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MODELLING POINT PATTERNS WITH LINEAR STRUCTURES

JESPERMØLLER AND JAKOB G. RASMUSSEN

Department of Mathematical Sciences, Aalborg University, Fredrik Bajersvej 7G, 9220 Aalborg, Denmark
e-mail: jm@math.aau.dk, jgr@math.aau.dk

ABSTRACT

Many observed spatial point patterns contain points placedroughly on line segments. Point patterns exhibiting
such structures can be found for example in archaeology (locations of bronze age graves in Denmark) and
geography (locations of mountain tops). We consider a particular class of point processes whose realizations
contain such linear structures. Such a point process is constructed sequentially by placing one point at a time.
The points are placed in such a way that new points are often placed close to previously placed points, and the
points form roughly line shaped structures. We consider simulations of this model and compare with real data.

Keywords: Archaeology; Dirichlet Tesselation; Geology; Likelihood; Simulation; Spatial Point Processes.

1 INTRODUCTION

Many observed spatial point patterns contain
points placed roughly on line segments; we will refer
to these structures as linear structures. In the data
section below we consider two datasets, both of which
contain linear structures (see Figures 3 and 4). The first
data set is the locations of barrows (bronze age burial
sites) in a region of Denmark, and the other data set is
the locations of mountain tops in a region of Spain.

Blackwell (2001), Blackwell & Møller (2002), and
Skare et al. (2006) consider point process models
with linear structures close to the edges of (deformed)
Dirichlet (or Voronoi) tessellations. However, for the
two abovementioned data sets and many others, the
exact mechanism responsible for the formations of
lines is unknown. Thus the development of tractable
and practically useful spatial point process models
capable of producing point patterns with linear
structures becomes important.

In this paper we develop a particular class of
such models using a sequential construction by placing
one point at a time. The model is easy to simulate
and its likelihood function is known on closed form.
Perhaps somewhat surprising it is a flexible model for
producing linear structures without incorporating any
lines into the model.

The paper is organized as follows. Section 2
defines the model, Section 3 presents the data sets,
Section 4 concerns simulation of the model, and finally
Section 5 discusses inference, model checking, and
extentions of the model.

2 MODEL

Figures 3 and 4 show two kinds of points, those
roughly located along lines, and others which seem to
be distributed fairly randomly across the observation
region. We model this by a superposition of two
point processes called the ‘cluster process’ and the
‘background process’. Briefly, the cluster process
is constructed sequentially, and each cluster point
can be of two types: ‘dependent’ cluster points and
‘independent’ cluster points, where the independent
cluster points (and also the background points) are
independent and uniformly distributed, while each
dependent cluster point is attracted by previously
generated cluster points.

2.1 LIKELIHOOD

This section specifies the likelihood when we have
no missing data in the following sense. The likelihood
is given below by the joint distribution of the cluster
processxc = (x1, . . . ,xk) and the background process
xb = (xk+1, . . . ,xn), where then points x1, . . . ,xn are
contained in a given bounded convex regionW ⊂ R2

of area |W| > 0. The assumption thatW is convex
becomes important later. In our applications, the data
z = (z1, . . . ,zn) is a permutation ofx = (x1, . . . ,xn).
This permutation as well ask and the knowledge
whether eachzi is a cluster or background point are
unknown, i.e., they constitute the missing data.

We letm= n−k denote the number of background
points, and make the following model assumptions,
where 0≤ p ≤ 1, 0≤ q ≤ 1, andλ > 0 are model
parameters:

(i) The number of pointsn is fixed.
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(ii) The number of cluster pointsk is a random variable
following a binomial distribution with indexn and
probabilityq.

(iii)Conditional on k, we have thatxc and xb are
independent.

(iv)Conditional onk, the m background points inxb
are independent and uniformly distributed onW (a
socalled binomial point process onW).

(v) Conditional onk, if k > 0 then the first cluster
point x1 follows a uniform distribution onW, and
if 2 ≤ i ≤ k and we also condition onx1, . . . ,xi−1
then the ith cluster pointxi follows a density
f (·|x1, . . . ,xi−1; p,λ ) with respect to Lebesgue
measure onW. Further,

f (·|x1, . . . ,xi−1; p,λ ) = p×h(·|{x1, . . . ,xi−1};λ )

+(1− p)× 1
|W| (1)

depends only on (x1, . . . ,xi−1) through the
point pattern {x1, . . . ,xi−1}, and the density
h(·|{x1, . . . ,xi−1};λ ) is specified below by
formula (4).

