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ABSTRACT  

Pharmacokinetics (PK) is the time course of a compound in the body that is 

dependent on mechanisms of absorption, distribution, metabolism, and excretion or 

ADME. A thorough understanding of PK is essential to predict the consequences of 

organisms exposed to chemicals. In medicine, predictions of PK of drugs allows us to 

properly prescribe drug treatments. In toxicology, PK allows us to predict the potential 

exposure of environmental contaminants and how they may affect organisms at the time 

of exposure or in the future. Chemical ecology could benefit from computational 

predictions of PK to better understand which plants are consumed or avoided by wild 

herbivores. A limitation in computational predictions of PK in chemical ecology is the 

large quantities of biodiverse natural products involved in complex plant-herbivore-

microbial interactions compared to biomedical and environmental toxicology studies that 

focus on a select number of chemicals. The objective of this research was to automate the 

process of mining predicted PK of known chemical structures in plants consumed by 

herbivores and to use predicted PK output to test hypotheses. The first hypothesis is that 

because monoterpenes are smaller in molecular weight and have relatively high 

lipophilicity when compared to phenolics and sesquiterpenes, they would have higher 

absorption, be more likely to be substrates for efflux transporters that regulate absorption, 

and be more likely to inhibit metabolizing enzymes than phenolics and sesquiterpenes. 

The second hypothesis is that monoterpenes that are induced or avoided by foraging 

herbivores would have higher absorption, be less likely to be substates for efflux 
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transporters, and be more likely to inhibit metabolizing enzymes compared to the 

individual monoterpenes that are not induced or avoided by herbivores. This automated 

approach used Python packages to obtain chemical notations from the PubChem website 

and mine predicted PK information for chemical input from the SwissADME website. 

The PK output from SwissADME was analyzed using ANOVAs to test for differences in 

molecular weight and lipophilicity among chemical classes (monoterpenes, phenolics, 

and sesquiterpenes). Chi-squared tests were used to assess if chemical groups had high or 

low absorption, were substrates of efflux transporters, or inhibited metabolizing enzymes. 

Mined PK data for chemicals can be used to understand drug-drug interactions in 

pharmacology, predict exposure to environmental contaminants in toxicology, and 

identify mechanisms mediating plant-microbe-herbivore interactions. However, the broad 

benefits of mining predicted PK across disciplines requires a workforce with competency 

in chemistry, physiology, and computing who can validate the automation process and 

test hypotheses relative to different disciplines. Course-based and Lab-based 

Undergraduate Research Experiences (CUREs and LUREs) have been proven to not only 

improve grades but also increase engagement diversity and inclusion. As a graduate 

teaching assistant, I created and taught a PK LURE module in an undergraduate Animal 

Physiology and Nutrition course to create a sustainable quality control step to validate 

input of chemical structures and PK output generated from the automated process. The 

course simultaneously provided students with an authentic research experience where 

they integrated chemistry, pharmacology, computing, public databases, and literature 

searches to propose and test new hypotheses. Students gained indispensable 

interdisciplinary research skills that can be transferred to jobs in veterinary and human 
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medicine, pharmaceutics, and natural sciences. Moreover, undergraduates used existing 

and new PK data to generate and test novel hypotheses that go beyond the work of any 

single graduate student or discipline. Overall, the integration of computing and authentic 

research experiences has advanced the research capacity of a diverse workforce who can 

predict exposure and consequences of chemicals in organisms. 
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CHAPTER ONE: AUTOMATING PHARMACOKINETIC PREDICTIONS: USING 

ARTEMISIA AS A CASE STUDY 

Abstract 

Pharmacokinetics (PK) is the study of what the body does to a metabolite and is 

important to chemists, biologists, and pharmacologists. Obtaining predicted PK from 

chemical structures is often embedded deep within websites and requires a multi-step 

retrieval process to access data manually. However, data retrieval from websites creates a 

bottleneck in mining predicted PK when a large number of metabolites are being 

considered as is often the case for biodiverse natural products. The automation of this 

multi-step process would save time and allow researchers to support reproducible science 

in this field and also allow for more accurate results while retrieving PK data from 

diverse sources of metabolites that can be used to test hypotheses. The objective of this 

research was to automate the process of mining PK data using known chemical structures 

in plants consumed by herbivores and to use PK output to test chemical ecology 

hypotheses as a case study.  We used a list of chemicals from the North American 

endemic Artemisia species within the subgenus tridentatae (hereafter, sagebrush) as a test 

case to automate a reproducible pipeline of mining PK data from publicly available 

websites. Sagebrush offers an ideal case study because it: 1) contains a large number of 

metabolites within several distinct classes of chemicals that have diverse chemical 

properties that vary in composition and concentration within and among species; 2) has 

parent compounds that are known to be metabolized into new chemicals by animal and 



2 

 

microbial enzymes which further increases structural diversity of chemicals; and 3) has 

chemicals with known pharmaceutical properties and known interactions with herbivores. 

We used the automated retrieval process to mine PK values of 166 metabolites in 

sagebrush and used PK output to test biological hypotheses. First, we investigated 

patterns in physicochemical properties of the three main classes (monoterpenes, 

phenolics, sesquiterpenes) of chemicals in sagebrush. Using a one-way ANOVA, we 

found that the molecular weight of monoterpenes was significantly lower than phenolics 

and sesquiterpenes and that monoterpenes and sesquiterpenes were more lipophilic than 

phenolics. We used chi-squared tests to assess the hypothesis that smaller size and 

relatively high lipophilicity of monoterpenes would increase gastrointestinal (GI) 

absorption and therefore increase interactions with the efflux transporter P-glycoprotein 

(P-gp) and the metabolizing enzymes cytochrome P450 (CYP). We found no difference 

in GI absorption among the three chemical classes. However, sesquiterpenes were most 

likely to be P-gp substrates and monoterpenes and sesquiterpenes were less likely than 

phenolics to be CYP inhibitors. This suggests that sesquiterpenes may be the least 

bioavailable because they are effluxed out of cells by P-gp but could also be P-gp 

inhibitors or have interactions with other transport proteins. Results also suggest that 

phenolics may influence PK of co-occurring chemicals through CYP inhibition, which 

could cause toxicity. We also assessed if our new PK output could explain observed 

plant-herbivore interactions. Specifically, we tested the hypothesis that monoterpenes in 

sagebrush avoided by wild herbivores and those induced by damage from herbivores 

would have higher absorption and be more likely to interact with CYPs compared to the 

individual monoterpenes that are not induced or avoided by herbivores. Using chi-
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squared and Tukey’s HSD tests we found that monoterpenes that are induced or avoided 

by foraging herbivores had lower GI absorption, but did not differ in interactions with P-

gp or inhibition of CYPs compared to monoterpenes that are not induced or avoided by 

herbivores. This suggests that the site of action for monoterpenes that are induced and 

avoided may be in the intestine of herbivores. We demonstrate the value of automating 

the multi-step process of mining predicted PK data to test biological hypotheses (See 

Appendix A). Results of the PK hypotheses can generate predictions that can be 

empirically tested using in vitro and in vivo experiments to confirm absorption and 

interactions with P-gp and CYPs and predict the overall exposure of ingested chemicals 

in herbivores or to target the discovery of bioavailable natural products for medicine. 

Moreover, our process for mining PK can be expanded to include structures of 

unidentified chemicals generated using analytical chemistry that arise from animal and 

microbial metabolism of parent chemicals from plants. 

Introduction 

Predicting changes in concentrations of bioactive chemicals in an organism and 

how those chemicals influence the physiological function of organisms is essential to 

understanding and managing the health of humans (Kay, 2006), domestic species 

(Rajaganapathy et al., 2011), and non-model organisms (Maurya et al., 2019). 

Pharmacokinetic (PK) modeling has been beneficial since its inception to predict 

exposure (Leven et al., 2019) and resistance to drugs (Pathania et al., 2018) and optimize 

dosing regimens (Lucas et al., 2019) using multiple parameters. Pharmacokinetics can be 

described as how the body affects a compound, molecule, or metabolite, which refers to 

how the body absorbs, distributes, metabolizes, and excretes the metabolite, also known 
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as ADME (Eddershaw et al., 2000). As such, PK is used to predict the time course of an 

ingested metabolite in the body (Wishart, 2007).  

Predicting ADME from chemical structures offers pharmacological advantages in 

drug discovery and development that benefits human health and can be used to predict 

toxic consequences of environmental contaminants. In pharmacology, PK predictions are 

used to improve clinical outcomes. For example, PK can predict the correct dosing of 

morphine relative to the age of young children to achieve pain relief (Verscheijden et al., 

2021) and can explain variable pain relief associated with renal failure in patients (Mazoit 

et al., 2007). PK data can also be used to predict if parent compounds from natural 

products are more bioavailable than their synthetic counter-parts (e.g., Paclitaxel 

compared to Docetaxel, Sharifi-Rad et al., 2019) or if detoxification products are more 

bioactive than the parent compound (e.g., curcumin compared to hexahydrocurcumin, 

Huang et al., 2018). PK can also be used to predict drug-drug interactions where one drug 

influences the kinetics and therefore exposure of another co-administered drug through 

inhibition of the proteins that regulate absorption and metabolism of chemicals (Percha & 

Altman, 2013). For example, drug-drug interactions can cause toxicity of sildenafil if not 

properly co-administered with Bancha tea methylxanthines (Radeva-llieva et al. 2022). 

