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tively balance efficiency and accurate decision-making continues to be an important
research topic. A notable development in phase II randomized design methodol-
ogy is the Bayesian pick-the-winner (BPW) design that extends a Simon’s two-stage
based multi-arm design with a Bayesian winner-selection strategy. Despite multi-
ple appealing features, this method cannot easily control for overall type I and II
errors for winner selection. Here, we introduce an improved randomized two-stage
Bayesian pick-the-winner (IBPW) design that formalizes the winner-selection based
hypothesis testing, optimizes sample sizes and decision cut-offs by strictly control-
ling the type I and type II errors under a set of flexible hypotheses for winner-selection
across two treatment arms. Simulation studies demonstrate that our new design offers
improved operating characteristics for winner selection while retaining the desirable
features of the BPW design.
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1 | INTRODUCTION

Phase II clinical trials are intermediate-stage clinical studies of drugs at the recommended doses that have passed initial safety
evaluation. These studies focus on preliminary efficacy and further safety assessments which are crucial for deciding whether
to advance to larger, confirmatory phase III trials. In oncology drug development, it is estimated that 57.6% of drug candidates
examined in phase I trials were further examined in phase II, 32.7% of drug candidates evaluated in phase II were tested in
phase III while about 35.5% of those examined in phase III won regulatory approvall. Considering the vast number of drug
candidates and combinations advancing to phase II, yet with a relatively small proportion achieving ultimate success, phase 11
trial designs critically balance efficiency — favoring a small sample size to minimize cost and time — with the need for robust
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preliminary efficacy assessments to identify promising phase III candidates. Moreover, designs that incorporate features such
as the possibility of early futility stopping to reduce patients’ exposure to ineffective treatment, ease of trial implementation and
conduct, and easily accessible decision-making rules, can positively affect their practical adoption.

When designing a phase II oncology trial, important initial considerations include selecting the primary endpoints, the treat-
ments to be evaluated or compared, and the number of interim analyses or stages for decision-making. Prioritizing efficiency,
binary endpoints, such as the objective response rate, based on tumor shrinkage?, or the short-term progression-free survival®,
which can be measured reasonably quickly following treatment and may predict clinical benefit, are commonly used. Single-arm
designs with historical controls are widely adopted? as both type I and II errors of hypothesis tests in such trials can be controlled
for with a small sample size. Two-stage designs, allowing early futility termination without compromising trial efficiency, are
preferred over single-stage designs.

Two widely used single-arm two-stage phase II trial designs in oncology were proposed by Gehan® in 1961 and Simon™ in
1989. In Gehan’s two-stage design, the first stage sample size is determined by controlling the type II error rate in rejecting the
treatment with a very low rejection cut-off (typically O response) for an expected or desired treatment effect. The second stage
sample size is determined based on the desired accuracy in estimating the treatment effect. This design allows early futility
stopping with a small sample size in the first stage. Simon’s two-stage design determines the optimal sample sizes in each stage
and rejection cut-offs by controlling both the type I and type II errors when comparing the treatment against historical controls.
This design is noted for its ease of implementation, good operational characteristics with minimized patient numbers under the
null hypothesis, and the ability to halt early for futility. As a result, Simon’s two-stage design has been a preferred design for
phase II oncology trials in the past two decades, as evidenced by its adoption in around 40% of the 347 phase II trials published
in 2005, 2010, and 2014 in leading oncology journals®.

One major limitation of the single-arm design for phase 1II trials is that the efficacy of the new treatment is compared with
a specific target value based on historical studies or investigators’ prior experiences. This approach ignores the uncertainties
in the target value®, possible variations in response assessment criteria'’, and potential differences in patient populations. To
improve on this, randomized multi-arm designs have been increasingly used in phase II oncology trials in recent years. Lee and
Feng’sY review of 266 randomized phase II oncology trials published from 1986 to 2002 revealed an increase in the number
of such trials from 2 in 1986 to 34 in 2002. Ivanova et al.® reviewed 56 phase II oncology trials conducted in 2014, and found
that 41% of them were randomized clinical trials. Randomization enables potentially more valid comparisons, yet the challenge
remains in conducting efficient studies with small sample sizes that confidently differentiate between arms. One strategy is to
focus on the alternative hypotheses only. The pick-the-winner design by Simon, Wittes, and Ellenberg (SWE)1? is based on
such an idea and selects one or multiple winners among several treatments based on the ranking and selection theory. The
sample size is determined to achieve a high probability of identifying a treatment as the winner if it is superior to all others by
a prespecified amount. This design is very efficient and controls the type II error. To enable early futility stopping, Steinberg
and Venzon (SV)!2 proposed a new approach based on a two-stage statistical selection theory, allowing for early termination
of the less effective arm when response proportions in the two arms are sufficiently different. However, neither SWE nor SV
designs are capable of simultaneously controlling both type I and type Il error rates. Another strategy is to design the randomized
study not for direct between-arm compassions but having each arm follow a single-arm design, often Simon’s two-stage design,
where efficacy is compared to historical controls. This approach is very widely used in phase II oncology multi-arm studies'.
An additional strategy as proposed by Zhou et al. in their two-arm BOP2 design is to focus on the finding of decision rules
that are optimized for power in carrying out between-arm comparisons based on user-specified sample sizes, number of interim
analyses, and prespecified type I error rate.

Recently, Chen et al.'# introduced a Bayesian pick-the winner (BPW) design for randomized phase II clinical trials that
improved on Simon’s two-stage single-arm design based multi-arm approach by enabling winner-picking at the end of the trial.
A winner is declared if one arm passes the second stage of the trial while the other arm fails either stage 1 or 2, or the posterior
probability of the winning arm having a greater response rate passes a predefined threshold. This strategy retains the attractive
operating characteristics of Simon’s two-stage design for comparing treatments against historical controls, while also enabling
the between-arm winner identification at the end of the trial and allowing for the evaluation of winner-picking probabilities
under different hypotheses at the design stage.

In practice, for two-arm phase II oncology trials, it can be desirable to find a design that 1) tightly controls the type I and
type II errors for winner-picking, rather than for comparisons between treatments and historical controls; 2) adheres to certain
optimality criteria in terms of sample sizes and decision rules. Achieving these objectives with existing approaches can be
challenging. Firstly, the hypotheses specification is commonly framed in terms of treatment versus historical control'* or the
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arm A versus arm B for the traditional two-arm comparative study, not in terms of winner-picking, i.e., no winner versus having
a winner. Secondly, a design optimal for single-arm treatment versus control or arm A versus arm B comparisons may not be
optimal for winner-picking. To address these challenges, we have developed an improved two-stage Bayesian pick-the-winner
design. This design adopts a flexible approach to hypotheses specification focused on winner-picking and optimizes sample sizes
and decision cut-offs while tightly controlling the type I and II errors for winner identification.

