

Aalborg Universitet

A Preliminary Performance Study of Architectural Support for Multithreading

Ortiz-Arroyo, Daniel

Published in:
Proceedings of the Thirtieth Hawaii International Conference on System Sciences, 1997

Publication date:
1997

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Ortiz-Arroyo, D. (1997). A Preliminary Performance Study of Architectural Support for Multithreading. In
Proceedings of the Thirtieth Hawaii International Conference on System Sciences, 1997 IEEE.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60419297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/a-preliminary-performance-study-of-architectural-support-for-multithreading(aa812510-de3b-11dd-b0a4-000ea68e967b).html

A Preliminary Performance Study of Architectural
Support for Multithreading

Daniel Oltiz and Ben Lee

Department of Electrical and Computer Engi-
neering

Oregon State University
Corvallis, OR 97331

{dortiz, benl)@ece.orst.edu

Abstract
This paper discusses the preliminary performance study of
hybrid multithreaded execution model that combines
software-controlled multithreaded system with hardware
support for efficient context switching and threads sched-
uling. The hardware support for multithreading is aug-
mented with a software thread scheduling technique called
setscheduling, and their benefit to the overall performance
is discussed. Set scheduling schedules multiple threads
onto the hardware scheduler to minimize the software
scheduling and context switching costs. An analytical
model of the proposed multithreaded model is discussed
and simulation results of processor utilization based on the
proposed model are presented. Through simulation, we
find that the hybrid multithreaded execution model results
in high processor utilization than traditional software-
controlled multithreading.

1. Introduction

Multithreading has been proposed as a promising tech-
nique to improve the performance of shared-memory mul-
tiprocessor systems, In a multithreaded system, high
processor utilization is achieved by interleaving the exe-
cution of a number of computational threads through a
processor pipeline. To achieve maximum efficiency, a
context-switch occurs when a thread execution blocks due
to long latency operations, such as a cache miss or a
thread synchronization. In the case of a cache miss, the
,requested data may be obtained from either the local
memory-in the case of Uniform Memory Access (UMA)
machines-or a remote memory access will be issued-in
the case of Cache Coherent Non-Uniform Memory Access

This research was supported in part by the Electronics and Telecom-
munications Research institute, Taejon, Korea.

Suk-Han Yoon and Kee-Wook Rim

Computer Division
Electronics and Telecommunications

Research Institute
Taejon, Korea

{shyoon, kwrim)@etri.reJu

(CC-NUMA) machines. The memory latency is then hid-
den by overlapping it with the execution of a new thread.

Traditionally, support for multithreading has been
provided either in software or hardware. The hardware
support for multithreading is done by providing fast con-
text switching capabilities and multiple hardware context
in the processor. The degree of hardware support pro-
vided can vary greatly. For example, it can be as simple
as SPARC register windows for supporting multiple
hardware contexts [l] or as complex as Tera multiproces-
sor where each processor supports up to 128 processor
states and can context-switch on a cycle-by-cycle basis
121.

One approach to implementing multithreading in
software is by using special languages and compilers that
automatically generate multiple threads for execution. An
example that follows this approach is TAM 161. TAM re-
lies on an appropriate compilation strategy and program
representation rather that elaborate hardware. However,
this approach requires languages with functional seman-
tics and complex compiler analysis to generate threads

An alternative method is to use traditional languages
extended with software system support at various levels
(herein refer to as sofnuare-controlled multithreading) [4,
9, lo]. For example, user-level multithreading support is
provided by a collection of library function calls to create,
synchronize, and schedule threads. At the system-level,
the kernel manages all thread activities. There is also an
approach where thread management is implemented en-
tirely as a user-library [9]. One such is the POSIX
1003.4a threads extension [SI, or Prkreads for short.
Pthreads provides various functions, such as thread crea-
tion and synchronization, mutual exclusion, conditional
variables, etc., to support multithreaded programming.
Pthreads is widely available and runs on numerous com-
mercial platforms including SGI-IRIX, Alpha-OSF,
SPARC-SunOS, HPPA-HPUX, R2OOO-Utrix, etc.

