
 

  

 

Aalborg Universitet

Generalized Gramian Framework for Model Reduction of Switched Systems

Shaker, Hamid Reza; Wisniewski, Rafal

Published in:
European Control Conference, 23-26 August 2009, Budapest, Hungary

Publication date:
2009

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Shaker, H. R., & Wisniewski, R. (2009). Generalized Gramian Framework for Model Reduction of Switched
Systems. In European Control Conference, 23-26 August 2009, Budapest, Hungary European Union Control
Association.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60419477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/generalized-gramian-framework-for-model-reduction-of-switched-systems(0c4b8150-e085-11dd-b0a4-000ea68e967b).html


 
 

 

 

Abstract—In this paper, a general method for model order 
reduction of switched linear dynamical systems is presented. 
The proposed technique is based on the generalized gramian 
framework for model reduction. It is shown that different 
classical reduction methods can be developed into generalized 
gramian framework. Balanced reduction within specified 
frequency bound is developed within this framework. In order 
to avoid numerical instability and also to increase the 
numerical efficiency, generalized gramian based Petrov-
Galerkin projection is constructed instead of the similarity 
transform approach for reduction. The method preserves the 
stability of the original switched system   under arbitrary 
switching signal and is applicable to both continuous and 
discrete time systems.  The performance of the proposed 
method is illustrated by numerical examples. 

I. INTRODUCTION 

HE ever-increasing need for accurate mathematical 
modeling of physical as well as artificial processes for 

simulation and control leads to models of high complexity. 
This problem demands efficient computational prototyping 
tools to replace such complex models by an approximate 
simpler models, which are capable of capturing dynamical 
behavior and preserving essential properties of the complex 
one, either the complexity appears as high order describing 
dynamical system or complex nonlinear structure. Due to 
this fact model reduction methods have become increasingly 
popular over the last two decades [1],[2],[3]. Such methods 
are designed to extract a reduced order state space model 
that adequately describes the behavior of the system in 
question.  
Most of the studies related to model reduction presented so 
far have been devoted to linear case and just few methods 
have been proposed for nonlinear cases which are not strong 
comparing to linear reduction methods. 
On the other hand, most of the methods that are proposed so 
far for control and analysis of hybrid and switched systems 
are compelling of suffer from high computational burden 
when dealing with large-scale dynamical systems. Because 
of the weakness of nonlinear model reduction techniques 
and also pressing needs for efficient analysis and control of 
large-scale dynamical hybrid and switched systems; it is 
essential to study model reduction of hybrid and switched 
systems in particular. This fact has motivated the researchers 
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in hybrid systems to study model reduction [15]-[23]. Some 
works have been focused on ordinary model reduction 
methods that have potential applications in modeling and 
analysis of hybrid systems [15]-[21] motivated by 
reachability analysis and safety verification problem.  Some 
researches addresses the problem of model reduction of 
switched and hybrid systems directly [22], [23]. In [22] it is 
presented that the state set can be affinely reduced due to 
non-observability if and only if a subspace of the classical 
unobservable subspace, characterized using the normal 
vectors of the exit facets, is nontrivial. This achievement 
does not provide strong tool for reduction of affine systems 
because it is an exact reduction and quite restrictive. Exact 
reduction is very elegant but the class of systems for which 
this procedure applies is quite small. This method only 
considers observability for investigating the importance of 
the states to discard and it has not looked into controllability 
of the states. The paper [23] is concerned with the problem 
model reduction for discrete   switched system. Two 
different approaches are proposed to solve this problem. The 
first approach casts the model reduction into a convex 
optimization problem, which is the first attempt to solve the 
model reduction problem by using linearization procedure. 
The second one, based on the cone complementarity 
linearization idea, casts the model reduction problem into a 
sequential minimization problem subject to linear matrix 
inequality constraints. Both approaches have their own 
advantages and disadvantages concerning conservatism and 
computational complexity. These optimization problems will 
be very hard if not infeasible to solve for a large scale 
system. This method not only is just applicable to discrete 
time switched systems but also it does not provide us with 
any hint about the number of states which is suitable to keep 
before reduction.  
In this paper we propose a method for model reduction of 
switched system which can be categorized as gramian based 
model reduction methods.  Balanced model reduction is one 
of the most common gramian based model reduction 
schemes. It was presented in [4] for the first time. 