This is because methylxanthines in green tea inhibit the cytochrome P450 enzyme 

(CYP1A2) and this inhibition reduces the rate by which CYP1A2 metabolizes sildenafil 

resulting in an excess amount of sildenafil in the blood which causes toxicity (Radeva-

llieva et al. 2022).  Finally, PK models (Ahmad, 2007) are used by toxicologists to 

estimate the potential exposure of environmental contaminants and how they may affect 

organisms at the time of exposure or in the future. For example, several studies use PK to 

https://www.zotero.org/google-docs/?B5KlU5
https://www.zotero.org/google-docs/?B5KlU5
https://www.zotero.org/google-docs/?B5KlU5
https://www.zotero.org/google-docs/?Kp8r86
https://www.zotero.org/google-docs/?Kp8r86
https://www.zotero.org/google-docs/?zz5lOB
https://www.zotero.org/google-docs/?zz5lOB
https://www.zotero.org/google-docs/?zz5lOB
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predict exposure to Polychlorinated Biphenyls (PCBs, Parham et al., 1997, Lutz et al., 

1984) which are highly toxic industrial compounds that can accumulate in the 

environment (Bagale, 2022) and have dose-dependent health consequences for animals 

(Krause et al., 2022) and humans (Zhu et al., 2022).  Overall, PK models have been 

critical in advancing drug development and predicting therapeutic and toxic 

consequences of exposure to natural products, their derivatives, and synthetic molecules.  

Unlike numerous examples found in human medicine and environmental 

toxicology, there are relatively fewer examples of using PK in chemical ecology to 

predict how wild animals interact with natural products in their diet (although see 

Mazorra-Alonso et al., 2021, Godfray et al., 2019, Dyer et al., 2018, Freeland & Janzen, 

1974). Plants often produce metabolites to defend themselves against herbivores that 

consume them (Mazid et al., 2011). The natural products synthesized by plants exist in 

complex mixtures and together they are known as plant secondary metabolites (PSMs). 

Chemical ecologists, like pharmacologists and toxicologists, can use PK to better 

understand the larger numbers of metabolites arising from plant-herbivore-microbial 

interactions. Specifically, the plants herbivores consume contain nutrients as well as 

potentially toxic (Takahashi & Shimada, 2008) or therapeutic (Díaz-Navarro et al., 2021) 

PSMs. Predicting the fate of ingested PSMs in the body will help ecologists understand 

selection or avoidance of PSMs by herbivores (Ulappa et al., 2014). There is some 

evidence that the pharmacokinetics of PSMs, including absorption (Sorensen et al., 2004, 

Sorensen et al., 2005, K. Kohl & Dearing, 2017), rates of metabolism (McLean et al., 

2007, Nobler et al., 2019), and the types of metabolites excreted (Staudenmaier et al., 

2022, K. D. Kohl et al., 2018) do explain the foraging behavior (i.e., dosing regimen) of 

https://www.zotero.org/google-docs/?rgfPxV
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vertebrate herbivores. For example, higher absorption of α-pinene by generalist 

herbivores results in lower excretion of α-pinene unchanged in the feces compared to 

specialist herbivores (Sorensen et al., 2004) and may explain higher blood concentrations 

of α-pinene after an oral dose (Sorensen et al., 2003) and lower intake of food with α-

pinene (Sorensen et al., 2005) by generalists compared to specialists. Similarly, the 

metabolites of p-cymene differ in oxidation in specialist and generalist herbivore species 

(Boyle et al., 1999) and may explain differential tolerance to plants that vary in p-cymene 

among herbivores (Massing et al., 2021). However, given the logistical and ethical 

challenges of in vitro and in vivo PK studies in wildlife, there is a need for new 

approaches to predict the fate of ingested PSMs and advance our understanding of the 

chemical ecology of plant-herbivore interactions.  

One approach to better understand the chemical ecology of plant-herbivore 

interactions, is to predict PK using the chemical structure of PSMs in forage consumed or 

avoided by herbivores (Forbey et al., 2013). Specifically, a chemical’s three-dimensional 

structure can be translated into a string of chemical symbols that are interpreted using 

computer software programs to generate a single canonical form, called the Canonical 

SMILES (Simplified Molecular Input Line Entry System) notation. This notation encodes 

for 3D chemical information into a string system and stores complex information into a 

simple system that can easily be used as a precise input for research purposes. The 

chemical structures generated by analytical analysis (e.g., mass spectrometry or Nuclear 

Magnetic Resonance [NMR], Liu et al., 2019, Seger & Sturm, 2022) of extracts from 

plants or excreta from non-model organisms that cannot be identified using databases 

(i.e., PubChem, Kim et al., 2021) can still be used to generate Canonical SMILES. Once 
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the Canonical SMILES is generated for each chemical, a multi-step retrieval process can 

be used to mine predicted ADME of that chemical. This retrieval process is normally 

done manually, because of the lack of an Application Program Interface (API). First, the 

Canonical SMILES notation of a target chemical is obtained by entering the name of the 

target chemical into a search bar on the PubChem website, then navigating to the 

chemical, and finally obtaining the Canonical SMILES notation. Once the researcher has 

the Canonical SMILES, they must navigate to the SwissADME website (Daina et al., 

2017) which is a database that uses Canonical SMILES notation as an input to mine PK 

data for the associated chemical. Physiochemical data and ADME predictions are 

generated for each Canonical SMILES entered into a search bar.  

The manual retrieval of parameters from multiple databases (PubChem and 

SwissADME) creates a bottleneck in mining PK data when considering studies 

investigating large numbers of metabolites found in natural products. Pharmaceutical 

scientists typically focus on predicting PK using in silico and experimental methods 

(Lombardo et al., 2017) from a limited number of chemicals associated with a single drug 

and detoxification products. In contrast, chemical ecologists often work with mixtures of 

PSMs that may include hundreds of individual chemicals representing diverse chemical 

classes (Lautié et al., 2020, Karunanithi & Zerbe, 2019), many of which are not found in 

databases (Mushtaq et al., 2018, Khalifa et al., 2019). Complexity is further increased 

from plant-herbivore (Li et al., 2022) and plant-microbial (Carvalhais et al., 2013) 

interactions which involve multiple and often simultaneous enzymatic biosynthesis of 

parent chemicals and detoxification of parent chemicals into new metabolites. When 

dealing with hundreds of parent chemicals and metabolites, the manual retrieval process 
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for obtaining ADME information to predict PK not only becomes incredibly time 

consuming, but also prone to error.  

To address this need, we used Python (Van Rossum and Drake, 2009) and 

associated packages to automate the multi-step process to accurately and effectively 

retrieve Canonical SMILES and predictive PK data from large data sets. In this case 

study, we demonstrate the process of determining the PK of known chemical structures in 

plants consumed by herbivores by investigated PSMs found in the North American 

endemic Artemisia species. The main PSMs in sagebrush are terpenoids, flavonoids, 

coumarins, caffeoylquinic acids, sterols, and acetylenes (Bora & Sharma, 2011). 

Sagebrush offers an ideal case study because it contains diverse classes of PSMs, with a 

large number of metabolites within each class that co-occur and vary across species and 

subspecies (Turi et al., 2014). PSMs in sagebrush vary in presence, concentration, and 

bioactivity. Sagebrush is also a potential source of parent mixtures of PSMs that may 

result in amplified biodiversity of metabolites generated from metabolizing enzymes in 

herbivores and microbes that interact with this plant. Sagebrush is part of a taxonomic 

group with historical and current pharmacological properties and therefore a source of 

potential biomedical insights (Ekrami et al., 2022; Kelley et al., 1992; Sánchez et al., 

2010). While Artemisia species are used as medicines all over the world, ADME 

adaptations of herbivores to tolerate these mixtures are poorly understood (Nobler et al., 

2019, Oh et al., 2019). We used the sagebrush system as an example of obtaining PK data 

for a diverse set of chemicals, using coding techniques to mine PK data directly from a 

database that does not offer an API, and using Python as a potential solution for 

interpreting data.  

https://www.zotero.org/google-docs/?MTQBqR
https://www.zotero.org/google-docs/?HcvZav
https://www.zotero.org/google-docs/?G1djsp
https://www.zotero.org/google-docs/?G1djsp
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We used the databases PubChem (Kim et al., 2021) and SwissADME (Daina et 

al., 2017) combined with Python and associated packages to automate the process of 

conducting searches on multiple databases to access both chemical structure and mine 

ADME parameters. The main objective of this research was to create an automated 

pipeline that first assembles a list of PSMs (*.csv), extracts the structures of those PSMs 

from PubChem, then inputs the structures of PSMs into SwissADME to mine and 

organize ADME parameters for each metabolite. The ADME parameters can then be 

used to predict PK in organisms interacting with PSMs. This pipeline can be used as a 

foundation to create a similar pipeline that interacts with the SwissTargetPrediction 

database (Gfeller et al., 2014) to mine for predicted molecular targets of PSMs and their 

metabolites.   