The remainder of this article is structured as follows. In the Method section, we detail the flexible hypotheses specifications
for winner picking and introduce the algorithms of our improved randomized two-stage Bayesian pick-the-winner design for
identifying optimal design parameters. The Simulation section presents comprehensive simulations conducted to assess the
performance of our novel design and compare its operating characteristics with those of the designs by Chen et al.1%, The article
concludes with a discussion.

2 | METHOD

Our objective is to determine the design parameters for a two-arm, two-stage randomized phase II oncology trial that meets
optimality criteria similar to Simon’s two-stage design, i.e., minimal expected or maximal sample sizes, while strictly controlling
type I and II errors under hypotheses specified for winner picking between two treatments, rather than conventional direct
treatment versus control or treatment A versus treatment B comparisons. We assume that the primary endpoint is binary, for
example, the response rates of the study treatments, and the trial is operated similarly to the original BPW design'# for selecting
the winner. Our design differs from existing randomized two-stage designs in two main aspects: first, the hypotheses specification
is more flexible, focusing on treatment effect-based winner picking instead of direct treatment effect comparisons; second, our
design optimizes the sample sizes and determines the decision cut-offs for each stage by strictly controlling the type I and 11
errors for correct winner identification. In the following sub-sections, we elaborate on the important methodological components
of our design.

2.1 | Hypotheses for winner selection

We consider the setting where treatment B is presumed to be better than treatment A concerning the binary primary endpoint,
such as the response rate. We are interested in examining the following hypotheses:

H, : B is not a winner in comparison with A, H, : B is a winner in comparison with A.

More specifically, we denote P, and Py as the response rates of treatments A and B, respectively. Let p, and pp represent
the upper limits of the response rates in arms A and B respectively under the null hypothesis, and p, and p denote the lower
and upper limits of these rates under the alternative hypothesis, respectively. The hypotheses can be formalized as:

Hy: Pg<pg vs. Py<p,, H :Pp>pg vs. Py<p, ,

where the response rate thresholds satisfying p, < pp < p,, < pp, are considered valid. The threshold values can be deter-
mined by considering the response rate observed in historical controls or the low rates that should lead to the rejection of the
treatments, and the high rate that warrants worth further exploration. We show below through examples that this hypotheses spec-
ification framework generalizes the traditional hypotheses for two group comparison and enables the examination of clinically
relevant additional scenarios for winner selection through individual specification of the threshold values.

In traditional two group comparisons, the hypotheses being tested are: P < P, (H,) and Pz > P, (H,), or specifically,
Py < p, (Hy) and Py > pp (H,), where p, and pp denote the threshold values for P, and Pp, respectively, with pg > p,.
These hypotheses can be written under our aforementioned framework for winner selection by assuming p, = pg = Pps, = P4
and pg = pp. An example of these hypotheses is illustrated below.

Hy : pp =005 wvs. p, =005 H, :pg =04 vs. p, =005. (HT,)

In practice, when B is an experimental treatment and A is an experimental or control treatment with the response rate not
entirely clear for the study population, there are scenarios where hypotheses as specified in[HT,|may not accurately capture the
trial intention. In one such scenario, clinicians may want to reject both A and B if B is only slightly better than A, where A is
assumed to have a similar response rate as the standard of care (SOC). The clinician will consider B as a winner when there
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is evidence that B is much better than A. Hypotheses underlying this scenario can be accurately specified within our proposed
winner selection framework as posed to the traditional two-group comparison hypotheses framework because three threshold
values are involved. An example of the thresholds specified for such hypotheses is shown below:

Hy:pg, =01 wvs. p, =005 H; :pg =04 vs. py =0.05. (HT,)

In another scenario, the clinician may want to reject both B and A if they perform similarly as the standard of care. The
clinician also thinks that A may have moderate improvements over SOC while B may have significant improvement over SOC.
If the latter is true, B will be considered as a winner. Such study objectives can be translated to the winner selection hypotheses
as follows:

Hy:pg, =01 vs. py =01, Hy:pg =04 vs. py =02. (HT,)

It’s also possible that clinicians may want to reject both A and B if B is only slightly better than A, but consider B as a winner
when A has moderate improvements over SOC and B has significant improvement over SOC, i.e., a combination of HT), and
HT, with hypotheses as follows:

Hy :pp =015 wvs. p, =0.1; H,:pp =04 vs. p, =02. (HT,,)

We show in the next sub-section that these hypotheses enables straight forward calculation of type I and type II errors for
winner selection for a winner selection strategy, such as the BPW approach'%.

2.2 | Errors of winner selection

We adopt the same winner selection strategy as the BPW design'%. The trial operates as follows. In stage 1, a total of 2 X n,
patients are randomized at a 1:1 ratio to arms A and B. If a treatment arm records < r; responses among n, patients, it is
discontinued for futility. Otherwise, it continues, enrolling additional patients to reach a total sample size of n, through continued
1:1 randomization if both arms advance past stage 1, or direct enrollment if the other arm is halted. At the end of stage 2, if < r
responses are observed among a total of n patients, the treatment is deemed inadequate and rejected. Otherwise, it is considered
as a potential winner. A treatment is declared as a winner if 1) it passes stage 2 while the other treatment fails at either stage 1
or stage 2; or 2) it show superior response rate with the Bayesian posterior probability of a greater response rate comparing to
the other treatment exceeding a prespecified threshold 6 (e.g., 0.8).

For this winner selection strategy, we can calculate the probabilities of arm B being incorrectly declared as the winner under
the null hypothesis (type I error) and correctly declared under the alternative hypothesis (power/1 - type II error), which can be
written as the following.

power for winner selection = Pr( B wins | H,)

type I error for winner selection = Pr( B wins | Hy))
Generally, let Y denote the number of responses observed among »n patients treated with a treatment having a response rate of p.
We can model Y as following a binomial distribution, i.e., Y ~ Binomial(n, p). Given a set of threshold values for the response

rates specified under the null and alternative hypotheses, we can determine the probability of arm B being declared as the winner
for a design with parameters n, n;, r, and ry, as follows.

