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Rigorous, Multimode Equivalent Network 
Representation of Capacitive 

Discontinuities 
Marco Guglielmi and Alejandro Alvarez Melc6n 

Abstract-In this paper we present novel, rigorous, multimode 
equivalent network representations for a variety of zero-thickness 
capacitive windows and obstacles in a parallel plate waveguide. A 
key feature of these representations is that the coupling between 
all of the modes excited is described by a matrix whose elements 
do not depend on frequency or absolute dimensions. The value of 
the results presented is that the networks developed can be used 
to analyze rigorousb a large variety of single and coupled planar 
transmission line structures. 

I. INTRODUCTION 
EVERAL equivalent network representations for capaci- S tive discontinuities are available in the technical literature 

in terms of impedance (or admittance) equivalent networks 
([l], Ch. 6.1.5) [2]-[3]. The equivalent network representa- 
tions are very useful, when they can be used, because they are 
extremely efficient from a computational point of view. Most 
of the network representations that are available, however, 
only involve fundamental modes and thus have very limited 
validity. 

In a multimode situation, it would be nice to be able 
to retain the computational efficiency of the impedance (or 
admittance) networks and still perform a full-wave analysis. 
The results given in [3] do allow the development of a true 
multimode equivalent network, but a general network form 
is not given and the applications discussed are limited to 
cases in which only the first higher-order mode is explicitly 
included. Recently, we derived a set of multimode equivalent 
network representations for inductive discontinuities [4]. The 
networks derived were rigorous, could be applied to arbitrary 
geometries, and could easily account for an arbitrary number 
of higher-order modes. 

In this paper, the procedure used in [4] is suitably modi- 
fied and applied to the analysis of zero-thickness capacitive 
obstacles and windows in a parallel-plate waveguide. The 
key component of the network representations derived is an 
impedance (or admittance) multimode coupling matrix whose 
elements are obtained in terms of the solution of an integral 
equation. The solution of this equation is shown to be known 
so that rigorous expressions for the matrix elements are 
derived. 
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A salient feature of this approach is that the integral 
equations derived, and therefore also the coupling matrices, 
do not depend on frequency or absolute dimensions. The com- 
putations of the coupling matrix elements thus only involve 
geometrical parameters that need to be computed only once 
for each given geometry. The analysis of the structures over a 
specific frequency range is then carried out via simple network 
computations that can be performed very rapidly even on small 
computers. 

In this paper, the electromagnetic formulation of the prob- 
lem is discussed together with the mathematical procedure 
that leads to the final expressions of the coupling matrix 
elements. The discontinuities analyzed in the paper are the 
single and double strip, and the single and double aperture, as 
shown in Fig. 1. However, the same procedure can be used 
to obtain network representations for an arbitrary number of 
strips or apertures as well. Numerical results are presented 
comparing the results of computations carried out using the 
networks developed in this paper and the ones obtained 
using the networks available in the technical literature. The 
convergence properties of the solutions developed are also 
discussed indicating how, in addition to being very accurate, 
the networks developed are also very rapidly convergent. 

The value of the results presented in this paper is in that 
they can be used to develop very efficient codes for the full- 
wave analysis of a large variety of single and coupled planar 
transmission line structures. 

In\ Y /.\ 

Single Strip Double Strip 

Single Gap Double Gap 

Fig. 1. Metallic, zero-thickness capacitive discontinuities for which rigorous 
multimode equivalent network representations are derived. 
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11. SINGLE STRIP 
To set up a multimode equivalent network representation for 

the single strip case, we recognize that since the discontinuity 
is uniform in the 5 direction of Fig. 1, to solve the problem 
we only need to study the discontinuity with the excitation 
at normal incidence (kz = 0). Once a network representation 
is derived, the result for the general case with k, # 0 can 
be easily obtained by following the procedure outlined in [5]. 
The excitation is chosen to be TM with respect to z so that 
only T M ,  modes will be excited. The relevant vector mode 
functions can be found in [6] ,  and the characteristic modal 
impedance is given by 

where the superscript (n) indicates z 5 0 or z 2 0 for n = 1 
or n = 2, respectively. It is important to note at this stage 
that, for m + 00, the modal characteristic impedance takes 
the form 

