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Abstract—A continuous counterpart of the Spatial Images tech-
nique is proposed for the computation of the multilayered boxed
Green’s functions and, for the first time, of their derivatives.
The method employs a set of auxiliary linear distribution of
sources to effectively impose the potential boundary conditions
along the whole cavity contour. The imposition of these boundary
conditions leads for the first time to a set of integral equations
(IEs), on the unknown distributions of the auxiliary sources,
which are solved by applying a method of moments approach.
A convergence/efficiency study, related to the test and basis
functions choice, is then presented and discussed. The technique
is combined with the use of dynamic ground planes generating
mirror basis functions which completely remove any singular
instability. Finally, the computed Green’s functions are included
into a mixed potential IE formulation for the accurate and
very fast analysis of practical multilayered shielded circuits. The
proposed technique does not suffer from any convergence issue
and it is extremely competitive in terms of accuracy and efficiency
as compared to other methods known to the authors.

Index Terms—Green’s functions, Method of Moments (MoM),
Integral Equations (IEs), Boxed circuits, Microwave filters.

I. I NTRODUCTION

T HE ACCURATE and fast analysis of boxed multilay-
ered circuits is required in the current design of many

monolithic microwave integrated circuits (MMICs). The use
of closed cavities provides physical support to microwave
devices, immunity against electromagnetic interferencesand
avoids unwanted radiation. However, shielding enclosuresalso
introduces additional effects that must rigorously be taken into
account [1].

One efficient possibility for the analysis of these boxed
devices is to employ the integral equation (IE) technique [2],
solved by the method of moments (MoM) [3]. The IE method
can be formulated either in the spectral [4], [5], [6], [7], [8] or
in the spatial domain [9], [10], [11]. The spectral domain is
usually very efficient, but it presents important convergence
problems when the dimensions of the cells employed to
discretize the printed circuits are very small as compared
to the enclosure. Although some very efficient acceleration
techniques have been proposed for1D printed structures [8],
the analysis of2D metalizations still represents and interesting
challenge. On the other hand, the spatial domain usually
expresses the boxed multilayered Green’s functions in terms
of infinite sums of spatial images, which are very slowly
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convergent. Another type of spatial-domain approach uses a
discrete set of auxiliary point sources to impose boundary
conditions on the potentials along discrete points on the cavity
contour [12], [13]. This technique is able to efficiently analyze
microwave shielded circuits but its stability strongly depends
on the adequate selection of the auxiliary sources positions,
as discussed in [13]. Besides, its discrete nature limits the
accuracy of the computed Green’s functions.

This paper presents the continuous counterpart of the
discrete spatial-domain technique presented in [12], [13],
particularized to the computation of the rectangular boxed
multilayered Green’s functions and, for the first time, to their
associated derivatives. The continuous nature of the technique
increases the accuracy that can be obtained in the Green’s
functions computation, with respect to other implementations
based on discrete sources [12], [13]. Specifically, arbitrarily
small errors in the Green’s functions computation can be
achieved. A refinement in the technique, which exploits the
decoupling of thex andy-dyadic components of the Green’s
functions in rectangular boxes, contributes to further improve
the method efficiency.

Instead of discrete auxiliary point sources as in [13], the
proposed continuous method uses a set of auxiliary linear
distribution of sources to impose potentials boundary condi-
tions along the whole cavity contour. After applying boundary
conditions, a set of IEs, on the unknown values of the auxiliary
sources, is obtained. The IE problem is then solved by using
the MoM [3]. A rigorous study about the impact of the test and
basis functions choice on the Green’s functions convergence
is then presented and discussed, showing a trade-off between
accuracy (using roof-top basis/test functions) and speed (using
point-matching basis/test functions). The concept of dynamic
ground planes [14] is applied to the basis functions, generating
mirror basis functions which completely solves any singular
situation. Finally, the proposed theory is included into a mixed
potential IE approach (MPIE) [2] and it is applied to the
analysis of practical shielded microwave circuits, with planar
metal patches printed at the dielectric interfaces. Two shielded
microstrip filters are then analyzed and compared against
other approaches and with measurements, showing excellent
agreement. A careful comparative study demonstrates that
the proposed method is extremely competitive as compared
with other IE techniques known to the authors, avoiding any
convergence problems.
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Fig. 1: An auxiliary linear distribution of sources (C′

