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Abstract 

 
This paper presents the PI-OBS algorithm, a 

parallel-iterative scheduler for OBS nodes.  
Conventional schemes are greedy in the sense that they 
process headers one by one. In PI-OBS, all the headers 
received during a given time window are jointly 
processed to optimize the delay and output wavelength 
allocation, applying void filling techniques, and 
allowing traffic differentiation. Results show a similar 
or better performance than the LAUC-VF algorithm, 
commonly used as a performance bound for OBS 
schedulers.  The PI-OBS scheduler has been designed 
to allow parallel electronic implementation similar to 
the ones in VOQ schedulers, with a deterministic 
response time.  
 
 
1. Introduction 
 

In the Optical Burst Switching (OBS) paradigm [1], 
electronic traffic is assembled into variable length 
optical bursts, which are injected into the OBS network  
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by network edge nodes, and transparently routed across 
the OBS network. The transmission of the burst payload 
in a fiber is preceded by a burst header packet (BHP), 
which is usually transmitted in a dedicated control 
wavelength. BHPs include control information: the 
burst payload transmission wavelength, the payload 
duration, the offset time between the burst control 
header and burst payload, the destination address and 
the class of service.  

Fig. 1 illustrates the generic architecture of an OBS 
switching node with N input and output fibers, 1 control 
wavelength (λ0) and n data wavelengths (λ1...λn) per 
fiber. The optical switching fabric (OSF) transparently 
switches optical bursts from input ports to output ports. 
In this paper, we consider OSFs able to emulate output 
buffering, with full wavelength conversion (e.g. like [2] 
or [3]), and D fiber delay lines (FDLs) of duration 
d=0,G,...,(D-1)G, where G denotes the FDL granularity.  
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Fig.1. Scheme of an OBS node 

 
The scheduling algorithm is responsible for 

allocating a contention-free FDL and output wavelength 
to switch every burst payload to its target output fiber. 
Because of the variable length of the bursts, this process 
may imply the creation of significant unused time gaps 
(voids) between two consecutive bursts in an output 
wavelength. The scheduling algorithms intended to 



allocate shorter bursts to fill the voids in the output 
wavelengths are called void filling algorithms.  

Due to the strict timings of the JET [4] signaling 
protocol used for delayed reservation, OBS scheduling 
algorithms are affected by an unavoidable response time 
constraint: the internal path in the OSF must be ready at 
the moment of payload arrival. Sequential approaches, 
processing input headers one by one, suffer from a 
worst case response time which increases with the port 
count. Therefore, they are not suitable for medium-to-
large scale OSFs. Furthermore, sequential approaches 
are inherently greedy. As a general rule, it is preferred 
to make joint resource allocations involving more than 
one burst, seeking a better average performance. 

This paper proposes a parallel scheduling algorithm 
for OBS nodes, named PI-OBS (Parallel Matching 
Optical Burst Scheduler). PI-OBS is suitable for a fast 
parallel iterative implementation, with an algorithm 
response time almost independent of the switch size. It 
applies scheduling concepts present in the iSLIP-like 
[5] parallel-iterative scheduling algorithms designed for 
Virtual Output Queuing (VOQ) architectures. PI-OBS 
jointly processes the burst headers arriving in a given 
time window, using void filling techniques. It has burst 
loss differentiation capabilities according to burst 
header information.  

The rest of the paper is organized as follows. Section 
2 reviews related proposals found in the open literature. 
The PI-OBS algorithm is described in section 3, and a 
comparative performance study in included in section 4. 
Finally, section 5 concludes the paper. 

 
2. Related work 
 

Many scheduling algorithms have been proposed so 
far in the literature, where the optimal target is to 
provide efficient resource utilization and minimum 
burst loss [6].  

The very first one [7] defines a time horizon for each 
output wavelength, as the instant after which no burst 
occupies the channel. Any channel with a horizon 
smaller than the arrival time of the burst payload (or of 
one of its copies delayed by the FDL buffer, if present) 
is available to accommodate the incoming burst and the 
algorithm selects the channel with the latest horizon in 
order to minimize the bandwidth wasted due to voids. 
For this reason the same scheduling technique is also 
called Latest Available Unscheduled Channel (LAUC) 
[8]. 

