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Nomenclature 
γ    Kurtosis  
y(t)   Measured response vector 
ny    Number of response channels 
fj   jth discrete frequency 
Hj   Harmonic indicator 
mj   Median of Kurtosis 
Gyy(f)  Spectral density of measured response at the fth discrete frequency 
np   Number of Projection Channels 
Si,j   ith singular value of Gyy at the jth discrete frequency 
Xi,j  ith normalized singular value of Gyy at the jth discrete frequency 
 
ABSTRACT 
 
In this paper addresses the problems of separating structural modes and harmonics arising from sinusoidal 
excitation. Though the problem is mostly know in mechanical engineering applications such as rotating 
machinery, some civil engineering applications experiences the same challenges. A robust and fast harmonic 
detection procedure is presented and illustrated on a civil engineering case. 
 
1 Introduction 
 
One of the major advantages of testing civil engineering structures compared to mechanical structures is that 
the ambient excitation nearly always is broad-banded and multiple input. This makes the response 
measurements obtained from such structures extremely suitable for all popular estimation algorithms in 
Operational Modal Analysis. They all rely on the assumptions that the input forces are derived from Gaussian 
white noise and are exciting in multiple points.  
 
Mechanical engineering structures such as engines and other structures having rational part tend to be much 
more difficult to handle for most algorithms, especially if the sinusoidal forces have more energy than the 
ambient excitation. In this case the structural modes typically are weakly excited and sometimes they are more 
or less drowning in the noise. To account for this the measurement systems used must a high measurement 
range to be able to catch the weak structural response and at the same time prevent clipping from the strong 
sinusoidal forces.  



However, even with good measurements system it is impossible to prevent the harmonics from the sinusoidal 
excitation to appear in the acquired data, which means that also the modal estimation algorithms must be able 
to handle the presence of harmonics. Further, it turns out that the presence of harmonics not only is limited to 
mechanical application, there is a range of cases where civil engineers have to face the harmonics presence as 
well. Large structures like gravity dams have rotating parts in terms of the turbines, production facilities in 
cement and mining industry have large rotating parts as well and bell towers exhibits sinusoidal excitation during 
ringing with the bells.  
 
In this paper, we will present a fast algorithm for detection of harmonics originating from sinusoidal excitation. 
The technique consists of two steps; first a fast search for potential harmonics is performed in frequency 
domain. In step two a statistical assessment of the potential harmonics is made to determine if they are in fact 
harmonics. In the following, step 2 is described first running over all discrete frequencies between DC and the 
Nyquist frequency. After that we describe how to optimize the algorithm by the introduction of step 1. 
 
When the harmonics are detected, the information is fed to the modal estimation algorithm, enabling it to 
account for the harmonic presence. The harmonic detection approach will be demonstrated on a civil 
engineering case; A gravity dam.  
 
2 Testing for Harmonics at Spectral Frequencies 
 
2.1 The Central Limit Theorem 
 
According to the central limit theorem the distribution of the response of a structural system subject to multiple 
random inputs will tend to a Gaussian distribution as the number of independent input goes to infinity. If the 
distribution of the different inputs have a bell shaped distribution indicating that most amplitudes will be close to 
their mean value, which is typical for wind and wave loading, then only a few number of inputs are necessary for 
the response to become approximately Gaussian. However, if the input on the other hand is dominates by 
amplitudes far from the mean value, which is the case of a sinusoidal excitation, then it takes much more inputs 
before the structural response will turn Gaussian, Wirsching et al. [1].  
 
Therefore, testing of the shape of Probability Density Function (PDF) of the measured response is an effective 
way to detect if a few sinusoidal excitation forces are presents. Especially, if the response is examined in narrow 
frequency intervals, it is possible to obtain information about which intervals that are dominated by harmonics 
and which are not. 
 
2.2 Testing PDF’s Shape using Kurtosis 
 
There are a numerous ways to test if sampled data has a specific PDF or not, like the Χ2-test, Papoulis [2], most 
in some ways based on the sampled mean value µ and the sampled standard deviation σ. Here, we will use the 
fact that the Kurtosis γ of a the ny × 1 dimensional vector y(t) of measured response, defined as 
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for Gaussian distributed data with zero mean value and unit variance, is equal to 3. The Kurtosis for a sinusoidal 
data with zero mean value, unit variance and a random phase is on the other hand always 1.5. 
 
2.3 The Basic Testing Algorithm 
 
In practice we have to be able to test the probability density function in several frequency intervals, 
characterized by their center frequency fj, and in several measurement channels yi(t), for i = 1 to ny. The output 
of the test algorithm should an indicator Hj, for j = 1 to nf. Hj is a function of the center frequency fj, where j is all 
center frequencies we like to test between DC and the Nyquist frequency setting DC to j = 1 and the Nyquist 
frequency to j = nf. The indicator should be 1 at center frequencies where a harmonic is present and otherwise 
0. 