h,1 andC′

v,1) is combined with two auxiliary ground planes to analyze
a multilayered rectangular enclosure. Mirror linear sources, with respect to the ground planes, appear from the original set
of linear sources. Potential boundary conditions are then numerically imposed along the non-covered cavity walls, andare
perfectly imposed along the covered walls. The dimensions of the cavity are60x40 mm, and it is composed of2 layers:
a dielectric layer (ǫr = 2.2 of thickness3.17 mm), and an air layer (3.0 mm height). The source is placed at the position
(−25,−5, 3.14) mm. O is the coordinates origin and cavity center.

II. GROUNDED MOM-BASED SPATIAL TECHNIQUE

This section first carefully derives the grounded MoM-
based formulation. Then, the method is extended to obtain
the n-order boxed Green’s functions derivatives. Later, the
location and definition of test and basis functions are carefully
analyzed.

A. Theoretical Overview

Let us consider a multilayered rectangular cavity, which is
excited by a point source. The first task is to obtain the Green’s
functions related to an infinite multilayered medium. This
is easily accomplished using the Sommerfeld transformation
[15] applied to the corresponding spectral domain Green’s
functions (G̃) [16].

The next step is to introduce a set of auxiliary distributions
of linear sources. These sources are located surrounding the
cavity under analysis (following the contourC′ shown in
Fig. 1). Here, the term linear is employed to emphasize that
a continuous distribution of sources (such as1D wires) is
used, instead of discrete punctual sources as was the case of
[12],[13]. The auxiliary linear sources are applied to compute
both, the electric scalar and the magnetic vector potentials. In
each case, the physical nature of the auxiliary linear sources
corresponds to the potential under analysis (charge for the
electric scalar potential and dipole currents for the magnetic
vector potential). If the height of the cavity is electrically large,
a set of discrete rings of auxiliary linear sources may be used
[13], [17]. The unknown auxiliary distribution of sources are
then computed to impose, in conjunction with the original
point source, the boundary conditions on the lateral walls.Fi-
nally, the Green’s functions inside the multilayered rectangular

enclosure are recovered with the standard convolution integrals
on the relevant sources of the problem
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whereQ(~r ′) andD(~r ′) are the auxiliary set of linear charges
and dipoles, respectively. Also, (S0) denotes the zero-th order
Sommerfeld transformation, applied to the spectral domain
Green’s functions for a specific source (~r ′) and observer point
(~r) locations. Note that a similar expression can easily be
derived for ay-oriented source dipole.

The auxiliary linear sources are combined with the use of
dynamic ground planes, a concept introduced in [14]. This
allows to completely remove any singular instability produced
by the point source when it is placed close to a cavity wall.
Following this approach, ground planes are located along the
closest walls to the point source, as shown in Fig. 2. This leads
to the generation of mirror auxiliary linear sources, which
imposes perfect boundary conditions on the two covered walls.
In this way, accuracy is preserved for all positions of the source
point. Furthermore, efficiency is highly improved, becausethe
values associated to the mirror distribution of sources is known
from basic electromagnetic theory [14], [18].

The boundary condition that must fulfill the electric scalar
potential along the cavity walls is

GVrect
(~r, ~r ′

0,0)|C = 0. (3)
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Fig. 2: Dynamic position of the auxiliary ground planes as a
function of the point source location. The new planes position
defines the quadrant where the cavity under analysis is placed.
The set of auxiliary linear sources is placed in the same
quadrant as the cavity, whereas mirror linear sources appear
in all other quadrants.