Pr( B wins | p4, pg.n,ny,r,r) = IX 1T+ 111

where each of the terms I, II, and III represent the probability of arm B passing stage 2, the probability of arm A failing either
stage 1 or stage 2 and the probability of B being declared as a winner when both arms pass stage 2, respectively. These terms
can be calculated as shown below.

min(ny,r)
I=1-Pr(Y <r/|n,pp)— Z Pr(Y = y|n;,pp) - Pr(Y <r—yln—ny,pp)
y=r+1
min(ny,r)
D=Pr(Y <r/|n;,py) + Z Pr(Y = y|n,py) - Pr(Y <r—yln—n;,py)
y=ri+1

M= Y Y Pr(Y =yglnpg) Pr(Y = y,|n,py) - I(P(Py > Pyly,,yp.n) > 6),

ya=r+1 yp=r+l
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min(ny,yg)

Notice that for term III, Pr(Y = yg|n, pp) with y5 > r can be calculated as Zy=r1+1 Pr(y|n,, pg) - Pr(yg — y|ln — ny, pg) where
y is the stage 1 number of responses in this treatment arm, Pr(Y = y,|n,p,) with y, > r can be calculated similarly, and
1(Pr(Pg > P,|y4, yg.n) > 0) is an indicator function which has a value of 1 when the posterior probability of the response rate
of treatment B being greater than the response rate of treatment A given data exceeds 6 and a value of 0 otherwise.

Assuming the prior probability of the response rate, P, follows a Beta distribution, i.e., Beta(ay, b,), the posterior probability
of P can be written as the following for the two-stage design:

min(y.n,)

Pr(P|y,n,n;,r) o« P¥*o=1(] — pyn=r+ho=1. G Iy <rp+ prraocl(] — pyr—rtbo-l. Z CHC - Iy >ryp).

ny
yi=r+l

Hence, when y, > r > r|, the posterior probability of P, follows a Beta distribution, i.e., P,|data ~ Beta(y,+ay,n—y 4+ by).
Similarly, Pg|data ~ Beta(yy + ay,n — yp + by) when ygz > r > r|. The posterior probability of B having a higher response
rate than A given data, i.e., Pr(P; > P,|data), can be calculated through 1) simulations by sampling P, and Pj separately from
their respective posterior probabilities and calculating the proportion of iterations with Py > P,; or 2) the following numerical
integration /01[1 — Pr(Py < x|n,yg,ay, by)l - Pr(P, = x|n,y,,ay, by)dx. A closed-form solution for Pr(Py > P,|data) is
available through formula by Pham-Gia and Turkkan'” although it involves the evaluations of a complicated two-dimensional
generalized hypergeometric function. When preliminary data are lacking, a non-informative prior such as the uniform prior,
i.e., Beta(l,1), can be a reasonable choice as the estimates derived with such a prior would typically demonstrate comparable

properties as the matching frequentist approach'®. For the BPW design by Chen et.al.'#, Beta(1, 1) is the default choice.

2.3 | Design parameter optimization

For our randomized two-stage BPW design, similar to Simon’s two-stage design, we consider two approaches to optimizing
the design parameters (n, n,, r, r;), given the response rate thresholds under the null and alternative hypotheses, the constraints
in terms of type I and II errors in winner selection, and the Bayesian posterior probability threshold 6, by minimizing either
the expected total sample size under the null hypothesis (optimal design) or the maximum total sample size (minimax design).
Specifically, the expected total sample size under H,), denoted as EN (p,), can be calculated as follows:

EN(py) = P(Both arms fail in stage 1 | H ) X 2n; +
P( One arm fails in stage 1 | Hy) X (n; + n) +
P( Both arms pass stage 1 | H) X 2n
=P(Y <rln,pp) X P(Y <ri|n;,py)x2n; +
[PXY > riln,py) - P(Y <rilny,pg)+ PQY > riln,pg) - P(Y <riln;,py )1 X (np +n) +
P >r|ny,py) X P(Y >r|n;,pg)X2n.

The optimal design parameters (n, n,, r,,r) can be identified through enumeration over a set of feasible designs with n €
[6, npaels By € [3, 10 — 31, 7y € 10,0, — 1], and r € [1,n, + 7| — 1], where n,,,, is set to 100 by default in our algorithm. For
each feasible design, we calculate the type I and II errors associated with winner selection and the expected total sample size
under the null hypothesis. The optimal, or minimax, design is then identified as the one with design parameters that best meet
the specified optimality criterion while adhering closely to the constraints regarding type I and II errors in winner selection.

2.4 | Software

We have developed a user-friendly R Shiny application that enables users to readily identify the optimal or minimax design
using our improved Bayesian pick-the-winner design method. Additionally, this application allows users to explore the operating
characteristics of their customized designs. Both the R functions and the Shiny application are available for download at the
following link: https://doi.org/10.5281/zenodo.10047803.
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3 | SIMULATION

We carried out an extensive simulation study to evaluate the operating characteristics of our IBPW design in comparison with
the BPW design'® and for testing flexible sets of clinically relevant hypotheses related to winner selection. We considered a
range of hypotheses for winner selection based on a binary endpoint, e.g., the response rate. The type I error and type II error
rates were set to 10%, and 20% respectively. A beta(1, 1) prior was used to calculate the posterior probability Pr(Pg > P,|data)
when both treatment arms pass the second stage. The Bayesian posterior probability threshold 6 is set to 0.8.

3.1 | IBPW designs strictly control type I and II errors in winner selection

The major difference between the BPW!14 design and our IBPW design lies in the hypotheses being examined and the type I and
II error constraints used in determining the optimal design parameters. The BPW design is a straightforward multi-arm adaption
of Simon’s two-stage single-arm design where the hypotheses center on treatment versus the historical control comparison and
the type I and II errors are calculated as the probability of the response rate being greater than a rate specified in the null
hypothesis. Our IBPW design, on the other hand, examines hypotheses concerning winner identification between two treatment
arms. The type I error and power are calculated as the probability of correctly identifying the true winner arm. We compared
the optimal and minimax designs generated by the BPW!# design method with those generated by our IBPW design method
in eight different hypotheses testing scenarios. These scenarios involved type [HT| hypotheses as described in section [2.1] i.e.
hypotheses in line with the traditional two-group comparison.

Tablepresents the design parameters (n, ny, r, r;), the expected total sample size for both arms A and B under H,, (EN (p,)),
and the power and type I error (alpha) in winner selection for the optimal and minimax designs identified using the BPW and
IBPW approaches. The difference between response rate thresholds of two arms under H; is 35% for Scenario 1.1, 30% for
Scenarios 1.2 to 1.4, and 20% for Scenarios 1.5 to 1.8.

