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ABSTRACT

In this contribution, a particle filter (PF) is proposed for
tracking a single target illuminated with a digital-video-
broadcasting terrestrial (DVB-T) signal in a multistatic radar
system. This algorithm utilizes a single-stage scheme, i.e. it
estimates the target position trajectory in a Cartesian coordi-
nate system directly from the signal reflected by this target.
The multiple stages adopted in the conventional approaches
are unnecessary. The proposed algorithm augmented with
successive interference cancellation can be used to track
individual targets in a multiple-target scenario. Simulation
studies show that this PF exhibits lower complexity and better
performance than two conventional algorithms using multiple
stages.

Index Terms— Target tracking, multistatic passive radar,
maximum likelihood estimation, terrestrial digital-video-
broadcasting, and particle filtering.

1. INTRODUCTION

Target tracking algorithms available in open literature all op-
erate in successive multiple stages. For instance, the meth-
ods proposed in [1, 2] have three successive stages, which
are i) estimation of the parameters, such as delay (time of ar-
rival), Doppler frequency and angle of arrival, of the signals
reflected by targets, and the detection of the target signals us-
ing thresholding techniques [2], ii) association of the parame-
ter estimates to individual tracks, one for each target, and iii)
estimation of the target (position) trajectories in a Cartesian
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coordinate system from these tracks. The latter two stages
are combined as one stage in the particle-filter (PF)-based al-
gorithms described in [3, 4]. The recently proposed track-
before-detection (TBD) algorithms [5, 6] also utilize a two-
stage scheme. In the first stage, the dispersion power spec-
trum, e.g. in delay and Doppler frequency, of the received
signal is estimated. Then the target trajectories are extracted
in the second stage. Following the nomenclature used in [7],
we refer to the (complex baseband) signal reflected by a tar-
get at the output of the radar receiver as a “target signal” and
the parameters characterizing this signal as the “target signal
parameters”.
The multi-stage-based tracking algorithms have two dis-

advantages: i) the estimates of the target trajectories are not
maximum likelihood (ML) estimates, even in the case where
ML likelihood methods are used to estimate target signal pa-
rameters, and extract target trajectories sequentially [8]; ii)
these tracking algorithms calculate the estimates of target sig-
nal parameters or the dispersion power spectrum indepen-
dently from individual observations, i.e. without exploiting
the dynamic behavior of the targets. This procedure leads
to a loss of information and consequently to a performance
degradation.
In this contribution, we propose a PF-based single-stage

tracking algorithm which estimates the target trajectory in
the Cartesian coordinate system directly from the target sig-
nal without performing the intermediate stages, such as tar-
get signal parameter estimation and track association. To our
best knowledge, this PF is the first single-stage algorithm for
target localization and tracking using electromagnetic waves.
We use this algorithm to track targets illuminated with digital-
video-broadcasting terrestrial (DVB-T) signal in a multistatic
passive radar system. The performance of this PF is com-
pared with those of two conventional algorithms by means of
Monte-Carlo simulations.
The organization of the paper is as follows. Section 2

presents the state-space model of the target movement and
the observation model of the target signal. In Section 3, the
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proposed PF algorithm is formulated. The performance of the
algorithm is investigated by means of simulations in Section
4. Concluding remarks are addressed in Section 5.

2. SIGNAL MODEL

In this section, the movement of a target in a 2-dimensional
Cartesian coordinate system is described by a state-space
model. The observation model of the target signal is pre-
sented. We consider a single-target scenario for the presenta-
tion.