To apply balanced reduction, first the system is 
represented in a basis where the states which are difficult to 
reach are simultaneously difficult to observe. This is 
achieved by simultaneously diagonalizing the reachability 
and the observability gramians, which are solutions to the 
reachability and the observability Lyapunov equations. 
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Then, the reduced model is obtained by truncating the states 
which have this property. Balanced model reduction method 
is modified and developed from different viewpoints [1],[2]. 
One of the methods that are presented based on balanced 
model reduction is the method based on the generalized 
gramians instead of gramians[5]. In this method in order to 
compute the generalized gramians, one should solve 
Lyapunov inequalities instead of Lyapunov equations. This 
method is used to devise a technique for structure preserving 
model reduction methods in [6]. 
In this paper we first show that the generalized method in 
[5] can be extended to various gramian based reduction 
methods. We also modified the original method in [5] to 
avoid numerical instability and also to achieve more 
numerical efficiency by building Petrov-Galerkin projection 
based on generalized gramians. We propose a method based 
on the balanced model reduction within frequency bound in 
this framework.  We generalized the framework to model 
reduction of switched system by solving system of 
Lyapunov inequalities to find common generalized gramian.  
The paper is organized as follows: In the next section we 
review balanced reduction method and balanced reduction 
technique based on generalized gramian. Section II presents 
how different gramian based methods can be approximated 
as generalized gramian based techniques. Balanced 
reduction within frequency bound based on generalized 
gramian is also presented in this section. This section ends 
up with some remarks on numerical implementation of the 
algorithm and using projection for generalized gramian 
based reduction methods is suggested intead of balancing 
and truncation. Section III is devoted to develop generalized 
gramian based reduction method for model reduction of 
switched systems, followed by a brief discussion on 
stability, feasibility and error bound.   Section IV presents 
our numerical results. Section V concludes the paper.  

The notation used in this paper is as follows: *M denotes  

transpose of matrix if n mM   and complex conjugate 

transpose if n mM  . The norm .


denotes the H , 

norm of a rational transfer function. The standard notation 
, ( , )    is used to denote the positive (negative) definite 

and semidefinite ordering of matrices. 

II. BALANCED TRUNCATION AND GENERALIZED GRAMIANS  

 Balanced truncation is a well-known method for model 
reduction of dynamical systems, see for example [1][2].The 
basic approach relies on balancing the gramians of the 
systems. For dynamical systems with minimal realization: 

                      ( ) : ( , , , )G s A B C D                                (1) 

where  ( )G s  is transfer matrix with associated state-space 

representation: 

  
( ) ( ) ( ), ( )

( ) ( ) ( )

nx t Ax t Bu t x t

y t Cx t Du t

   


 

 
            (2)                                 

 gramians are given by the solutions of the Lyapunov 

equations: 

                        
* *

* *

0

0

AP PA BB

A Q QA C C

  

  
                           (3) 

For stable A , they have a unique positive definite solutions 
P  and Q  , called the controllability and observability 

gramians. In balanced reduction, first the system is 
transformed to the balanced structure in which gramians are 
equal and diagonal: 

                           
11

1

( ,..., )
qk q k

q

j
j

P Q diag I I

k n

 



 


               (4)                 

where 1i i   and they are called Hankel singular values. 