The secondary objective of this research was to use the mined ADME output to 

identify patterns in the physiochemical properties of the three main classes of PSMs 

(monoterpenes, phenolics, and sesquiterpenes, Turi et al., 2014) in sagebrush species and 

test chemical ecology hypotheses. We tested the hypothesis that because monoterpenes 

are smaller in molecular weight (g/mol) and have high lipophilicity, they would have 

higher gastrointestinal (GI) absorption and would be more likely to be P-glycoprotein (P-

gp) substrates and cytochrome P450 (CYP1A2) inhibitors than phenolics and 

sesquiterpenes. Second, we hypothesized that within monoterpenes, those that are 

induced or avoided by foraging herbivores would have higher GI absorption, would be 

less likely to be P-gp substrates, and would be more likely to be CYP1A2 inhibitors 

compared to individual monoterpenes that are not induced or avoided by herbivores.  

  

https://www.zotero.org/google-docs/?A7DmJh
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Implementation and Methods 

The automated pipeline for mining PK output of PSMs consists of five main steps 

(Figure 1.1) after completing step 0) Getting started with important preliminary steps. 

The main steps include: 1) Generate chemical data from diverse sources; 2) Import and 

prepare chemical data; 3) Retrieve Canonical Simplified Molecular-Input Line-Entry 

System (Canonical SMILES) from PubChem; 4) Retrieve ADME information from 

SwissADME; and 5) Application of the automated pipeline using sagebrush chemistry as 

a case study to test chemical ecology hypotheses using statistical tests. Steps 1-4 are 

combined in our pipeline (GitLab repository, see Appendix A) to produce information 

about each chemical that will generate PK output for each individual PSM in animals that 

consume chemically defended plants. 

Operating System, Programs, and Packages  

This pipeline has been tested on iMac running macOS version 11.4 using Python 

version 3.7.13. Packages used include Pandas (McKinney, 2010), Numpy (Harris et al., 

2020), pubchempy (https://pypi.org/project/PubChemPy/1.0/), geckodriver, selenium, csv 

(Shafranovich, 2005), and requests (Chandra & Varanasi, 2015). We used Firefox web 

browser version 108.0.2. All statistical analyses were conducted using JMP Pro 16.1 

(SAS Institute Inc. 2021). All plots were made in R version 4.1.0 using ggplot2 

(Wickham, 2016).  

Step 0. Getting Started with Important Preliminary Steps  

Prior to initiating this pipeline, we must have a list of chemicals ready to analyze, 

have a file structure in place, and have very basic web development knowledge.  

 

https://pypi.org/project/PubChemPy/1.0/
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Original Chemical List 

The original chemical list provided the names of 204 individual PSMs identified 

in the North American endemic Artemisia species within the subgenus tridentatae 

obtained from Turi et al. (2014). The chemical names were placed manually into a 

spreadsheet which was loaded into Python as a CSV file. The datasheet was formatted to 

only include the column named ‘Chemical name’ and this column was extracted and 

placed in a list called ‘ChemList_Column’ using an underscore to removing spaces. 

These minor changes improved the quality of our data output for subsequent steps.   

File Structure 

Within the repository there are three folders (Appendix A): Data, Code, and 

Output. Within the Data folder there is one CSV file that contains the raw data used for 

this project. The Code folder contains one file that contains the pipeline written in 

Python. The Output folder contains the output produced from the automated PK pipeline 

after it is run.   

Web Development 

HyperText Markup Language (HTML), Cascading Style Sheets (CSS), and 

JavaScript were the web development tools used to efficiently extract ADME data from 

the SwissADME database. HTML dictates the structure of any website. CSS refers to the 

style of a website and dictates the text size, color, font, etc. The JavaScript of the website 

controls the web function. Understanding how the JavaScript of the SwissADME 

database is structured was critical for writing a function that could manipulate the 

database to output ADME data. 

  

https://www.zotero.org/google-docs/?BG5vuT
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Step 1. Generated Chemical Data From Diverse Sources  

In the field of chemical ecology, data can be produced from diverse sources. 

Possible sources include: plant tissue for parent chemicals (e.g., (Sánchez et al., 2010)); 

microbial cultures inoculated with parent chemicals that produce new metabolites (e.g., 

(Kohl et al., 2018)); and animal metabolizing enzymes inoculated with parent chemicals 

that produce new metabolites (e.g., (Forbey et al., 2018)). For our purposes we used plant 

chemical names produced in tissue that we obtained from a single review paper (Turi et 

al., 2014). 

Step 2. Import and Prepare Chemical Data 

We used chemical names from tables found in Turi et al. 2014 (Table 3, 4, and 5) 

as a case study to test our pipeline. We specifically used the chemical names because 

using the chemical formula may result in multiple chemicals that have the same chemical 

formula (conformational isomers). 

The automated PK pipeline started with importing a data file (spreadsheet) in 

CSV format. In our case study, the CSV data file contained a list of names of PSMs 

found in sagebrush that were identified from existing literature (e.g., Turi et al., 2014). 

The names of each PSM (Chemical names column) were converted into a list format and 

used as an input to retrieve the Canonical SMILES data for each chemical. 

Step 3. Retrieve Canonical Simplified Molecular-Input Line-Entry System (Canonical 

SMILES) from PubChem 

We used PubChem (Kim et al., 2021) to obtain the Canonical SMILES data for 

each chemical in our list which will later be used as input in the SwissADME website to 

mine PK output. We accessed PubChem using a package developed for Python called 
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pubchempy, which works through Compound Identifiers (CIDs) to obtain Canonical 

SMILES for chemicals it can identify. This step was completed using two main loops. 

The first loop obtained the CIDs by iterating over the chemical names, conducting a 

PubChem search through pubchempy, and placing the CIDs that were found into a list 

(‘foundcid’) and placing the chemical names that were not found in the search into a 

separate list (‘unfoundcid’). The second loop used the CIDs from the ‘foundcid’ list to 

conduct a PubChem search using pubchempy to obtain the molecular formula, molecular 

weight (g/mol), and Canonical SMILES for each specific chemical. For this loop, we also 

created empty lists for each of the searches conducted. The CIDs, molecular formula, and 

molecular weight are important parameters included in our final output data sheet, but 

only the Canonical SMILES are needed to obtain ADME information.  

Step 4. Retrieve Absorption, Distribution, Metabolism, and Excretion (ADME) 

information from SwissADME 

The automated next step in our PK pipeline involves retrieving the ADME 

parameters from the SwissADME database. SwissADME has multiple ways of 

generating PK data for the user including in-house Support Vector Machine (SVM) 

models, data obtained from publications, or data directly computed through non-

commercial executables. All of which introduce varied levels of uncertainty. We used the 

selenium package, an automation tool, along with multiple feature capabilities the 

package contains. A Firefox browser was opened and navigated to the SwissADME 

database. First, the pipeline navigated to the input location of the Canonical SMILES and 

used a loop to input a Canonical SMILES. Once the Canonical SMILES were inputted 

into the SwissADME database, it navigated to and clicked the Run button. Once the run 
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is complete for a Canonical SMILES, the ADME data is imported as a CSV file link as a 

hypertext reference (href) attribute into a list of CSV file links. Finally, the browser is 

closed.  

The SwissADME database has multiple options for viewing output data for each 

targeted chemical that is used as input. For our case study, we chose to use comma-

separated values (CSV) file format to retrieve data. Using the browsers web inspector 

functionality, we were able to inspect the JavaScript code of the database and determined 

that the output can be obtained as a href link. The href link for the chemical list (with 

Canonical SMILES) and was finally read using the pandas read_csv function on Python.  

The CSV file link was downloaded. Once the data was downloaded, it was 

converted into a pandas data frame for a more workable set of data. This data frame 

included the chemical name, molecular formula, molecular weight (g/mol), Canonical 

SMILES, and a subset of ADME parameters. There are 46 parameters generated by the 

SwissADME database, but we focused on a subset of these parameters required to test 

specific chemical ecology hypotheses. Merging this information created a detailed output 

ADME file with all the information for our known list of chemicals (GitLab repository in 

the “Data” folder, see Appendix A).  

We validated the automated input and output of our PK pipeline using 

undergraduate Biology students who manually generated ADME parameters for 

chemicals and compared manual output to automated output as part of a lab module in a 

Lab-Based Undergraduate Research Experience (LURE) focused on Animal Physiology 

and Nutrition (see Chapter 2). Students helped test for accuracy of the pipeline using the 

same chemical lists we tested (monoterpenes, phenolics, and sesquiterpenes, Turi et al., 
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2014). Students were able to identify a subset of issues that led to solutions to problems 

we were having with our output (Table 1.1). This validation process helped us identify 

errors and revise the pipeline to deal with these errors (Table 1.1).  