A major improvement in terms of performance is 
achieved by adding void filling capabilities to the 
Horizon policy, resulting in the Latest Available 
Unused Channel with Void Filling (LAUC-VF) 

algorithm [8]. Already scheduled channels are now 
included in the search, given that they are unused for a 
period (i.e. void) starting before the (possibly delayed) 
payload arrival time and large enough to accommodate 
the entire incoming burst. The unscheduled channels are 
considered as a particular case of voids with infinite 
length. The algorithm selects the suitable void with the 
latest starting time, minimizing the gap left in front of 
the incoming burst so that the achieved throughput can 
be considered as an upper bound of the OBS node 
performance. 

In [9], a LAUC-VF variation was proposed which 
considers burst QoS differentiation. After a header 
processing is completed, the next header to be 
processed is chosen giving precedence to that ones 
associated to higher priority traffic. 

Since LAUC-VF must keep track of all the voids in 
the output channels, the algorithm is computationally 
more complex and time-consuming than LAUC. 
However, other variants of void filling scheduling 
policies, such as MinSV, MinEV, BestFit [10] or HVF 
[11] achieve the same loss ratios as LAUC-VF with a 
significantly reduced complexity [1], thanks to the use 
of efficient data structures and smart search techniques. 
The most efficient scheduler compared in [1] has a 
complexity of O(log K), where K is the number of 
scheduled bursts. 

Recently, the hardware implementation of an OBS 
scheduler based on burst resequencing, which is able to 
achieve optimal scheduling in O(1) complexity, has 
been proposed [12]. This scheduler does not process 
burst headers immediately as they arrive. Instead, it 
delays and reorders them according to the respective 
payload arrival time. Then, by applying a simple 
Horizon policy, it is possible to schedule bursts that 
would have required a void filling algorithm in 
sequential header processing. However, this scheduler 
is applicable to the bufferless case only, since it is able 
to merely exploit the voids created by different offset 
times and not by burst payloads delayed by FDLs. 
Furthermore, due to the delayed header processing, data 
bursts need an additional latency. 

In order to implement a scalable OBS scheduler, the 
dependence of the algorithm execution time from the 
switch size should be as low as possible. This can be 
achieved adopting a parallel processing scheme, as the 
one described in a recent paper [13] which presents a 
specific formulation of the scheduling problem and a 
simulation of a viable hardware implementation with 
the resulting response time.  

Nevertheless, all approaches previously described 
address the scheduling problem by searching fast and/or 
parallel algorithms, for processing one single burst 
header. However, headers are still processed 



sequentially, which brings two persistent drawbacks: (1) 
a sequential approach is greedy, (2) the system has to be 
dimensioned for a worst case situation, with a high 
number of headers to be processed in a short time 
period.  Therefore, a completely novel different 
approach to a parallel scheduler is the one described in 
this paper. 

 
3. PI-OBS: Algorithm description 
 
3.1. General view and time constraints 
 

The PI-OBS algorithm is designed as a parallel 
iterative algorithm, which is able to guarantee an upper 
bound to the response time. Let us denote this response 
time upper bound as TA µs.  The algorithm is executed 
periodically, every TI µs. The constraint TI≥TA ensures 
that an algorithm execution starts strictly after the 
previous execution is finished. The algorithm execution 
starting at time t=t0, is responsible for jointly processing 
the burst headers asynchronously received during the 
time interval [t0-TI, t0]. We call this interval the header 
arrival time  window of the algorithm execution. After 
algorithm execution, the scheduling decisions made for 
all the headers processed are stored in the system so that 
the correct reconfiguration of the OSF is applied when 
each payload arrives to the OSF.  

We denote TWC as the worst case time (µs) spanning 
between the instant of header reception, and the 
moment in which a path is ready for the payload. TWC is 
the sum of three time parameters: (i) TI, as the worst 
case time from header arrival to algorithm execution 
(corresponding to a header received just at the start of a 
header arrival window), (ii) the algorithm response time 
TA, and (iii) the reconfiguration time TO of the optical 
components of the OSF: 

 
TWC = TI+TA+TO  (1) 

 
Two system parameters can be tuned to fulfill this 

constraint: (i) a minimum offset time δm between the 
burst header and the burst payload seen by SE node, and 
(ii) an extra delay DP added in the payload path, 
implemented by fixed duration FDLs in the data input 
ports (see Fig. 1). Note that although this approach is 
more commonly used in Optical Packet Switching 
(OPS) nodes, it is also suitable in this case. 
Consequently, the following must hold: 

 
δm + DP ≥ TWC = TI + TA + TO (2) 

 
3.2. Scheduler architecture 
 

Fig. 2 depicts the main building blocks of the 
proposed scheduler architecture. It is based on the 
electronic interconnection of nNH input modules (left 
hand side), and nN output modules (right hand side), 
connected by means of a crossbar interconnection for 
inter-module signaling. 
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Fig.2. Scheduler architecture. 