The first step of the formulation is the expansion of the total 
transverse electric field in terms of the modes of the parallel 
plate waveguide, obtaining 

00 

E!”) = v g ) ( z > e , ( y ) .  (3) 
m=O 

The next step is the imposition of the boundary conditions on 
the metal strip, namely, 

m 

v$)e, (y)  = 0; z = 0. (4) 
m=O 

Let us now observe the behavior of the terms being summed 
in (4) for m + 00, namely, 

where constant B is given by 
-ja B = -  

and the minus sign on the right-hand side of (5) is a con- 
sequence of the assumption that the excitation consists of an 
arbitrary but finite set of T M  modes so that, for m --$ 00, 

only reflected contributions are present. 
As will be evident later, it is now convenient to add to and 

subtract from (4) the term 

then add the resulting equations to each other and obtain, with 
a few manipulations, the following expression: 

03 03 

where the modal voltage and currents Vp) and 12’ have 
been redefined according to 

The next step in the solution of the problem is the use in (8) 
of the transform relation between the transverse magnetic field 
at the discontinuity location and the modal currents, obtaining 

The above expression can now be used in (8), obtaining 

Note that, in writing this last equation, we have changed, 
for convenience, the index of the summation from m to n in 
the right-hand side of (8). 

Due to the linearity of the problem, we can define a set of 
unknown functions Mm which are related to the transverse 
magnetic field via 

00 

-zo x ( H ( l )  - = VmA,Mm(y’) (13) 
m=O 

where A,  is a vector constant to be defined later. 

following integral equation is finally obtained: 
Inserting (13) in (12), and comparing like coefficients, the 

The completion of the network formulation is obtained by 
substituting expression (13) into (1 l), finding 

This expression can now be used to define the multimode 
equivalent network representation in Fig. 2, where the generic 
element Y,,, of the multimode coupling matrix is given by 

It is important to note that the derivation of the funda- 
mental integral equation has been camed without introducing 
any approximations. Furthermore, the kernel of (14) is not 
frequency dependent and this greatly simplifies the solution 
of the problem. The only frequency dependent term is B, as 
defined in (6). As a consequence, the resulting expression for 
the generic coupling matrix element Yn,m has the same, very 
simple frequency dependence. 

The last step of the procedure is the solution of (14). As 
will be shown, this integral equation can be reduced to a 
Cauchy-type singular integral equation of known solution [7]. 
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n= 0 

n= 1 

n =  2 

Fig. 2. Specific form of the equivalent network representation of the capacitive single (and double) strip in Fig. 1. For the sake of space, only three 
modes are shown explicitly. 

As a consequence, closed-form analytical expressions for the 
generic element of the multimode coupling matrix can be 
easily obtained. The details of the mathematical procedure of 
the solution of (14) are reported in the Appendix A. The final 
expression for the generic coupling matrix element is 

where 

r12 - (-1rrl1 
2 

k,  = 

111. DOUBLE STRIP 

The formulation of the double-strip problem is essentially 
identical to the single strip case. The only difference is that 
now all integrations are performed over an interval that has 
a gap in it, corresponding to the air gap between the strips 
in Fig. 1. As a result, the network shown in Fig. 2 is still 
applicable, provided that the appropriate expression is used 
for the coupling matrix elements Yn,m. Using the single-strip 
results derived in the previous section, we can therefore write 

n = O  

- s in (yd2) ] ;  n # O  directly 
(18) 

d g )  03 

.I d l = 3 f m  (+ arCcoS[kl + k 2 v ] )  E n e , e : d y ’  (27) 

where the bar through the integrals means that the integration 
variable cannot assume values in the interval [ d F ) , d y ) ]  in 