  The reduced model can be easily obtained by truncating the 
states which are associated with the set of the least   Hankel 
singular values. Applying the method to stable, 
minimal ( )G s , If we keep all the states associated to 

(1 )m m r   , by truncating the rest, the reduced model 

( )rG s will be minimal and stable and satisfies[1][2]: 

                            
1

( ) ( ) 2
q

r j
j r

G s G s 


 

                       (5) 

 One of the closely related model reduction methods to the 
balanced truncation is balanced reduction based on 
generalized gramian that is presented in [5]. In this method, 
instead of Lyapunov equations (3), the following Lyaponuv 
inequalies should be solved: 

                             
* *

* *

0

0

g g

g g

AP P A BB

A Q Q A C C

  

  
                       (6) 

For stable A , they have positive definite solutions gP  

and gQ , called the generalized controllability and 

observability gramians. Note that these gramians are not 
unique. The rest of this model reduction method is the same 
as the aforementioned balanced truncation method, the only 
difference is that in this algorithm the balancing and 
truncation are based on generalized gramian instead of 
ordinary gramian. In this method we have generalized 
Hankel singular values ( i ) which are the diagonal elements 

of balanced gerealized gramians instead of Hankel singular 
values i which are the diagonal elements of balanced 

ordinary gramians. For the error bound also the same result 
holds but in terms of  the generalized Hankel singular values   
instead of  Hankel singular values. It is worth to mention 
that , i i  . Therefore the error bound in balanced 

reduction based on generalized gramian is greater equal than 
the error bound in ordinary balanced model reduction.   

III. GENERALIZED GRAMIAN FRAMEWORK FOR GRAMIAN-
BASED MODEL REDUCTION METHODS  

In this section we present a general framework to build 
generalized gramian version of gramian based methods. 



 
 

 

Then we present generalized balanced reduction within 
frequency bound within this framework following by some 
words about numerical implementation of the algorithm 
based on projection. 

A. Lyapunov Equations, Lyapunov Inequalities and 
Reduction 

 
Lemma 1: Suppose A is stable,  Y is symmetric and 

                              
* 0

, n n

A Y AY

A Y 

 


                               (7)                                          

is satisfied, then 0Y  , i.e. Y has to be positive semi 
definite. 
 
Proof: If * 0A Y AY  , there exists 0M   such that: 

* 0A Y AY M    
On the other hand, for any stable A , there exists the 
following unique solution for the equation above: 

*

0

A AY e M e d  


   

In the above structure 0M  , hence: 0Y   
  

This lemma leads to the following proposition, that makes 
the relation between Lyapunov equations and Lyapunov 
inequalities evident.  
Proposition 1[5]: Suppose A is stable and X is the 
solution of Lyapunov equation: 

                           * 0A X XA Q                                 (8) 

where 0Q  . If a symmetric gX satisfies: 

                               * 0g gA X X A Q                           (9)                          

Then: gX X . 

 
Proof: It can be proven easily by subtracting (9)-(8) and 
applying Lemma 1 with gY X X  . 

  
This proposition is a direct result of Lemma 1.  
Proposition 1 shows how the generalized gramian could be 
an approximation for ordinary gramians. Balanced 
reduction based on generalized gramian which we 
reviewed in the last section is based on proposition 1.This 
method might provide less accurate approximation than its 
gramian based counterpart but still the approximation error 
is bounded.  
It is possible to propose generalized version of other 
gramian based reduction methods in this framework. The 
only step that we need is to derive associated Lyapunov 
equations and relax them to Lyapunov inequalities. In the 
following we propose generalized version of balanced 
reduction within frequency bound.  