The algorithm used here contains the following steps: 
 

1. Normalize each measurement channels yi(t) to zero-mean and unit variance using sampled mean and 
variance. 

2. For all center frequencies fj of interest, perform a narrow band-pass filtering around fj. 
3. Calculate the Kurtosis γij for the at fj band-pass filtered signal yi(t). 
4. For each center frequency fj calculate the median value mj of the Kurtosis γj over all measurement 

channels yi(t). This median is a robust measure for the mean value used to account for possible outliers 
due to noise etc. 

5. For each center frequency fj assess if mj deviates significantly from 3. If so set Hj equal to 1, and 
otherwise 0. 

 
This algorithm has been tested on a series of real data cases and proven efficient, Jacobsen et al. [3],[4].  
 
3 Optimizing Search for Possible Harmonics 
 
The major drawback of the basic algorithm for harmonic detection is that it becomes rather time consuming in 
case of many measurement channels ny and when testing many frequencies nf. It would be desirable to find 
ways of reducing both ny and nf.  
 
3.1 Reducing the Number of Measurement Channels 
 
Since the spectral density matrix Gyy(f) of the measured response at some discrete frequency f typically consist 
of much more columns than there are modes participating at that frequency, many of the columns of are linear 
dependent upon each other resulting in a rank deficiency of the spectral matrices. For system with many 
measurement channels ny there is therefore typically a substantial amount of redundancy, indicating that it might 
not be necessary to actually Kurtosis test on all channels. The subset of channels we will test is called the 
Projection Channels in the following and the number of projection channels denoted np. 
 
In case of multiple testing using multiple setups, where a certain amount of sensors are kept at the same 
locations, while the rest are moved from one measurement setup to another, a good initial choice of projection 
channels is to choose them as the reference channels. The quality of this choice can be verified by applying the 
Singular Value Decomposition (SVD) to the spectral densities matrices Gyp(f),  
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where index y indicate the measurement vector y(t) and p the subset of channels selected as the projection 
channels. The matrices Gyp(f) and S both have dimension ny × np. S is diagonal matrix consisting of np singular 
values. 
 
By plotting the singular values for all the frequencies all modes in the projection channels will be revealed. If the 
last plotted singular value forms a horizontal line over the frequency band of interest, and if the other singular 
values display a good mode separation, then the choice is fine. If not then other and / or more projection 
channels should be included. If more projection channels are needed, the channels to look for should contain as 
much new information as possible about the system compared to the channels already selected. This evaluation 
can be performed using a simple analysis of the correlation coefficients between the difference measurement 
channels. Figure 3.1 display a poor choice of projection channels for a system, whereas figure 3.2 shows an 
appropriate choice. 
 



 
Figure 3.1: 16 projection channels were chosen resulting in 16 singular values per frequency. All the lower 
singular values being completely horizontal indicates a substantial amount of redundant information at all 
frequencies. 
 

 
Figure 3.2: 6 projection channels were chosen resulting in only 6 singular values per frequency. Only the lowest 
singular values is significantly flat (horizontal) this indicates that 6 measurement channels are sufficient to 
contain all information about the system dynamics. 
 
 
3.2 Reducing the Number of Frequencies Needed Check 
 
In figure 3.3 the singular values of the spectral densities of a system excited with a broad-banded excitation as 
well as a sinusoidal excitation. The natural frequency first mode appear at 354 Hz, and only the first singular 
value is significant larger that the rest at this frequency. This indicates that this particular mode is dominating at 
this particular frequency. On the other hand, at 374 Hz and even more clear at 748 Hz a distinct narrow peak 
appear in several of the singular values. The peak at 374 Hz indicates the rotational speed of the harmonic 
excitation and the peak at 748 Hz is the first over-harmonic originating from the same sinusoidal excitation 
source. That more than one singular value has a peak at these two frequencies indicates that several modes 
have been significantly excited at these frequencies compare to the surrounding frequencies.  
 

 
Figure 3.3: Similar structure as in figure 3.3, but now also with harmonic excitation. The excitation is a single 
point shaker with a sinusoidal force at 374 Hz. Number of discrete frequencies between DC and the Nyquist is 
1024. First, second and forth harmonic are clearly shown at 374 Hz, 748 Hz and 1496 Hz. 