In the mixture density (1), the uniform density on
W is used for the distribution of an independent
cluster point, and the densityh(·|{x1, . . . ,xi−1};λ ) for
the distribution of a dependent cluster point. Note
that an independent cluster pointxi is statistically
independent of previous cluster pointsx1, . . . ,xi−1,
while it influences the distribution of later dependent
cluster points. Moreover, (1) implies that the location
of a new cluster point does not depend on the time-
ordering of the previous cluster points.

One way of simulating our model is by first
generating mutually independent and uniformly
distributed pointsy1, . . . ,yn in W. We independently
divide these points into background points,
independent cluster points, and dependent cluster
points in accordance to the probabilities(1 − q),
q(1− p), and pq, respectively. Ifyi is a background
or independent cluster point, thenxi = yi . If yi is
a dependent cluster point, it is transformed into a
dependent cluster pointxi , depending on other cluster
pointsx j with j < i as specified below, and involving
some further simulation steps given by (A)-(D) also
below.

Combining (i)-(v), we obtain that

π(xc,xb|q, p,λ ) =
(

n
k

)
qk

(
1−q
|W|

)m

×
k

∏
i=1

f (xi |x1, . . . ,xi−1; p,λ ) (2)

is the joint density of (xc,xb) with respect to
the measureν on ∪n

l=0W
l ×Wn−l given by ν =

∑n
l=0 νk, whereνl is the product measure of Lebesgue

measure onWl and Lebesgue measure onWn−l (with
obvious modifications ifl = 0 or l = n). In (2) and
elsewhere, for notational convenience, we interpret
f (·|x1, . . . ,xi−1; p,λ ) as the uniform density onW if
i = 1.

If we had ‘no missing data’ in the sense that
(xc,xb) is observed but we do not know whether
each cluster point is an independent or dependent
cluster point, then (2) would specify the likelihood
for θ = (q, p,λ ). However, when considering the data
in the data section, the following quantitiesu,ω,η
are missing data. Letu = (u1, . . . ,un) where ui = 1
if zi is one of the cluster points, andui = 0 if zi
is one of background points. Given the value ofu,
define the permutationω = (ω1, . . . ,ωk) of those i
with ui = 1 such thatxc = (zω1, . . . ,zωk), and the
permutationη = (η1, . . . ,ηm) of thosei with ui = 0
such thatxb = (zη1, . . . ,zηm). In other words,zωi is the
ith cluster point, andzη j is the jth background point.
Thus (xc,xb) is in a one-to-one correspondence with
(z,u,ω,η), with a density which for each fixed value
of (u,ω) is constant for all possible values ofη , cf. (2).
Consequently, conditional on the dataz, we have that
(u,ω) is in a one-to-one correspondence withxc and
the point pattern{xk+1, . . . ,xn} of background points,
with probability mass density

π(u,ω|z;θ) ∝
1
k!

qk
(

1−q
|W|

)m

×
k

∏
i=1

f (xi |x1, . . . ,xi−1; p,λ ). (3)

2.2 THE CONDITIONAL DENSITY OF
DEPENDENT CLUSTER POINTS

We now turn to specifying a particular form of
the conditional density of dependent cluster points
h, such that realizations of the model exhibit linear
structures. Conditional on pairwise distinct cluster
pointsx1, . . . ,xi−1 with 2≤ i ≤ k, we define the density
h(xi |{x1, . . . ,xi−1};λ ) in (1) by

h(xi |{x1, . . . ,xi−1};λ ) =
l2
i exp(−r2

i /λ )
λ |W|(1−exp(−l2

i /λ ))
,

(4)
for 0< r i < l i , where the notation means the following.
Let ‖ · ‖ denote Eucledian distance, and

Cj = {ξ ∈R2 : ‖ξ −x j‖ ≤ ‖ξ −x j ′‖, j ′ = 1, . . . , i−1}
the cells of the Dirichlet (or Voronoi) tessellation ofR2

with nucleix1, . . . ,xi−1 (Okabeet al., 2000), wherej =
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1, . . . , i−1. Thenxi belongs almost surely to a unique
Dirichlet cell, sayCj , andCj ∩W is convex (this is
where the assumption thatW is convex is used). Define
r i = ‖xi − x j‖, andl i as the length of the line segment
throughxi and with endpoints atx j and the boundary
of Cj ∩W. See the example in Figure 1, wherei = 4
and j = 2. Under the distribution (4),xi appears in cell
Cj with probabilityp j = |Cj ∩W|/|W|. If we condition
on thatxi ∈ Cj , andN2(x j ,σ2I) denotes the radially
symmetric bivariate normal distribution with meanx j

and standard deviationσ =
√

λ/2, thenxi follows the
restriction ofN2(x j ,σ2I) to Cj ∩W.

x1

x2

x3

xi

l i
r i

C1

C2

C3

Fig. 1.Example with i= 4 and three cluster points x1,
x2, x3, and their respective Dirichlet cells C1, C2, C3.
The new cluster point xi and the distances li and ri are
shown.