B. Generalized Balanced Reduction within Frequency 
Bound 

Over the past two decades, a great deal of attention has 
been devoted to balanced model reduction and it has been 
developed and improved from different viewpoints. 
Frequency weighted balanced reduction method is one of 
the devised gramian based techniques based on ordinary 
balanced truncation [1],[2],[7]-[9]. In this method by using 
input and output weights and stressing on certain 
frequency range more accurate results can be achieved. In 
many cases the input and output weights are not given and 
instead the problem is to reduce the model over a given 
frequency range [1][2]. This is problem can be attacked 
directly by balanced reduction within frequency bound. 
This method first proposed in [10] and then modified in 
[2] in order to preserve the stability of the original system 
and to provide an error bound for approximation. In this 
method, for dynamical system (1) the controllability 
gramian 1 2( , )P   and observability gramians 

1 2( , )Q   within frequency range 1 2[ , ]  are defined as:  

                         1 2 1 2

1 2 1 2

( , ) ( ) ( )

( , ) ( ) ( )

P P P

Q Q Q

   
   

 
 

                   (10)               

where: 
 

1 * * 1

* 1 * 1

1
( ) : ( ) ( )

2
1

( ) : ( ) ( )
2

P Ij A BB Ij A d

Q Ij A C C Ij A d









   


   


 



 



   

   




     (11) 

  
 
In order to show the associated Lyapunov equations, we 
need some more notations: 

                    11
( ) : ( )

2
S Ij A d




  





                    (12) 

                    

                
* * *

* * *

( ) : ( ) ( )

( ) : ( ) ( )

c

o

W S BB BB S

W C CS S C C

  

  

  

  
                (13)                 

                   1 2 2 1

1 2 2 1

( , ) : ( ) ( )

( , ) : ( ) ( )
c c c

o o o

W W W

W W W

   
   

 
 

                (14)   

              
The gramians satisfy the following Lyapunov 
equations[1],[2]: 
 

*
1 2 1 2 1 2

*
1 2 1 2 1 2

( , ) ( , ) ( , ) 0

( , ) ( , ) ( , ) 0

c

o

AP P A W

A Q Q A W

     

     

  

  
       (15)      

               
This method is modified in [2] to guarantee stability and to 
provide a simple error bound. The modified version starts 
with EVD of 1 2( , )cW   and 1 2( , )oW   : 

 



 
 

 

* *
1 2 1

* *
1 2 1

( , ) : ( ,..., )

( , ) : ( ,..., )

c n

o n

W M M M diag M

W N N N diag N

   

   

  

  
          (16) 

where: * *
nMM NN I  , 1 10, 0i i i i        . 

 
Note that since 1 2( , )cW   and 1 2( , )oW   are symmetric 

decompositions in the form (16) exist. Let: 

                  

1/ 21/ 2

1

1/ 21/2 *
1

ˆ : ( ,..., ,0,...,0)

ˆ : ( ,..., ,0,...,0)

B M diag

C diag N





 

 




       (17) 

where: 

                            1 2

1 2

( ( , ))

( ( , ))
c

o

rank W

rank W

  
  



                     (18) 

The modified gramians satisfy the following Lyapunov 
equations instead of (15): 

              
* *

1 2 1 2

* *
1 2 1 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0

ˆ ˆ ˆ ˆ( , ) ( , ) 0

AP P A BB

A Q Q A C C

   

   

  

  
            (19) 

That is all what we need to present the generalized version 
of this method: 

              
* *

1 2 1 2

* *
1 2 1 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0

ˆ ˆ ˆ ˆ( , ) ( , ) 0

g g

g g

AP P A BB

A Q Q A C C

   

   

  

  
         (20) 

Then the generalized modified balanced reduction within 
frequency bound can be obtained by simultaneously 

diagonalizing 1 2
ˆ ( , )gP   and 1 2

ˆ ( , )gQ    then by 

truncating the states associated to the set of the least 
generalized Hankel singular values.  