In light of the aforementioned discussion, this paper
presents the hybrid multithreaded model, which is a

WI.

1060-3425/97 $10.00 0 1997 IEEE 227

mailto:benl)@ece.orst.edu

...

Figure 2.1. Software-controlled multithreading.

software-controlled multithreaded system extended with
hardware support for efficient context switching and
thread scheduling. The idea behind the hybrid approach is
to utilize all the existing features in a software-controlled
multithreaded system and at the sametime migrate some
of the responsibilities of thread management to hardware.
This is achieved using a technique called set scheduling
that acts as an interface between hardware and software
and yet provides a transparent view to the programmer.
The main advantage of the hybrid method is that expen-
sive software context switching and thread scheduling
costs occur only when threads are initially scheduled onto
the processor and any subsequent context switching and
thread scheduling are implemented in hardware. Over
time, this leads to considerable reduction in the overhead
cost thereby resulting in high processor utilization.

The organization of the paper is as follows: In Sec-
tion 2, hybrid multithreaded execution model is described
and a simple analytical model is presented. Experimental
results obtained by simulation are described in Section 3.
Section 4 provides a brief conclusion and possible future
work.

2. The Hybrid Multithreaded Model

In order to illustrate the advantage of having hardware
support for multithreading, consider the software-
controlled multithreaded execution model illustrated in
Figure 2.1. Each thread issues a remote reference at an
interval of R cycles, i.e., run-length, and becomes blocked
for L cycles waiting for the response to retum before re-
suming execution. L depends on the memory access time
and the delay through the interconnection network to and
from memory. Between run-lengths, a context-switch
occurs at a cost of C cycles. For the software-controiled
multithreaded model, the cost of thread scheduling is in-
cluded in the context switch overhead. The processor
utilization Us, based on this execution model is given by
c121

If the number of contexts supported is not sufficient, the
processor will not be able to completely hide the memory
latency L and will cause the processor to idle for I cycles
(as in the case of Figure 2.1). On the other hand, if there
is sufficient number of contexts, the processor utilization
Us, depends only on R and C.

As can be seen by Equation (l), the processor utiliza-
tion is directly affected by the context switching and
thread scheduling costs. For software-controlled mul-
tithreading, each thread is associated with a context that
contains a thread ID, a set of registers including a PC, a
thread priority, and a pointer to the stack. Whenever, a
context switch occurs, a new thread has to be selected (Le.,
scheduled) from a pool of ready threads, all the registers
associated with the current thread must be flushed onto the
stack before registers are loaded with the top frame of the
new thread. This is done automatically by the Thread
Management System, which is expensive. To reduce this
cost, the objective of the proposed hybrid multithreaded
model is to provide part of these features in hardware to
make multithreading as efficient as possible, and yet pro-
vide a transparent view to the programmer.

Hardware
4 [FHz] Contexts Scheduler 1

Conventional Superscalar Processor Core ,I

Figure 2.2. Coordination between hardware and software
schedulers.

228

with HadwaE
Scheduler

Figure 2.3. Hardware support for multithreading.

Although hardware support for thread scheduling and
context switching would benefit any processor design, the
challenge is to incorporate these features with minimal
modifications to the operating system and the compiler,
and at the same time to work within the constraints estab-
lished by the base processor architecture.

Figure 2.2 shows the hardware and software schedul-
ers that coordinate the thread selection and execution in
the proposed hybrid multithreaded model. The software
side of our model basically consists of an existing Thread
Management System augmented with Software Scheduler
that manages the Thread Pool. In most systems, the
Thread Pool is implemented as a multi-level priority
queue. In these systems, a thread has a priority assigned
by either the Thread Management System or the user.