In general, the designs identified with the BPW and IPBW approaches require substantially smaller total expected or maximum
sample size than that required with a traditional single-stage design for two group comparison design at the same error levels
albeit the errors have different meanings. For example, for Scenario 1.1, using a traditional single-stage design for two group
comparison, a sample size of 14 is required for each arm to achieve 80% power at the one-sided significance level of 0.10 while
the BPW and IPBW required a maximum sample size of 8 for each arm.

Additionally, the optimal and minimax designs identified with our IBPW approach strictly control the type I and II errors,
whereas the BPW!# designs are underpowered for winner detection in all scenarios except for Scenario 1.1. The increase in
power is achieved with a small increase in either EN(p,) for the optimal designs or the total maximum sample size for the
minimax designs.

More specifically, for the optimal-IBPW designs, the increase in expected total sample size ranges from 0 in Scenario 1.1
to around 7.722 (3.9 per treatment arm) in Scenario 1.7 and the increase in power can be up to 7.29% as for Scenario 1.7 in
our simulated scenarios. Interestingly, the increase in EN (p,) does not necessarily result in an increase in the total maximum
sample size. For both Scenarios 1.2 and 1.8, the total maximum sample sizes in the optimal-IBPW designs are smaller than
those in the optimal-BPW designs.

For the minimax-IBPW designs, the increase in maximum total sample size ranges from 0 in Scenario 1.1 to 14 (7 per
treatment arm) in Scenario 1.6 with an increase in EN (p,) ranges from -1.25 in Scenario 1.2 to 7.282 in Scenario 1.7 and an
increase in power ranges from 0O (Scenario 1.1) to 8.08% (Scenario 1.6).

It should be noted that while it is possible to adjust the power and type I error level of Simon’s two-stage design to iden-
tify designs that achieve the desired power and type I error for winner selection using the BPW approach, this process is not
straightforward, and the designs may not be optimal for winner selection.

3.2 | IBPW identifies optimal designs for flexible winner selection hypotheses

As described in section 2.1} traditional two-group comparison hypotheses may not adequately address the range of sce-
narios clinicians may want to examine in practice. Specifically, the scenario where a small improvement in arm B over arm A
is deemed uninteresting (HT,)), the scenario where it is of interest to correctly identify B as the winner when arm B has a large
improvement and arm A has a small improvement (HT,), and the combination of these two cannot be examined under
the traditional hypotheses testing framework. We show that our IBPW approach, employing a flexible hypotheses specification
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framework for winner selection, can identify optimal and minimax designs for testing various sets of flexible hypotheses while
strictly controlling type I and II errors for winner selection.

Table lists the optimal and minimax designs for a total of 8 scenarios, where Scenarios 2.1 and 2.5, Scenarios 2.2 and 2.6,
Scenarios 2.3 and 2.7, and Scenarios 2.4 and 2.8 represent examples of hypotheses types HT,, HT,, HT,, and HT,,, respec-
tively. To assess the sensitivity of designs identified for hypotheses with small differences, response rate threshold differences
in Scenarios 2.1-4 (and in Scenarios 2.5-8) are set at 0.05 and limited to 1 or at most 2 parameters. The target type I and 11
errors for winner selection are set at 0.1 and 0.2, respectively. The table also includes the expected total sample size under H,,
EN(py), as well as the actual power and type I error rates for correct winner selection.

All the optimal and minimax designs for the testing scenarios have actual power and type I error rate meet our target. The
designs identified are sensitive to small differences in the hypotheses. For example, compared to Scenario 2.1, the optimal and
minimax designs for Scenario 2.2 require slightly larger sample sizes, with an increase in E N (p,)) close to a total of 5 subjects and
an increase in total maximum sample size of 10, and different stage 1 sample sizes and decision cut-offs due to a small increase
in pg from 0.1 to 0.15 to capture a clinically uninteresting improvement in arm B while holding other thresholds the same.
A similar magnitude of change in p, as shown in Scenario 2.3 in comparison with Scenario 2.1 led to optimal and minimax
designs with an increase in E N (p,) by about 5 subjects and total maximum sample size by about 8 subjects, and different stage
1 sample sizes and decisions cut-offs. As expected, when both pg and p, increases as illustrated in Scenario 2.4 compared to
Scenario 2.1, a greater increase in sample sizes is required for the optimal and minimax designs. Similar trends are observed for
Scenarios 2.5-8.

The sensitivity of these designs to small difference in hypotheses underscores the importance of a flexible hypotheses speci-
fication framework to capture subtle differences in hypotheses and a corresponding tailored approach to identifying designs that
meet error control and optimality criteria.

3.3 | Operating characteristics

Table [3] summarizes the operating characteristics of optimal and minimax designs obtained by the IBPW approach under the
same eight scenarios in Table[2] Columns 6-11 detail the probabilities of both arms stopping at stage 1 resulting in a total sample
size of 2n;, only one arm stopping at stage 1 resulting in a total sample size of n + n;, and both arms passing stage 1 resulting
in a total sample size of 2n under null and alternative hypotheses, respectively. The final four columns show the probabilities of
a single arm advancing past stage 2 under a specific hypothesis threshold.

Both the optimal and minimax IBPW designs exhibit desirable operating characteristics. The probabilities of at least one arm
stopping early are high under the null hypothesis while the probabilities of at least one arm passing stage 1 are high under the
alternative hypothesis. Specifically, the optimal designs generated in our simulation study have an early stopping probability of
at least 88.2% in Scenario 2.1 and up to 96.5% in Scenario 2.3 under the null hypothesis. The minimax designs ensure a minimum
early stopping probability of 67.5% in Scenario 2.3 and a maximum of 99.4% in Scenario 2.6. In all the IBPW designs, the
nonpromising arm has a much higher probability of being screened out in the first stage (see details in Supplementary Tables
S1 and S2), thus reducing patient exposure to ineffective treatment.

Within each treatment arm for comparisons against a fixed response rate, the IBPW designs also show favorable operating
characteristics. In all scenarios, the probability of each arm passing stage 2 under the null hypothesis generally remains below
10%, except in the optimal design for Scenario 2.1 where it slightly exceeds this at 11.2%. This suggests effective control of
single-arm type I error rate for the comparison against a fixed response rate. Given the alternative threshold values p specified
in the study scenarios, arm B has a probability of at least 81.3% of passing stage 2 in the optimal and minimax designs, indicating
effective control of type II error rate for the comparisons against a fixed response rate.