 
3.2.1.Input modules description. One input module 
Ihfw exists per each horizon time block (h=0,...,H-1), 
each input fiber (f=0,..,N-1), and each input wavelength 
(w=0,...,n-1). Horizons in this context are consecutive 
intervals of duration TI, in which we organize the future 
payload arrivals. During the algorithm execution 
starting at time t=t0, an input module Ihfw contains the 
information about a payload whose first bit will arrive 
to the OSF through input fiber f, input wavelength w, 
within the time interval [t0-TI+TWC+hTI, t0- TI 
+TWC+(h+1)TI). The closest horizon in time corresponds 
to the payloads arriving to the OSF in the range [t0-
TI+TWC, t0+TWC). The time t0-TI+TWC is the earliest time 
of arrival of a payload whose header was received at the 
start of the current header arrival time window, t=t0-TI. 
The number of time horizons to consider H, depends on 
the difference between the maximum and minimum 
offset time allowed in the system.  

It must be guaranteed that at most one payload is 
associated to each input module in an algorithm 
execution. The reason is that each input module of the 
scheduler is able to handle at most one payload arrival. 
This implies that the minimum allowed payload length 
(Lmin) plus the IBG must be greater than the period of 
the algorithm execution TI. 

 
Lmin + IBG > TI (3) 

 
The information stored in each input module is (i) 

the associated burst target output fiber, burst offset, 
burst length and QoS class, (ii) the information about 
burst allocation, to be updated during the algorithm 
iterations: FDL and output wavelength assigned, and an 



upper bound to the length of the void created from burst 
head to preceding burst tail if the allocation took place. 
The nature of this void length calculation is described 
later in this section. 
3.2.2.Output modules description. One output module 
Ofw exists for each output fiber f=0,...,N-1, and output 
wavelength w=0,...,n-1. Each output module contains 
four control registers: (i and ii) two registers storing the 
occupation of the output wavelength w along time: 
R1(f,w) and R2(f,w), (iii) a register G(f,w) storing a grant 
pointer, of length log2(nNH) bits, and (iv) one bit 
register CW(f,w) setting the scanning direction of the 
grant pointer. The utilization of these registers will be 
made clear below. 
 
3.3. Scheduler algorithm description 

 
As mentioned before, one algorithm execution starts 

periodically every TI µs. Let us suppose that current 
algorithm execution starts at time t=t0. At this moment, 
the input modules Ihfw, h=0,..,H-1, f=0,...,N-1, w=0,...,n-
1, contain the control information of the burst headers 
which arrived in the header arrival time window [t0-TI, 
t0). In each output module, the R1 and R2 registers 
contain the same information: the occupation of the 
output wavelengths by the scheduled payloads in 
previous algorithm executions, which can still overlap 
with arriving payloads. R1 will act as a backup copy of 
R2 during algorithm execution.  

Every algorithm execution is composed of a 
sequence of CI algorithm iterations. Each iteration is 
composed of a sequence of D delay cycles, one for each 
FDL in the OSF. Each delay cycle i is devoted to find a 
wavelength allocation for the arriving payloads if they 
were delayed by the corresponding FDL i, i=0,...,D-1. 
Each delay cycle consists of a sequence of 4 steps: (i) 
request, (ii) grant, (iii) accept, and (iv) update.  