Equation (27) can again be reduced to a Cauchy-type 
singular integral equation of known solution ([l], Ch. 7.1). 
The mathematical details are reported in Appendix A, and the 
final expression for the generic coupling matrix element now 

+ $1 n=l 
d v  (20) 

(21) 

e m  = ir) Mm(Y’)Ao * 
u - v’ 

f m ( Y )  = COS( Y )  

Qm 
dv (22) Fig. 1. 

d u  
(23) 
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becomes 

. I  

where f m ( C )  = cos[m arccos(kl+ k2[)]. (45) 

{Qk(t) + QL(t> - prn(C)}Rn(t) (29) 

n=O (30) 

(31) 

IV. SINGLE APERTURE 
The multimode equivalent network for the single and double 

strip cases has been set up in terms of the magnetic field 
discontinuity due to the present of the metal strip. For the 
single and double aperture cases, it is more convenient to set 
up the formulation in terms of the electric field in the air gaps. 

The first step in the formulation is again the expansion of 
the total transverse magnetic field in the form 

Fn,m(t)  = 
X ( t )  & G x ?  

Rn(t) = -{ 1 arccos(kl+ k2c1> 4; 
I C ~  $ sin[n arccos(kl+ ~ c z ~ ' ) ]  4; n # o 

r l - 1  
2 

= rl2 (1) - rly [t - $ (vi1) + vi2))] (32) 
00 

(46) H p )  = @ ( z ) h m ( y )  
= cos( f d&)) (33) m=O 

#' - ( - q n r l p  
2 

where the superscript (n) indicates z 5 0 or z 2 0, for n = 1 
or n = 2, respectively. The next step is the imposition of the 
boundary conditions in the air gap, obtaining 

ICn = (34) 

m M 

(35) 

Similarly to what was done previously, we now observe the 
behavior of the terms being summed on the left- and right-hand 
sides of (47) for m + 03, obtaining 

(n\ 

lim I p ' h m ( y )  = ( - l )nVk)  - €; ' h m ( y )  (48) 
m-im mB 

where constant B is again given by (6), and the minus sign 
on the right-hand side of (48) is again a consequence of the 
assumption that the excitation consists of a finite set of TM 
modes so that, for m + 00, only reflected contributions are 
present. 

Following the same procedure developed for the single strip 
case, we now add and subtract to both sides of (47) the term 

and obtain, with a few manipulations, the following expres- 
sion: 

Qk (k;"" + k,""v) + QL (ky" + k,";'u) 00 00 ( p  + €$2)) 

M Y )  (50) B m  rmhm(U/) = vm x(k;" + k,"'") J1 - [kl + k z ( k ; J  + k,u"u)] 
m=O m=l 

.kill du (42) where the modal voltage and currents Vk'  and 12' have 
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The next step in the solution of the problem is the use in 
(50) of the transform relation between the transverse electric 

Inserting now (55) in (54), and comparing like coefficients, 
the following integral equation is obtained: 

field and the modal voltage, namely, d2 

hm(Y) = ll Mm(y)Ao * B-’ ( E ! ~ )  + 
00 

- 

(56) 
V ,  = lp’ [zo x E] h: dy’ (53) . h,(y)h:(Y’) dy / .  

n 

The completion of the network formulation is obtained by 
substituting expression (55) into (53), finding 

,=l 

obtaining, after a few manipulations, the following expres- 
sion: 

(note that, since the obstacle is zero thickness, we have 
E(’) = E(2)  = E in the air gap). In writing this last equation, 
we have changed, for convenience, the index of the summation 
from m to n on the right-hand side of (50). 