Uncertainty in hypothesis thresholds can impact the operating characteristics of a design, as demonstrated with the optimal
and minimax designs for Scenarios 2.4 and 2.8, detailed in Table[d] With the IBPW optimal design for Scenario 2.4, decreasing
pp, by 0.05 while keeping p, , p,,. and pp the same resulted in a reduction in the type I error (from 0.06 to 0.01) for winner
selection and the expected total sample size under the null hypothesis (from 24.882 to 22.953) without affecting the power for
winner selection. The IBPW designs for Scenario 2.4 have increased power for both the optimal (from 0.813 to 0.839) and
minimax (from 0.802 to 0.842) designs when p, is assumed to be 0.05 smaller while p, , pp , and pg remain unchanged due
to the larger difference in response rates in the alternative. The type I error and E N (p,) were not affected given the same null
hypothesis. The optimal and minimax designs in Scenario 2.8 exhibit similar patterns of change in operating characteristics
when similar adjustments were made to the hypothesis thresholds.
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3.4 | Effect of delta

We conducted a sensitivity analysis to examine how variations in the delta value affect the design parameters of our optimal-
IBPW and minimax-IBPW designs. Figure[T] displays the variations in design parameters (n, n;, r, r;) for both designs across
the same eight scenarios detailed in Table 2] with delta values ranging from 0.65 to 0.95. The first and second rows of the figure
present the results for the minimax and optimal designs, respectively, for Scenarios 2.1 to 2.4, while the third and fourth rows
illustrate the designs for Scenarios 2.5 to 2.8.

In most scenarios, a higher delta value generally corresponds to an increase in either » or n; for both designs. However, this
pattern is not consistent due to the discrete nature of the design parameters and the interplay between sample sizes and response
rate cutoffs at each stage of the two-stage design. For the minimax design, although an increase in delta leads to an increase in
n or n; in most scenarios, there are exceptions. For instance, the design parameters remain unchanged when the value of delta
changes from 0.65 to 0.95 in Scenario 2.2, consistent with the very low probability of arm A passing stage 2. An increase in delta
from 0.75 to 0.85 resulted in a decrease in n; from 16 to 11 and an increase in r from 11 to 12 in Scenario 2.6, and a decrease
in both n; and r; by 1 in Scenario 2.8. Similar patterns of change are observed for the optimal designs. While an increase in
delta generally results in an increase in either » or n; in most scenarios, interestingly, an increase in delta from 0.85 to 0.95 in
Scenario 2.5 led to a decrease in both n; and r| by 1, and increasing delta from 0.65 to 0.75 in Scenario 2.7 and from 0.75 to
0.85 in Scenario 2.8 resulted in decreases in n, n;, and r;.
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FIGURE 1 Design parameters for Optimal-IBPW and Minimax-IBPW by delta



4 | DISCUSSION

Single-arm trials are prevalent in phase II oncology trials primarily due to their efficiency, despite well-known concerns such
as patient selection affecting the accuracy of efficacy assessments. Randomized trials are recognized as the gold standard for
establishing the effectiveness of new treatments because they ensure a fair comparison between treatment arms. However, such
trials often require large sample sizes that are not feasible in the early phase settings. Current randomized phase II trial designs
involve some compromises; for instance, the highly efficient SWE'Y pick-the-winner design lacks control of the type I error,
while Simon’s two-stage design based multi-arm trials control the type I and II errors for treatment versus historical control
comparisons but typically do not attempt between-arm comparisons due to lack of power. Consequently, the debate regarding
the use of single-arm versus randomized designs for phase II oncology trials has been ongoing'Z18, There is a need to further
improve the designs of randomized phase II oncology trials.

The BPW design# represents an attractive development, extending Simon’s two-stage based multi-arm design by incorporat-
ing a winner selection strategy. This design controls the type I and II errors for comparisons between treatment and the historical
control and allows a limited two-arm comparison through winner selection. It also calculates the “overall power” and “overall
type I error” for winner selection. Although the design is highly efficient, it is typically underpowered for winner selection and
frames the hypotheses within a limited single-arm or two-arm response rate comparison framework.

In this paper, we propose the IBPW design, inspired by the BPW design. Our method includes a new hypotheses specification
framework aimed at winner selection rather than direct response rate comparison. This hypotheses specification framework can
be seen as an extension of the hypotheses specification in the SWEU design by including the null portion. It is more flexible and
enables the testing of a broader range of clinically meaningful hypotheses, as demonstrated through examples described in our
methods and simulation sections. Coupled with a randomized two-stage design and a winner selection strategy like that in the
BPW approach, we have developed algorithms, along with corresponding R code and a Shiny App, to identify efficient designs
with optimal parameters that tightly controls the type I and II errors for winner selection. Our simulations show that our IBPW
designs are similarly efficient as the BPW, or other Simon’s two-stage based randomized designs. They feature optimal sample
sizes and decision cut-offs and tightly control prespecified type I and II error rates for winner selection, which cannot be readily
achieved with existing approaches.

Our IBPW approach offers a pathway for further development of efficient winner-selection-based designs that tightly control
both type I and II errors. Firstly, the endpoint that our current IBPW design focuses on is binary. There are situations where other
types of endpoints are preferred. For example, a continuous endpoint, such as the values of PSA or other tumor biomarkers, or
the numbers of circulating tumor cells (CTCs), may be good measures of the anti-tumor activity of some study agents. A time-
to-event endpoint, such as progression-free survival (PFS), can be appropriate for treatments of advanced diseases, or ordinal
or multivariate endpoints may be preferred in trials involving novel molecular targeted agents. Secondly, our current approach
employs a winner selection strategy that includes a two-stage screening and a limited Bayesian two-group comparison. It is
possible to extend our approach by considering different winner selection strategies with various number of study stages.

ACKNOWLEDGEMENT

The research of XKZ was partially supported by the National Center for Advancing Translational Sciences of the National
Institutes of Health Grant UL1TR002384.

References

1. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20:273-
286.

2. Pan H, Yuan Y. Bayesian Adaptive Design for Immunotherapy and Targeted Therapy. Singapore:Springer; 2023. 91-118 p.

3. George SL. Response rate as an endpoint in clinical trials. JNCI. 2007;99:98-99.



10

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Ritchie G, Gasper H, Man J, Lord S, Marschner I, Friedlander M, Lee CK. Defining the most appropriate primary end point

in phase II trials of immune checkpoint inhibitors for advanced solid cancers: a systematic review and meta-analysis. JAMA
oncology. 2018;4:522-528.