In order to obtain the values of the auxiliary set of linear
charges,Q(~r ′), this last equation is combined with Eq. 1.
The resulting equation has the form of an IE [2], which can
be solved by the MoM [3]. For this purposeQ(~r ′) is expanded
as a sum of basis functions as

Q(~r ′) ≅

R
∑

m=1

BV
∑

k=1

αk,m

4
∑

g=1

PGV
(~r ′

0,0, g)f
g,k,m
V,b,a (~r ′), (4)

whereR is the total number of rings,BV is the total number
of basis functions,fg,k,m

V,b,a (~r ′) is the basis function numberk,
placed on the ringm, related to the scalar electric potential
(V ), and located on any (horizontal or vertical) direction
a within the g quadrant (withg = 1, 2, 3, 4), and αk,m

is the weight associated to this basis function. Note that a
specific weightαk,m is associated to a particular basis function
(k,m), but also to all its mirror basis functions (placed in all
quadrants,g = 1...4). The adequate sign of each mirror basis
function

[

PGV
(~r ′

0,0, g)
]

depends on the quadrants of the point
source and the mirror images, and it is given in Table I.

Introducing Eq. 6 into the IE, a standard MoM technique
yields to a system of linear equations. After solving the system,
the weights of the basis functions (αk,m) are recovered.
This allows to express the electric scalar potential insidethe
multilayered rectangular enclosure as shown in Eq. 7.

In order to compute thexx-component of the magnetic
vector potential dyadic Green’s function, the two boundary
conditions to impose are

Gxx
Arect

(~r, ~r ′

0,0)|Ch
= 0, (6)

∂Gxx
Arect

(~r, ~r ′

0,0)

∂x
)|Cv

= 0, (7)

TABLE I: Signs which must be applied to the auxiliary sources
as a function of the quadrants (defined by the ground planes)
where the original point source and the auxiliary sources are
located.

Auxiliary source quadrant [g]
Source quad. Quad. 1 Quad. 2 Quad. 3 Quad. 4

PGV

1 + - + -
2 - + - +
3 + - + -
4 - + - +

Px
GA

1 + + - -
2 + - - +
3 - - + +
4 - + + -

P
y
GA

1 + - - +
2 - - + +
3 - + + -
4 + + - -

where the suffixh andv denote horizontal and vertical walls,
respectively. Note that boundary conditions are decoupledand
they can be imposed separately on each wall, leading to two
systems of equations withBA,ξ unknowns (whereBA,ξ is the
number of basis function related to the wallξ, with ξ = h, v)
instead of one system of2BA,ξ unknowns, as formulated in
[14]. This is possible because anx-oriented dipole can not
create ay-oriented potential component inside a rectangular
cavity, an vice-versa [18]. Introducing theGxx

A component
(Eq. 4) into Eq. 8 and Eq. 9, two IEs are obtained. In order
to apply the MoM, the auxiliary linear distribution of dipoles
is expanded as

D(~r ′) ≅

R
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BA,ξ
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α
x,ξ
k,m

4
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g,k,m
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(8)
whereαx,ξ

k,m is the weight associated to thek basis function,
placed at them ring, associated to thex-dipole source and
imposed on theξ wall, andP x

GA
(~r ′

0,0, g) (see Table I) is the
sign associated to each auxiliary source, as a function of the
quadrant where it is defined.

Introducing Eq. 10 into the two IEs, a standard MoM
technique yields to two systems of linear equations. Once they
are solved, the weights of the basis functions are recovered,
and thex-component of the magnetic vector potential can be
expressed as shown in Eq. 11. In the case that the source is
oriented along they-axis, a similar formulation can easily be
derived.

B. Calculation of the Nth order GF derivatives

The proposed formulation allows the easy computation of
the boxed Green’s functions spatial derivatives of ordern,
without requiring an additional computational effort. These
derivatives may be useful, for instance, during the computation
of the fields in the vicinity of microstrip discontinuities or in
the analysis of finite size dielectric objects with surface for-
mulations. For this purpose, derivatives are taken on Eq. 7 and
Eq. 11 over the source-observer spatial distance (ρ = |~r−~r ′|),
leading to the expressions shown in Eq. 13 and Eq. 14. The
main advantage of this approach is that basis functions and
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their associated weights are independent of (ρ), and are not
affected by the derivative. This means that there is no need
to reformulate the problem for this specific case. On the other
hand, the only term in the expressions which is affected by the
(ρ) derivative is the Sommerfeld transformation. Specifically,
it is known that the derivative of theN -order Sommerfeld
transformation is related to the (N + 1)-order Sommerfeld
transformation [15], as follows

∂SN [G̃]|ρ
∂ρ

= SN+1[G̃]|ρ (10)

This property has been employed in Eq. 13 and Eq. 14. Finally,
note that the spatial derivatives related to thex or y-directions
can easily be obtained from these equations, simply by using
the chain’s rule of the derivative.