C. Numerical Issues 

Balanced transformation can be ill-conditioned 
numerically when dealing with the systems with some 
nearly uncontrollable modes or some nearly unobservable 
modes. Difficulties associated with computation of the 
required balanced transformation in [11] draw some 
attentions to devise alternative numerical methods[12]. 
Balancing can be a badly conditioned even when some 
states are much more controllable than observable or vice 
versa. It is advisable then to reduce the system in the 
gramian based framework without balancing at all. Schur 
method and Square root algorithms provides projection 
matrices to apply balanced reduction without balanced 
transformation[1],[12]. This method can be easily applied 
to other Gramian based method. In our generalized method 
we can use the same algorithm by plugging generalized 
gramians into the algorithm instead of ordinary gramians.  
Model Reduction of Switched System  

D. Model Reduction of Switched Systems Based on 
Generalized Gramians  

 
One of the most important subclasses of hybrid systems 

are Linear switched systems. Linear switched system is a 
dynamical system specified by the following equations: 

  

               ( ) ( )

( ) ( )

( ) ( ) ( )
:

( ) ( ) ( )
t t

t t

x t A x t B u t

y t C x t D u t
 

 

    


 (21)                  

where ( ) nx t  is the continuous state, ( ) py t  is the 

continuous output, ( ) mu t   is the continuous input, and 
0:      is the switching signal that is a piecewise 

constant map of the time.  is the set of discrete modes, and 
it is assumed to that it is finite. For each i , 

iA , iB , iC , iD are matrices of appropriate dimensions.  

In this section we build a framework for model reduction 
of switched system described by (21). The aim is to find 
Petrov-Galerkin projectors to project the switched system to 
lower dimensional subspace.  

   
Petrov-Galerkin projection for a dynamical system[1]: 
 

        
( ) ( ( ), ( )) ,

( ) ( ( ), ( ))

nx t f x t u t x

y t g x t u t

  




 
          (22) 

 
is defined as a projection *VW  ,where: 
* , , ,n k

kW V I V W k n   . 

The reduced order model using this projection is: 

               
*ˆ ˆ ˆ( ) ( ( ), ( )) ,

ˆ( ) ( ( ), ( ))

kx t W f Vx t u t x

y t g Vx t u t

  




 
 (23) 

We can develop generalized gramian framework for 
model reduction of switched linear system by finding 
common generalized controllability/observability gramian 
related to subsystems. To do this we need to solve two 
systems of lyapunov inequalies, one for finding common 
generalized controllability gramian and one for common 
generalized observability gramian. The next step can be 
simultaneous diagonalization  of the common generalized 
gramians and balancing and reduction all subsystems based 
on common generalized Hankel singular values. In order to 
avoid numerical bad conditioning and also to increase the 
efficiency we use schur or square root algorithm instead of 
balancing and directly Petrov-Galerkin projection matrices 
can be computed. In order to clarify the method we extend 
generalized balanced reduction within frequency bound that 
is presented in previous section, for model reduction of 
switched linear system.  

First we need to find, common generalized controllability 

gramian 1 2
ˆ ( , )cgP   by solving the system of Lyapunov 

inequalities :  

        
* *

1 2 1 2
ˆ ˆ ˆ ˆ( , ) ( , ) 0cg cgA P P A B B      



   

 

      (24)       

 
For example in the case of bimodal systems, {1, 2}  ,so 

we have to solve: 



 
 

 

* *
1 1 2 1 2 1 1 1

* *
2 1 2 1 2 2 2 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0

ˆ ˆ ˆ ˆ( , ) ( , ) 0

cg cg

cg cg

A P P A B B

A P P A B B

   

   

   


  
               (25) 

 

common generalized observability gramian 1 2
ˆ ( , )cgQ    

can be obtained similarly by solving the system of lyapunov 
ineqlualities :  

* *
1 2 1 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0cg cgA Q Q A C C      



   

 

            (26) 

 
Here also in the case of bimodal systems, {1, 2}  , we 

have: 
* *

1 1 2 1 2 1 1 1

* *
2 1 2 1 2 2 2 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0

ˆ ˆ ˆ ˆ( , ) ( , ) 0

cg cg

cg cg

A Q Q A C C

A Q Q A C C

   

   

   


  
               (27) 

 

If we plug in 1 2
ˆ ( , )cgP   and 1 2

ˆ ( , )cgQ   to the square 

root algorithm we can directly obtain projectors for 
reduction. Note that the results are same as balancing 
algorithm. A merit of the Square Root method is that it relies 
on the Cholesky factors of the gramians rather than the 
gramians themselves, which has advantages in terms of 
numerical stability. 

