and to investigate the

hypothesis that CP allocated to the Cranio/LGG BRAFV600E (C4) may respond to MEK inhibitor treatment, regression analyses

were performed using the global proteomic data to identify markers differentially expressed between C4 and C8with CTNNB1 status

accounted for as a covariate. Gene set enrichment tests were performed for a MEK inhibition response signature based on 15 genes

overlapping between our global proteomic data and a 52member geneset previously reported to be perturbed byMEK inhibitor treat-

ment in multiple cancer cell lines with BRAFV600E (Pratilas et al., 2009). The MEK inhibition response gene set was found to be signif-

icantly enriched of proteins upregulated in C4 (pvalue = 0.05), as is illustrated in the volcano plot in Figure S1C.

Proteomic Cluster Signature
To identify proteins and phospho-site markers associated with proteomic clusters, a multiple regression was performed using pro-

tein/phospho-site abundances as responses, and binary indicators representing the 8 proteomic-clusters as regressors, with age of

specimen diagnosis, gender, as well as treatment and clinical status at sample collection included as covariates. Model fitting was

performed without an intercept so that the resulting betas are interpretable as amean shift relative to all tumors. Results from cluster-

specific association testing performed on 6429 protein (N = 218), 4548 phosphosite (N = 218), and 18209 gene expression (N = 188)

features are reported in Table S1.

Pathway analysis for proteomic clusters
To better characterize proteomic clusters, we sought to identify the biological pathways distinctly associated with each. First, using

the R package ConsensusClusterPlus (Wilkerson and Hayes, 2010), genes were clustered based on a Z-score matrix (8 columns)

summarizing the cluster-specific regression analysis results based on proteomics data. Specifically, each row of the Z-score matrix

represents the estimated mean shift of a given protein’s abundance in each of the 8 proteomic clusters. Considering between 10-20

clusters, K-means clustering was performed to group genes (N = 6353) whose protein abundances were significantly associated

(FDR < 0.05) with at least one proteomic cluster. Pathway enrichment was performed to test for overrepresentation of biological

pathway/gene-set members in each gene group using a one-tailed Fisher’s Exact Test. The final number of gene groups (k = 14)

was chosen to maximize the number of significant pathway associations based on the Hallmark gene sets from MSigDB (Liberzon

et al., 2011, 2015) downloaded from https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp on 02/14/2019. Based on the 14

groups of gene so selected, a comprehensive pathway analysis was further performed using GO (Ashburner et al., 2000), Biocarta,

KEGG (Kanehisa et al., 2017), Hallmark (Liberzon et al., 2015), and Reactome (Fabregat et al., 2018) gene set collections.

Pathway Consolidation via Sumer

Gene set enrichment results can be difficult to interpret due to significant redundancy of genemembership across collections of gene

sets. To aid in the interpretation and reduce redundancy of pathway results, we utilized the Sumer tool (Savage et al., 2019). This tool

uses an affinity propagation algorithm to cluster similar pathway gene sets into largely distinct modules. Sumer was run using
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-log10 p values from the Fisher test of gene cluster enrichment as weights. Consolidated pathway modules for each gene cluster

were identified, based on the top 50 pathways by weight (Table S1); a subset of these along with other pathways with biological rele-

vance in cancer were selected for display in Figure 1D.

Immune subtype identification
The abundance of 64 different cell types were computed via xCell based on transcriptomic profiles (Aran et al., 2017). Therefore, for

this analysis, 182 pediatric brain tumor samples with mRNA data were utilized excluding post-mortem samples. Table S2 contains

the final score computed by xCell of different cell types. Consensus clustering was performed based on only cells which were de-

tected in at least 5% of the patients (adjusted p value < 1%). This filtering resulted in 35 cell types. A Microglia signature was derived

as ssGSEA score (Hänzelmann et al., 2013) based on the following microglia-specific markers: P2RY12, TMEM119, SLC2A5,

TGFBR1, GPR34, SALL1, GAS6, MERTK, C1QA, PROS1, CD68, ADGRE1, AIF1, CX3CR1, TREM2 and ITGAM (Butovsky et al.,

2014; Crotti and Ransohoff, 2016; Haage et al., 2019; Solga et al., 2015). Based on these 36 signatures, consensus clustering

was performed in order to identify groups of samples with similar immune/stromal characteristics. Consensus clustering was per-

formed using the R packages ConsensusClusterPlus (Wilkerson and Hayes, 2010) based on z-score normalized signatures. Specif-

ically, 80%of the original pediatric brain tumor samples were randomly subsampledwithout replacement and partitioned into 5major

clusters using the Partitioning Around Medoids (PAM) algorithm, which was repeated 200 times (Wilkerson and Hayes, 2010; Fig-

ure 2A; Table S2).

single cell RNaseq deconvolution Analysis
We have applied the tool Music (Wang et al., 2019) trained on single cell sequencing data from Darmanis et al. (2017) to all the mRNA

expression values for all 182 tumors considered for the immune subtype analysis. We used the function TCGAanalyze_scRNA (tool =

Music, data = GSE84465) from the package TCGAbiolinks (Colaprico et al., 2016) to query, download and prepare the data fromDar-

manis et al. (2017) and subsequently obtain microglia, neuronal and oligodendrocytes cell type composition in these tumors. scRNA

data were normalized following previously-described workflow (Lun et al., 2016).

Tumor Purity, Stromal and Immune Scores
Besides xCell, we utilized ESTIMATE (Yoshihara et al., 2013) to infer immune and stromal scores based on gene expression data

(Table S2). To infer tumor purity, TSNet was utilized (Petralia et al., 2018; Table S2).