C. Proper Termination of Test and Basis Functions

The use of auxiliary ground planes requires a proper defi-
nition and termination of the basis functions employed in the
problem. After that, test functions are located along the non-
covered walls of the cavity following similar ideas.

In the case of the electric scalar potential, the auxiliary
charge must be zero at the ground planes. This condition is
enforced by terminating the mesh with an entire basis function.
Besides, the sharp corner on the auxiliary sources (contourC′

in Fig. 1) is handled by employing two half-basis functions,
which are interconnected, creating a unique basis function, to
enforce continuity of the charge at the corner. This procedure
is similar as the usually employed in the IE MoM for the
modeling of junctions in the metalizations [19]. An example
of this implementation is shown in Fig. 3.

In the case of the magnetic vector potential, produced by
an x-oriented source dipole, a zero value must be physically
imposed for the auxiliary current at thex-oriented ground
plane, whereas it does not vanish at they-oriented ground
plane [20]. This is modeled by using an additional half-basis
function attached to they-oriented plane, and by terminating
the mesh with an entire basis function on thex-oriented plane.
Furthermore, note in Fig. 4 that two independent half-basis
functions have been employed to treat the corner. These two
half-basis functions are not interconnected, because eachof
them is referred to a different boundary condition and applied
into a different IE. However, the presence of these two half
roof-top functions at the corner is important, since the current
distribution will in general not be zero at the corner. An
example of this implementation is shown in Fig. 4. In the case

Fig. 3: Example of basis functions (rooftops) definition for
theGV computation. The auxiliary linear charge continuity is
enforced at the corner using two interconnected half-rooftops
(which makes a unique basis function), meanwhile zero values
of the charges are enforced at the ground planes.

Fig. 4: Example of basis functions (rooftops) definition for
theGxx

A computation. A zero value of the potential is forced
at thex-oriented plane by terminating the mesh with a entire
basis function. Any value of the potential is allowed at they-
oriented plane by inserting there a half-rooftop. The corner is
modeled using two isolated half-rooftops (not interconnected).

that the source is ay-oriented dipole, an implementation dual
to the proposed for thex-source is employed.

D. Basis/Test Functions Choice

The selection of different basis/test functions provides a
trade-off between accuracy and speed in the boxed Green’s



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, SPECIAL ISSUE IMS 2010 5

∂nGVrect
(~r, ~r ′

0,0)

∂ρn
=

4
∑

g=1

Sn−1

[

G̃V

]∣

∣

~r

~r ′

0,g

PGV
(~r ′

0,0, g) +

R
∑

m=1

BV
∑

k=1

αk,m

4
∑

g=1

∫

C′

g

Sn−1

[

G̃V

]∣

∣

~r

~r ′
PGV

(~r ′

0,0, g)f
g,k,m
V,b,a (~r ′)∂~r ′

(11)

∂nGxx
Arect

(~r, ~r ′

0,0)

∂ρn
=

4
∑

g=1

Sn−1

[

G̃A

]∣

∣

~r

~r ′

0,g

P x
GA

(~r ′

0,0, g)+

R
∑

m=1

∑

ξ=h,v

BA,ξ
∑

k=1

α
x,ξ
k,m

4
∑

g=1

∫

C′

g

Sn−1

[

G̃A

]∣

∣

~r

~r ′
P x
GA

(~r ′

0,0, g)f
g,k,m
A,b,a (~r ′)∂~r ′ (12)

functions computation. Three possible choices are presented
and discussed below.

The first option is to use point matching [3]. In this case,
the auxiliary linear sources are reduced to spatial images,
similar to these introduced in [14], which impose boundary
conditions at discrete points on the cavity walls. The main
drawback, as in any point-matching technique, is that it leads
to ill-conditioned system of equations when the number of
unknowns increases. This greatly limits the accuracy of the
computed Green’s functions. On the other hand, this approach
is extremely efficient, because all contour integrals are reduced
to a single point evaluation of the function.