E. Stability, feasibility and Approximation Error  

 
One of the important issues in model reduction is 

preservation of the stability. In other words, the question is 
if the reduction technique method can preserve the stability 
of the original model in approximation. In the following 
proposition we show that the proposed framework for model 
reduction of switched system is stability preserving model 
reduction method and can preserve the stability of the 
original system under arbitrary switching.  

 
Proposition 2. If the switched system described in (21) is 

stable, the generalized gramian based reduced order model is 
guaranteed to be quadratic stable. 

 
Proof:  
In the proposed method, we have:  
                     * , , ,n k

kW V I V W k n                   (28) 
* *

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆˆ ˆ: ( , , , )t t t t t t t tA W A V B W B C C V D D           

 
which is projected switched system (reduced order 

model). The outcome of Square root algorithm for 
projection[1]:  1gP W V   and 1gQ V W  , where 

1
k k  is diagonal and positive definite. Since gP is 

common generalized gramian : *
( ) ( ) 0t g g tA P P A   , which 

implies:  

* *
( ) ( )( ) 0t g g tW A P P A W    

On the other hand, 

 
* * * * *

( ) ( ) ( ) ( )

* * * * *
( ) 1 1 ( ) ( ) 1 1 ( )

( )

ˆ ˆ
t g g t t g g t

t t t t

W A P P A W W A P W W P A W

W A V V A W A A

   

   

  

       
 

   Hence: 

               *
( ) 1 1 ( )

ˆ ˆ 0t tA A                            (29) 

where  1
k k  is positive definite.  

In stability theory for switched system it is well-known 
sufficient condition for quadratic stability [13].Hence, 
reduced order model is guaranteed to be quadratic stable. 

  
The same results hold, if we use balancing transformation 

instead of projection. The proof is straightforward and it is 
just based on the fact that for any matix 0M  , all its 
leading square partitions are negative semidefinite.  

As we can see, the presented framework for model 
reduction of switched system is stability preserving model 
reduction method. As we already mentioned the error of 
approximation for each subsystem is bounded and is in 
terms of generalized Hankel singular values.  

The system of LMIs in our framework is said to be 
feasible if a common generalized grammian exists. In 
general existence of a common lyapunov function is not 
guaranteed for switched systems [13], therefore we can not 
expect to have common generalized grammian for all linear 
switched systems. One way to improve the feasibility of the 
proposed model reduction method is to use recently 
proposed extended notion of generalized grammian which is 
called extended grammian [14].    

IV. NUMERICAL EXAMPLES 

In this section we have applied the proposed method for 
reduction of two randomly generated bimodal switched 
linear systems. The first example is of order 5 and the 
second one is of order 100.  

A. Fifth Order Switched linear System: 

We consider a randomly generated single-input-single 
output switched linear of the form (21) for which we have: 

1

4.23 0.4654 1.305 0.313 1.461

0.4654 4.418 0.8745 0.9324 0.7062

1.305 0.8745 1.839 0.0083 0.6652

0.313 0.9324 0.0083 1.801 0.4979

1.461 0.7062 0.6652 0.4979 2.355

A

  
    
   
 

    
     

 

2

-5.055  0.4867  0.7761 -3.765 -2.702

0.4867 -3.034 0.0537 0.6768 0.6030

0.7761 0.0537 -1.392 -0.0739 0.8858

-3.765 0.6768 -0.0739 -5.26 -1.886

-2.702 0.603 0.8858 -1.886 -3.909

A

 
 