Due to the linearity of the problem, we can again define a set 
of unknown functions Mm which are related to the transverse 
electric field in the air gap via 

00 

m=O 

The result of this last step can again be used to define a 
multimode equivalent network representation (Fig. 3) where 
the expression for the generic element Z,,m of the multimode 
coupling matrix is given by 

d2 

Zn,m = Mm(y’)Ao * h:(y’) dy’. (58) 

It is important to note that the integral equation derived has 
all the features already outlined for the strip case. The details 
of the mathematical procedure of its solution are reported in 
Appendix B. The resulting final expression for the generic 
coupling matrix elements is 

where A, is a vector constant to be defined later. (59) 

n =  0 

n =  1 

n =  2 

Fig. 3. 
three modes are shown explicitly. 

Specific form of the equivalent network representation of the capacitive single (and double) aperture in Fig. 1. For the sake of space, only 

~ 
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//.I \ 

4 (75) 
Rk(<)Qi(c) 1 

( 1 )  - V. DOUBLE APERTURE " - a /, J- 
The network representation shown in Fig. 3 can be used 1 - (kl + lC2,$ J i 7  

4 (76) 

d5 (77) 

for the case of the double capacitive aperture shown in Fig. 1 1 
as well. To obtain the appropriate expression for the coupling 
matrix element Zn,m, we only need to introduce an additional 
gap in the integration intervals. The fundamental equations 
then becomes 

QE (5) 

d g )  

1 - 5'2 
cos [ I  arccos(k1 + kz t ' ) ]  4' (78) 

Zn,m = f Mm(y')Ao * h;(y ' )  dy' (63) 1 
d:') Qz(5> = 7 / 

d ( 2 )  
-1 

h, = f Mm(y')Ao B-'(&) + E:')) 
d:') 

where the bar through the integral means that the integration 
variable cannot assume values in the interval [dp),df)] in 
Fig. 1. 

Equation (64) can again be solved analytically, and we refer 
the reader to Appendix B for the mathematical details of its 

1 

qn = COSX, 

kn = ~ ( V Z  - ( - l ) n ~ l )  solution. The resulting final expression for the coupling matrix 
elements is given by 

x1 = arccos [ a (  - cos - rf) - c)] 

x2 = arccos [:( - cos - xf?) - C)]. (86) 

VI. NUMERICAL CONVERGENCE PROPER~ES where 

(66) The expressions derived in the previous sections for the 
generic coupling matrix elements of the single and double strip 
cases generally involve integrations that are best performed 
numerically. In all of the cases that we considered, a 96- 
point Gauss integration procedure has been used [8], for 

(67) a maximum modal index m = 40, obtaining very good 
numerical convergence. 

The results developed for the single and double aperture 
cases contain summations in addition to integrals. The integrals 
have been treated numerically in the same fashion as for the 
strip cases without any difficulty. What is left is to evaluate 
the convergence properties of the summations in (59) and (65). 
Fig. 4 shows the variation of the value of the coupling matrix 
element for n = 10 and m = 10 according to (59) (single 
aperture) as a function of the number of terms summed. As 
we can see, adding ten terms, good convergency has already 
been achieved. 

(68) 

(69) 

(70) 

(71) 
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The double aperture case is slightly more complex than the 
single aperture since it involves double summations. Again, 
in Fig. 4, the convergence behavior of the coupling matrix 
element for n = 10 and m = 10 according to (65) (double 
aperture) is shown (dotted line). For this calculation, 28 
terms have been computed in all the other sums required. 
The discontinuous behavior in Fig. 4 is due to the fact that 
the test was performed using a centered obstacle (single or 
double aperture). In this case the even modes are not excited 
and, therefore, the contribution presented by these modes is 
negligible. 

We have also evaluated the convergence of the inner sum- 
mations, and it has been found that the values of Si"' and 
SJm), computed for m = 10, according to (72) and (73), reach 
a reasonable constant value with again just 10 elements. As 
a conclusion, we can say that in spite of the more complex 
analytical expression for Z,,,, the convergence properties 
of the double aperture are similar to the ones of the single 
aperture. Furthermore, if the modal index m or n is increased, 
a similar behavior is observed, obtaining good numerical 
convergence with a number of terms equal to the largest modal 
index. 