Neither the calculation of the distribution
p1, . . . , pi−1 or the construction of the entire Dirichlet
tessellation is needed when evaluating the density (4)
or simulating from this distribution as explained in the
following.

To evaluate the density (4) we use the following
steps.

(a) Find the closest pointx j to xi with j < i, the half-
line L j with endpointx j and passing throughxi ,
and the intersection pointv j betweenL j and the
boundary ofW. Calculatel j = ‖v j −x j‖.

(b) For eachj ′ ∈ {1, . . . , i −1} \ { j}, find the lineL j ′
passing through(x j + x j ′)/2 and perpendicular to
the line throughx j andx j ′ . If v j ′ is the intersection
point betweenL j and theL j ′ , then calculatel j ′ =
‖v j ′ −x j‖. If L j ∩L j ′ = /0, then setl j ′ = ∞.

(c) Returnr i = ‖xi −x j‖ andl i = min{l1, . . . , l i−1}.

Figure 2 shows an example, wherei = 5, step (c)
returnsl5 = ‖v3−x4‖, and the area aroundx4 bounded

by the linesL1,L2,L3 and the boundary ofW is the
Dirichlet cellC4.

We can easily make a simulation under (4) by the
following steps.

(A) Generate a uniform pointyi in W, which is
independent ofx1, . . . ,xi−1.

(B) Find the (almost surely unique) closest pointx j
to yi (1 ≤ j < i), the half-lineL j throughyi and
with endpointx j , and the distancel i from x j to the
intersection point betweenL j and the boundary of
W.

(C) Generater2
i from an exponential distribution with

parameter 1/λ and restricted to the interval(0, l2
i ).

(D) Returnxi as the point onL j with distancer i from
x j .

In (B), we calculatel i in the same way as in (a)-(c)
above.

bc
bc

bc

x1

x2

x3
x4xi

v3
v1

v4

L1

L2

L3

L4

Fig. 2.Example with i= 5, showing four cluster points
x1, . . . ,x4 and a new cluster point xi (filled circles),
where xi is closest to x4. The half line L4 (dashed line),
the lines L1,L2,L3 (solid lines), and the intersection
points v1, v3 and v4 (empty circles) are also shown.

3 DATA

The first data set is the location of barrows in
a 15× 15 km region in Western Jutland, Denmark.
Barrows, which are bronze age burial sites resembling
small hills, are important sources of information for
archaeologists. Contrary to other areas of Denmark,
a relatively large proportion of the barrows are still
present in the Western Jutland due to less intensive
agriculture. Figure 3 shows the locations of the
barrows.
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The spatial distribution of barrows across Denmark
shows a variety of patterns, particularly clusters of
points along various lines, where some lines seem
to stretch across the landscape for hundreds of
kilometers. The barrow lines have traditionally been
regarded as reflecting a prehistoric system of roads,
cf. Müller (1904), though there are other potential
explanations for this phenomenon, see e.g. Sahlquist
(2001).

The model in this paper has the following
interpretation in the context of this data: the barrows
are placed according to a ’local decision-making rule’,
where we interpretyi as the location where a person
died, and

– the survivers decide if the point should be a
background point, independent cluster point, or
dependent cluster point

– in caseyi is a dependent cluster point, the person
is buried in a barrow close to the closest previous
cluster point, justifying the terminology ‘cluster
process’ forxc

– if instead theyi is a background point or an
independent cluster point, then he is buried where
he died.

In other words, if the model produces point patterns
resembling the data, this indicates that placing
barrows close to previously placed barrows may
be an alternative explanation to the observed linear
structures in the point pattern of barrows.

Fig. 3.The locations of barrows in a15×15km region.

The other data set is the location of mountain tops
in a 10.5×7.5 km region in Northern Spain. The data
has been taken from a hiking map, and is shown in
Figure 4. Many mountain tops are located along linear
structures, which of course is a consequence of the fact
that many tops are located along the mountain ridges.
However, visually the linear structures are somewhat
obscured by the many tops located off the ridges. Note
that the height of each top is known, and many of the
tops not located on the ridges are lower than the ones
on the ridges, but for this paper we will ignore the
additional information of height and only consider the
point pattern of positions. In our model, all the tops off
the ridges are simply set to be background points.