Step 5. Application of the automated pipeline using sagebrush chemistry as a case study 

to test chemical ecology hypotheses using statistical tests  

Once all of the metadata for the list of PSMs was obtained and validated, the CSV 

file was imported into JMP to conduct statistical analysis to test our chemical ecology 

hypothesis. We focused on several ADME parameters that were most likely to influence 

PSM exposure following intake by an herbivore. The physiochemical parameters of 

interest included molecular weight (g/mol) and relative lipophilicity and the ADME 

parameters of interest included GI absorption and whether the chemical was a substrate 

for P-gp or a CYP1A2 inhibitor. We chose molecular weight because chemicals with a 

molecular weight less than 400 g/mol are more likely to have high bioavailability (Ma et 

al., 2021). We chose lipophilicity because higher lipophilicity increases absorption 

(Alavijeh et al., 2005) and decreases solubility and metabolic stability (Parrott et al., 

2022). We chose GI absorption because although the intestine is not the only route of 

absorption, PSMs consumed by herbivores must be absorbed by enterocytes to reach the 

systemic circulation (Williams et al., 2022). We chose whether the chemical was a P-pg 

substrate because binding affinity to P-gp plays a role in absorption, distribution, and 

excretion (Ma et al., 2021). We chose whether the chemical was a CYP1A2 inhibitor 

because inhibition and induction of this metabolizing enzyme is associated with drug-

drug interactions and can cause serious adverse physiological consequences (Kato, 2020). 

A one-way ANOVA was used to analyze the physiochemical properties (dependent 
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variables: molecular weight [g/mol] and lipophilicity) of the three classes (independent 

variables: monoterpenes, phenolics, and sesquiterpenes) of chemicals in sagebrush. To 

evaluate differences between classes of chemicals, we followed significant results with 

pairwise comparisons using a Tukey’s HSD test adjusted p-value. We used non-

parametric chi-squared tests to test categorical differences in the dependent variables (GI 

absorption [high versus low], P-gp substrate [yes versus no], and CYP inhibition [yes 

versus no]) between the independent variable of chemical classes (monoterpenes, 

phenolics, and sesquiterpenes) and between categories within the monoterpenes (e.g., 

induced/avoided and not induced/avoided). For each of these tests we set alpha as 0.05.  

Results 

PubChem: Generating Canonical SMILES 

Quality control of our output of obtained CIDs by students (see Chapter 2) 

revealed that 24.9% (53/204) of chemicals from our original list did not have CIDs on 

PubChem. Inability to obtain CIDs for these 53 chemicals included having multiple 

chemical names in a single cell on a spreadsheet, misspelling of the chemical name, or 

because PubChem used a number instead of the chemical name (e.g., Chemical Name on 

PubChem was 10180-88-8 instead of our Chemical Name of Deacetoxymatricarin). We 

were able to manually correct these issues for 14 of the 53 chemicals that were not found 

on PubChem resulting in CIDs for 166 of 204 individual chemicals that have been 

identified in sagebrush species in North America (81.37% of original list). 

Retrieval of Absorption, Distribution, Metabolism, Excretion (ADME) data 

While automating the ADME retrieval step, we ran into an issue with the 

SwissADME database stating there were ‘too many requests’ being conducted on their 
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server resulting in our requests being blocked. We fixed this issue by adding system sleep 

to reduce the chance of this issue. However, this may not an adequate solution for larger 

chemical lists. Other possibilities include inputting the maximum number of chemicals in 

the search box for each search (200), rather than imputing chemicals and running 

searches one at a time. We maximized the speed of downloading data by completing the 

loop with a CSV link that could be downloaded separately. Overall, ADME retrieval of 

166 chemicals took roughly 20 minutes to run.  

Physiochemical and ADME Properties 

We found a significant difference in mean molecular weight between at least two 

chemical classes in sagebrush species (F2,163 = 39.80, p < 0.0001, Figure 1.2). The 

molecular weight was significantly higher for phenolics than monoterpenes (p < 0.0001, 

95% C.I. = [90.36 – 195.04]) and higher for sesquiterpenes than monoterpenes (p < 

0.0001, 95% C.I. = [85.17 – 156.91]) but did not differ between phenolics and 

sesquiterpenes (p = 0.593, 95% C.I. = [-30.85 – 74.17]). We also found a significant 

difference in lipophilicity between at least two chemical classes (F2,163 = 16.68, p < 

0.0001, Figure 1.3). Lipophilicity was significantly lower for phenolics than 

sesquiterpenes (p < 0.0001, 95% C.I. = [0.44 – 1.08]) and lower than monoterpenes (p < 

0.0001, 95% C.I. = [0.36 – 1.00]) but did not differ between monoterpenes and 

sesquiterpenes (p = 0.65, 95% C.I. = [-0.14 – 0.30]).  

Chemical Ecology Predictions 

Chemical classes did not differ in their predicted GI absorption (X2 (2, N = 166) = 

0.756, p = 0.685, Figure 1.4 a) with 74% of monoterpenes, 77% of phenolics, and 69% of 

sesquiterpenes having high GI absorption. Only a small proportion of sesquiterpenes 
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(17%) and phenolics (5%) were predicted to be P-gp substrates compared to none of the 

monoterpenes (X2 (2, N = 166) = 14.624, p = 0.0007) (Figure 1.4 b). However, 

monoterpenes and sesquiterpenes were less likely to be CYP inhibitors (3% and 7% 

predicted to inhibit CYP1A2, respectively) than phenolics (X2 (2, N = 166) = 74.202, p = 

<0.0001) where 72.73% of phenolics were predicted to inhibit CYP1A2 (Figure 1.4 c). 

Monoterpenes that are induced or avoided by foraging herbivores were more likely to 

have lower predicted GI absorption than monoterpenes that were not induced or avoided 

(X2 (1, N = 24) = 9.882, p = 0.0017, Figure 1.5 a). Neither being a P-gp substrate (X2 (1, 

N = 24) = 0, p = 0.0 or null) nor inhibiting CYP1A2 (X2 (1, N = 24) = 1.043, p = 0.307) 

differed based on whether monoterpenes were observed to be induced or avoided by 

herbivores (Figure 1.5 b and c). 

Discussion 

Accurately and effectively retrieving large amounts of predicted PK data using 

automation would be incredibly beneficial for chemical ecologists. Here, we 

demonstrated how using Python and associated packages can automate the process of 

mining predicted PK data for chemicals found in sagebrush that might explain 

interactions with wild herbivores. Chemicals found in sagebrush include monoterpenes 

and sesquiterpenes as well as phenolics such as flavonoids and coumarins among other 

chemicals. Moreover, the complexity of these chemicals can be further increased through 

interactions with enzymes in plants, animals, and microbes, which involve multiple and 

often simultaneous biosynthesis and metabolism of PSMs. Focusing on this chemically 

diverse sagebrush system offers an example of obtaining PK data for a diverse set of 

chemicals. Moreover, we provide examples of how the chemical structures and predicted 
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ADME parameters generated from our automated pipeline can be used to test chemical 

ecology hypotheses that may explain avoidance or selection of PSMs by herbivores. We 

now discuss limitation and opportunities for further automation of PK and how our 

automated pipeline could advance our understanding of the fate of chemicals in a variety 

of systems.  

Testing Accuracy 

Testing for accuracy of this pipeline was done manually by undergraduate 

students enrolled in a Lab-based Undergraduate Research Experience (LURE, See 

Chapter 2). Students manually conducted the steps of the pipeline using the same 

chemical lists, including monoterpenes, phenolics, and sesquiterpenes (Turi et al., 2014) 

and compared the manually mined PK output they obtained with the output of the 

automated pipeline. Students discovered that 53 chemicals were not found on PubChem 

and allowed us to correct the spelling and annotation to include 14 of these missing 

chemicals into our revised pipeline.  

Further Automation 

Our initial effort to automate PK resulted in several insights that could benefit 

further automation. First, we identified the importance of the original data sheet for 

getting accurate output for the desired data input. Even after automation was achieved, 

each output step revealed issues that may require manual assessment (e.g., using an 

undergraduate workforce in the classroom, See Chapter 2) and computational revision 

(Table 1.1). Based on our experience, we recommend adding quality control steps to 

check for single chemical names and proper spelling of chemicals in each cell. This 

quality control step could be done by viewing the “undoundcid” list and manually 
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determining possible reasons for the failure to obtain CID information from PubChem. In 

addition, extracting chemical names directly from original publications could improve the 

amount of data and accuracy of data that can be produced from this pipeline. We included 

chemical names from a single review paper (Turi et al. 2014). However, the list of 

chemicals could be expanded by integrating other data mining packages such as 

G2PMineR package (Wojahn et al., 2021) to search and obtain a more diverse set of 

peer-reviewed scientific research papers. These papers can be downloaded as PDF files 

and specifically designed packages (e.g., requests Chandra & Varanasi, 2015) can be 

used to extract tables from PDF files to run through our pipeline.  