The operations involved in the delay cycles of the 
first iteration of the algorithm are: 

 
(i) Request step (delay cycle 0,...,D-1): Executed in 
parallel, in each of the nNH input modules. For input 
module i with a payload destined to output fiber f, a 
request signal is sent to the output modules associated 
with all output wavelengths of the target output fiber: 
Ofw, w=0,...,n-1. After the request signal, information 
about the payload arrival time, payload duration, and 
payload QoS is also transmitted through the signaling 
interconnection matrix.  
(ii) Grant step (delay cycle 0,...,D-1). It is executed in 
parallel, in each of the nN output modules. The request 
signals received from the input modules are scanned, 
starting by the input module associated to input horizon 
h, input fiber f and input wavelength w pointed by the 

grant pointer G(f,w) of the output module. Internally, 
the scanning order of the rest of (h,f,w) 3-tuples 
continues lexicographically: a (h1,f1,w1) input module is 
scanned before (h2,f2,w2) module if h1 is closer to h than 
h2 in the clockwise or counter-clockwise direction, 
depending on the state of the CW(f,w) bit. If h1=h2, 3-
tuples are ordered according to the same type of 
distance from f1 and f2 to f. If f1 and f2 are also equal, the 
input modules are ordered according to the distance 
from w1 and w2 to w. Although arduous to describe, 
these operations can be performed by arbiters 
implemented as fast combinational circuits [14]. A grant 
is sent to the first input module found whose burst does 
not overlap either with existing bursts scheduled in 
previous algorithm executions, nor allocated bursts in 
previous delay cycles of the same algorithm iteration. 
The arbiter gives precedence to input modules with 
higher QoS class, before the input module position. 
From the arbiter point of view, this approach is similar 
to the precedence between strong and weak requests in 
the VOQ algorithm described in [16]. The information 
for checking allocation overlap is stored in the R2 
register. Different arrangements of the information in R1 
and R2 registers may lead to a trade-off between 
response time and electronic implementation 
complexity. For instance, if R1 and R2 registers are 
implemented as bit masks, each bit representing 
occupation during a small interval of time, the overlap 
check is simplified into fast and parallel bit AND 
operations. Furthermore, overlapping check in different 
delay cycles is easily performed by bit-shifting the R2 
register before the check. The grant signal (if any) is 
transmitted through the interconnection matrix. After it, 
information about the void created by this grant is also 
transmitted: the time distance between the head of the 
payload granted and the tail of the preceding payload 
according to current allocation. This is easily calculated 
as a by-product of overlapping check operation. Note 
that the true void can be decreased if in subsequent 
delay cycles a burst is allocated to fill the gap between 
the current granted burst head and the preceding burst 
tail. 
(iii) Accept  step (delay cycle 0,...,D-1). Executed in 
parallel, in each of the nNH input modules. From the 
grant signals received, the one with a smaller void is 
selected. If that holds for more than one grant, the one 
with the lowest wavelength index is preferred (first-fit). 
Then, an accept signal is sent to the associated output 
module. Note that (i) only the input modules which sent 
a request can receive a grant, (ii) after sending an accept 
signal, the input module does not enter into play for 
future delay cycles in the same iteration. 
(iv) Update step (delay cycle 0,...,D-2): Executed in 
parallel, in each of the nN output modules. The internal 



register R2 storing the occupation of the output 
wavelength along time is updated with the new accept 
signals information, so that future assignments in 
different delays of the same iteration do not overlap 
with the accepted allocation.  

 
Once an iteration is finished, all the assignments 

performed are erased. The occupation of the R2 register 
is set to be R1 again: the system is reset to the state 
previous to the first iteration in this algorithm 
execution. The only information that remains in the 
scheduler from one iteration to the next, is stored at the 
input modules: each input module remembers the delay 
and void associated to the allocation accepted in the 
previous iteration, if any. This information will be used 
in the request and grant steps of the next iteration.  

The actions taken during request steps in iterations 
2,..., CI are modified as follows. Let us suppose an input 
module (h,f,w) which accepted an allocation for delay 
D1 in the previous iteration, with a void bound of V1. In 
the next iteration delay cycles d=0,...,D1-1, normal 
operation is performed. If an accept signal is sent, the 
input module refuses to send more request signals in the 
next delay cycles. During delay cycle D1 (if the module 
has not received a grant yet), the request signal is 
accompanied with the size V1 of the void bound 
information stored at the input module, which is sent to 
the requested output modules. 

The grant step is modified as follows. Each output 
module grants the first input module following the 
scanning order, for which (i) a request is received, and 
(ii) the void generated by this allocation (checked from 
the R2 register) is strictly lower than the void V1 
published by that input module. Again, this 
functionality can be implemented by fast binary 
comparisons performed in parallel in all the output 
modules. Note that the void comparison implies that 
grants sent in iteration i to an input module, could be 
sent to other modules in iteration i+1.  