Differentially Expressed Genes and Pathway
Genes upregulated in each of the five immune clusters were identified based on gene expression data, global proteomic and phos-

phoproteomic data. For this analysis, imputed proteomic and phosphoproteomic data were utilized. For each data type, every feature

vector was normalized by subtracting themean and dividing by the standard deviation across 182 samples. Then, for each data type,

the expression level of gene/protein/phosphosite j was modeled via

xi;j =
X5

k = 1

bk;j1ði˛ IkÞ+ εi;j (Equation 1)

with εi;j � Nð0;sjÞ, Ik being the set of samples belonging to the k-th immune cluster, 1ðAÞ being an indicator function equal to 1 if the

event A occurs and 0 otherwise, bk;j being the coefficient capturing the association between gene j and the k-th immune group. Ben-

jamini adjusted p values (Benjamini and Hochberg, 1995) can be found in Table S2. For each immune cluster, considering the set of

genes upregulated with Benjamini’s adjusted p value lower than 1%, a fisher exact test was implemented to derive enriched path-

ways. For this analysis, pathways from the Reactome (Fabregat et al., 2018), KEGG (Kanehisa et al., 2017), Hallmark (Liberzon et al.,

2015) and GO (Ashburner et al., 2000) databases were considered and as background the full list of gene/proteins observed under

each data type was utilized. For phosphorylation data, a gene was considered upregulated if at least one substrate of the gene was

found upregulated based on phosphorylation data at 1% FDR. The pathway analysis results for different data types are contained in

Table S2B. Figure 2B contains key pathways significant at 10%FDR for different data types. Given their similarity in terms of enriched

pathways, the two cold immune clusters (i.e., Cold-medullo and Cold-mixed) were combined into one category and pathways up-

regulated in both clusters at 10% FDR were reported in Figure 2B. Pathway scores for 182 pediatric brain tumor samples were

computed based on ssGSEA using the R package GSVA and included in Figure 2A (Hänzelmann et al., 2013).

Microglia and Macrophage Polarization in LGG
Microglia polarization signatures were constructed with ssGSEA (Hänzelmann et al., 2013) using RNaseq measurements based on

genes described in recent literature (Dello Russo et al., 2017; Fumagalli et al., 2018; Krasemann et al., 2017). Specifically, the

following gene sets were considered: Proinflammatory (M1) = (IL1B, TLR4, TNF, NOS2, APOE, CLEC7A, LGALS3, GPNMB, ITGAX,

SPP1, CCL2, FABP5, CYBB); Anti-inflammatory (M2) = (COQ7, IL4, IL13, IL10, ARG1, TGFB1, SMAD3, HEXB, P2RY12, MERTK,

ENTPD1, TMEM119, TGFBR1, CD163, CD206). M2-0.65*M1 difference was used for Figure 2G.
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Immune association with BRAF Status in LGG
For this analysis, we consider the 35 immune/stromal signature from xCell and the microglia signature utilized to perform the

consensus clustering, microglia M1 andM2 signatures and antigen presenting machinery Class I and Class II signature. Antigen pre-

senting machinery signature Class I was derived via ssGSEA score (Hänzelmann et al., 2013) using gene expression measurements

of HLA-A, HLA-B and HLA-C genes; while class II signature based on the gene expression of HLA-DPA1, HLA-DPB1, HLA-DRA,

HLA-DRB1, HLA-DRB5 and HLA-DQB1. Each signature was normalized to z-score and then was modeled as function of BRAF sta-

tus (i.e., BRAFwild-type, BRAF fusion and BRAF v600E) via linearmodel. Table S2 reports p values for association passing 10%FDR.

iProFun Based Cis Association Analysis
We investigated the functional molecular quantitative traits (mRNA, protein, and phosphoprotein abundances) perturbed by CNV,

using an integrative analysis tool iProFun (Song et al., 2019). iProFun jointly models the multi-omics outcomes, and enjoys largely

enhanced power for detecting significant cis-associations shared across different omics data types; and it also achieved better ac-

curacy in inferring cis-associations unique to certain type(s) of molecular trait(s). Specifically, we considered three functional molec-

ular quantitative traits (mRNA expression levels, global protein abundances, and phosphopeptide abundances) for their associations

with CNVmeasured by log ratios. After removing post-mortem samples, we collected 168 pediatric brain tumor samples with all four

platformsmeasured, and performed iProFun on these samples. Samples from different biopsies of the same subject (e.g., from initial

tumor and progressed tumor) were both considered in the analysis. ThemRNA expression levels were available for 18,209 genes, the

global protein abundance measurements were available for 6,429 genes, the phosphopeptide abundance was available for 4,518

peptides from 1,958 genes, and the CNVs were obtained for 19,374 genes, respectively. All data types were preprocessed to elim-

inate potential issues for analysis such as batch effects, missing data and major unmeasured confounding effects. For this analysis,

imputed proteomic and phosphoproteomic tables were utilized. The mRNA expression levels, global protein and phosphoprotein

abundances were also normalized to standard normal distribution. To account for potential confounding factors, we considered

age, gender, tumor purity, tumor diagnosis, treatment status at collection and somatic mutation. Tumor purity was determined using

TSNet from RNA-seq data as described above.

The iProFun procedure was first applied to a total of 1622 genes measured across all 4 data types (mRNA, global protein, phos-

phoprotein, CNV). Specifically, we startedwith traditional linear regression for each of the three outcomes separately: mRNA�CNV +

covariates, global �CNV + covariates, and phospho �CNV + covariates. Then, the association summary statistics from regressions

was taken as input for iProFun to call posterior probabilities of belonging to each of the eight possible configurations (‘‘None,’’ ‘‘mRNA

only’’ ‘‘global only,’’ ‘‘phospho only’’ ‘‘mRNA & global,’’ ‘‘mRNA & phospho,’’ ‘‘global & phospho’’ and ‘‘all three’’) and to determine

significance associations.