To avoid large chemical lists from being blocked from the SwissADME database 

mid-search, we recommend using system sleep on Python to prevent lockout or using 

batches of 200 chemicals to run the search. However, we encourage collaboration with 

administrators of open access databases to facilitate knowledge transfer between users 

and generators of chemical structures and PK data. We envision that the combination of 

extracting chemical names from all available publications, using system sleep features, 

and collaboration with the SwissADME database administrators could be combined to 

continually generate diverse lists of chemicals with associated ADME parameters. In 

addition, we recommend leveraging undergraduate courses as a sustainable quality 

control step to continuously validate structures and mined ADME data and to propose 

and test new hypotheses while also providing students with authentic research experience 

and training that integrates chemistry, pharmacology, and computing (see Chapter 2).  

Researchers replicating our pipeline should consider limitations and unpredictable 

issues that could affect the functionality of the database and the automation of the 
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pipeline created. Use of a chemical formula rather than the canonical SMILES notation of 

the chemical may result in inaccurate PK output because multiple chemicals may have 

the same chemical formula or conformational isomers (Tang et al., 2020). For example, 

21 of the chemicals found in Turi et al. (2014) had the chemical formula C10H16O. In 

addition, as a molecule gets larger, it is harder to identify the chemical properly which 

would further reduce the accuracy of PK output from a chemical formula. If databases 

make major changes to their JavaScript code, the created pipeline would also have to be 

updated to match changes. One solution is for databases to use an Application 

Programming Interface (API) to share data and execute predefined functionality. 

Currently, SwissADME does not have an API which restricts access of the database is 

through their website. Having an API or an associated package in the SwissADME 

database would increase capacity for researchers to obtain important information quickly 

and accurately for a large number of input chemicals.  

Advance Understanding of PK  

Our pipeline increased the capacity of chemical ecologists, pharmacologists, and 

toxicologists to quickly, effectively, and efficiently mine predicted PK values. It is of 

major importance for scientists to understand PK to advance our understanding of plant-

herbivore-microbial interactions, drug-drug interactions, and develop treatments for 

patients in need. In our case study, we focused on PSMs in sagebrush identified from the 

literature to mine predicted PK information. However, our automated approach could be 

used to obtain ADME parameters beyond parent chemicals by including structures of 

new metabolites detected using analytical chemistry (e.g., mass spectrometry [Liu et al., 

2019] and NMR [Kim et al., 2011; Seger & Sturm, 2022]) that are generated from 
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microbial cultures (Kohl et al., 2018) or from metabolic stability assays (e.g., cytochrome 

P450s from microsomes, Di et al., 2008) using commercially available microbes and 

enzymes or those isolated from non-model organisms (e.g., wild herbivores) that are 

inoculated with parent chemicals. Each of these sources offers diverse metabolites, many 

of which not yet identified, that provide endless possibilities for discovering diverse 

structures that can aid in understanding and managing the health of humans, domestic 

species, ad non-model organisms. 

Understanding the journey of a chemical from the time of consumption to 

excretion is very important and can be predicted based on physiochemical properties. If 

the molecular weight is low and lipophilicity is high, it is likely the chemical will have 

high GI absorption. Once the chemical is absorbed it may be a substrate or an inhibitor of 

efflux transporter proteins like P-gp. If the chemical is a substrate of P-gp, then it will be 

effluxed out of the cell back into the lumen of the intestine where it may be metabolized 

by microbes associated with the herbivore intestines (Ahmed Juvale et al., 2022, Duda-

Chodak et al., 2015). If the chemical is not a substrate of P-gp, then it will be absorbed 

into the enterocyte and distributed to the liver where it can interact (substrates or 

inhibitors) with host metabolizing enzymes such as CYPs. If the chemical is a substrate 

of CYPs it will get metabolized, if it is an inhibitor, it can inhibit the metabolism of any 

co-occurring chemicals (Zhou, 2008). After absorption, the distribution and excretion of 

the chemical is based on interactions with both efflux transporters and metabolizing 

enzymes in tissues (Fan et al., 2010). Although there are many mechanisms within the 

body of the herbivore that may affect the ADME of the chemical, we focused on the P-gp 
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transporter substrates (Ahmed Juvale et al., 2022) and CYP1A2 inhibition (Gunes & 

Dahl, 2008).  

Specific to sagebrush, we used our pipeline to identify interesting patterns in 

PSMs that may explain some of the plant-herbivore interactions observed in this system. 

First, our pipeline demonstrated that monoterpenes were smaller than other chemical 

classes in sagebrush and had relatively high lipophilicity (logPn-octanol/water, scale -5 to 5, if 

logPo/w value is 2 that means the drug is 100 times more likely to be in n-octanol than 

water) with limited variation among chemicals. These traits indicate that monoterpenes 

are more likely to be absorbed, distributed into tissue, and be bioactive (van de 

Waterbeemd et al., 2001).  In contrast, SwissADME predicted that monoterpenes, despite 

smaller size and higher lipophilicity, did not differ in GI absorption compared to 

phenolics and sesquiterpenes. However, there was evidence that monoterpenes that were 

induced or avoided by herbivores were less likely to have high GI absorption. This 

suggests that the site of action for monoterpenes induced and avoided may be in the 

intestine of the consumer. PSMs that have low GI absorption remain in the GI tract and 

are not absorbed into the bloodstream, but instead are metabolized in the GI tract by 

microbes or are excreted in the feces of the herbivore. Regulated absorption of 

monoterpenes observed in sage-grouse (Frye, 2012) would reduce systemic exposure of 

these toxins to wildlife which would minimize harmful effects and explain the relatively 

high tolerance sage-grouse have for consuming monoterpenes. The structure of 

monoterpenes suggest GI absorption in most cases should be high, but sagebrush 

specialist herbivores have mechanisms that actively reduce absorption of toxic 

monoterpenes (Forbey et al., 2011) or allow them to resist inhibition of digestive 
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enzymes by monoterpenes (Kohl et al., 2015). Interestingly, of the seven monoterpenes 

that were studied previously (Frye, 2012), three of which (methacrolein, 1,8-cineole, and 

camphor) had high GI absorption and the other four (α-pinene, β-pinene, camphene, and 

cymene) had low GI absorption. Camphor and 1,8-cineole are known to be more slowly 

metabolized by rabbits when compared with other monoterpenes (Nobler et al., 2019). 

All seven of these monoterpenes had high lipophilicity (between 2.12 and 2.65, except 

for methacrolein which had 1.25), none of these chemicals were CYP1A2 inhibitors. 

However, α -pinene, β-pinene, camphene, and cymene were all inhibitors of different 

CYP enzymes (α -pinene inhibited CYP2C9; β-pinene inhibited CYP2C9; camphene 

inhibited CYP2C9; and cymene inhibited CYP2D6). Next steps would be to test the PK 

predicted inhibition of each monoterpene using in vitro metabolic stability assays that can 

be done using specific commercially available CYP isoforms or done using microsomes 

isolated from herbivores of interest.  

Another interesting finding was that phenolics were most likely to be CYP1A2 

inhibitors and sesquiterpenes were most likely to be P-gp substrates along with one 

chemical from the phenolics chemical class (Figure 1.4). Based on this pattern, we 

predict that phenolics have relatively high potential to influence the PK of co-occurring 

chemicals through CYP inhibition and that sesquiterpenes may be the least bioavailable 

because as P-gp substrates, they have the greatest potential to be effluxed out of cells and 

remain in the intestine. We caution that in silico predictions do not always translate to in 

vivo outcomes (Jain et al., 2021) and using in silico models to differentiate between P-gp 

substrate and inhibitors remains complicated (Chen et al., 2018). Proposed next steps for 

this research would be to test patterns of in vitro intestinal activity of P-gp in avian and 
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mammalian herbivores (Green et al., 2005). In our case study, we used a subset of 

chemicals in Artemisia. However, we have established new capacity to make predictions 

such as those between sagebrush and other Artemisia species with known PK and 

therapeutic properties (Bora & Sharma, 2011) that can inform more labor intensive and 

expensive in vitro and in vivo assays. Finally, results demonstrate how mined PK data 

provide insight into existing chemical interactions between plants and herbivores and can 

be used to target specific chemical-enzyme combinations in future in vitro experiments. 

Conclusion 

The purpose of this case study was to automate the process of mining predicted 

PK of complex chemicals found in the genus Artemisia. Based on this case study, it can 

be concluded that automating this multi-step process can save time and allow researchers 

a more reproducible and transparent approach for PK data retrieval, which can also allow 

reproducing this analysis when new compounds are identified. Our reproducible pipeline 

has improved the ability of scientists to determine the PK of chemicals for large scale 

studies by offering an easy and fast tool for future analysis. Using our pipeline, we have 

expanded capacity to predict PK data for diverse classes of chemicals that play a role in 

plant-herbivore interactions. This pipeline will help scientists understand and predict PK 

of a large number of chemicals which can not only help us understand concentrations of 

potentially toxic PSMs that explain the foraging ecology of herbivores (Williams et al., 

2022), but also help us identify natural products in sagebrush that could contribute to 

biomedical research (Atanasov et al., 2021; Newman & Cragg, 2020; Seo et al., 2020). 