The second option uses linear roof-tops as test functions
and Dirac-deltas as basis functions (spatial images). This
choice presents a trade off between accuracy and speed, but
it is not free of instabilities. Accuracy is improved because
boundary condition are imposed on the whole cavity perimeter,
averaged on each cell. However, ill-conditioned problems arise
in the systems of equations when the number of discrete
sources increases. In terms of efficiency, the presence of
discrete sources reduces the double contour integral to one-
dimensional integrals, leading to an efficient Green’s functions
computation.

The third and last option uses linear roof-top test and basis
functions. This approach is very accurate and free of ill-
conditioned situations. Specifically, the error committedcan
arbitrarily be reduced by increasing the number of basis/test
functions [3]. The main drawback of this approach is that
double contour integrals must be evaluated when imposing
the boundary conditions, leading to less efficient computation
as compared with the two previous approaches.

III. N UMERICAL VALIDATION

This section presents numerical results to validate the pro-
posed technique. For this purpose, the structure shown in
Fig. 1 is analyzed. The point source is placed at the position
(−25,−5, 3.14) mm. The location of the auxiliary linear
sources is an important parameter to be considered. In contrast
to the approach presented in [13], the impact of this location
on the method accuracy is very limited, because the proposed
approach is singular-free and the method does not have to
compensate for the singular behavior of the original source.
Therefore, the method is inherently stable as a function of
the location of the auxiliary sources. In spite of this, the
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Fig. 5: Error committed in the imposition of theGV boundary
conditions (Eq. 5) at7 GHz along the non-covered walls of
the cavity shown in Fig. 1, when different numbers of basis
functions (rooftops) perλ are employed.VX denotes theX-
vertex of the cavity, as indicated in Fig. 1.

number of unknowns required to obtain a desired precision
varies. If the auxiliary sources are located very close to the
cavity walls, their associated singular behavior may degrade
the boundary conditions imposition. On the other hand, if the
auxiliary sources are located very far away from the walls, the
number of unknowns required to achieve a required precision
increases, because the auxiliary sources lose effectiveness in
representing the fine details of the cavity. Numerical results
have shown that values ofdx and dy within the range of
0.2λ0-2λ0 provide good convergence rates using a limited
number of test/basis functions. In the following examples,the
auxiliary linear sources are always located at the distances
dx = dy = 1.5λ.

The proposed method allows to exactly know the error
committed on the Green’s functions computation. This can
easily be done by evaluating the fulfillment of the boundary
conditions along the cavity contour. Since the use of auxiliary
ground planes imposes perfect boundary conditions on the
covered walls, only the error committed on the two remaining
walls must be examined. For the electric scalar potential, this
error is obtained by evaluating Eq. 5 along the two non-
covered walls. In the case of the magnetic vector potential,
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GV boundary conditions at7 GHz on the cavity shown in
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Fig. 7: Error committed on the imposition of theGxx
A boundary

conditions (Eqs. 8 and 9) at20 GHz along the non-covered
walls of the cavity shown in Fig. 1, when different numbers
of basis functions (rooftops) perλ are employed.VX denotes
theX vertex of the cavity, as indicated in Fig. 1.

the error is obtained by computing Eq. 8 for the non-covered
horizontal wall and Eq. 9 for the non-covered vertical wall.In
all cases, an ideal situation will provide a zero value for the
relevant condition along the whole cavity perimeter.

First, the error committed in theGV computation at the
frequency of7 GHz is examined. The error is presented for
several numbers of basis functions perλ (Fig. 5). In this case,
linear rooftop test/basis functions have been employed. As
can be observed in the figure, the error is small with just
one basis function perλ, and decreases fast as the number
of basis functions is increased. This demonstrates that the
method is rapidly convergent, requiring a few number of basis
functions to obtain very low errors. In Fig. 6 the maximum
error (computed over the whole cavity perimeter) is presented
for different types and number of basis/test functions. In the
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Fig. 8: Maximum error committed in the imposition of the
Gxx

A boundary conditions at20 GHz on the cavity shown in
Fig. 1 versus the number and type of basis/test functions per
λ employed.

case of point matching, lower convergence rates are found
due to its behavior inside IEs [3]. The use of combined
roof-tops and delta Dirac test/basis functions improves the
convergence rates. Note that these two approaches lead to
ill-conditioned situations when the number of basis functions
increases more. Finally, the use of linear roof-tops as basis/test
functions presents the best convergence rates, thanks to the
use of continuous auxiliary sources. We have verified that
the use of500 basis/test functions provides an error within
the precision of the computer along the complete perimeter,
showing that the method is inherently stable.