Fig. 4.The locations of mountain tops in a10.5×7.5
km region.

4 SIMULATION

We now show some simulations of the model with
various choices of parameters to see how flexible the
model is and whether it can produce point patterns with
some resemblance to the data.

Figure 5 shows simulated point pattern with
the same number of points as in the barrows
data set, and where the parameters are(p,q,σ) =
(0.98,0.95,150m). These parameters have been
chosen by simulating the model with various
parameter settings and choosing the simulation that
visually resembles the data best. The first observation
we make is that the model is capable of producing
linear structures, although the mechanism behind this
model is only a method of attracting new points to
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previously placed points, and no actual line segments
are incorporated into the model. Furthermore, there are
many similarities between the patterns in Figures 3 and
5: long linear structures with short linear structures
extending from them, and large gaps with no or few
points. The model has a higher tendency to produce
short linear structures extending from the long linear
structures than the data in this particular simulation,
but we should of course remember that the simulation
has been made with a rather arbitrary choice of
parameters and other parameter settings may produce
better fits; we return briefly to the issue of parameter
estimation in Section 5, but a full discussion of this
topic is beyond the scope of this paper. One obvious
feature of the data that is not found in the simulation
is a few small, but densely packed, clusters of points;
such clusters will never appear in the model nomatter
the choice of parameters.

Fig. 5. A simulation with n= 1147 and parameters
(p,q,σ) = (0.98,0.95,150m)

Figure 6 shows a simulation with the same
number of points as in the mountain data set,
and with parameters(p,q,σ) = (0.98,0.98,400m);
again the parameters have been chosen by trial
and error. Comparing with the data in Figure 4,
we see no obvious discrepancies. Both contain
medium length linear structures, gaps with no or few
points, and quite many solitary points. We have also
made another simulation with parameters(p,q,σ) =
(0.95,1.00,200m) mainly to illustrate that with an
adjustment to the parameters we can get linear
structure which are much more visible; see Figure 7.

Obviously this simulation has much clearer linear
structures than the data.

Fig. 6. A simulation with n= 203 and parameters
(p,q,σ) = (0.98,0.98,400m)

Fig. 7. A simulation with n= 203 and parameters
(p,q,σ) = (0.95,1.00,200m)

5 DISCUSSION

This paper is exploring the limits of our model
by comparing simulations to actual observed data sets.
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Obviously, a proper statistical analysis should involve
a much more thorough treatment of the data.

We intend to develop a Bayesian model with
priors for the three parameters(p,q,σ). Although
the model is simple to simulate due to its sequential
construction, it does not seem possible to estimate
parameters analytically, using e.g. the posterior mean.
However, since the likelihood is known completely
(except for missing data), an MCMC based approach
using a Metropolis-within-Gibbs algorithm can be
used for making approximate posterior simulations of
the parameters and the missing data. Hastings ratios for
updates both for parameters and missing data are easily
found using equations (1), (3) and (4). As a by-product
of this approach, we can also estimate the missing data,
which means that this model can be used to estimate
whether or not a particular point belongs to a linear
structure.

Another issue is that of model checking. A
common way to check the fit of a point process
model is to estimate various summary statistics and
compare with theoretical calculations for the fitted
model, or compare with simulations from the model, if
theoretical calculations are intractable. Many standard
summary statistics are available (see e.g. Møller &
Waagepetersen (2004)), but few of them are useful for
checking the linear structures which are the focus of
this model. Developing summary statistics specifically
aimed at the shape or size of the linear structures are
important in checking the fit of the model.

Finally, there are many theoretically interesting or
practically useful extensions of the model which can
be explored. The model in this paper is homogeneous
in the sense that all points are initially placed according
to a homogeneous binomial process (dependent
cluster points are then moved). Incorporating
covariate information into the model to obtain an
inhomogeneous model can be practically useful.
For example, information about the terrain types
throughout the landscape could potentially improve
the model for the barrows. Another generalisation is to
extend the model toR2. Only minor modifications are
required to obtain a stationary point process, e.g. using
Poisson processes rather than binomial processes, and

changing the order of the cluster points such that all
independent cluster appear first to form a Dirichlet
tesselation ofR2. Although the model construction is
easy, many aspects of this model can prove difficult,
such as perfect simulation on a finite subset (i.e.,
simulation without edge effects). The infinite model
is also of practical relevance since it gets rid of the
artificial boundaries of the finite model (this is the
reason why Figure 7 has almost no points close to the
boundary).
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