Future work on this project would include creating an API or a Python package for this 

pipeline to make it more accessible to all scientists and creating a database of ADME 

https://www.zotero.org/google-docs/?5NJ7jq
https://www.zotero.org/google-docs/?5NJ7jq
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data for molecules found in other species within the genus Artemisia and in other plant 

taxa that are consumed by herbivores.  These future steps are particularly useful for 

chemical ecologists who work with a broad range of compounds which may include 

complex unknown chemicals. Our pipeline requires only that scientists can provide 

structures, not the identity, of compounds to mine ADME data. Our pipeline overcomes 

existing bottlenecks of databases which may limit the number of chemicals that may be 

searched at one time. Our automation of the manual multi-step retrieval process allows 

for a larger number of compounds to be efficiently and effectively searched at one time.  

The ability to predict exposure of metabolites is essential to understanding and 

managing the health of humans, domestic species, and non-model organisms. Sagebrush 

provides an excellent case study to demonstrate the impact of these predictions because it 

produces chemicals that are used as drugs (Nagy & Tengerdy, 1967), the plant can be 

used as food for livestock (Burritt et al., 2000), and the chemical quality of sagebrush 

influences the foraging behavior of free-ranging herbivores (Willms et al., 1980) 

including those of conservation concern (e.g., sage-grouse (Welch et al., 1988) and 

pygmy rabbits (Jimenez et al., 2020). The ADME parameters generated from plant 

chemicals could also be used to optimize dosing of drugs in humans (Lucas et al., 2019), 

select plants for reseeding that are most palatable to livestock (Copeland et al., 2021), and 

interpret chemical resistance in dietary specialist herbivores and dietary avoidance by 

generalist herbivores (Boyle et al., 1999, Nobler et al., 2019).  
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Figures 

Figure 1.1 Steps of the automated pharmacokinetic pipeline. The boxes with a 
solid border indicate the steps that were taken for this project and the dashed 

borders show possible options that could be used. 
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Figure 1.2 Average molecular weight (g/mol) of monoterpene (n=73), phenolic 
(n=22), and sesquiterpene (n=71) chemicals identified in sagebrush (Artemisia spp.). 

Outliers are signified by red asterisks. An ANOVA revealed that there was a 
statistically significant difference in molecular weight between at least two groups 
(F2,163 = 39.80, p < 0.0001. Tukey’s HSD Test for multiple comparisons found that 
the mean value of molecular weight was significantly different between phenolics 

and monoterpenes (p < 0.0001, 95% C.I. = [90.36 – 195.04]). There was also a 
significant difference between sesquiterpenes and monoterpenes (p < 0.0001, 95% 
C.I. = [85.17 – 156.91]). There was no statistically significant difference between

phenolics and sesquiterpenes (p = 0.593, 95% C.I. = [-30.85 – 74.17]). 
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Figure 1.3 Average lipophilicity of monoterpene (n= 73), phenolic (n=22), and 

sesquiterpene (n=71) chemicals identified in sagebrush (Artemisia spp.). Outliers are 
signified by red asterisks. A one-way ANOVA revealed that there was a statistically 
significant difference in lipophilicity between at least two groups (F2,163 = 16.68, p < 
0.0001). Tukey’s HSD Test for multiple comparisons found that the mean value of 
lipophilicity was significantly different between phenolics and sesquiterpenes (p < 
0.0001, 95% C.I. = [0.44 – 1.08]). There was also a significant difference between 
phenolics and monoterpenes (p < 0.0001, 95% C.I. = [0.36 – 1.00]). There was no 
statistically significant difference between monoterpenes and sesquiterpenes (p = 

0.65, , 95% C.I. = [-0.14 – 0.30]).  



44 

 

 
Figure 1.4 Predicted gastrointestinal (GI) absorption (a. high versus low) (X2 (2, 
N = 166) = 0.756, p = 0.685); p-glycoprotein (P-gp) substrate (b, yes versus no) (X2 
(2, N = 166) = 14.624, p = 0.0007), and cytochrome P450 1A2 (CYP1A2) inhibition 
(c. yes versus no) (X2 (2, N = 166) = 74.202, p = <0.0001) of monoterpenes (n=73), 

phenolics (n=22), and sesquiterpenes (n=71) identified in sagebrush (Artemisia spp.) 
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Figure 1.5 Predicted gastrointestinal (GI) absorption (a, high versus low) (X2 (1, 
N = 24) = 9.882, p = 0.0017), P-gp substrate (b, yes versus no) (X2 (1, N = 24) = 0.0, p 
= 0.0 or null), and cytochrome P450 1A2 (CYP1A2) inhibition (c, yes versus no) (X2 
(1, N = 24) = 1.043, p = 0.307) of monoterpenes in sagebrush (Artemisia spp.) that 

were observed to be induced or avoided (n=12) or not induced or avoided (n=12) by 
foraging herbivores.  
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CHAPTER TWO: LAB-BASED UNDERGRADUATE RESEARCH EXPERIENCE IN 

PHARMACOKINETICS 

Abstract 

Students pursuing an undergraduate degree in Science, Technology, Engineering, 

and Mathematics (STEM) greatly benefit from undergraduate research experiences. 

However, students may have difficulties obtaining research opportunities because of 

costs, time, and eligibility requirements. Similar to Course-Based Undergraduate 

Research Experiences (CUREs), Lab-Based Undergraduate Research Experiences 

(LUREs) offer equitable opportunities for students to get research experiences because 

they occur within lab sections of courses that they are already required to take as part of 

their degree program. For example, Bachelor’s of Science students in Biological Sciences 

at Boise State University are required to take finishing foundations courses, one of which 

is Animal Physiology and Nutrition, where students are presented with authentic research 

across several LURE modules. In this course, I developed and implemented a LURE 

where students learned the role of pharmacokinetics (PK) in animal physiology. Students 

were presented with an introductory lecture about PK where they received background 

information about PK in pharmacology, toxicology, and chemical ecology as it relates to 

animal physiology. Students were also presented with a corresponding PK lab protocol 

where students worked both independently and collaboratively to conduct literature 

searches, formulate hypotheses, and present a summary of their PK findings to their 

peers. A survey was conducted to access our students’ ability to utilize the knowledge 
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gained during the module and overall class. The survey reported that 100% of students 

increased competency in understanding why chemical structures matter in physiology and 

using publicly available databases to conduct research. In addition, 96% of students 

experiencing the PK LURE reported an increased in competency in proposing and testing 

hypotheses that use chemical knowledge to predict physiological research in animals. 

This PK LURE reinforced skills in navigating and interpreting databases, formulating 

directional hypotheses, and identifying and summarizing literature to support hypotheses 

that students generated. Through this PK LURE, 26 undergraduate students helped 

validate and contribute to graduate research being conducted, while also learning about 

graduate research and gaining authentic research experience in pharmacology that will 

make them more competitive for careers in veterinary medicine, pharmaceutics, and 

natural sciences.  

Introduction 

Undergraduate students in the STEM spend many hours of their education in 

laboratory courses immersing themselves in topics learned in the associated lecture 

courses. There is increasing evidence that applying their knowledge to real world 

experience has positive effects on learning outcomes (Beck et al., 2014). Labs that 

provide students authentic research experiences can develop a better understanding of 

topics through experimentation and hands on learning that can significantly improve 

associated lecture course grades as well as laboratory grades (Ing et al., 2021). Through 

these experiential labs, students gain knowledge, skills, and abilities in critical thinking, 

collaboration, analytical reasoning, and communication skills (Corwin et al., 2015) that 

go beyond course content and prepare them for future careers (Auchincloss et al., 2014). 
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The global pandemic caused courses at higher education institutions to switch to virtual 

instruction which left lab courses scrambling to develop lab modules students could use 

to engage in course content through experiential learning while remaining socially 

distanced (Delgado et al., 2021). Educators had to create virtual lab environments to 

conduct labs for the success of students (Dustman et al., 2021).  

Undergraduate students interested in pursuing careers in science and research 

know authentic research experience are an unspoken requirement to gain employment or 

advanced degrees (Estrada et al., 2018). Unfortunately, not all students can join research 

labs. Undergraduate institutions offer a variety of research experience opportunities that 

may exclude some groups. Volunteer positions highly benefit privileged students who 

have financial support from family and have the freedom to work without monetary 

compensation. Paid Research Experiences for Undergraduates (REUs) summer programs 

offer a way for undergraduate students to obtain research experiences but often require a 

minimum grade point average (GPA) to be competitive due to the large number of 

applicants and limited space. Students who are aware of these programs might apply for 

upwards of 10-15 positions to maximize the chance of acceptance, and once accepted 

these programs often require travel which may be a financial hurdle for students. 