 
 
 
 
  

 



 
 

 

1

- 0.1721

- 0.336

0.5415

0

-0.5703

B

 
 
 
 
 
 
  

, 
2

-0.5081

0.8564

0.2685

0.625

-1.047

B

 
 
 
 
 
 
  

 

1 [-1.499 -0.0503 0.553 0.0835 1.578]C   

2 [1.536 0.4344 -1.917 0 0]C  ,
1 2 0D D   

   This model is reduced to the following third order 
switched linear model by applying the presented method 
over  1 2, [0.1 ,100]   : 

1

-1.031 0.0061 0.0811

0.1413 1.606 0.7891

0.1708 1.028 2.723
rA

 
    
   

2

-0.8714 0.0209 0.1824

-0.153 -1.652 -0.864

0.0540 -0.6046 -2.7
rA

 
   
  

 

1

-0.4154

0.595

0.7314
rB

 
   
  

,
2

0.315

1.136

2.371
rB

 
   
  

  1 -0.2443 -1.076 0.1176rC   

 2 0.5949 0.5316 -0.5847rC  , 1 2 0r rD D   

Fig. 1 shows the decay rate of the generlized Hankel 
singular values. The step response of the original and 
reduced order switched systems associated to randomly 
generate switching signal of Fig.2 is presented in Fig. 3. 

 
Fig. 1.  Generalized Hankel Singular Valuse( i ) 

 
Fig. 2.  Randomly generated switching signal 

 

 
Fig. 3.  Step response of original switched linear system(solid line) and the 
reduced order model (dotted). 
 

Fig. 1. shows that most of the input/output information is in 
three states of the original systems. The proposed method  
provides accurate results after reduction of 2 states of the 
original system (40% of the states) globally (see Fig. 3) 

B. Bimodal Switched linear System of order 100: 

We consider a randomly generated bimodal switched linear 
system of order 100. This example shows that the presented 
method can be applied to fairly large systems. The original 
system is SISO and it is reduced to 87 using the proposed 
reduction method over  1 2, [1 ,100]   .  

The generlized Hankel singular values are shown in Fig. 4.  
The step response of the original and reduced order switched 
systems associated to randomly generate switching signal of 
Fig.5 is shown in Fig. 6. 
The results after reduction of 13 states of the original system 
(13% of the states) are accurate locally and also globally 
(see Fig. 6). We already know from “Proposition. 2” that the 
reduced order switched system is stable. In order to see how 
the reduction method performs from stability viewpoint, we 
picked randomly generated subsystems that are stable and 
their poles are close to imaginary axis. Fig. 6. shows that the 
stability of the original systems is preserved even in such 
situations and the step response of the reduced order 
switched system follows the step response of the original 
system accurately.    

 
Fig. 4.  Generalized Hankel Singular Valuse( i ) 



 
 

 

 
Fig. 5.  Randomly generated switching signal 

 
Fig. 6.    Step response of original switched linear system (solid line) and 
the reduced order model (dotted). 

V. CONCLUSION 

A general framework for model order reduction of 
switched linear dynamical systems has been presented. In 
this paper we have reformulated the frequency domain 
balanced reduction method into this scheme but generally 
various gramian based reduction methods can be 
reformulated in the proposed generalized method easily and 
can be applied for reduction of switched system. The 
method preserves the stability of the original switched 
system   under arbitrary switching signal and is applicable to 
both continuous and discrete time systems.  The method has 
some other merits such as providing more efficient 
approximation than some nonlinear reduction methods and 
also offers a reduction procedure which is independent of 
inputs or snapshots. One of the drawbacks of the method is 
that it is not always feasible because it is not always possible 
to find a common Lyapunov function for switched systems. 
Error is bounded but it is not guaranteed to be always small 
enough. There are different directions for further extensions 
such as using optimization, control and also various 
generalized gramians.    
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