2.1. The State-Space Model

Tracking the trajectory of a target can be viewed as the esti-
mation of the state of a dynamical system from observations.
In our case, the dynamic behavior of the state is described by
the linear model

θk = F kθk−1 + Gknk−1, k = 1, . . . , K, (1)

where the state vector θk = [pT

k vT

k ]T with (·)T representing
the transpose operation consists of the position pk ∈ R2 and
the velocity vk ∈ R2 of a target at the beginning of the kth
observation period in a 2-dimensional Cartesian coordinate
system, the driving process nk ∈ R2, which is assumed con-
stant within the kth observation period, accounts for the accel-
eration due to the unknown “manoeuvre” input,K is the total
number of observation periods, and the matrices F k ∈ R4×4

andGk ∈ R4×2 are defined as respectively

F k =

[
I2 T · I2

02 I2

]
and Gk =

[
T 2

2 · I2

T · I2

]
(2)

with T being the interval between the beginning of two con-
secutive observation periods, I2 and 02 representing respec-
tively the 2 × 2 identity matrix and the 2 × 2 null matrix.

2.2. The Observation Model

The considered multistatic radar system hasM receivers and
one transmitter, all equipped with one isotropic antenna. The
complex baseband signal yk,m(t) at the output of themth re-
ceiver in the kth observation interval t ∈ (tk,m, tk,m + Ts],
where tk,m and Ts denote respectively the beginning and the
duration of data acquisition (Ts ≤ T ), can be written as

yk,m(t) = xk,m(t; φk, αk,m) + wk,m(t) (3)

with xk,m(t; φk, αk,m) representing the target signal, and
wk,m(t) being a complex zero-mean circularly symmetric
Gaussian noise process with spectral height σ2

w. The target
signal xk,m(t; φk, αk,m) is modelled as

xk,m(t; φk, αk,m) = αk,m · exp{j2πfcτk,m(t; φk)}

· u(t − τk,m(t; φk)), (4)

where φk = (θk, nk) denotes the motion-related parameters
of the target, αk,m denotes the complex gain, fc is the carrier

frequency, and u(t) represents the transmitted signal. The
delay τk,m(t; φk) of the target signal can be written as

τk,m(t; φk) =
(
‖pTx − rk(t; φk)‖+

‖pRx,m − rk(t; φk)‖
)
/c,

where the vectors pTx and pRx,m denote respectively the lo-
cation of the transmitter and the location of themth receiver,
‖ · ‖ represents the Euclidean norm, c is the speed of light,
and the target trajectory rk(t; φk) within the acquisition pe-
riod t ∈ (tk,m, tk,m + Ts] is calculated as

rk(t; φk) = pk + (t − tk,m) · vk

+ (t − tk,m)2 · nk/2. (5)

In this contribution, we consider the scenario where the
received signal yk,m(t) in (3) is sampled at N discrete-time
instants, i.e. t1, t2, . . . , tN with sampling rate T−1

a . For nota-
tional convenience, the vector

yk,m = [yk,m(t1), . . . , yk,m(tN )]T

is used to denote all samples received at themth receiver and
the kth observation period, yk = [yT

k,1, y
T

k,2, · · · , yT

k,M ]T

represents the samples obtained at all receivers in this period,
and y1:k = (y1, y2, . . . ,yk) denotes all samples received up
to the kth observation period.

3. THE PARTICLE FILTER

From (1) and (3), we see that the received signal yk in a
single-target scenario depends only on the current parame-
ters Ωk = (φk, αk) with αk = [αk,1, . . . , αk,M ]T and is
conditionally independent of the other states given Ωk. Uti-
lizing this property, a sequential Monte-Carlo method [9] can
be used to estimate the posterior probability density function
(pdf) p(Ω1:k|y1:k), where Ω1:k = (Ω1, . . . ,Ωk) denotes the
sequence of the parameters of a target up to the kth observa-
tion period. In the following, we propose a PF to estimate
Ω1:k sequentially from y1:k. Using this algorithm to track
multiple targets is discussed at the end of this section.

3.1. Initialization

The parameters characterizing the ith particle in the kth ob-
servation reads Ω

i
k = (φi

k, αi
k), i = 1, . . . , I , where I is

the total number of particles. The parameters in the first ob-
servation, i.e. Ωi

1, i = 1, . . . , I , are initialized using the ML
estimates ofΩ1, i.e.