The responsibility of the Software Scheduler is to
select a set of threads from the Thread Pool and schedule
them onto the Hardware Scheduler of the processor that
supports multiple hardware contexts. Threads are grouped
into sets by the Software Scheduler with the objective of
maximizing processor utilization. There are a number of
possible policies that can be used to schedule thread sets
onto the Hardware Scheduler. One straight forward a p
proach is to schedule the next set of threads only after the
previous selected threads have completed their execution.
This approach is the most appropriate if thread run-lengths
are about the same. However, if the thread run-lengths
vary other possible scheduling policies exist. We explore
these possibilities in Section 3.

Hardware support for our model consists of a con-
ventional superscalar processor core augmented with the
Hardware Scheduler and multiple hardware contexts.
Once a thread has been scheduled onto the processor, it
can be in one of the following three states: running, ready,
or sleeping. The responsibility of the Hardware Scheduler
is basically to maintain the control of thread states that
have been scheduled onto the processor by the Software
Scheduler. This is done by using the Ready-thread Queue
(R e) and the Sleeping-thread Queue (S Q) . Figure 2.3
shows the hardware support needed for our hybrid model.

A long latency operation detected by the memory man-
agement unit (MMU) causes a thread to context-switch.
This is accomplished by the Hardware Scheduler where
the blocked thread is placed in SQ and a new thread is
scheduled from RQ.

In addition to the hardware support shown in Figure
2.3, a processor also needs multiple hardware contexts.
This can be implemented in a number of ways. One pos-
sible method is to provide a separate, fixed-size contexts
using a hardware managed register file (in the form of
either register windows or duplicated register sets). How-
ever, this fixed and inflexible partitioning of the register
file results in a waste of scarce high-speed registers. Since
the number of registers required by thread contexts vary, a
more flexible approach, called Register Relocation, has
been proposed [16]. This method relies on the compiler or
run-time system to mange the allocation and use of con-
texts. Instruction operands specify context-relative regis-
ter numbers, which are numbered consecutively starting
with register 0. These context-relative register numbers
are dynamically combined (using an OR operation) with a
special register relocation mask to form absolute register
numbers that are used during instruction execution. We
are currently investigating which approach is more suit-
able for the proposed hybrid model.

In order to manage multiple contexts, each context
inside the processor is represented by a tag T, containing a
thread ID, a PC, and a pointer to the thread stack. When
threads are scheduled by the Hardware Scheduler, the tags
of the threads are down loaded onto the RQ- A thread then
can be scheduled by simply dequeuing its tag from RQ,
updating the stack register and fetching the first instruc-
tion pointed to by PC. When a thread is blocked, its tag is
placed in the SQ and a context-switch occurs to the next
thread in RQ. Later, when the block thread changes its
state to ready, it is enqueued onto RQ. When all the
threads from RQ (i.e., within a processor) have completed
their execution, the Software Scheduler schedules a new
set of threads.

229

I l T m

Figure 2.4. Queue management by the Thread Sched-
uler.

In order to keep track of the transition between
sleeping and ready threads, each Tin SQ is associated with
a timer, wt. This is shown in Figure 2.4. When a context
switch occurs during the execution of the thread T, , it is
sent to SQ with wt set to L and a new thread T,, is se-
lected for execution from RQ. T, will remain in SQ for L
cycles waiting for the memory to respond to its request.
Eventually, when L cycles have elapsed, T, will be placed
into RQ by the Hardware Scheduler and its state will be
changed to ready.

When R and L are constant, SQ will behave as a FIFO
queue and thus each thread will be retired from SQ in or-
der. However, this is not a realistic assumption because in
UMA machines bus contention will cause L to vary.
Moreover, in CC-NUMA machines, the network conten-
tion and routing algorithm will affect L. Variation in
memory latency can be handled by mapping cache line
tags to wt. The Hardware Scheduler then simply identifies
threads whose request has been served by enqueuing it on
to RQ.

A simple analytical model for our hybrid mul-
tithreaded system is obtained by considering the effects set
scheduling operations have on processor utilization. Fig-
ure 2.5 shows the proposed multithreaded execution
model through a series of set scheduling operations.
During each set scheduling operation, the Software
Scheduler of the Thread Management System schedules N
threads onto the RQ at a cost of S cycles, Le., S=NC. Be-
tween set scheduling operations, there is a total of G
hardware context switches, each with a cost of c cycles,
among the N contexts scheduled onto the processor.