Undergraduate institutions may also have internal programs for underrepresented 

minorities. For example, Boise State University offers the Bridge to Baccalaureate (B2B, 

requires full time enrollment), the Higher Education Research Council (HERC) 

Fellowship (available only to STEM majors), and LSAMP summer research experience 

(requires students to be of minority ethnic backgrounds). Eligibility for these internal 

programs focus on ethnic minority groups or require students to be STEM majors. The 
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B2B program does widen the eligibility to other minority groups (i.e., rural residents, first 

generation students, disabled students, etc.), but may still exclude other marginalized 

groups (i.e., women, military, low-income, LGBTQ+, foreign-born). To overcome some 

of these barriers, Vertically Integrated Projects (VIPs) offer a research ecosystem where 

undergraduate and graduate students enroll in a course with faculty mentors, where 

students participate in multidisciplinary research experience in a diverse environment 

(Strachan et al., 2019). That being said, VIPs may still exclude students who may have 

financial difficulties and are not able to pay for the extra course credits once the 

allowable four credits towards a degree program are met. 

Expanding research opportunities to a larger and more diverse cohort and 

integrating multiple disciplines can be achieved by created authentic research experiences 

that are embedded within the required undergraduate curriculum. These Course-Based 

Undergraduate Research Experiences (CUREs) and Lab-Based Undergraduate Research 

Experiences (LUREs) modules within a course offer an emerging opportunity for 

undergraduate students to receive authentic research experiences as part of their existing 

degree programs (Peteroy-Kelly et al., 2017). In these courses and labs, students translate 

content-based knowledge and standard laboratory skills into novel research questions that 

generate outcomes or predictions that are of interest to outside stakeholders. 

Simultaneously, students gain real world experience that can benefit multiple career 

tracks by learning to be self-sufficient, collaborative, and innovative scientists.  

CURES and LUREs can also provide an opportunity to integrate knowledge 

across disciplines. For example, undergraduate students in biology degree programs 

receive a background in STEM through required biology, ecology, chemistry, 
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physiology, math, and communication courses in addition to electives. For example, the 

Bachelor of Science in Biology at Boise State University requires that students take 

general science and math courses (chemistry, biology, physics, statistics, etc.) along with 

more advanced courses (organic chemistry, human/animal/plant physiology, calculus, 

etc., Appendix B). However, students rarely have the opportunity to intentionally 

integrate concepts and techniques from different STEM fields into one lab (Aikens, 

2020). Understanding how various STEM topics and disciplines connect with each other 

is critical for the future of these students when taking on careers in the biological 

sciences. CUREs and LUREs can provide students with the opportunity to learn about 

and practice concepts in a single lab where they intentionally integrate disciplines to 

discover an unknown pattern or solve a scientific problem. The standard undergraduate 

curriculum results in students spending hours focusing on single topic each semester, but 

STEM careers and technological advances require that our future workforce is able to 

think in interdisciplinary ways. Authentic research experiences that integrate multiple 

disciplines can help prepare undergraduates to better understand and solve complex 

scientific problems. While these integrative opportunities are core to the workforce 

development goals of federal funding agencies (Gross, 2004), they are often not available 

to large populations of undergraduates.  

We created a pharmacokinetic (PK)-based LURE module that provided an 

authentic research experience that integrated multiple disciplines for a diverse cohort of 

students enrolled in an Animal Physiology and Nutrition course during the Fall 2021 and 

Fall 2022 semesters. In general, our PK LURE provided students experiences that 

focused on scientific practices, discoveries, relevance, collaboration, and was iterative 
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(Fig 2.1). The purpose of this PK LURE was to integrate basic concepts and scientific 

practices in chemistry, computing, and physiology that have relevance to practitioners in 

pharmacology and conservation. Students were also given the opportunity to discover 

new knowledge by practicing skills in literature searches and using databases PubChem 

(Kim et al., 2021) and SwissADME (Daina et al., 2017). They collaborated with each 

other and with a graduate researcher by formulating hypotheses, synthesizing results, and 

sharing their disciplinary knowledge through scientific writing. At the same time students 

validated the output of my pipeline using this PK LURE lab module (Chapter 1, Figure 

2.2). 

Methods 

Establishing the Relevance of Pharmacokinetics 

Prior to this PK LURE, students were given a lecture-based introduction to PK 

that focused on how absorption, distribution, metabolism, and excretion (hereafter 

ADME) play a role in animal physiology (Appendix C). Students were given real world 

examples through scientific papers with an emphasis on hypotheses that were previously 

tested within the fields of animal physiology (e.g., (Takahashi & Shimada, 2008)), 

pharmacology (e.g., (Radeva-llieva et al., 2022)), and conservation of natural resources 

(e.g., (Parham et al., 1997)). Students were provided these papers as background for part 

of a current master’s student’s degree program and to provide relevance across multiple 

disciplines and emphasized the integration of physiology and chemistry (see Chapter 1). 

The questions or hypotheses shared with students included:  

Chemical Ecology System 1: we examined the following questions using the 

Japanese wood mouse: (1) does a wood mouse with previous experience eating acorns 
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select against tannin content and/or select for protein content in acorns more than a wood 

mouse without previous experience and (2) does previous experience with acorns affect 

selective consumption? (Takahashi & Shimada, 2008) 

Biomedical System 2: What influence do single and multiple oral doses of 

methylxanthine fraction isolated from Bancha green tea leaves have on the 

pharmacokinetics of sildenafil in rats. (Radeva-llieva et al., 2022) 

Toxicology System 3: What are the individual and combined toxicities of 

different chlorinated PCBs (PCB28, PCB52, and PCB101) on the earthworm Eisenia 

fetida and what is the relationship with the chlorine substitution pattern. (Zhang et al., 

2023).  

Scientific Practices: Literature Searches 

Students were presented with a list of chemicals found in a review paper (Turi et 

al., 2014) and each student was instructed to conduct literature searches before choosing 

a chemical that was of interest to them. Allowing students to select a chemical based on 

their review of the literature provided a degree of ownership and curiosity for students. 

Using this chemical, each student conducted a preliminary search for peer-reviewed 

manuscripts to obtain scientific information about the biological significance of the 

chemical they chose and provided a summary about the information that was found using 

a properly formatted citation. 

Discovery of PK data from a Database 

Students were shown an example of how to conduct searches for compounds on 

PubChem and generate PK information on SwissADME to provide integration of 

chemistry and computing (Chapter 1). Students used their chosen chemical to obtain 



53 

 

chemical information such as chemical formula, weight, and Canonical Simplified 

Molecular Input Line Entry System (SMILES) on PubChem, while also getting familiar 

with a database that they had not used before. Students then navigated to the 

SwissADME database and used the Canonical SMILES notation they obtained from 

PubChem to discover PK information (lipophilicity, GI absorption, CYP inhibition, 

bioavailability, etc.) about their chosen chemical.  

Collaboration and Dissemination of Knowledge  

Once students had the opportunity to review the ADME parameters of their 

individual chemicals, they then collaborated with other students in their lab teams sharing 

and comparing ADME properties to determine which of their chemicals was most likely 

to have a biological effect in the consumer and what ADME parameters could be used to 

predict this effect. Once students determined this information, their team came up with a 

directional hypothesis about how an animal (wild, domestic, or human) would interact 

with their selected chemical and what the pharmacological outcome would occur through 

this interaction. They supported their hypothesis using a literature review. Each team 

identified a representative to orally present a short summary to the rest of class of their 

rationale for hypothesis, the ADME features of their chemical of interest, and how the 

reference they found supported or refuted their hypothesis (see Appendix D for 

examples). 

Assessment of Competencies. 

Students were given a survey to assess their perceived change in competency in 

skills learned after the PK LURE which contained questions assessing the knowledge 
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they gained during the PK LURE module as well as the overall course. (Picture 2.1 and 

2.2). 

Results 

I developed and implemented a novel interdisciplinary LURE module (Appendix 

E) that will be used each year as a remote authentic research experience for 

undergraduates. The PK LURE was delivered to 26 students in ZOOL 409 Fall semester 

of 2022 and was made available to the larger Idaho community through the NSF Idaho 

EPSCoR website called GEM3 Lab Modules (https://www.idahogem3.org/lab-modules). 

Students explored 26 chemicals representing monoterpenes and phenolics (two 

different chemical classes). The ADME output generated by students was used to validate 

output from research done for a graduate research thesis project (see Chapter 1). Students 

identified 7 peer-reviewed papers that covered topics relevant to the class including 

enzyme kinetics, permeability, and pharmacokinetics. Of these, 100% were new to the 

MS researcher and helped advance knowledge of her thesis research.  

The class generated 7 novel hypothesis and summaries of their rationale for 

hypothesis, the ADME features of their chemical of interest, and how the reference they 

found supported or refuted their hypothesis (Appendix D). 