Table S3 presents the significant genes that pass the following three criteria: (1) the satisfaction of biological filtering procedure, (2)

posterior probabilities > 75%, and (3) empirical false discovery rate (eFDR) < 10%. Specifically, the biological filtering criterion re-

quires that CNV presents positive associations with all the types of molecular QTs. Second, a significance was called only if the pos-

terior probabilities > 75%of a predictor being associated with amolecular QT, by summing over all configurations that are consistent

with the association of interest. For example, the posterior probability of a CNV being associated with mRNA expression levels was

obtained by summing up the posterior probabilities in the following four association patterns – ‘‘mRNA only,’’ ‘‘mRNA & global,’’

‘‘mRNA& phospho’’ and ‘‘all three,’’ all of whichwere consistent with CNV being associatedwithmRNA expression. Lastly, we calcu-

lated empirical FDR via 100 permutations permolecular QTs by shuffling the label of themolecular QTs, and requested empirical FDR

(eFDR) < 10% by selecting a minimal cutoff value of alpha that 75% < alpha < 100%. The eFDR is calculated by:

eFDR = (Averaged No. of genes with posterior probabilities > alpha in permuted data) / (Averaged No. of genes with posterior

probabilities > alpha in original data).

In total, we identified 515 genes whose CNV showed cascading cis-regulation of their mRNA expression levels, global protein and

phosphopeptide abundances.

Similarly, iProFun was applied to a total of 6183 genes measured across all 3 data types (mRNA, global protein, CNV) for their cis

regulatory patterns in tumors, and 1541 genes whose CNV showed cascading cis-regulation of their mRNA expression levels and

global protein abundances. To further visualize the cascading genes from iProFun analysis, we selected a subset of cascading genes

which have adequate copy number activity in any of the diagnosis subtypes, and marginally differentiated in protein/phosphosite

abundance across different copy number status in the same subtype. We define copy number activity by comparing CNVs with

the standard deviation across all samples on the same location: cnv over 1-fold SD was regarded as gain and below negative 1-

fold SD regarded as loss. Adequate copy number activity was defined with the total proportion of gain and loss over 25% and either

category including at least 2 samples. After categorizing CNV with 3 groups: gain/normal/loss, we tested if protein/phospho abun-

dance was differentially distributed with contrast on gain-to-normal or loss-to-normal by two sample Wilcoxon-test. Genes with p

value below 0.1 in the test under one of the contrasts were indicated as marginal associated with CNV. All of the selected cascade

genes were labeled along the genome in Figure S3D and those genes also being reported as druggable targets or oncogenes were

listed with their symbols on the same plot.
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Cis-regulation of Somatic Mutations
We considered genes whosemutation rate is prevalent (at least 6 mutations across 200 tumors) to investigate their associations with

their cismRNA, global and phosphoprotein abundances. A total of 46 genes were therefore considered in this association analysis.

For each mutation, we considered the existence of any types of mutation (Yes/No) as primary predictor, mRNA/protein/phosphosite

abundance as outcome, and CNV, age, gender, tumor purity and tumor diagnosis types as covariates, and performed linear regres-

sions for their associations.

Trans association analysis
For each tumor diagnosis, we investigated the trans associations of its abundant genomic events on all measured mRNA, protein,

phosphosite levels that pass QC procedures. For each subtype we calculated the chromosome arm-level cnv activity level using

similar criterion as described in iProfun analysis. We compared arm-level CNVs in a specific subtype with their standard deviation

across all samples on the same arm, calculated total proportion of gain (over 1-fold SD) and loss (below negative 1-fold SD). The

proportion over 25% represented adequate activity in the chromosome arm region. We selected 5 diagnosis subtypes which con-

tains at least 1 active CNV region to test trans associations. We also consider the trans association between two signature mutations

and their highly enriched subtypes. Specifically, we considered association on chromosome arm 6q, 17p, 17q, and 22q in atypical

teratoid rhabdoid tumor; CTNNB1 mutation and 11p in CP; 1q and 8q in EP; 7p in ganglioglioma; NF1 mutation, 1q, 6q, 7p, 9p, 9q,

11p, 13q, 14q, 16q, 17q and 21p in high grade astrocytoma; 1q, 7p, 7q, 8q, 10q, 11p, 11q, 16q, 17p, 17q and 18p in MB. For each of

these genomic events, we investigated their association with all mRNA levels, protein abundances and phosphosite abundances

among patients with the corresponding diagnosis, using unadjusted linear regression. Additional covariates were not considered

due to small sample sizes in subtypes. We reported significant trans associations if FDR < 0.1.

To further understand the biological impact of the trans-regulations, we tested enrichment of positively regulated or negatively

regulated gene set in pathways with fisher exact test. Enrichment test was performed on both RNA trans-regulated genes and protein

trans-regulated genes. In this test, pathways from the Reactome (Fabregat et al., 2018), KEGG (Kanehisa et al., 2017) and GO (Ash-

burner et al., 2000) databases were considered and as background the full list of gene/proteins observed under each data type was

utilized. Some pathways were enriched by trans-regulated genes in protein but not in RNA. For example, members of the ‘‘Cell Cell

Contact Zone’’ pathway (purple) are enriched in the set of proteins upregulated in CTNNB1 mutant samples; while ‘‘Coagulation’’

pathway is enriched in proteins downregulated in CTNNB1 mutant samples.