Assuming that R , L, c , and C are constant, we can
express processor utilization for two separate cases. In the
first case, the number of contexts supported by the proces-
sor is not enough to hide the memory latency, and there-
fore the processor utilization U , increases linearly as a
function of N , i.e.,

NR
NC R+L+-
G

u, =

where G represents the total number of context switches
for all the threads and therefore G/N represents the aver-
age number of context switches in a thread. In the second
case, the number of contexts is sufficient to hide the la-
tency, thus performance loss comes from the context
switching overhead and the set scheduling cost (as in the
case of Figure 2.5), i.e.,

R

R+c+- NC
G

u, = (3)

Equation (3) shows the software scheduling and context
switching cost C in Equation (1) has been replace by the
hardware context switch cost c plus the amortized soft-
ware context switching cost over the average number of
context switches in a thread NCIG. This means even in
the saturation region GIN has some effect on processor
utilization. However, if GIN is sufficiently large, the
proGessor utilization improves by a factor of (R+C)I(R+c).

I - L - 4

Figure 2.5. Hybrid multithreaded execution model.

230

0.98

+ . .+...+...+. ..+...+ ..+ .+.. +. +.. + ..+ ...+

iq
U C S O

-

'95 2 4 6 8 10 12 14 16 $8
Nu- of cwdaxh

Figure 3.1. Comparison between theoretical (solid lines)
and simulation (dotted lines) results.

3 . Simulation Results

In order to evaluate the performance of the hybrid mul-
tithreaded system described in the previous section, a
simulation study was conducted. Figure 3.1 compares the
theoretical results and the results obtained from our simu-
lation for the hybrid multithreaded model on processor
utilization when R andL are constant for various values of
C. Plots were obtained by running 1,000 threads' with
R=IOO cycles, c=2 cycles, and k500 cycles. The com-
parison shows that the simulations results were compara-
ble to the theoretical results from equations (2) and (3).
More important, as C increases from 10 to 50, the proces-
sor utilization decreases only by approximately 2%. The
primary reason for this is set scheduling cost is incurred
only once and all subsequent context switches are done in
hardware. Therefore, the hybrid method is more immune
to variations in C.

To obtain a more realistic evaluation of our hybrid
model, probability distributions were considered for R and
L. Figures 3.2a and 3.2b shows the effects for both the
hybrid and software-controlled models when R was mod-
eled by a geometric distribution and L by a negative expo-
nential distribution. Again, our simulation results were
obtained by running lo00 threads with an overall execu-
tion time of approximately 500,000 cycles.

Figure 3.23 compares the performance when R has a
mean value of 100 cycles, L has a mean value of 500 cy-
cles, and c = 2 cycles. Results show that not only does the
hybrid model outperform its software-controlled counter-
part, but because it is more immune to variations in C the
performance (Le., processor efficiency) gap widens as C
increases. Our findings also indicate the performance of
the software-controlled execution model is strongly af-
fected by granularity of threads. This can be seen in Fig-
ure 3.2b where R has a mean value of 20 cycles, L has a
mean value of 100 cycles, and c = 1 cycle. When CIR is

large, the performance of the software-controlled is se-
verely affected by the software scheduling and context
switching costs.

Another interesting observation is when thread run-
lengths vary the utilization goes down (see Figure 3.1 and
3.2a-b). This is because when thread run-lengths are the
same, all threads complete their execution about the same
time. Therefore, scheduling the next set of threads only
after the previous set of threads have completed execution
will cause minimal idling. However, when thread run-
lengths vary, some threads will complete first reducing the
number of threads from which to context switch.

0.9 -
0.8 -

,0.7 -
0

a - a 0.6 - m
0 0.5 -
X

i

I
0.1 2 4 6 8 10 12 14 16 18

NumberotCMnens

Figure 3.2a. Comparison between hybrid (solid
lines) and software-controlled (dotted lines) execution

models: R has a mean value of 100, L has a mean
value of 500, and c=2.