φi
1 = (̂φ1)ML

= argmax
φ

1

|yH

1s(φ1)|, (6)

αi
1,m = ̂(α1,m)ML

=
sH

1,m((̂φ1)ML)y1,m

‖s1,m((̂φ1)ML)‖2
, m = 1, . . . , M (7)
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with (·)H representing the Hermitian operation, the vector
s1,m(φ1) = [s1,m(t1; φ1), . . . , s1,m(tN ; φ1)]

T with

s1,m(t; φ1) = exp(j2πfcτ1,m(t; φ1))

u(t − τ1,m(t; φ1)), (8)

and the vector s(φ1) = [s1,1(φ1)
T, . . . , s1,M (φ1)

T]T.

3.2. The Steps of the Particle Filter

When a new observation, say yk, is available, the PF performs
the following steps.
Step 1: Predict the parameter vectors of particles and

calculate the importance weights. The PF output from the
previous observations is (Ωi

k−1, w
i
k−1), i = 1, . . . , I , where

wi
k−1 denotes the importance weight of the ith particle. We
first predict the parameters of all particles for the kth observa-
tion. The values ni

k, i = 1, . . . , I are drawn from N (0,Σn),
where the acceleration covariance matrix Σn can be prede-
termined based on the kinematic feature and the manoeuver
hypothesis of the target.
The vectors pi

k, vi
k and αi

k are calculated as respectively

pi
k = pi

k−1 + Tvi
k−1 + T 2ni

k−1/2, (9)
vi

k = vi
k−1 + Tni

k−1, (10)

αi
k,m =

sH

k,m(φi
k)yk,m

‖sk,m(φi
k)‖2

, m = 1, . . . , M. (11)

The importance weights of the particles are computed as

wi
k =

wi
k−1p(yk|Ω

i
k)

I∑
i=1

wi
k−1p(yk|Ω

i
k)

, i = 1, . . . , I, (12)

where the posterior probability p(yk|Ω
i
k) is given by

p(yk|Ω
i
k) = (2πσ2

w)−NM · exp

(
−

1

σ2
w

‖yk − xi
k‖

2

)
(13)

with xi
k containing the entries xk,m(t; φi

k, αi
k,m), t = t1, . . . ,

tN andm = 1, . . . , M .
Step 2: Additional resampling. In the considered radar

system with multiple receivers and using wideband trans-
mission, e.g. of DVB-T signals, for target illumination the
amount of temporal-spatial samples available in one observa-
tion period is usually large. As a consequence, a significant
mass of the posterior pdf p(Ω1:k|y1:k) is concentrated around
its modes. As the target moves, the particles that are gener-
ated in Step 1 can be too diffuse to “catch” the posterior
probability mass. As a result, the importance weights of these
particles are with high probability close to zero, even numer-
ically uncomputable when using MATLab. One brute-force
solution is to employ a large number of particles. However,
the resulting complexity prohibits any practical implemen-
tation. This problem can be overcome with low complexity
by using the local-likelihood-sampling and local-importance-
sampling methods [10]. Because both methods introduce

window functions in the computation of the particle weights,
the particles generated do not approximate the true posterior
pdf p(Ω1:k|y1:k), and consequently, the estimation results
can be artifacts.
In this contribution, we introduce an additional resam-

pling step in which two techniques are used for allocation
of particles without misinterpreting the posterior pdf. This
step is activated when the importance weights of the particles
obtained from (12) are so small that they are numerically un-
computable by using, e.g. MATLab. The first technique con-
sists in dropping some components in yk when calculating the
importance weights. We denote the remaining components of
yk by ỹk. As the number of components in ỹk is less than
that in yk, the posterior pdf p(Ωk|ỹk, y1:k−1) is less concen-
trated than the original pdf p(Ωk|y1:k). Thus, the particles
have higher probability to get significant importance weights
allocated.
The second method consists in computing the importance

weights as

w̃i
k = log p(yk|Ω

i
k) + log wi

k−1. (14)