Second, the error committed on theGxx
A computation is

considered. In this case, the frequency is set to20 GHz in
order to fully appreciate the influence of the lateral walls
on this potential. Fig. 7 shows the error along the cavity
contour when different numbers of basis functions (roof-
tops) are employed. Finally, in Fig. 8 a comparison of the
maximum error committed, depending on the number and
type of test/basis functions, is presented. The analysis ofthese
results leads to the same conclusions as given for theGV case,
and confirms the effectiveness of the proposed approach.

Note that the accuracy of the technique also depends on the
accuracy of the method employed to compute the Sommerfeld
transformation [15]. Therefore, it is important to avoid errors
in these transformations, which may accumulate and propagate
towards the Green’s functions. This occurs in Fig. 8, where
the error of10−4 on the Gxx

A computation is fixed by the
maximum error while calculatingS1.

IV. A NALYSIS OF MULTILAYERED SHIELDED CIRCUITS

In this section, the proposed spatial technique is applied
to the fast analysis of practical multilayered shielded circuits.
For this purpose, the method has efficiently been included into
a MPIE formulation [2], following the acceleration technique
introduced in [13]. Then, two shielded microstrip filters are
taken from the literature and are analyzed by the proposed
technique. The obtained results are compared, in terms of
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Fig. 9: Multi-band filter in hybrid waveguide-microstrip tech-
nology, reproduced from [21].L1 = 3.0 mm,L2 = 3.15 mm,
ǫr = 2.2 mm, Lin = Lout = 14.0 mm, Lr1 = Lr2 = 24.54
mm, W1 = W3 = 1.8 mm, W2 = 5.0 mm, a = 40.0 mm,
b = 34.0 mm.
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Fig. 10: Results for the bandpass filter shown in Fig. 9,
analyzed using the proposed spatial approach and validated
by the spectral method presented in [11].

TABLE II:
Comparison of the time (per frequency point) required by the
proposed spatial method and a spectral technique [11] for the
analysis of the filter shown in Fig. 9.

Proposed Spatial Method Spectral Method [11]
Mesh Time per f. p. Bf per λ Time per f. p. Modes
45 cells 0.108 sec 3.0 0.075 sec 2500

90 cells 0.312 sec 3.0 0.665 sec 2500

135 cells 0.604 sec 3.0 1.903 sec 3500

180 cells 1.012 sec 3.0 3.909 sec 3500

accuracy and efficiency, against a spectral domain approach
[11] and against measurements. Note that the comparison has
been carried out exactly in the same conditions, including
computer (Pentium IV,2.5 GHz, 2 Gb RAM), mesh, and
integration points.

In the literature, the analysis of shielded microwave filters
have mainly been performed in the spectral domain [9], [10],
[11]. This formulation is usually very efficient, but has some
important convergence problems when the dimension of the

Box size Losses

L1

L1

L2

L2

L3

S1

S1

S2

S2

S3

W

W = 0.355 mm

L1 = 2.900 mm

L2 = 2.708 mm

L3 = 2.887 mm

S1 = 0.100 mm

S2 = 0.613 mm

S3 = 0.802 mm

ǫr1
= 1.0, 1 = 3.6 mm

ǫr2
= 9.9, 2 = 0.4 mm

a = 25.4 mm

b = 25.4 mm

tan δ = 0.03

σ = 5.8 107

Fig. 11: Boxed microstrip bandpass filter of fourth order, based
on coupled line sections, reproduced from [11].

cells employed to discretize the printed circuits are very small
as compared with the enclosure. In this case, the number of
modes required to achieve convergence is very high, and there
is not a clear rule to truncate the infinite summations. On
the other hand, the use of the spatial domain formulation
for this type of analysis is not practical, due to the high
computational cost that requires the calculation of multilayered
boxed Green’s functions [5] [6] [7].