Kinase Activity across different histologies
Kinase activity scores were calculated following the strategy illustrated in section ‘‘Kinase Activity Score Calculation.’’ Table S4 con-

tains the kinase activity for all diagnosis. For this analysis, we used proteomics and phosphoproteomic imputed data. The activity of

each kinase was modeled as a function of the diagnosis indicator and the treatment information via a linear regression. Given the

impact of post-mortem collection on proteogenomic data, post-mortem samples have been excluded from the analysis. P values

were adjusted for multiple comparison via Benjamini & Hochberg adjustment (Table S4). In addition, for each diagnosis, the corre-

lation between kinase activity and global abundance is reported in Table S4.

Kinase-Substrates Association
To discover the phosphorylation events that were relevant to pediatric brain tumors, we utilized the phosphosite-level data to

examine the overall relationship between kinase global abundance and phospho-abundance with targeted sites. Given the impact

of post-mortem collection on proteogenomic data, post-mortem samples have been excluded from the analysis. For this analysis, we

used proteomic and phosphoproteomic imputed data. For each diagnosis, only kinases and phosphositesmeasured for at least 50%

of the samples have been considered in the analysis. Since ATRT and MB tumors were merged into one group of samples, only ki-

nases and phosphosites observed in at least one diagnosis (i.e., ATRT and MB) for more than 50% of the samples were utilized. For

this analysis, experimentally validated kinase-substrate associations were considered from PhosphoSitePlus (Table S4; Hornbeck

et al., 2015). This filtering resulted in a total number of 540 kinase-substrates possible associations between 82 unique kinases

and 267 unique substrates (Table S4). Then, each phosphosite abundance was modeled as a function of targetable kinases via a

multivariate linear regression adjusting for treatment information. When both phospho-abundance and global-abundance data

were available for a particular kinase, the data type with higher correlation with the targeted site was considered in the model. For

each diagnosed subtype, we adjusted for multiple comparisons via permutation technique. In particular, for each permutation, we

run themultivariate analysis after randomly permuting the sample order of the abundance of the targeted site. Repeating this analysis

for 200 permutations, we generated the distribution of p values under the null hypothesis of no-association and utilized this distribu-

tion to compute FDR (Tusher et al., 2001). Only associations passing an FDR adjustment of 10% were reported as significant (Table

S4; Figure S4A). Note, given the small sample size of the ATRT and MB cohorts, their shared identity as embryonal tumors and their

proteomic similarity (Figure 1D), ATRT and MB samples were combined to form the ATRT/MB group in this analysis.

Validation of kinase-phospho associations
Kinase-phospho associations detected in HGG were validated using proteomic and phosphoproteomic data for 23 additional high-

grade glioma samples. This additional data is reported in Table S4.
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BRAF mutation association analysis for LGG
A regression analysis was performed to compare the abundance of wild-type to each mutant type (fusion or point), with age of diag-

nosis and diagnosis type (initial or progressed) as covariates (Table S5). For this analysis, the LGG diagnosis-specific imputed tables

(N = 93) were used, including of 5629 and 3437 markers for protein and phosphoproteomic data respectively. Association analysis

was also performed for 85 LGG samples across 18209 transcripts.

Pathways associated with BRAF status in LGG
Wilcoxon enrichment analysis (WEA) was used to test for association between pathway genesets andBRAF status among LGG sam-

ples based on regression results fromRNA and protein data. Gene set enrichment was conducted acrossmultiple collections of gen-

esets, including GO (Ashburner et al., 2000), Biocarta, KEGG (Kanehisa et al., 2017), Hallmark (Liberzon et al., 2015), and Reactome

(Fabregat et al., 2018). These collections were downloaded from https://www.gsea-msigdb.org/gsea/msigdb/index.jsp on 2/14/

2019. Gene sets with less than 5 or more than 250 member genes were excluded. A total of 4795 and 6215 genesets fitting this cri-

terion were tested for enrichment in proteomic and RNA datasets respectively.

Consolidation pathways via Sumer

To help identify pathways distinctly associated with each mutation type and to consolidate redundant pathway results, Sumer soft-

ware was utilized (Savage et al., 2019). The -log10 signed p value derived from a Z-test comparing mean ssGSEA scores (Hänzel-

mann et al., 2013) between mutant types was used as the pathway weight when running Sumer. Consolidated pathway modules are

shown based on the top 150 pathways by weight (Table S5); a subset of these along with other pathways with biological relevance in

cancer were selected for discussion in the main text.

Phosphoproteomic Co-expression Network in LGG
Network inference was utilized to characterize co-expression patterns among phosphorylation sites in LGG. The co-expression

network was estimated based on phosphosite level data through a random-forest based algorithm (Petralia et al., 2016; Petralia

et al., 2015). In particular, co-expression networks were estimated using LGG-specific imputed phosphorylation data. In order to

deal with the fact that sites mapping to the same protein are usually correlated, we only modeled each site as function of sites map-

ping to other proteins. Let p be the total number of sites measured for n samples. Specifically, let xsi;j be the abundance of the j-th site

mapping to the s-th protein for the i-th sample. Then, xsi;j was modeled as a function of other protein phosphosites, i.e., fxki;jgkss, via

random forest. In order to derive the final unweighted networks, a proper cut-off value was chosen via permutation techniques

(Fruchterman and Reingold, 1991; Petralia et al., 2016). Specifically, 50 permutations and an FDR cut-off of 1E-4 was considered

to derive the final network (Table S5). For the visualization of network modules (Figures 5C and S5C) the software iCAVE (Kalayci

andGumus, 2018; Liluashvili et al., 2017) and Cytoscape (Shannon et al., 2003) were utilized. Force-directed layout algorithm (Fruch-

terman and Reingold, 1991) was applied to calculate initial positioning of nodes, node positions were then manually adjusted for vi-

sual concerns.