. Zhao Y, Li D, Liu R, Yuan Y. Bayesian optimal phase II designs with dual-criterion decision making. Pharm Stat.

2023;22:605-618.

. Gehan EA. The determination of the number of patients required in a follow-up trial of a new chemotherapeutic agent. J

Chronic Dis. 1961;13:346-353.

. Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989;10:1-10.

. Ivanova A, Paul B, Marchenko O, Song G, Patel N, Moschos SJ. Nine-year change in statistical design, profile, and success

rates of phase Il oncology trials. J Biopharm Stat. 2016;26:141-149.

. Chen Y, Chen Z, Mori M. A new statistical decision rule for single-arm phase II oncology trials. Stat Methods Med Res.

2016;25:118-132.
Simon R, Wittes RE, Ellenberg SS. Randomized phase II clinical trials. Cancer Treat Rep. 1985;69:1375-1381.

Lee JJ, Feng L. Randomized phase II designs in cancer clinical trials: current status and future directions. J Clin Oncol.
2005;23:4450-4457.

Steinberg SM, Venzon DJ. Early selection in a randomized phase II clinical trial. Stat Med. 2002;21:1711-1726.

Zhou H, Chen C, Sun L, Yuan Y. Bayesian optimal phase II clinical trial design with time-to-event endpoint. Pharm. Stat.
2020;19:776-786.

Chen DT, Huang PY, Lin HY, Chiappori AA, Gabrilovich DI, Haura EB, ... Gray JE. A Bayesian pick-the-winner design
in a randomized phase II clinical trial. Oncotarget. 2017;8:88376—88385.

Pham-Gia T, Turkkan N, Eng P. Bayesian analysis of the difference of two proportions. Commun. Stat. - Theory Methods.
1993;22:1755-1771.

Yang R, Berger JO. A catalog of noninformative priors. 1998; http://www.stats.org.uk/priors/noninformative/YangBerger1998.pdf.

Buyse M. Randomized designs for early trials of new cancer treatments—an overview. Drug Inf. J.: DIJ/Drug Information
Association. 2000;34: 387-396.

Grayling MJ, Dimairo M, Mander AP, Jaki TF. A review of perspectives on the use of randomization in phase II oncology
trials. JNCI. 2019;111: 1255-1262.


http://www.stats.org.uk/priors/noninformative/YangBerger1998.pdf

11

TABLE 1 Comparison between optimal/minimax design obtained by BPW and IBPW

n n,r r,  EN(py) power alpha
Scenario 1.1 Hy : pg, =0.05vspy =0.05 H, : pp =04vsp, =0.05
optimal-BPW &8 4 1 0 9.484  0.805 0.044
optimal-IBPW &8 4 1 0 9.484  0.805 0.044
minimax-BPW 7 5 1 0 10905 0.805 0.041
minimax-IBPW 7 5 1 0 10905 0.805 0.041
Scenario 1.2 Hy : pp,=0.05vs p, =0.05 H, : pg =0.35v.s py =0.05
optimal-BPW 11 4 1 0 10597 0.780 0.061
optimal-IBPW 9 5 1 0 11.810 0.800 0.057
minimax-BPW 8 6 1 0 13.060 0.791 0.052
minimax-IBPW 9 5 1 0 11.810 0.800 0.057
Scenario 1.3 Hy :pp =0.1vsp, =01, H, :pg =04vsp, =0.1
optimal-BPW 11 4 2 0 12815 0.762 0.067
optimal-IBPW 14 4 2 0 14878 0.804 0.100
minimax-BPW 10 5 2 0 14.095 0.777 0.061
minimax-IBPW 11 6 2 0 16.686 0.811 0.078
Scenario 1.4 Hy:pg =02vsp, =02, H, :pg =05vsp, =02
optimal-BPW 13 6 4 1 16.825  0.766 0.078
optimal-IBPW 17 6 5 1 19.582  0.815 0.076
minimax-BPW 12 8 4 1 19.973  0.758 0.067
minimax-IBPW 13 8 4 1 20967 0.800 0.088
Scenario 1.5 Hy :pg, =02vsp, =02, H, :pg =04vsp, =02
optimal-BPW 25 12 7 2 35483 0.762 0.090
optimal-IBPW 30 15 8 3 40555 0.800 0.097
minimax-BPW 24 14 7 2 39.039 0.756 0.080
minimax-IBPW 29 16 8 3 42449 0.800 0.090
Scenario 1.6 Hy :pp,=04vsp, =04, H, :pg =06vsp, =04
optimal-BPW 38 12 18 5 41409 0.763 0.089
optimal-IBPW 38 15 18 6 47949 0.809 0.100
minimax-BPW 28 16 14 6 43348 0.742 0.089
minimax-IBPW 35 14 17 5 49594 0.802 0.094
Scenario 1.7 H, : pg =05vsp, =05 H; :pg =0Tvsp, =05
optimal-BPW 32 12 19 6 39488 0.754 0.082
optimal-IBPW 38 17 22 9 47210 0.809 0.091
minimax-BPW 28 15 17 7  43.000 0.753 0.082
minimax-IBPW 34 22 20 12 50282 0.800 0.090
Scenario 1.8 Hy :pg, =0.6vsp, =06, H, :pg =08vsp, =0.6
optimal-BPW 31 11 21 7 33851 0.766 0.090
optimal-IBPW 29 12 20 7  38.898  0.802 0.095
minimax-BPW 24 11 17 6  35.852 0.744 0.085
minimax-IBPW 29 12 20 7  38.898 0.802 0.095
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TABLE 2 Results of the IBPW design under eight different scenarios