The first filter under consideration is shown in Fig. 9 [21].
The results of the analysis employing the proposed spatial
technique, and a spectral approach [11] are presented in
Fig. 10. Measured data is included as validation. Note that an
extraordinary agreement between the two completely different
methods has been obtained. This structure is specially difficult
to be handled by the spatial method, because it has a thick
substrate and it requires two rings of auxiliary linear sources.
A careful study about the efficiency of the two methods, as a
function of the number of discretization cells, is presented in
Table II. As can be observed, the proposed spatial technique
completely converges using3 basis functions perλ, indepen-
dently of the mesh. As expected, the spectral method requires
a higher number of modes to converge as the mesh density
increases. In terms of efficiency, the proposed spatial method
is able to compete against the spectral approach in all cases.
For low mesh density, the spectral approach is slightly faster,
because it converges summing up a low number of modes.
However, as the mesh density increases, the spatial approach
becomes more and more efficient (even two and three times
faster). This is because an increase in the mesh density only
affects the size of the MoM matrix, but it does not affect to
the speed in the calculation of the Green’s functions.

The second filter considered is shown in Fig. 11 [11]. The
results of the analysis are presented in Fig. 12, where againan
extraordinary agreement has been found between the proposed
spatial technique and the spectral approach [11]. This structure
is specially difficult to be handled by the spectral method,
because it has a large box as compared with the size of the
printed circuits. Table III presents a careful study related to
the efficiency and convergence of both techniques. Again, the
proposed spatial method converges in all cases using just3
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Fig. 12: Results for the bandpass filter shown in Fig. 11,
analyzed using the proposed spatial approach and validated
by the spectral method presented in [11].

TABLE III:
Comparison of the time (per frequency point) required by the
proposed spatial method and a spectral technique [11] for the
analysis of the filter shown in Fig. 11.

Proposed Spatial Method Spectral Method [11]
Mesh Time per f. p. Bf per λ Time per f. p. Modes
38 cells 0.072 sec 3.0 0.160 sec 20000

76 cells 0.184 sec 3.0 1.209 sec 22500

114 cells 0.328 sec 3.0 9.570 sec 40000

152 cells 0.512 sec 3.0 18.591 sec 50000

basis functions perλ. On the contrary, the convergence of
the spectral method directly depends on the size of the mesh,
requiring a very large number of modes in all cases. In terms
of efficiency, the proposed spatial technique is always much
faster than the spectral approach. For low mesh densities,
even though both techniques are quite competitive, the spatial
method is more than two times faster. The efficiency distance
between the two methods increases with the mesh density,
being the spatial technique more than35 times faster than the
spectral approach for the case of a very dense mesh.

Finally, it is important to remark that the proposed spatial
technique provides a stable and systematic approach to effi-
ciently analyze any shielded microwave device. As a difference
with the spectral domain approach, the proposed method is
able to obtain convergent results for any cavity and printed
circuit sizes. Consequently, the proposed technique is an
excellent candidate to be integrated into a CAD tool, for the
fast analysis and efficient optimization of practical shielded
multilayered printed circuits.

V. CONCLUSIONS

A grounded MoM-based spatial domain technique has been
presented for the Green’s functions analysis of multilayered
rectangular enclosures. The technique combines the use of
auxiliary ground planes, which cover two walls of the cavity,
with a set of auxiliary linear distribution of sources employed
to impose the boundary conditions along the cavity contour.

Mirror linear sources appear with respect to the planes,
perfectly imposing boundary conditions on the two covered
walls. On the other two walls, a numerical imposition of these
conditions has led to a set of integral equations. A convergence
study, related to the test and basis functions choice, has
been presented and discussed. Finally, the computed Green’s
functions have been included into an MPIE formulation, for
the accurate and very fast analysis of practical multilayered
shielded circuits. A rigorous comparative between different IE
methods has demonstrated that the proposed method is ideal
for the analysis, design and optimization of shielded circuits,
in terms of convergence, accuracy and efficiency.
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Quesada-Pereira, and A.Álvarez-Melcón, “Practical Implementation of
the Spatial Images Technique for the Analysis of Shileded Multilayered
Printed Circuits,”IEEE Transactions on Microwave Theory and Tech-
niques, vol. 56, no. 1, pp. 131–141, January 2008.
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