An additional convergence test that is useful in appreciating 
the value of the representations derived is its modal conver- 
gency, namely, the number of modes that must be explicitly 
included in order to obtain the numerical convergency of the 
results obtained from the network calculations. In Fig. 5 we 
show the normalized susceptance introduced by a centered 
capacitive strip, and by a centered capacitive aperture in the 
lowest mode of a rectangular waveguide, versus the number 
of higher order modes explicitly included in the calculations. 
As we can see, in both of the cases, ten modes are enough to 
obtain acceptable numerical accuracy. 

In the example shown in Fig. 5, only one mode is above 
cutoff in the waveguide. If the frequency of operation is 
increased, so that more modes are allowed to propagate, one 
must increase the number of modes explicitly included in the 
network calculations. The exact number of modes that must 

- 
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Fig. 4. Convergence behavior of the coupling matrix elements for the single 
and double aperture problem. The computed parameter is Zn,,,, in (59) and 
(65) for n = 10 and m = 10. 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 
Number of Modes 

Fig. 5. Number of modes needed to get numerical convergency with the 
network developed. The computed parameter is the normalized susceptance 
introduced by a centered capacitive strip and by a centered capacitive aperture 
in the lowest mode of a rectangular waveguide. The waveguide dimensions 
are those in Fig. 4 with d/b = 0.9 for the capacitive strip and d/b = 0.05 
for the capacitive gap. 

be included for a specific structure is best determined by ob- 
serving the numerical convergence of the electrical parameter 
of interest. Note, however, that the network representations 
derived do not exhibit any relative convergence phenomenon, 
but give uniformly convergent results as the number of modes 
is increased. 

VII. VALIDATION OF THE RESULTS 

For a simple validation of the network representations 
derived, the results obtained for the capacitive strip in a 
rectangular waveguide has been compared with the ones 
available in the technical literature. The transition from the 
parallel plate environment to the rectangular waveguide can, in 
fact, be effected very easily following the derivation presented 

2.50 

T 

e2.00 
s 
i1.50 
m 

4 !7 
1.00 

E 0.50 
k 

z 

0.00 . . .  . . .  
.OO . l  0 20 .30 .40 .50 .60 .70 .BO .90 1 

d / b  

, 
IO 

Fig. 6. Comparison of the normalized susceptance introduced by a centered 
capacitive strip and by a centered capacitive aperture in the lowest mode of a 
rectangular waveguide. The stars and squares indicate the results obtained 
using [2] while the continuous and the dashed line have been obtained 
using the network presented in this paper. The waveguide dimensions are 
a = 22.86 mm, b = 10.16 mm, and the frequency is 9.0 GHz. The parameter 
d in this figure corresponds to d2 - dl in Fig. l(a). 
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in [5]. Fig. 6 shows the results of a comparison between [2] 
and our multimode network approach in the single mode case. 
The quantity computed is the normalized susceptance seen 
by the lowest mode as a function of the obstacle width for a 
centered capacitive strip and for a centered capacitive aperture. 
As we can see, the agreement is excellent. 

paper is included in a companion paper that focuses on the 
analysis of planar transmission line structures. 

The frequency dependent constant B becomes 

(88) 
- jTWCl0  

B,H = b[kgE, - k:] ’ 
the impedances in series attached to the network are 

(89) 
-n 

A more detailed validation of the results obtained in this i m , n  = 2 B,H 7 

and, from the separability condition, we write straightfor- 
wardly 

VIII. APPLICATION 
As a simple application for the networks developed, we 

present in this section a procedure for the computation of the 
resonant frequencies of the cavity shown in Fig. 7. To analyze 
this structure, we consider propagation in i and the resonant 
frequencies are obtained by imposing the resonant condition 
of the resulting transverse equivalent network. 