Network modules associated with BRAF status

Based on the network topology, network modules were identified using an algorithm based on edge betweenness score (Csárdi and

Nepusz, 2006; Newman and Girvan, 2004). A total number of 18 network modules containing more than 20 phosphosites were

derived (Table S5). Given a networkmodule, the association withBRAFV600E andBRAFFusionwas found via fisher-exact test. In partic-

ular, a one-sided fisher exact test was performed to find modules enriched of sites differentially expressed between BRAFFusion and

BRAFwild-type and BRAFV600E and BRAFwild-type at 10% FDR (Table S5). P values were then adjusted for multiple comparison via

Benjamini-Hochberg adjustment (Benjamini and Hochberg, 1995).

Network modules and druggable kinases

For this analysis, we considered kinases, which have been used, in clinical trials based on Open Targets database (https://www.

targetvalidation.org/disease/EFO_0000311; Koscielny et al., 2017). A total number of 52 druggable kinases were observed in global

proteomic data based on LGG-specific imputed global proteomics table. The association between the global abundance of each

kinase and phospho-abundance of phosphosite was assessed via a linear regression. P values were adjusted for multiple compar-

ison via Benjamini-Hochberg adjustment (Benjamini and Hochberg, 1995) and only associations passing a 5% FDRwere reported as

significant. Then, to assess the enrichment of sites positively associated to a particular module a one-sided fisher-exact test was

performed (Table S5).

Pathway analysis of network modules
Gene level pathway analysis was performed for network Module 1 and 2 (referred to as Cluster 1 and 4, respectively in Table S5).

Basically, for each network module, we considered the genes whose phosphosites were contained in the network module and iden-

tified pathways in the Kegg, Reactome, Hallmark and GO databases enriched in this list. Specifically, a one-sided fisher exact test

was performed. Only pathways containing at least 20 genes with phosphorylation measurement were considered for this analysis.

Pathways significantly enriched at 10% FDR were found only for Module 1 (Table S5).
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Survival analysis of HGG
For this analysis, diagnosis-specific imputed proteomic data was used. There were 25 HGG samples which included 3 patients who

had two tumor samples at different time points. For these 3 patients, we used the sample of the initial CNS tumor or the one with the

smaller age at specimen diagnosis (if both tumors from the same patient were labeled as progressive/recurrent). Furthermore, 3 HGG

samples of autopsies were removed from the analysis. This filtering resulted in 19 HGG samples which were utilized for the survival

analysis. Out of these 19 samples, 7wereH3mutants (all deceased); while the remaining 12 patients (4 alive and 8 deceased) were H3

wild-type. Note that the overall survival was truncated at 2000 days (roughly 5 years) and we treated patients with survival time longer

than 2000 days as censored. In particular, only one sample had overall survival greater than 2000 days. This totaled 5 censored sam-

ples and 7 ‘‘deceased’’ samples in theH3wild-type group. Considering these samples, survival datawasmodeled via Cox regression

as follows:

CoxphðOS; statusÞ � H3mut + age + gender + post_treatment + tumor_purity + prot � H3mut + prot � H3WT

with status denoting the overall survival status. H3mut was coded as one for H3mutant and zero for wild-type. Gender was coded as 1

for male and 0 for female. Treatment status was coded as 1 for ‘‘post-treatment’’ samples and 0 otherwise. The last two terms in the

model denote the interaction between protein abundance and H3 mutant and H3 wild-type, respectively. In particular, H3WT was

coded as 1 for H3wild-type and 0 otherwise. Given that for someHGG tumors, transcriptomic data was not available, for this analysis

tumor purity was derived based on global proteomic data via TSNet (Petralia et al., 2018; Table S2).

For 18 of the 19 samples, gene expression data wasmeasured, andwe performed a parallel Cox regression analysis based on RNA

expression of IDH genes. We derived a 90% confidence interval of hazard ratio estimates for IDH1/2/3 genes based on both global

proteomic and gene expression data (Figures S6A and S6B).

To obtain the effect of IDH1 and IDH2 on survival in the H3 wild-type group, we modeled the survival data as function of both IDH1

and IDH2 expression conditional on other covariates as follows:

CoxphðOS; statusÞ � H3mut + age + gender + post_treatment + tumor_purity + IDH1pro � H3mut

+ IDH2pro � H3mut + IDH1pro � H3WT + IDH2pro � H3WT

For assessing the association between the joint effect of IDH1 and IDH2 proteins on overall survival in the H3 wild-type group, we

performed an anova test to compare the above Cox model with the following one:

Model 0 : CoxphðOS; statusÞ � H3mut + age + gender + post_treatment + tumor_purity + IDH1proH3
mut + IDH2proH3

mut

Let the absolute value of the estimated coefficients of IDH1pro*H3
mut and IDH1pro*H3

WT bem1 and w1 while those for IDH2pro*H3
mut

and IDH2pro*H3
WT be m2 and w2. We calculate the weighted score of IDH1 and IDH2 for the mutant samples as

IDH1=2mut
pro � H3mut =

m1

m1 +m2

� IDH1pro � H3mut +
m2

m1 +m2

� IDH2pro � H3mut

and similarly for the H3 wild-type samples as

IDH1=2WT
pro � H3WT =

w1

w1 +w2

� IDH1pro � H3WT +
w2

w1 +w2

� IDH2pro � H3WT

In order to display the association between survival and weighted IDH1/2 scores in the H3 wild-type group, Kaplan-Meier curves

were derived based on IDH1/2WT
pro (Hänzelmann et al., 2013), with median value chosen as the cut-off to stratify samples in higher

and lower abundance groups (Figure 6E).