Based on the competency assessment survey, we found that after this lab module, 

77% of students felt extremely more competent in database navigation and interpretation, 

81% of students felt extremely more competent in formulating directional scientific 

hypotheses, and 85% of students felt extremely more competent in identifying and 

summarizing literature to support their hypothesis (Figure 2.3). All but one student felt 

they increased their competency in activities focused on integrating disciplines, using 

https://www.idahogem3.org/lab-modules
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databases, and testing hypotheses. We also found 96% of students felt extremely or 

slightly more competent in proposing and testing hypotheses that use chemical 

knowledge to predict physiological responses in animals, 100% of students were more 

competent in understanding why chemical structures matter in physiology, and 100% of 

students were more competent using publicly available databases to conduct research 

(Figure 2.4).  

Discussion 

Authentic experiences in database searches and group discussions led to students 

who were better able to: 1) understand the relevance of pharmacokinetics in animal 

physiology; 2) practice integration of skills and knowledge in chemistry, computing, 

physiology, pharmacology, and ecology; and 3) explore how this integration can advance 

science. Students participating in the PK LURE met lab objectives of conducting 

searches on publicly available databases and interpreting results (Pubchem and 

SwissADME). They also strengthened communication skills by comparing and 

contrasting PK properties in small groups to determine which chemicals were more likely 

to have biological effect in consumers. This experience allowed them to formulate novel 

hypotheses to determine outcomes of chemical interactions within the body and conduct 

literature searches to support their formulated hypothesis within a lab setting. Each of 

these objectives, combined with the optional remote aspect of this lab, allowed us to 

reach a larger and more diverse cohort of students while also integrating multiple 

disciplines into the LURE module. 

The PK LURE provided students a unique opportunity to strengthen their 

Knowledge Skills and Abilities (KSA) in database navigation and interpretation, 
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formulating directional scientific hypotheses, identifying and summarizing literature to 

support their hypothesis, proposing and testing hypotheses that use chemical knowledge 

to predict physiological responses in animals, understanding why chemical structures 

matter in physiology, and using publicly available databases to conduct research (Figure 

2.3, 2.4). Each of these KSAs can be used to help students highlight their knowledge 

when interviewing for prospective job opportunities (Lopatto, 2007). For example, 

students interested in disciplines like animal physiology (veterinary medicine/research) 

(Dale et al., 2010) can speak to the strong communication and research skills associated 

with how animals interact to chemicals. Students interested in pharmacology (Toews et 

al., 2005) can speak to PK knowledge and the chemical skills. Students interested in 

conservation of natural resources (Midden et al., 2007) gained communication skills in 

terms of public speaking and understanding plant-herbivore interactions. As such the 

KSA in physiology, chemistry, pharmacology, and computing gained in this LURE 

created a more competent workforce and made our undergraduates more competitive for 

veterinary medicine, pharmaceutics, and natural sciences job opportunities.  
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Figures 

 
Figure 2.1 The making of a Lab-based Undergraduate Research Experience 

(LURE) lab. Students used ‘Relevant’ (remote) ‘Scientific Practices’ in computing 
to ‘Discover’ pharmacokinetic information about compounds that influence animal 

physiology and ‘Collaborated’ with each other and a graduate student to 
‘Iteratively’ generate new data, relevant literature, and hypotheses. 
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Figure 2.2 The cycle of how the pharmacokinetic (PK) Lab-based 

Undergraduate Research Experience (LURE) module fits into the validation step of 
PK output and revision an automated pipeline in Chapter 1. Specific areas of 

scientific training that increased competency of undergraduate students (Figure 2.3) 
are shown in outer boxes. 
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Figure 2.3 Change in competency perceived by undergraduate students in 

research skills learned and reinforced in the Pharmacokinetic Lab-Based 
Undergraduate Research Experience module. 
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Figure 2.4 Change in competency perceived by undergraduate students in 

scientific skills learned and reinforced in the Pharmacokinetic Lab-Based 
Undergraduate Research Experience module. 
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Pictures 

 
Picture 2.1 Knowledge, Skills, and Abilities (KSA) Survey question on research 

skills. 
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Picture 2.2 Knowledge, Skills, and Abilities (KSA) Survey question about ADME 

lab outcomes. 
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APPENDIX A 

Link to GitHub Repository and Screen Shots of Repository 
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Link and screenshots of GitHub repository showing file structure of the project.  

 

GitHub link: https://github.com/celyounan/PK_ADME  
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APPENDIX B 

Sample Undergraduate Biology Degree Plan 
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Sample undergraduate biology degree plan. Possible courses with number of 

credits. Courses in Red are courses that have content integrated and reinforced in the 

Pharmacokinetic Lab-based Undergraduate Research Experience module. 
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APPENDIX C 

PowerPoint Presentation Presented to Undergraduate Students in LURE Course 
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LURE PowerPoint presentation on Pharmacokinetics (ADME) Lab presented to 

Animal Physiology and Nutrition course where specific topics from their degree program 

and integration of disciplines were emphasized (as note indicated with an asterisks).  

 

*Pharmacology 
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*Physiology 

*Pharmacology 
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*Computing 

*Computing 
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*Statistics

 

*Statistics
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*Ecology and Chemistry 

*Ecology and Chemistry 
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*Ecology  

*Medicine 
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*Communication

 

*Computing
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APPENDIX D 

Hypothesis and Summaries for Each Team in LURE Course 
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Hypothesis and summaries Animal Physiology and Nutrition (LURE course) 

students developed in teams.  

Team 1 

Hypothesis - “CYP1A2 metabolizes a drug used in the treatment of asthma. We 
hypothesize that someone taking both asthma medication and scoparone would see a 
reduction in the function of their asthma medication, resulting in more severe asthma 
symptoms.” 

Summary - “The researchers compared the metabolism rate of Theophylline in two 
groups of rats; one having normal counts of CYP1a2 and one with low counts of 
CYP1a2 and found that the rats with higher CYP1a2 levels were able to metabolize 
more Theophylline. This confirms the role of CYP1a2 as a metabolizing agent of 
theophylline. Theophylline is used in the treatment of respiratory ailments, including 
asthma.” 

Team 2 

Hypothesis - “The absorption of prunasin will reduce glucose absorption in mammals.” 

Summary - “While testing to find the transport mechanism for prunasin this study 
found that prusasin when consumed by rats reduces the absorption of glucose in the 
intestine.” 

Team 3 

Hypothesis - “We hypothesize that if a human consumed lavandulol, it would interact 
with their nervous system and have a sedative affect.” 

Summary - “This study found that lavadulol (and other chemicals found in lavender 
oil) have the ability to interact with the nervous system and produce a sedative, mood-
stabilizing, and even anti-convulsive affect.” 

Team 4 

Hypothesis - “Habitual smokers (human) who inhale diffused eucalyptol oil (via 
diffuser device) alongside experience less severe effects of smoking on the lungs.” 
 

Summary - “Kennedy et al., tested six mice who were exposed to short-term cigarette 
smoke and a group that was not. The results suggest a reduction in immune response 
(number of leukocytes and cytokines) and a reduction in reactive oxygen species in 
mice who smoked but were also exposed to eucalyptol.” 
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Team 5 

Hypothesis - “A human that ingests with this chemical would experience lower stress 
and anxiety.” 

Summary - “Kaempferol increases survival rate in mice when receiving total body 
gamma irridation because it inhibits oxidative stress. Kaempferol protects tissues and 
prevents changes in cell morphology that would result in cell apoptosis.” 

Team 6 

Hypothesis - “We hypothesize that Hordenine's high GI absorption capability, as well 
as its ability to penetrate the blood brain barrier, could have significant, positive effects 
on the human brain.” 

Summary - “The paper supports our hypothesis that hordenine has positive impacts on 
human brain fuction. This study shows GI absorption of hordenine was inefficient, but 
dosing through nasal or intravenous methods results in better absorption and higher 
brain uptake of the chemical, which overall leads to stronger interactions with 
dopamine receptors. Hordenine affects dopamine receptors in the brain, which could 
have positive impacts on mood, and can also be used to help with central nervous 
system disorders.” 

Team 7 

Hypothesis - “We hypothesize that borneol's ability to penetrate the blood brain barrier 
can have beneficial effects on the nervous system in humans.” 

Summary - “Researchers wanted to understand borneols ability to be used as a glioma 
tumor treatment. They tested the abililty of borneol to open the blood brain barrier as a 
treatment to test its effect on glioma cells in rats. They also tested how borneol 
influenced apoptosis in cultured human glioma cells, and found that it increased 
apoptosis of these cells, supporting the hypothesis that borneol can have beneficial 
influences on human health.” 
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APPENDIX E 

Pharmacokinetics Absorption, Distribution, Metabolism, and Excretion (ADME) 

Lab Protocol 
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Students were given this pharmacokinetics (ADME) Lab protocol to complete 

after being presented with a pharmacokinetics presentation (Appendix C).  
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