It is important to note that the networks derived apply to 
the case with k, = 0. We need, however, to consider the three 
different wave number, namely, k,, k,, and k z .  The derivation 
of the networks for the case k, # 0 turns out to be a very 
simple problem (one only needs to substitute kg by 
in the old network representation) [5] .  

Following this procedure, the problem becomes extremely 
simple as the resulting modes are the hybrid H-type, and 
this kind of mode does not couple to E-type modes in the 
discontinuity. Furthermore, the waveguide is uniformly filled 
with a dielectric E ~ ,  and this results in that no coupling between 
H-type and E-type modes is produced. The main implication 
of this is in that the structure of Fig. 7 can be studied under 
H-type and E-type excitation separately. 

The transverse equivalent network for this structure under 
H-type excitation can be extracted from Fig. 2. In this figure 
we only need to add short circuits to both ends of the 

- 

In all the above equations, the expressions for the wave 
numbers in P and j j  directions are known to be k, = m7r f a, 
k, = n?r/b. 

As an example, in the table below the resulting resonance 
frequencies are listed for a cavity with a = 15 mm, b = 
10 mm, t = 5 mm, c = 5 mm, and E ,  = 2.2. In the first 
column of the table, few resonant frequencies of the cavity 
without the discontinuity can be seen; whereas in the second 
column, the resonant frequencies of the structure with the 
metal strip are presented. In this table, w is the width of the 
metal strip, and p is the index for the wave number in E. 
Furthermore, the indexes for the wave numbers in 2 and 6 
have been fixed to m = 1 and n = 1, respectively. 

TABLE I 

w = o  w = 1.2 mm 

6.74 GHz 
p = l  15.81 GHz 15.81 GHz 
p = 2  23.59 GHz 23.59 GHz 
p = 3  32.68 GHz 32.68 GHz 

p = o  

transmission lines representing the propagation of the modes. 
These short circuits take into account the effects of the 
metallic walls at the top and bottom of the box- Now the 
characteristic impedances Of the transmission lines are the ones 
corresponding to H-type modes, namely, 

From the table, it can be seen that a new resonant frequency 
appears due to the presence of the metal strip; this technique 
can be applied to build resonators at lower frequencies without 
increasing the size of the box. 

(87) 

IX. CONCLUSION 
In this paper we have presented a set of novel, multi- 

mode equivalent network representations for a class of zero- 
thickness capacitive discontinuities. The main features of the 
results obtained are that they are rigorous and that the results 
are given directly in terms of impedance or admittance matrix. 
Furthermore, the generic elements of the coupling matrix are 
derived in terms of integral equations that do not depend 
on frequency or absolute dimensions so that they need to be 
computed only once for each given geometry. 

This last feature has very important consequences in terms 
of the numerical efficiency of codes based on this approach. 
In fact, the full formulation can be used to generate a set of 
coupling matrices corresponding to a discrete set of geome- 
tries- All other matrices corresponding to intermediate cases 
can then be simply obtained using an interpolation algorithm. 

t‘ 

X 

Z 

Fig. 7. Cavity whose resonant frequencies are computed using the network 
representation developed. 
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As a result, the CPU time required for the characterization of 
the discontinuities becomes negligible. To obtain the electrical 
behavior of a structure over a given frequency range, one only 
needs to invert a system of linear equations (once for each 
frequency point). This feature can be exploited to produce 
codes that are computationally very efficient. 

In addition to the theoretical formulations, we have pre- 
sented in this paper various results, with the aim of validating 
the multimode network representation derived. All the re- 
sults included indicate very good behavior both in terms of 
numerical and of modal convergency. 

The main application of the results obtained is to the study 
of planar transmission line structures. The networks developed 
can in fact be used to study planar transmission line geome- 
tries by using the transverse resonance technique [9]. Single 
and coupled lines can be easily studied. In addition, several 
discontinuities can be easily cascaded, thereby expanding the 
range of applicability of this approach to a very large variety 
of structures. 