We also performed Cox regression to evaluate the association between weighted score of IDH1 and IDH2 with survival conditional

on other covariates as follows:

CoxphðOS; statusÞ � H3mut + age + gender + post_treatment + tumor_purity + IDH1=2mut
pro � H3mut + IDH1=2WT

pro � H3WT

We derived 95% confidence interval of the Hazard ratio estimate and other covariates based on the above model (Figure 6C).

We also assessed the association betweenwild-type IDH1/2 proteins with survival using a second proteomic dataset containing 41

pediatric and young adult HGG patients without IDH1/2 mutants. Among the 41 samples, 12 samples were H3mutant: 2 alive and 10

deceased. And the remaining 29 samples (19 deceased and 10 alive) were H3wild-type (Table S6). For survival analysis, we truncated

the OS at 2000 days and treat samples with OS greater than 2000 days as censored samples. This left 17 samples with the deceased

status in the H3 wild-type group. Similar to the discovery dataset, Cox regression models were fitted on this second dataset, with

tumor location further included as a covariate. We used indicators for ‘‘cortical’’ and ‘‘midline’’ tumor location, while cerebellum

was taken as the reference. Given that only few markers were available for this dataset, we were unable to derive tumor purity
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and include it as a covariate in the model. The KM curve based on weighted IDH1/2 score is displayed in Figure 6F and the 95%

confidence interval of the hazard ratio of weighted score in H3 wild-type and other covariates is displayed in Figure 6D.

For pathway enrichment analysis in the pediatric cohort, we used the canonical and Hallmark database from Broad Institute’s mo-

lecular signature database (Liberzon et al., 2015). We performed aWilcoxon test to compare the distribution of signed p values (from

Cox regression analysis) of the genes within the pathways to the remaining genes in the dataset. We further consolidated the path-

ways intomodules using Sumer (Savage et al., 2019; Figure S6C). Note that we only report the pathway enrichment results fromHGG

wild-type as this group has reasonably higher sample size as opposed to the mutant group (Table S6).

Drug Connectivity Analysis for HGG
For the transcriptional connectivity analysis, an HGG-specific signature was first generated by comparing the mRNA levels between

HGG and LGG samples using the Wilcoxon rank sum test. Genes with an FDR < 0.05 were considered differentially expressed and

were subsequently filtered for probes measured in the L1000 assay (Subramanian et al., 2017). The resulting gene list was then used

as input for iLINCS, a drug connectivity tool (Pilarczyk et al., 2019) and the ‘‘Perturbagen connectivity analysis’’ functionality was used

to identify compounds with negative connectivity to the HGG-specific signature.

For the phosphoproteomic connectivity analysis, protein and phosphopeptide signatures were calculated by comparing HGG and

LGG samples via the Wilcoxon rank sum test. Significant phosphopeptide and protein probes (FDR < 0.05) were then mapped to the

P100 peptide probes (Litichevskiy et al., 2018) and were used for subsequent analysis. Level 4 P100 data were downloaded from the

LINCS Data Portal (Stathias et al., 2020) and the median of each technical replicate was used to calculate the spearman correlation

between each P100 experiment and the HGG-specific phosphoproteomic signature. The resulting connectivity scores were then

aggregated to the compound level, by calculating the mean among all 7 P100 cell lines. To identify drug MOAs (Mechanisms of Ac-

tion) that were enriched in the transcriptional and phosphoproteomic connectivity analysis we utilized the fgsea R package (Korot-

kevich et al., 2019) by querying against MOA drug sets rather than gene sets. Results for multiple data types are included in Table S6.

Comparison of initial and progressed tumors
Our dataset contained proteogenomic profiles of 18 pairs of samples from the same patients. Out of these 18 pairs, 13 of the primary

tumors were from the initial disease occurrence, while in the remaining five cases the primary available sample was from a disease

that is already classified as progression. Among the secondary samples, 11 are classified as disease progression and seven as recur-

rence. We analyzed the 18 pairs as cases of less advanced versus more advanced disease, and usually refer to them as initial versus

recurrent samples. The mutations included in overlap analysis were the non-synonymous mutations in protein coding genes. Poten-

tial driver mutations were either genes with known roles in cancer (Bailey et al., 2018; Li et al., 2015, 2018b) that were found to be

mutated, or the ones whose allele frequency increased sufficiently between initial and recurrent samples to indicate the signs of

evolutionary selection (Merlo et al., 2006). Chromosome arm copy number activity was defined by comparing arm-level CNVs

with their standard deviation across all samples. In particular, arm level amplification was declared if arm-level CNVs were over 1-

fold SD above zero, while deletion if arm-level CNVs were more than 1-fold SD lower than zero.

Pathway score differences were computed by subtracting the ssGSEA score (Hänzelmann et al., 2013) of a given pathway in the

initial sample from that of the recurrent sample.

Germline variants in TP53
To screen for germline TP53 variants that are likely to be pathogenic to or causing Li-Fraunemi syndrome, we checked WGS data

fromblood/normal samples in CBTN (n = 893). After filtering, we kept germline variants that were either reported before within Li-frau-

meni syndrome patients in the literature according to professional version 2019Q2 of the Human GeneMutation Database (HGMD)�
(Stenson et al., 2017), or predicted to be deleterious in TP53, which are defined to be i) in the exonic/splicing region, ii) not synono-

ymous SNVs, and iii) with minor allele frequency < 0.001 in both of the gnomAD exome and genome databases (version 2.1.1) (Karc-

zewski et al., 2019). Finally we obtained 19 TP53 variants in 19 CBTN patients’ germline WGS data.