n n,r r, EN(py) power alpha
Scenario 2.1 Hy :pp,=01vspy =0.1,H, :pg =04vsp, =0.1
Optimal 14 4 2 0 14878 0.804 0.100
Minimax 11 6 2 0 16686 0.811 0.078
Scenario 22 H, : pg =0.15vs py =0.1, H, : pg =04vsp, =0.1
Optimal 9 7 4 1 19.197  0.804 0.098
Minimax 16 9 4 1 22380 0.806 0.073
Scenario 2.3 Hy : pg =0.1vsp, =0.1,H, : pp=04vsp, =0.15
Optimal 18 8 3 1 19.738  0.803 0.062
Minimax 15 8 3 0 23973 0.802 0.051
Scenario 2.4 H, : pp =0.15vsp, =0.1, H, : pg =04 vsp, =0.15
Optimal 20 9 5 1 24882 0813 0.060
Minimax 17 12 4 2 25875 0.802 0.088
Scenario 2.5 H, : pg =04 vsp, =04, H, : pp =07vsp, =04
Optimal 17 9 9 4 22265 0.806 0.071
Minimax 16 12 8 6 25266 0.809 0.094
Scenario 2.6 H, : pp =045vsp, =04, H, : pp =0.7vsp, =04
Optimal 24 10 13 5 25989 0.806 0.091
Minimax 21 16 11 9 32912 0.800 0.099
Scenario 2.7 H, : pg =0.4vsp, =04, H, : pg =07vsp, =045
Optimal 22 9 11 4 24931 0.810 0.080
Minimax 19 10 10 4 26.604 0.803 0.075
Scenario 2.8 H, : pg =045vsp, =04, H, : pg =0.7vsp, =045
Optimal 24 12 13 6  29.027 0.808 0.097
Minimax 23 11 13 5 29361 0.804 0.081
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TABLE 3 Operating characteristics of Optimal and Minimax IBPW designs

Optimal design
Scenario Pg, Pa, Ps pa,  2m|Hy ny+nlHy, 2nlH, 2n|H, n+nlH  2nlH Yy>rlpy Yg>rlpg,  Yi>rlpy  Yp>ripg
2.1 0.1 01 04 0.1 0.430 0.452 0.119 0.085 0.616 0.299 0.112 0.112 0.112 0.852
22 0.15 0.1 0.4 0.1 0.609 0.348 0.042 0.135 0.740 0.127 0.024 0.100 0.024 0.813
23 01 01 04 015 0.661 0.304 0.035 0.070 0.624 0.307 0.066 0.066 0.197 0.882
24 0.15 0.1 04 0.15 0.465 0.445 0.090 0.042 0.585 0.372 0.010 0.061 0.061 0.844
25 04 04 07 0.4 0.538 0.392 0.072 0.072 0.688 0.241 0.077 0.077 0.077 0.849
2.6 045 04 07 04 0.616 0.341 0.043 0.125 0.732 0.141 0.036 0.094 0.036 0.821
2.7 04 04 07 045 0.538 0.392 0.072 0.061 0.597 0.341 0.087 0.087 0.182 0.884
2.8 045 04 07 045 0.622 0.336 0.041 0.087 0.683 0.230 0.039 0.101 0.101 0.852
Minimax design
Scenario  pp . ps Pp, pa, 2ml|Hy m+nlHy 2n|Hy 2m|H,  m+nlH, 2nlH Y, >rlp, o Yp>rlpg Yy>rlpy Yp>ripg
2.1 0.1 0.1 0.4 0.1 0.282 0.498 0.220 0.025 0.528 0.446 0.085 0.085 0.085 0.866
22 0.15 0.1 0.4 0.1 0.465 0.446 0.090 0.055 0.736 0.210 0.016 0.074 0.016 0.815
23 0.1 0.1 04 015 0.185 0.490 0.324 0.005 0.280 0.715 0.054 0.054 0.174 0.905
24 0.15 0.1 04 0.15 0.654 0.317 0.029 0.061 0.697 0.242 0.020 0.090 0.090 0.852
2.5 04 04 07 0.4 0.709 0.266 0.026 0.099 0.761 0.140 0.105 0.105 0.105 0.867
2.6 045 04 07 0.4 0.825 0.169 0.007 0.165 0.787 0.048 0.044 0.103 0.044 0.819
2.7 04 04 07 045 0.401 0.466 0.135 0.024 0.504 0.472 0.081 0.081 0.171 0.897
2.8 045 04 07 045 0.477 0.434 0.091 0.050 0.612 0.338 0.031 0.084 0.084 0.847
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TABLE 4 Impact of changes in hypotheses on the operating characteristics of optimal and minimax IBPW designs

Designs Da pp,  power alpha EN(py)

o P8 Pa 1
Scenario 2.4-Optimal 0.1 0.15 0.15 04 0.813 0.06 24.882
(n=20,n=9,r=5r=1) 01 01 015 04 0.813 0.01 22.953

0.1 015 0.1 04 0.839 0.06 24.882

01 01 01 04 0839 0.01 22.953

Scenario 2.4-Minimax 0.1 0.15 0.15 04 0802 0.088 25875
m=17,n=12,r=4,r, =2) 01 01 015 04 0802 002 25109
01 015 01 04 0842 0.088 25875
0.1 0.1 0.1 04 0842 0.02 25.109

Scenario 2.8-Optimal 04 045 045 0.7 0808 0.097 29.027
(n=24,n=12,r=13,r,=6) 04 04 045 0.7 0.808 0.038 27.797
04 045 04 07 0836 0.097 29.027
04 04 04 07 0836 0038 27.797

Scenario 2.8-Minimax 04 045 045 0.7 0804 0.081 29.361
m=23,n,=11,r=13,r,=5) 04 04 045 07 0804 0.03 27.916
04 045 04 07 0832 0081 29361
04 04 04 07 0832 0.03 27.916

0 1
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Table S1: Probabilities of all possible winner selection outcomes for Optimal IBPW design as listed in Table 2.