'i-

+. _ _ .+ , . .* . . . * ...+ ...+. .. .+

o, ,,o 0 o...*. -0 0. .o. . .o o. . .o

2 4 6 8 10 I 2 14 16 18
0 . 8 ,

Number of Cont&

Figure 3.2b. Comparison between hybrid (solid lines) and
software-controlled (dotted lines) execution models: R has
a mean value of 20, L has a mean value of 100, and c=l .

23 1

^ ^ 'I --+-

0.8

0.7
6

ii

- 5

$0.5

H

0.6

L 0

CL
0.4

'
0.3 t 1

-
-

-

-

-

2 4 6 8 10 12 . 14 16 18
0.1' '

N u m b e r of Contexts

Figure 3.3a. Effects of scheduling policies when C=lO,
R=20, L=lOO, and c=l .

2 4 6 8 10 12 14 16 18
Number of Contexts

Figure 3.3b. Effects of scheduling policies when G 2 0 ,
R=20, L=lOO, and c=l .

0.9 'i

O'V 0.2

To overcome this deficiency, different scheduling
policies were tried. They are (1) a new thread is scheduled
immediately after a thread completes its execution and (2)
schedule N/2 new threads when N/2 threads complete their
execution. Results of these two scheduling policies were
then compared against scheduling N new threads when N
threads finish their execution. These are shown in Figures
3.3a-3.3~ for various values of C. In these graphs, R was
modeled by geometric distribution with a mean value of
20 cycles, L by a negative exponential distribution with
mean value of 100 cycles, and c=l cycle. These results
show that for all three values of C it is always better to
scheduled a new thread immediately after a thread com-
pletes its execution. Thus, scheduling one at a time will
minimize idling due to lack of threads from which to con-
text switch.

4. Conclusion and Future Work

Our preliminary performance study indicates that the pro-
posed hybrid multithreaded model results in improved
processor utilization over software-controlled mul-
tithreading. Higher processor utilization is achieved by
having the Software Scheduler set schedule threads onto
the Hardware Scheduler. The effects of various set sched-
uling techniques on the overall performance of the hybrid
multithreaded system were studied. Set scheduling tech-
nique basically acts as an interface between existing soft-
ware-controlled multithreaded system and the hardware
support for multithreading. We found that set scheduling
technique together with hardware support for mul-
tithreading has considerable performance advantage over
traditional software-controlled multithreaded systems.

Although our performance results are encouraging
they are based on a simple execution model and therefore
quite preliminary. The future plan is to develop a detailed
simulator for the hybrid multithreaded model. We are
currently working on such a simulator that integrates the
user-library Pthreads package developed by Chris Proven-
zano at MIT2 with MIPS-based generic superscalar simu-
lator, called Simplescalar, developed at University of
Wisconsin [5].

Using the hybrid multithreaded processor simulator,
we plan to pursue a number of design issues. First, it is
not clear at present what kind of hardware context repre-
sentation is the most appropriate for our hybrid mul-
tithreaded processor. Multiple hardware contexts can be
implemented either by duplicating register sets or using
register relocation. Register relocation is more flexible
but requires modification to the compiler. As a first-cut
design, the plan is to use multiple-registers sets and use
thread tags to map onto register sets.

For more information on Fthreads package see
http://www .mi t .edu : 800 1 /people/proven/pthreads .html.

232

http://www

Another issue is the design of the instruction window.
Currently, SimpleScalar implements centralized instruc-
tion window, where data hazards are resolved and ready
instructions are issued to functional units. Once an in-
struction from a thread is issued to a functional unit, any
subsequent blocking of that thread will not affect the exe-
cution of that instruction. However, this is not the case for
instructions from the blocked thread waiting in the in-
struction window to be issued. These unissued instruc-
tions will continue to occupy valuable resources and im-
pede the execution of other ready threads. There are two
ways to resolve this problem. One method is to imple-
ment multiple instruction windows and multiplex the
thread issuing among them. The other method is to simply
buffer the blocked thread. Thus, there will be one instruc-
tion window and N-1 thread buffers. The latter method
would be much cheaper but will result in higher hardware
context switching cost since threads have to be move back
and forth between the instruction window and thread buff-
ers.