ADDITIONAL RESOURCES

Heatmap Web Server
We have developed a web application (http://pbt.cptac-data-view.org/) which allows researchers to render interactive heatmaps of

genes of interest across the cohort, allowing deeper exploration of trends among multiomic and clinical data. The underlying data

consists of quantitative information on mutation status, protein abundance, RNA-Seq gene expression, copy number variation,

and phosphosite expression for 218 samples when available. The portal has several views available, depending on the data types

that the user would like to explore. These views include ‘‘all,’’ ‘‘mutation,’’ ‘‘rna,’’ ‘‘proteo,’’ ‘‘cnv,’’ and ‘‘phospho.’’

The ‘‘all’’ view provides a multiomic view across multiple data types. Data tracks for each gene are labeled with the gene symbol

followed by: ‘‘mut’’–(‘‘Yes’’ for any type of mutation, ‘‘No’’ for wild-type), ‘‘rna’’–standardized gene expression levels, or ‘‘proteo’’–

standardized gene-level protein abundance. The ‘‘mutation,’’ ‘‘rna,’’ ‘‘proteo,’’ ‘‘cnv,’’ and ‘‘phospho’’ views visualize the individual

data tracks. The ‘‘phospho’’ view appends the gene name with a truncated identifier with the amino acid location of the phosphosite,

and the user can click the track to see the entire phosphosite identifier.
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All views display the genomic and clinical annotation data as the top tracks. These tracks include survival status, grade, diagnosis,

tumor location, and clustering analysis results, including an immune cluster assignment for each sample. The genomic annotation

tracks include the mutation status for key genes, including BRAF status for LGG, RELA for EP, CTNNB1 for CP, and H3F3A for

HGG .

The views can show data for the samples across all histological diagnoses or one individual diagnosis (i.e., EP, MB, ATRT, CP,

HGG, ganglioglioma, and LGG).

The application can be accessed with any modern web browser through the following address: http://pbt.cptac-data-view.org.

Users begin with a text field, where they can enter gene symbols for up to 30 genes. The genes will be used to generate an Excel

file (.xls) and heatmap visualizations across all of the views.

Users can click any point on the interactive heatmap to view the underlying data, including sample identifier, data type, and value.

They can then sort the heatmap by a given data track, in ascending or descending order. The sorting feature allows researchers to

dynamically explore relationships and patterns among various molecular and clinical data types.
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Supplemental Figures

(legend on next page)
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Figure S1. Multi-omics-Based Clustering of Pediatric Brain Tumors, Related to Figure 1

A. Clusters based on different omics data (from left to right: RNaseq based, proteomic based and phosphoproteomic based) and corresponding Silhouette

scores. For each heatmap, proteomic based clusters (Cluster), different histologies (Diagnosis), sample annotation information and LGG BRAF status are an-

notated at the bottom of the heatmap.

B. Comparison between proteomic clusters (columns) and histologies (rows). For each histology (rows), the percentage of samples allocated to each cluster

(column) is shown.

C. Volcano plot showing genes differentially expressed between C4 and C8 proteomic clusters in CP based on different data types (i.e., RNA-seq, global

proteomics, and kinase activity).

D. Diagram illustrating proteins members of the PAF1 complex (SKI8 was not observed in the dataset) as well as downstream players interacting with PAF1C.

E. RNA and global/phospho protein abundance of markers belonging to and interacting with the PAF1 complex based on proteomic and RNA data for EP tumors

allocated to the Aggressive and the Ependy clusters. Proteomic clusters, diagnosis, RELA status and tumor location are annotated on the left of the heatmap. For

each gene, the z-score for the comparison between Aggressive and Ependy clusters is reported.
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Figure S2. Immune Infiltrations in Pediatric Brain Tumors, Related to Figure 2

A. Distribution of immune and stromal scores from ESTIMATE (Yoshihara et al., 2013), as well as tumor purity estimates from TSNet (Petralia et al., 2018) across

different proteomic clusters.

B. Scatterplot of ssGSEA score of pro-regenerative microglia gene signature (y axis) versus that of pro-inflammatory microglia signature (x axis). Colors of the

dots represent proteomic clusters.

C. Distribution of pathway scores for Pyruvate Metabolic Process, Mitochondrial Protein Complex, Glycolysis, Proteasome, Beta Catenin TCF Complex As-

sembly and Regulation of Apoptosis across different immune groups based on RNA and global proteomic data (Global).
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Figure S3. Genomic Alterations and Their Association with mRNA, Protein, and Phosphoprotein Abundances, Related to Figure 3

A. Top: Violin plots showing the distribution of genome instability (log2 scale) for different diagnoses; Bottom-Left: Oncoprint showing mutations in BRAF,

CTNNB1, TP53, SMARCB1, ARID1B, H3F3A, NF1, IDH1, PIK3CA, MAP3K10 andCDKN2A across all samples. Bottom-Right: Heatmap showing CNV landscape

for all samples.

B. Distribution of gene expression of BRAF, CTNNB1, and NF1 across tumor samples stratified by different mutation status and diagnoses. Symbol * correspond

to p values less than 0.1. ns, not significant (p value > 0.1).

(legend continued on next page)
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C. Scatter-plot of CNV versus gene expression (left panel) and protein abundance (right panel) of SMARCB1 in ATRT and non-ATRT samples. Colors represent

different alteration categories.