The obtained set {Ωi
k, w̃i

k} is an estimate of the function
log p(Ω1:k|y1:k). This function exhibits the same modes
as p(Ω1:k|y1:k) but it has a wider curvature in the vicini-
ties of the modes. So, the probability to get non-negligible
importance weights is enhanced.
Based on these two methods, we propose an additional re-

sampling step, which can be implemented with the following
pseudo-code.
for n = 1 to N do
Step 2.1 Select vector ỹn

k which contains some of the
components of yk. The number of components in ỹn

k

increases with respect to n.
Step 2.2 Calculate the importance weights w̃i

k, i =
1, . . . , I according to (14) with yk replaced by ỹn

k .
if {w̃i

k} contains non-significant values, e.g. less than
max{w̃i

k} − 3, then
Step 2.3 Find the indices A = {is} of the particles
with significant importance weights. LetD denote the
number of particles with non-significant weights.
Step 2.4 Generate D new particles using the parame-
ter vectorsΩj(Ad)

k−1 , d = 1, . . . , D, according to Step 1.
Here,Ad denotes the dth element ofA, and j(Ad) is
the index of a particle in the (k−1)th observation from
which theAdth particle in the kth observation is gen-
erated. Replace the particles that have non-significant
weights by the new particles.
Step 2.5 Update the importance weights wi

k−1 as

wi
k−1 = J(i)−1w

j(i)
k−1, i = 1, . . . , I, (15)

where J(i) represents the total number of new parti-
cles generated using the j(i)th particle in the (k−1)th
observation. Go to Step 2.2.

end if
end for

520



Step 3: Standard resampling. The operations performed
in this step are similar to those shown in the loop in Step 2
except that the importance weights w̃i

k are replaced by wi
k

and the observation ỹn
k is substituted with yk.

Step 4: Estimate the posterior pdf. The estimate of the
posterior pdf can be approximated with the particles and their
importance weights according to

p̂(Ω1:k|y1:k) =

I∑
i=1

wi
kδ(Ω1:k − Ω

i
1:k). (16)

This pdf estimate can be used to estimate the expectation of a
function of Ω1:k. For example, the state vector Ω1:k for the
target can be estimated as

Ω̂1:k =

I∑
i=1

Ω
i
1:kwi

k. (17)

3.3. Extension to Multi-Target Scenarios

In a multi-target scenario where the targets are well separated,
the proposed PF can be multiplicated to a bank of PFs, each
one tracking an individual target. Targets are considered to
be well-separated if the delay difference of the target signals
from at least one of the receivers is larger than the intrin-
sic delay resolution of the radar system. The parameters of
the particles in each PF can be initialized using the param-
eter estimates obtained with the Space-Alternating General-
ized Expectation-maximization (SAGE) algorithm [11]. This
algorithm calculates approximations of the ML parameter es-
timates in the multi-target scenarios with tractable computa-
tional complexity. To improve the tracking accuracy and ro-
bustness, successive interference cancellation methods [12]
can be applied to mitigate the influences from the other targets
when tracking a specific target. Due to the space limitation,
the implementation details of the PF in multi-target scenarios
is not described in this contribution.

4. SIMULATION STUDIES

The performance of the proposed algorithm is evaluated via
simulations in a single-target scenario first and then in a two-
target scenario. The considered multistatic passive radar sys-
tem has three receivers and one transmitter. A DVB-T sig-
nal defined in [13] is used as an “illuminator of opportunity”.
The acquisition of the target signals is performed in a time-
division multiplexing mode as depicted in Fig. 1. The data
acquisition period Ts is set equal to the duration of one DVB-
T orthogonal frequency division multiplexing (OFDM) sym-
bol, and the interval T between two consecutive observation
periods equals 2000 · Ts.
Fig. 2 illustrates the geometrical constellation of the trans-

mitter and the receivers considered in all simulations. The
receivers are located close to each other within an area of
2 × 2 km2 on a horizontal plane as depicted in Fig. 2, while
the transmitter is 23 km away from the receiver closest to it.