APPENDIX A 

To obtain the explicit expressions in (17), we first substi- 
tute the expression for the vector mode functions in (14), 
obtaining 

B da 6 cos y y =J,, Mm(y’) 
( E ? )  + E?) 

.g n cos( y y) cos( y y’) dy’ (91) 
n=l 

where we have chosen A, such that 

We then integrate (91) by parts, obtaining 

m7r d2 Bb f i b  cos - y = - 1, Mk(y’) 

.F cos( y y) sin( 9’) dy’ (93) 
n=l 

where M A  is the derivative of M,, and we have imposed 
the condition that Mm(y) = 0 for y = dl and y = d2 
(this condition will be reintroduced later in a self-consistent 
fashion). 

The kernel of (93) can now be summed using the relation 
([l], Ch. 6.2.2) 

sin (q) 
(94) 

1 - 
cos(?) - cos(+) 
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so that (93) becomes 

sin (+) 
dY‘ (95) 

cos(?) -cos(%) 

It is now convenient to use the changes of variable 
cos(xy’/b) = 9’ and 9 = kl + kzu, where k l  and k2 are 
defined in (24), so that (95) becomes 

(97) 

where 

M k  (+ cos [kl + -Bb2 

and kl and k2 are defined in (24). Equation (97) is now 
a standard Cauchy-type singular integral equation of known 
solution [7], namely 

. fm (b 7r arccos[kl + k2u’]) d d ]  . (99) 

It is now convenient to define Qm(v) as in (20) so that (99) 
becomes 

We next derive the expression for Yn,m in (17). To do so, we 
introduce in (16) the expression for the vector mode functions, 
obtaining 

where we have used for A, the expression in (92). 
Let us now recall that 3 

Mm(Y) = J,: ~ k ( Y 1 )  dy’. 

Using (98) and (loo), eq. (102) is transformed into 
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Now, using the above expression, we can rewrite (101) in the 
form 

The completion of the solution for the double strip is 
obtained by finding the two unknown constants appearing in 
P, in (38). Using the same procedure as for the single strip -k; 

Yn,, = (e:) + problem, (103) riow takes the form 

where we have inverted the order of the integrations. At this 
point, the integral in dv can be evaluated analytically, so that 
we obtain the expressions given in (18). 

The last analytical effort is the computation of constant 

NOW, imposing the condition Mm(Y) = 0 for Y = d?), 
y = d p ) ,  y = d p ) ,  and y = d p ) ,  the following two relations 
are obtained: 

(111) C,. To find its value, we use (103) and the condition that “’) ‘wL(C’) - &,(e’> dC/ 
M,(y) = 0 for y = d l  and y = 4, obtaining = x(tl) J- 

21-1 ‘,(E’) - Qm(C’) dC/ (112) 

where <?) and &’ are those defined in (35). It is now 
convenient to use the changes of variables (109) in (111) 
and (112), so that after defining (41) and (42), the unknown 
constants take the form shown in (39) and (40). 

from which c, can be found in the form shown in (22) 
and (23). 

For the solution of the double strip, an additional gap must 
be added to the integration intervals of the relevant integrals, 
thereby obtaining (26) and (27). Equation (27) is again a 
standard Cauchy-type singular integral equation with one gap 
inside the integration interval. The solution for this equation 
can be found in ([l], Ch. 7.1.2), namely, 

APPENDIX B 
To obtain the final results given in (s9)7 we substitute the 

expression for the vector mode functions in (5% obtaining 

COS? = l: M,(y’)B-l (E:)  + 
. “ 1  cos (7 y) cos ( y  y’) dy’ (113) 

n=l 
(106) 

where ‘,(‘!), x(t) ,  and fm(C) are those defined in (38), (31), where we have chosen A, such that 
and (45), respectively. Following a procedure similar to the 
one used for the single strip, (26) now becomes 