At the end of the last iteration, the allocations 
accepted by the input modules are considered final. In 
the output modules, the R2 register in each output 
module contains the updated occupation. This 
information is copied into R1. Before next algorithm 
execution starts, R1 registers are modified to reflect a 
packet propagation of TI µs. If R1 and R2 are bit mask 
registers, this can be performed by fast bit shift 
operations. 
3.4. Grant pointers operation and system 
initialization 

 
As it happens in the iSLIP scheduler for VOQ 

switches [5], the operation of grant pointers strongly 

affects the performance of the system. If an input 
module enters into a request step, it simultaneously 
sends a request signal to n output modules, one per each 
output wavelength of the target output fiber. It is of 
interest to reduce the number of simultaneous grants an 
input module receives, as at most one grant can be 
accepted. The non-accepted grants correspond to delay 
assignments not granted to other modules. Those 
candidate allocations will not enter into play until next 
iteration. Therefore, the grant pointers of output 
modules corresponding to the same output fiber should 
be desynchronized, in the sense that they point to input 
modules as separated as possible one from the other in 
the lexicographical ordering. Then, we increase the 
chances that the grants are more uniformly spread 
among the input modules. Similarly to algorithm [16] 
for VOQ switches, and to algorithm [17] for slotted 
OPS switches, this can be obtained by: (i) a grant 
pointer initialization during system start-up which 
maximizes the minimum lexicographical distance 
between pointers, (ii) the CW bit is changed after every 
algorithm execution, switching the scanning direction of 
the input ports pointed by the grant pointers. This action 
aims to improve system fairness when packet arrivals 
are not uniform across input fibers, in the same way as 
in [17]. (iii) Every two algorithm executions (with 
opposite scanning directions) all the pointers increase 
the value by one, modulo nNH.  

 
3.5. Algorithm convergence 

 
We define algorithm convergence time as the 

number of iterations needed for the system to achieve a 
stable allocation in all the processed bursts, which 
would not change if more iterations were performed.  

Property 1: Worst case convergence time is limited 
by a finite bound.  

Proof: Let Ihfw be an input module which has 
received a grant for delay D1 in iteration i. In iteration 
i+1, the same input module can receive a different 
delay-wavelength assignment, only when (i) the 
allocations in delay cycles 0,.., D1-1 have changed from 
previous iteration, or (ii) the void bounds V1 announced 
in delay cycle D1 change in any input module.  

For delay cycle 0, only condition (ii) can hold, and a 
variation in (ii) can only occur when an input module 
has improved its void estimation. Therefore, this can 
only happen during a finite number of iterations. After 
that, allocations do not change in delay cycle 0. At this 
moment, applying the same principle to delay cycle 1, 
then 2, etc. convergence is guaranteed in a finite 
number of iterations. 

The PI-OBS algorithm addresses the multi-objective 
optimization problem of allocating delays and output 



wavelengths to arriving bursts so that: (i) the number of 
bursts receiving a delay is maximized for each QoS 
class, prioritizing higher class traffic, (ii) the average 
delay of the allocation is minimized, (iii) the average 
size of the voids generated is minimized. 

Property 2: The PI-OBS stable allocations are 
distance-1 local optimum solutions to the previous 
problem.  

Proof: We provide an intuitive proof. A distance-1 
local minimum solution means that the allocation is not 
improved by neighboring solutions which differ in at 
most one assignment. Let us assume a solution in which 
(i) one more burst could receive a delay-wavelength 
instead of being dropped, or (ii) receive a better delay, 
(iii) or receive an assignment with the same delay but 
implying a smaller void. Clearly, this solution would 
not be a stable allocation, convergence has not been 
reached, and the algorithm would change the solution in 
a further iteration. 

 
4. Results 
 

In the testing scenario, the switch under evaluation 
SE receives traffic from N input neighbor nodes 
(I0,...,IN-1), and is responsible for switching it to N 
output target nodes (T0,...,TN-1). Connecting fibers have 
n data wavelengths λ1,...,λn and one separated control 
wavelength λ0.  

Three different scheduling algorithms will be 
evaluated in the SE node: LAUC, LAUC-VF and PI-
OBS. LAUC and LAUC-VF are sequential algorithms 
which are commonly used as performance bound in 
comparisons.  