R
e
c
e
iv

e
r 

in
d
e
x

T
Ts

ObservationObservationObservation
periodperiodperiod

k − 1 k k + 1

Rx 3Rx 3

Rx 2Rx 2

Rx 1Rx 1
t

Fig. 1. The data acquisition mode of the DVB-T receivers.

x [km]

y
[k
m
]

Receivers Transmitter

Fig. 2. Illustration of the geometrical constellation of the sim-
ulated scenario.

An example of a target trajectory is shown in Fig. 2. In both
scenarios the targets have the (same) speed equal to 200 m/s.
In the simulations, we assume that the locations of the

transmitter and receivers are known, and that the transmitted
signal u(t) in (4) has been estimated perfectly using a refer-
ence signal received directly from the transmitter. We con-
sider the case where the signals generated by other objects in
the environment, such as clutter, are completely removed, so
that the signals fed into the tracking algorithms are only the
target signals and noise.
Fig. 3 (a) and Fig. 3 (b) depict the a-posterior pdf

p(Ωk|yk) for two examples in a single-target scenario. The
trajectory of the target is indicated as white curves in these
figures. In both examples, p(Ωk|yk) exhibits a global maxi-
mum that is located at the true target position. This location
coincides with the intersecting point of three ellipses. The
foci of each ellipse are the location of the transmitter and
the location of one of the receivers. This observation shows
that the trajectory of a target, parameterized by Ωk, can be
estimated by maximizing p(Ωk|yk) with respect to Ωk.
Fig. 4 depicts p(Ωk|yk) in the two-target scenario with

the spacing d of the targets as a parameter ranging from 5 m
to 200 m. The signal-to-noise ratio (SNR) equals 50 dB. We
observe that for d < 40 m, the a-posterior pdfs exhibit a sin-
gle lobe. For d ≥ 40 m, two lobes appear, with the locations
of their maxima coincident with the true target positions. Cal-
culation also shows that for d > 40m, the delay difference of
the target signals observed from at least one of the receivers
is larger than the intrinsic range resolution of the considered
radar system, i.e. 0.11 μs. In such a case, the target positions
can be resolved by searching the local maxima of the poste-
rior pdf p(Ωk|yk).
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Fig. 3. A-posterior pdf of the target trajectory in a single-
target scenario at one observation instant.
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a parameter.
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Fig. 6. RMSEE of target trajectory versus SNR.

Fig. 5 depicts the estimated trajectories obtained by using
the proposed PF and two conventional tracking algorithms in
a single-target scenario. The two latter algorithms use a PF
and an extended Kalman filtering (EKF) respectively to track
the target trajectory from the estimates of Doppler frequency
and delay of the target signal. These estimates are calculated
by using a sample-based ML method applied to the samples
of the target signals received from individual observation in-
tervals. The standard deviations of the delay and Doppler fre-
quency estimates are 0.275 samples (≈ 0.3 ns) and 54 Hz
respectively. The SNR equals 30 dB. We observe from Fig. 5
that the trajectory estimated with the proposed PF algorithm
fits the true trajectory well, while the trajectory estimates ob-
tained with the conventional algorithms exhibit significant de-
viations. We calculate the root mean-square estimation error
of the target position as

RMSEE(r1:K) =

(
1

KT

K∑
k=2

∫ T

0

‖rk(t; φk)

− rk(t; φ̂k)‖2dt

)1/2

with φ̂k denoting the estimates of φk. For the proposed PF,
the conventional EKF-based algorithm and the PF-based al-
gorithm, RMSEE(r1:K) equals 0.133m, 90.8m and 134.8m
respectively.
Fig. 6 depicts RMSEE(r1:K) versus the SNR obtained

for the three considered tracking algorithms in a single-target
scenario. The proposed PF returns RMSEE(r1:K) one order
of magnitude less than those achieved with the two conven-
tional methods. Using a larger number of particles, the pro-
posed PF algorithm exhibits lower RMSEE. When 600 par-
ticles are used, RMSEE(r1:K) obtained with the new PF de-
creases linearly from 20 m to 10 cm for SNR within the in-
terval [−10, 30] dB. Simulations also show that the CPU time
of the proposed PF increases linearly with respect to the num-
ber of particles. With 50 particles, the proposed PF consumes
around one tenth of the CPU time required when implement-
ing the two conventional algorithms.
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Fig. 7. Estimated target trajectories obtained by using two
proposed PFs in a two-target scenario, with SNR 0 dB.