D. The four inner circles illustrate copy number amplification and deletion frequencies among HGG, ATRT, EP and MB samples along the genome. Orange bars

are for amplifications, while purple bars are for deletion. The outer two circles show the genome locations of diagnosis specific CNV-RNA/protein cascade genes

and CNV-RNA/protein/phospho cascade genes respectively. Druggable targets and oncogenes among these cascade genes are further annotated with gene

symbols, whose colors represent the diagnoses for which the cascade events were detected.
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Figure S4. Phosphoproteomics Analysis of Kinase Activity, Related to Figure 4

A. Heatmap showing significant associations between the global/phospho abundances of kinases and phosphosite abundances of substrates among different

diagnoses for experimentally validated kinase-substrate interactions from PhosphositePlus (Hornbeck et al., 2015). Kinases are labeled on the left side, while

targeted substrates on the right side. Only associations significant at FDR 10%are reported. Positive associations are shown in red, negative associations in blue,

and non-significant in gray. For each histology diagnosis, associations were only assessed for sites and kinases observed in more than 50% of the tumors

samples of this diagnosis. For sites not passing this threshold within a particular diagnosis, a white cell is shown. To derive these associations, either the global-

proteomic or the phospho-proteomic abundances of a kinase are utilized. When the phospho-proteomic abundance is utilized, the name of the phosphosite of

the kinase is annotated at the right-side of the heatmap.

B. Scatterplot showing the association between the global abundances of CDK1 or CDK2 (y axis) and the proliferation index (x axis). For each scatterplot, dots are

colored based on different histology diagnoses.

C. Boxplot of global abundances of CDK5 and GSK3B for low-grade gliomas stratified by Neuronal and Hot immune clusters. P values from Wilcoxon-test are

reported (i.e., ** corresponding to p value < 0.01 and *** to p value < 0.001)

ll
OPEN ACCESS Resource



Figure S5. BRAF Status Association and Co-expression Networks Based on Phosphorylation Data of LGG, Related to Figure 5
A. Heatmap of global abundance of key kinases in theMAPK signaling pathway across pediatric brain tumors. Different histologies, proteomic clusters andBRAF

status (i.e., BRAFV600E, BRAFFusion and BRAFWT) are annotated on top of the heatmap.

B. Signed Benjamini Hochberg’s adjusted p values (-log10 scale) for the comparison of gene expression levels between of BRAFV600E (BRAFFusion) with BRAFWT

tumors are reported on the x axis (y axis). Gene symbols are annotated for genes from the MEK inhibitor signature (Pratilas et al., 2009).

C. The network topology representing the LGG phosphosite co-expression network module enriched with sites upregulated in BRAFFusion compared to BRAFWT

tumors. Nodes correspond to phosphosites while edges correspond to significant associations between phosphosites. Phosphosites positively associated with

BRAFFusion at FDR 10% are displayed in red with node size proportional to the -log10 FDR of the association with BRAFFusion.

(legend continued on next page)
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D. Scatterplot of -log10 FDR for the associations betweenBRAFFusion (y axis) andBRAFV600E (x axis) withBRAFWT. Phosphosites contained in the networkmodule

of panel C are highlighted with red. The pie-plot shows the proportion of sites in the network module whose phospho-abundance is associated with the protein

abundance of PDGFRA at 5% FDR.

E. Distributions of ssGSEA scores for phosphosites contained in the network module of panel C stratified by different BRAF statuses.
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Figure S6. Survival and Drug Target Analysis for HGG, Related to Figure 6

A. Confidence intervals (90%) of hazard ratio coefficients for IDH protein abundances based on multivariate Cox regression models.

B. Confidence intervals (90%) of hazard ratio coefficients for IDH gene expression levels based on multivariate Cox regression models.

C. Pathways associated with survival outcome among H3WT HGG patients based on global proteomic (red) and gene expression (green) data. Pathways sig-

nificant at 10% FDR are marked with darker color.

(legend continued on next page)
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D. Scatterplots of the protein abundances or gene expression levels (centered and normalized z-score) versus CNV (log-ratio) of IDH1 among 19HGG tumorswith

CNV data in the discovery cohort.

E. Heatmap of global abundances of IDH1, IDH2, IDH3A, IDH3B and IDH3G proteins in Dataset 2. For each tumor, H3mutation status is annotated on the top of

the heatmap.

F. Connectivity map score for different drugs based on L1000 Transcriptomics (Subramanian et al., 2017). Different drugs are colored based on themechanism of

action such as CDK1 inhibitor, proteasome inhibitor, HDAC inhibitor and MEK inhibitor.

G. Volcano plots showing genes differentially expressed between high-grade glioma and low-grade glioma tumors based on gene expression, global proteomic,

phospho-proteomic data and kinase activity. Genes/proteins annotated are the targets of CDK inhibitor, HDAC inhibitor, proteasome and MEK inhibitors.
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Figure S7. Comparison between Recurrent versus Primary Tumors in Terms of Genomics Alterations and Proteomics Profiling, Related to

Figure 7

A. Comparison of mutation counts, shared mutation counts and chromosome arm aberrations between primary and recurrent / progressed tumors in pediatric

brain tumors (left), TCGA adult GBM tumors (middle) and TCGA adult LGG tumors (right). Top panels represent mutation counts of paired samples with the

proportion of shared mutations highlighted by a shaded area. The middle panels are depicting fractions of shared mutations between each primary tumor and all

other tumors from the same dataset, with the recurrence tumor sample of the same patient marked in color denoting the histology. The bottom panels represent

significant amplifications and deletions of chromosome arms from 1p to Xq.

(legend continued on next page)
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B. Spearman correlations between proteome profiles of tumor sample pairs from the same patients and fractions of mutations that they have in common. The first

graph (gray) is for all sample pairs, and the remaining seven (with various colors) are for individual diagnoses. In each graph, the top panel is a distribution of

Spearman correlations between all global proteome profile pairs. The values corresponding to 18 primary/recurrent pairs from the same patients are marked with

vertical lines. The bottom panels are scatterplots of pairwise sample correlations based on global proteomic abundances versus the fraction of sharedmutations.

Values corresponding to primary/recurrent pairs are highlighted with colors, where square points represent mutation fractions with reference to the initial tumor

sample, and triangles represent mutation fractions computed with reference to the recurrent tumor samples.
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