The reconfiguration time of the optical equipment 
and the IBG time are assumed to be equal to 0.03 µs 
(TO=IBG=0.03 µs). Both the input nodes and the SE 
node under test respect this IBG time in their 
assignments. Scheduling algorithms can easily do that 
by artificially adding the value IBG to the payload 
duration. Then, the scheduler guarantees that every 
payload is followed by an idle time of IBG µs in the 
output wavelength. 

Each source node assembles bursts of payload 
duration given by a truncated normal distribution. 
Minimum burst length is set to 10 µs, and the maximum 
burst length to 100 µs. Average burst length is set to 55 
µs. The time between the assembling of two bursts is 
exponentially distributed. Its average is calculated to 
match the desired load value. After a burst is assembled, 
the transmission wavelength and injection time in the 
connecting fiber are selected as if the input node was a 
LAUC-VF node, with an infinite number of FDLs. 
Using LAUC-VF source nodes is considered a more 

realistic scenario, which intends to reproduce the 
correlations in burst arrivals that appear in different 
wavelengths of the same fiber in an OBS network. The 
granularity of the FDLs in the source nodes and the SE 
node is made equal to 55.03 µs, the average burst length 
plus the IBG time. We denote this as the perceived 
average burst length, as it is the average burst length 
observed by the scheduler. Previous works have shown 
that a FDL granularity close to the average payload 
duration optimizes system performance [18]. 

The time between two algorithm executions is set to 
TI=10 µs. The algorithm response time is assumed to be 
also TA=10 µs (so that the constraint TI≥TA is tight). The 
minimum offset time of the bursts generated by the edge 
node is calculated by assuming that the switch under 
test has DP=0 µs extra payload delay. Then δm=20.03 
µs. Bursts are generated with a random offset uniformly 
distributed in the range [20.03, 80.03] µs. This implies 
that 7 horizons of 10 µs each have to be used in the PI-
OBS algorithm. For the algorithm execution starting at 
time t=t0, the first horizon contains the payloads 
arriving to the OSF at time interval [t0+10.03, t0+20.03], 
and last horizon for payloads arriving at the time 
interval [t0+70.03, t0+80.03]. Note that in OBS 
networks designed to have a constant offset time, the 
number of PI-OBS horizons would be reduced to 1, 
resulting in a relevant saving in implementation 
complexity.  

Target output node of the bursts is selected randomly 
with uniform distribution. Two classes of service have 
been defined in all the tests: 10% of the bursts are of 
high priority traffic (Hi), and 90% of low priority or 
best-effort traffic (BE). Only the PI-OBS algorithm 
performs traffic differentiation. 

Performance evaluation has been conducted by 
means of discrete event simulation. The simulation tool 
has been built on top of the OMNeT++ platform [19]. 
All the tests performed consist of 5 independent 
samples, with 107 generated bursts each. Confidence 
intervals are calculated for a 95% quality, using the t-
Student method. Confidence intervals obtained validate 
the results, but are not shown in the figures for the sake 
of clarity. 

The first step in our study addresses the 
dimensioning of the buffering in the SE switch, required 
for guaranteeing an average bit loss probability below 
10-5 for an 80% input load. Measuring the bit loss 
probability means that the loss of a burst is weighted by 
its duration. The variance of the payload duration is 
made equal to the perceived updated average burst 
length 55.03 µs. This corresponds to a coefficient of 
variation of the payload distribution equal to 1, CV=1. 

Results are shown in Table I. Note that PI-OBS and 
LAUC-VF algorithms have a similar buffering 



performance. In the DWDM scenario (n=64), 2 FDLs 
are enough to guarantee the loss target. Also, results 
confirm that LAUC algorithm strongly increases the 
buffering requirements, because of its inefficient use of 
resources. The same buffering requirements, not shown 
in the table, have been obtained for CV=0.5 and 
CV=1.5, with the only difference for the case n=16, 
CV=0.5, where both LAUC-VF and PI-OBS schedulers 
required one extra FDL. 

 
Table I 

FDL buffering {PI-OBS/LAUC-VF/LAUC} 
            λ 
   N  n= 16 n = 32 n = 64 

N =2 4 / 4 / >10 3 / 2 / >10 2 / 2 / 4 
N =4 4 / 4 / >10 3 / 3 / >10 2 / 2 / 4 
N =8 4 / 4 / >10 3 / 3 / >10 2 / 2 / 4 

 
The subsequent tests included in this paper intend to 

provide a deeper understanding of how LAUC-VF and 
PI-OBS schedulers react during overload intervals. The 
LAUC scheduler is removed from the picture because 
of its well-known worse performance. 