Hy: pp =0.1vsp, =0.1 H:pg =04vsp, =01
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.1 A fail.stagel | 0.430 0.152 0.074 A fail.stagel | 0.085 0.012 0.559
AB.ES.HOW : 0.882 | A fail.stage2 | 0.152 0.054 0.026 A fail.stage2 | 0.030 0.004 0.197
A.pass 0.074 0.026 0.013(0%) | A.pass 0.015 0.002 0.096(0.047)
Hy: pp =0.15vs py =0.1 H:pg =04vsp, =01
B fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.2 A fail.stagel | 0.609 0.156 0.085 A fail.stagel | 0.135 0.024 0.692
AB.ES.H0:0.958 | A.fail.stage2 | 0.090 0.023 0.013 A fail.stage2 | 0.020 0.004 0.103
A.pass 0.017 0.004 0.002(0) A.pass 0.004 0.001 0.019(0.01)
Hy: pg =01vsp, =0.1 Hy:pp =04vsp, =015
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.3 A fail.stagel | 0.661 0.098 0.054 A fail.stagel | 0.070 0.007 0.580
AB.ES.H0:0.965 | A.fail.stage2 | 0.098 0.015 0.008 A fail.stage2 | 0.016 0.002 0.129
A.pass 0.054 0.008 0.004(0) A.pass 0.021 0.002 0.174(0.094)
Hy: pp =0.15vs py =0.1 H,:pg =040vsp, =0.15
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.4 A fail.stagel | 0.465 0.263 0.047 A fail.stagel | 0.042 0.051 0.506
AB.ES.H0:0910 | Afail.stage2 | 0.129 0.073 0.013 A fail.stage2 | 0.024 0.029 0.287
A pass 0.006 0.003 0.001(0) A.pass 0.004 0.005 0.051(0.02)
Hy: pg =04 vsp, =04 H,:pp =0T vsp, =04
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.5 A fail.stagel | 0.538 0.139 0.057 A fail.stagel | 0.072 0.038 0.623
AB.ES.H0:0.929 | A fail.stage2 | 0.139 0.036 0.015 A fail.stage2 | 0.019 0.010 0.161
A pass 0.057 0.015 0.006(0) A .pass 0.008 0.004 0.006(0.022)
Hy: pp, =045v.spy =04 Hy:pg =07vsp, =04
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.6 A fail.stagel | 0.616 0.140 0.078 A fail.stagel | 0.125 0.024 0.684
AB.ES.H0:0.957 | Afailstage2 | 0.096 0.022 0.012 A fail.stage2 | 0.019 0.004 0.106
A.pass 0.027 0.006 0.003(0) A.pass 0.005 0.001 0.030(0.016)
Hy: pg, =04 vsp, =04 H:pg =0.7vsp, =045
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.7 A fail.stagel | 0.538 0.132 0.064 A fail.stagel | 0.061 0.010 0.55
AB.ES.H0:0.929 | Afail.stage2 | 0.132 0.032 0.016 A fail.stage2 | 0.019 0.003 0.174
A.pass 0.064 0.016 0.008(0) A.pass 0.018 0.003 0.161(0.087)
Hy: pg =045vsp, =04 Hy:pp =0.7vsp, =045
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.8 A fail.stagel | 0.622 0.134 0.085 A fail.stagel | 0.087 0.022 0.630
AB.ES.H0:0.959 | Afail.stage2 | 0.088 0.019 0.012 A fail.stage2 | 0.019 0.005 0.136
A.pass 0.029 0.006 0.004(0) A.pass 0.012 0.003 0.086(0.042)

(1) AB.ES.HO represents the probability of arm A or B early stopping under H,,
(2) The number in parentheses represents the posterior probability of arm B being claimed as the winner



Table S2: Probabilities of all possible winner selection outcomes for Minimax IBPW design as listed in Table 2.

Hy: pg =0.1vsp, =01 H:pg =04vsp,y =01
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.1 A fail.stagel | 0.282 0.204 0.045 A fail.stagel | 0.025 0.046 0.46
AB.ES.HOW : 0.780 | A.fail.stage2 | 0.204 0.147 0.033 A fail.stage2 | 0.018 0.033 0.332
A.pass 0.045 0.033 0.007(0®) | A.pass 0.004 0.007 0.074(0.018)
Hy: pg =0.15vs p, =0.1 Hy:pg =04vsp, =01
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.2 A fail.stagel | 0.465 0.253 0.058 A fail.stagel | 0.055 0.089 0.631
AB.ES.H0:0910 | Afail.stage2 | 0.125 0.068 0.016 A fail.stage2 | 0.015 0.024 0.171
A.pass 0.010 0.005 0.001(0) A.pass 0.001 0.002 0.013(0.004)
Hy: pg =0.1vsp, =0.1 H,:pp =04vsp, =0.15
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.3 A fail.stagel | 0.185 0.222 0.023 A fail.stagel | 0.005 0.021 0.247
AB.ES.H0:0.676 | A.fail.stage2 | 0.222 0.265 0.028 A fail stage2 | 0.009 0.043 0.501
A.pass 0.023 0.028 0.003(0) A.pass 0.003 0.014 0.157(0.055)
Hy: pp =0.15vs py =0.1 H,:pg =040vsp, =0.15
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.4 A fail.stagel | 0.654 0.155 0.080 A fail.stagel | 0.061 0.047 0.627
AB.ES.H0:0.971 A fail.stage2 | 0.067 0.016 0.008 A fail.stage2 | 0.015 0.011 0.148
A.pass 0.015 0.003 0.002(0) A.pass 0.008 0.006 0.077(0.026)
Hy: pp =04 vspy =04 Hy:pg =0.7vsp, =04
B fail.stagel | B.fail.stage2 | B.pass B fail.stagel | B.fail.stage2 | B.pass
Scenario 2.5 A fail.stagel | 0.709 0.045 0.088 A fail.stagel | 0.099 0.013 0.730
AB.ES.H0:0975 | Afail.stage2 | 0.045 0.003 0.006 A fail.stage2 | 0.006 0.001 0.046
A.pass 0.088 0.006 0.011(0) A.pass 0.012 0.002 0.091(0.033)
Hy: pg =045vsp, =04 Hy:pp =0.7vsp, =04
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.6 A fail.stagel | 0.825 0.020 0.097 A fail.stagel | 0.165 0.005 0.771
AB.ES.H0:0.993 | Afail.stage2 | 0.013 0.000 0.001 A fail.stage2 | 0.003 0.000 0.012
A.pass 0.039 0.001 0.005(0) A.pass 0.008 0.000 0.036(0.017)
Hy: pp =04 vsp, =04 H:pg =0.7vsp, =045
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.7 A fail.stagel | 0.401 0.181 0.052 A fail.stagel | 0.024 0.028 0.453
AB.ES.H0:0.865 | A.fail.stage2 | 0.181 0.082 0.023 A fail.stage2 | 0.015 0.018 0.292
A pass 0.052 0.023 0.007(0) A .pass 0.008 0.009 0.153(0.058)
Hy: pg =045 vs p, =04 H,:pp =0.7vsp, =045
B.fail.stagel | B.fail.stage2 | B.pass B.fail.stagel | B.fail.stage2 | B.pass
Scenario 2.8 A fail.stagel | 0.477 0.214 0.063 A fail.stagel | 0.050 0.047 0.536
AB.ES.H0:0.910 | A fail.stage2 | 0.137 0.061 0.018 A fail stage2 | 0.022 0.021 0.240
A.pass 0.020 0.009 0.003(0) A.pass 0.007 0.006 0.071(0.028)

(1) AB.ES.HO represents the probability of arm A or B early stopping under H,
(2) The number in parentheses represents the posterior probability of arm B being claimed as the winner
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