Fig. 7 depicts the target trajectories estimated by using
two separate PFs, each equipped with 50 particles, in a two-
target scenario. The true trajectories are separated by 65 m in
the first 20 observation periods. The SNR equals 0 dB. It can
be observed from Fig. 7 that the PF is capable of tracking the
target individually, and the estimated trajectories fit well with
the true trajectories. The RMSEE of target position equals
31.4 meters and 10.9 meters for the first and second target
respectively.

5. CONCLUSIONS

We proposed a single-stage tracking algorithm based on a par-
ticle filter (PF) to track targets in a passive radar system. This
algorithm estimates directly the trajectory of the target posi-
tion in a Cartesian coordinate system from the received com-
plex baseband signal, without performing any intermediate
stages that are necessary in the conventional tracking algo-
rithms. We implemented this method in a multistatic radar
system with three receivers and one transmitter. A Digital-
Video-Broadcasting Terrestrial (DVB-T) signal is used as the
“illuminator of opportunity”. Numerical results show that the
PF outperforms two conventional algorithms implementing
multiple successive stages, in terms of tracking accuracy, ro-
bustness and computational complexity.
It is worth mentioning that the state-space model pre-

sented in this contribution is applicable for characterizing
the motion of a mobile terminal or an object in a wireless
network. The observation model can also be generalized to
describe the complex band signals originating from the mo-
bile terminal or from the interactions with the object. The
proposed PF-based tracking algorithm can be extended for
localization and tracking of mobile terminals or moving ob-
jects in e.g. wireless communication networks and wireless
sensor networks.

6. REFERENCES

[1] Y. Boers and J. Driessen, “Multitarget particle filter
track before detect application,” Radar, Sonar and Navi-
gation, IEE Proceedings -, vol. 151, no. 6, pp. 351–357,
2004.

[2] P. Howland, D. Maksimiuk, and G. Reitsma, “FM radio
based bistatic radar,” IEE Proceedings - Radar, Sonar
and Navigation, vol. 152, no. 3, pp. 107–115, 2005.

[3] S. Herman and P. Moulin, “A particle filtering approach
to FM-band passive radar tracking and automatic target
recognition,” in Proceedings of IEEE Aerospace Con-
ference, vol. 4, 2002, pp. 1789–1808.

[4] C. Hue, J.-P. L. Cadre, and P. Perez, “Tracking multi-
ple objects with particle filtering,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 38, no. 3, pp.
791–812, Jul 2002.

[5] Y. Boers, H. Driessen, J. Torstensson, M. Trieb,
R. Karlsson, and F. Gustafsson, “Track-before-detect al-
gorithm for tracking extended targets,” IEE Proceedings
- Radar, Sonar and Navigation, vol. 153, no. 4, pp. 345–
351, 2006.

[6] M. Rutten, N. Gordon, and S. Maskell, “Recursive
track-before-detect with target amplitude fluctuations,”
IEE Proceedings - Radar, Sonar and Navigation, vol.
152, no. 5, pp. 345–352, 2005.

[7] M. I. Skolnik, Radar handbook, 2nd ed. McGraw-Hill
Professional, 1990, ISBN 007057913X.

[8] A. Amar and A. J. Weiss, “New asymptotic results on
two fundamental approaches to mobile terminal loca-
tion,” in Proceedings of 3rd International Symposium
on communication, control and signal processing (IS-
CCSP2008), Mar. 2008, pp. 1336–1339.

[9] A. Doucet, N. Freitas, and N. Gordon, Eds., Sequential
Monte Carlo methods in Practice. Springer, 2001.

[10] P. Torma and C. Szepesvári, “Local importance sam-
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