Fig. 3 and Fig. 4 show the burst loss probability 
(BLP) of a switch with N=4 input and output fibers, and 
n=16 wavelengths per fiber, under an input load of 
95%, but with the buffering dimensioning of D=4 FDLs 
(calculated in Table I for a bit loss probability of 10-5 
under an 80% load). Naturally, that overload scenario is 
supposed to be transient in an actual system, as an 
unacceptable loss probability is obtained. We have 
conducted similar tests for switch sizes N={2,4,8}, 
n={16,32,64}, not shown in the paper, which yield to 
the same conclusions as the ones exposed below. 

Fig. 3 shows the burst loss probability distribution, 
depending on the payload size. Results yield to the 
following conclusions: (i) short bursts have a better 
chance to be allocated resources. All bursts larger than 
approximately one half of the average payload length 
are treated equally by the system. These effects appear 
in both LAUC-VF and PI-OBS algorithms. (ii) PI-OBS 
effectively differentiates the burst losses for the two 
tested service classes: high class (Hi), and best effort 
(BE). Nevertheless, there is room for investigating 
scheduler variants that obtain a stronger traffic 
differentiation (iii) the losses of the best-effort traffic in 
PI-OBS algorithm are similar to the ones in the LAUC-
VF algorithm. The performance of high class traffic in 
PI-OBS scheduler improves LAUC-VF results. 

 

10 20 30 40 50 60 70 80 90 100
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Payload Length

B
ur

st
 L

os
s 

P
ro

ba
bi

lit
y

Burst Loss Probability vs Payload Length

 

 
PI-OBS Hi

PI-OBS BE
LAUC VF

 
Fig. 3. BLP distribution (payload length). 

 
Fig. 4 displays the burst loss probability distribution 

as a function of the offset of the burst. Again, LAUC-
VF and PI-OBS are similar in the impact of the burst 
offset on the loss probability for the overloaded 
scenario, increasing the dropping probability for bursts 
which were announced with a shorter offset. 
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Fig. 4. BLP distribution (offset time). 

 
The observed LAUC-VF results are comparable to 

the ones obtained in other works which have studied 
that scheduler performance, although under different 
testing scenarios (e.g. see [19]). The most relevant 
conclusions from our study are that PI-OBS, which is 
designed to minimize the same objective function 
without a greedy approach, results in a similar behavior 
under overloading conditions.  

While PI-OBS convergence has been proved in a 
finite number of iterations, it is clear that shorter 
convergence times may lead to hardware simplification. 
Table II summarizes the algorithm convergence 
information for PI-OBS in the same tests shown in 
Table I. For each N={2,4,8}, n={16,32,64}, we include 
the number of iterations in the algorithm such that an 
optimal solution is obtained in the 99% of the time 
slots, for three CV factors, CV={0.5, 1, 1.5}. We can 
conclude that the convergence time does not depend 



either on the number of fibers, nor the CV factor in 
payload length distribution, but is slightly larger for a 
larger number of wavelengths per fiber. Nevertheless, 
the number of iterations for convergence can be 
considered reasonably low. 

Table II 
PI-OBS Convergence 

            λ 
    N  n= 16 n = 32 n = 64 

N =2 6 / 6 / 6 8 / 8 / 8 10 / 10 / 10 
N =4 6 / 6 / 6 8 / 8 / 8 11 / 11 / 11 
N =8 6 / 6 / 6 8 / 9 / 8 11 / 11 / 11 

 
5. Conclusions and future work 
 

As far as the authors know, the PI-OBS is the first 
proposal of a parallel-iterative scheduler for OBS 
switches. In contrast to conventional greedy 
approaches, all the headers received in a given time 
window are jointly processed. This opens a field for a 
performance gain, when compared to greedy 
approaches like the LAUC-VF scheme. Also, algorithm 
convergence studies show a response time 
approximately independent from switch size. Observing 
the similarities with VOQ schedulers, authors are 
working on a practical parallel implementation of the 
scheduler, exploring the trade-off between 
implementation complexity and algorithm response 
time. 

Authors consider the PI-OBS as a first step. 
Variations of PI-OBS can explore other strategies for 
joint resource allocations, yielding to performance 
improvements and/or hardware simplification. 
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