(1 14) 

The kernel of (113) can be summed using the relation ([l], 
Ch. 6.1.2) 

where Rn is defined in (30), and Qm takes the form n=l  

(108) 
Now, using the following change of variable, originally due 

At this point, it is convenient to introduce the following 
changes of variables: 

to Schwinger 

cos -y = c + s c o s x ,  (; 1 
where k y ,  k z ,  k\, and kk are found in (36) and (37). Using (113) becomes 

1 four shown in (43) and (44). If the same change of variable fm(z) = p&’) [-;logs+ ~ c o s ( k z ) c o s ( k s ‘ )  d d  
these changes of variables for both and e‘, (108) splits in the 

and (29) for the coupling matrix elements. 

m 

is used for the variable in (107), one can easily obtain (28) k=l 

(117) 
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where we have changed the index of the summation from n 
to k for convenience, and 

jm(x)  = 6 cos[m arccos(C+ Scosx)] (118) 
M,[$ arccos(C+ SCOSZ)] 

Fm(x) = (-$)J1-(c+s....i“ 
.B-~(E$’) + E:2))(-S)sinx. (119) 

(In the above expressions, C and S are defined as in (61) 
and (62).) 

The set of functions cos(kz)  is a complete, orthogonal set 
of functions between 0 and 3r, so it is possible to express any 
function in the form 

a2 

f m ( x )  = cim) + cjm) cos(kx) (120) 
k=l 

where the coefficients can be easily obtained using the orthog- 
onality property, yielding 

and where Ohm) and Dim’ are those defined in (60). Compar- 
ing (117) and (120), we then obtain 

1” Fm(2’) dx’ = - -2  -&Dim) 1 E, (123) l o g s  3r 

Jd” Fm(2’) C O S ( ~ X ’ )  d d  = k ‘ E D i m )  . (124) 
lr 

The function Fm(s)  can now be expressed as a linear 
combination of the same set of functions, namely cos(kz), 
obtaining 

M 

Fm = ELm) cos(kz) . 
k=O 

Using again the orthogonality property, we find 
1 ”  E:”) = ; Jd F,(x) dx 

ELm) = 1” Fm(z)  COS ( k ~ )  dx (127) 

we can now write the general expression 

So that Fm(x) is found to be 

Fm(x) = ( i ) 2 ( Z ) f i D i m )  

+E ; k 2DLm’cos(kx). (130) 
k = l  

I 

1205 

We next derive the expression for Zn,, in (59). To do so, we 
introduce in (58) the expression for the vector mode function, 
obtaining 

where we have used for A, the expression in (114). Using 
(119) and (130), eq. (131) takes the form shown in (59), 
with the coefficients Dim’ defined as in (60). 

For the double gap, the only difference is that in (113) and 
(131), there is an additional gap in the integrals. To analytically 
solve the resulting equations, it is convenient to define the 
following auxiliary functions: 

where fm(y) is defined in (118), and gm(y)  is an unknown 
function. A similar procedure was also used in ([l], Ch. 7.1.2), 
but with a different definition of the auxiliary functions. 

On using (132) and (133), we remove the gap from the 
integrals in (113) and (116), yielding 

n 
n=l 

Following a procedure similar to the one previously outlined 
for the single aperture, (134) is now transformed into 

00 00 C 2kILm) COS(~Z)  = gm(2’)2  Zcos(Zx’) cos(lz) dx’ 
k = l  I=1 

where the coefficient I:,) is found in (67), and 21,  2 2  are 
those defined in (85) and (86), respectively. 

Equation (136) can be reduced to a Cauchy-type singular 
integral equation for the unknown function gm(x) .  Its solution 
was reported in Appendix A. 

Once g m ( x )  is found, the generic expression for the cou- 
pling matrix elements in (65) can be obtained in the form 
shown in Section V. 
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