We will make use of this phenomenon that always happens in case of sinusoidal excitation, when the ambient 
excitation acting on a structure is much weaker. If the sinusoidal excitation is much weaker than the broad-
banded ambient excitation, the sinusoidal excitation becomes negligible and does not affect the modal analysis 
algorithms. If an abrupt change happens at the same frequency at least in two singular value lines, then we 
have detected a potential harmonics. This potential harmonics should then be tested using the basic algorithm 
described in section 2.3. In this way it is possible to limit the number of times that the Kurtosis needs to be 
checked. In the example in figure 3.3 it reduces the number of times from 1024 to 7 times. There are several 
ways to test if there is an abrupt change on a curve, see e.g. Basseville et al. [4]. Here we apply a simple 
approach based on a median calculation. Given a sequence of positive and non-zero singular values Si,j of 
length ns, where index i is the singular value number and j the discrete frequency index, we construct the 
following normalized sequence Xi,j
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where k is a small number, say 2-5. If the median of the values Si,j-k to Si,j+k is equal to the value Si,j then Xi,j is 0 
and otherwise Xi,j will be a non-zero value. Since the sequence is normalized using the median that is robust 
towards outliers, the result is that Xi,j will have significant values at the locations where the singular values have 
significant but narrow peaks. 
 
The algorithm used here contains the following steps: 

 
1. For each singular value Si,j calculate the sequences Xi,j for i = 1 to np and j = 1 to ns. 
2. Calculate the sampled standard deviations of the sequences Xi,j. 
3. Check if some of the values of Xi,j exceeds a threshold of say 2-3 times the standard deviation of Xi,j.  
4. If, for a certain index j, more than one of the nsB sequences Xi,j exceeds the threshold, then a potential 

harmonic has been detected at position j. 
5. Apply Kurtosis check described in section 2.3 at position j. 

 
In figure 3.4 the sequences Xi,j are shown for 3 singular values corresponding to the example shown in figure 
3.3. The number of potential harmonics to check has been decreased to only 7. Once the harmonics have been 
detected they can easily be removed from any frequency domain based modal parameter estimation algorithm, 
see e.g. Jacobsen et al. [3],[4], Brincker et al. [6] and Andersen et al. [7]. 
 

 
Figure 3.4: Sequences Xi,j shown for 3 singular values (1,2 an 7) of the example shown in figure 3.3. Thresholds 
are exceeded in more than one singular value at frequencies 28 Hz, 372 Hz, 374 Hz, 376 Hz, 746 Hz, 748 Hz 
and 1496 Hz. 



4 Example 
 
In the following the complete harmonic detection algorithm is tested on measurements of a Canadian gravity 
dam. In figure 4.1 two pictures display the dam from both the low and high water level sides. The dam is 130 m 
long and 58 m high, and built in 1930. An ambient vibration test was conducted using 20 setups of 8 channels. 
In setup 8, channel 8 was dead and was disabled from the analysis. A 3D accelerometer served as reference 
station mounted on the dam itself. Some part of the rock at both side of the dam was also measured.  
 

 
Figure 4.1: The dam seen from low and high water level. 
 
In figure 4.2 all measured degrees of freedom are presented on the test geometry used by the operational 
modal analysis software ARTeMIS Extractor. The measurements were conducted using an 8-channel 
measurement system for 819 seconds. The sensors were Kinemetrics Episensors accelerometers of the forced 
balanced type. Due to the turbines running the measurements are affected by harmonics at every 2 Hz. 
 

 
Figure 4.2: All measured degrees of freedom of all 20 setups on the dam as well as the surrounding rock on 
both sides. The three dark arrows below point 4 is the reference station. 



Since setup 8 only have 7 active channels the number of projection channels used in this analysis is 7. The 7 
largest singular values of the spectral densities of all 20 setups were then averaged, and the harmonic detection 
described in section 3.2 was applied using k = 2 in eq. (3). In step 3 of the algorithm, the threshold was set to 2 
times the standard deviation of the sequence Xi,j. In figure 4.3 the results of the harmonic detection analysis are 
shown. All harmonics at 2 Hz intervals have been detected. The algorithm has mistakenly detected two 
harmonics at 19.5 Hz and 39 Hz. Taking the scatter of the SVD spectrum from the poor signal to noise ratio into 
account, it is a quite satisfactory results. 
 

 
Figure 4.3: Result of the harmonic detection analysis. All harmonics at 2 Hz intervals have been detected. The 
algorithm has mistakenly detected harmonics at 19.5 Hz and 39 Hz. The harmonics are indicated with vertical 
lines at the harmonic frequencies. 
 
 
5 Conlusions 
 

In this paper, we have presented a fast algorithm for detection of harmonics from sinusoidal excitation. A 
statistical assessment algorithm of potential harmonics, based on evaluation of the Kurtosis of band pass 
filtered measurement, has been introduced. The speed of this algorithm has been optimized by applying a 
search algorithm that looks for abrupt changes in more than one singular value at a certain frequency, since this 
is a typical phenomenon in case of harmonics. This search algorithm typically increases the performance of the 
statistical assessment algorithm significantly. The harmonic detection approach has been demonstrated on 
measurements from a gravity dam.  
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