Another possibility we plan to explore is simultane-
ous multithreading (SMT) [15]. Simultaneous mul-
tithreading is a technique where multiple independent
threads issue instructions to a wide-issue superscalar proc-
essor’s functional units in a single cycle. The advantage
of SMT is that both instruction-level parallelism and
thread-level parallelism can be explored to achieve high
performance. Implementing SMT will require relatively
minor changes to the hybrid multithreaded processor4e
instruction fetch mechanism can be implemented as multi-
ple instruction window. However, since SMT proposed in
[15] uses independent threads from different programs and
SMT in hybrid multithreaded processor occurs among
threads from the same program, we plan to study what
effect interaction among the threads within a program will
have on the design of the microarchitecture.

5. Biblwgraphy

[l] Agarwal, A. et al., “April: A Processor Architecture for
Multiprocessing,” Proc. ITh Annual Int’l. Symposium on
Computer Architecme, May-1990, pp. 104-1 14.

[2] Alverson, R. et ol., ‘The Tera Computer System,” Interna-
tional Conference on Supercomputing, Sept. 1990, pp. 1-6.

[3] Ang. B. S. et ai., “Star-T the Next Generation: Integrating
Global Caches and Dataflow Architectures,” Technical Re-
port CSG Memo 354, LCS MI“, Feb. 25,1994.

[4] Blumofe, R. I>. et ai., “Cilk: An Efficient Multithreaded
Runtime System,” Proc. of the SIh ACM SIGPLAN S p p o -
siwn on Principles and Practice of Parallel Progrunvning,
July 1995.

[5] Burger, D. et af. , “Evaluating Future Microprocessors: The
SimpleScalar Tool Set,” UW Computer Sciences Technical
Report #1308, July, 1996.

[6] Culler, D. E. et al., “TAM-A Compiler Controlled Threaded
Abstract Machine,” Journal of Parallel and Distributed
Computing, Vol. 18, No. 3, July 1993, pp. 347-370.

[7] Chiou D. et al., “*T-NG: Delivering Seemless Parallel
Computing,” Proceedings of Euro-Par 95,1995.

[S] IEEE, Threads Extension for Portable Operating Systems
(Draft 6). Feb. 1992. P1003.4dD6.

[9] Mueller, F., “A Library Implementation of POSIX Threads
under UNIX,” Proc. I993 USENIX Winter Conference, San
Diego, CA, pp. 29-41.

[lo] Nikhil, R. S., “Cid A Parallel, ‘Shared-memory’ C for
Distributed-memory Machines,” h o c . ?Annual M h p . on
Languages Md Compilers for Parallel Computing, Ithaca
NY August 1994, Springer Verlag LNCS.

[1 I] Papadopodos, G. M. et al., “XT: Integated Building Blocks
for Parallel Computing,” Supercomputing93, Portland, Ore-
gon,Nov. 19,1993.

[12] Saaveh, R. H. et al.,“Analysis of Multithreaded Architec-
tures for Parallel Computing,” r*‘AnlucaI ACM Symposium
on Parallel Algorithms Md Architectures, July 1990, pp.
169-178,

(131 Schauser, K. E. et d., “Compiler-Controlled Multithreading
for Lenient Parallel Lan,wges,” SIh ACM Conference on
Functional Programming Lunguuges and Computer Archi-
tecture, Aug. 1991, pp. 50-72.

[141 Thekkath, R. and Eggers, S. J., ‘The Effectiveness of Mul-
tiple Hardware Contexts,” 6* Proceedings of lnternational
Conference on Architectural Support for Prograrmning
Languages and Operating Systems, Oct. 1994, pp. 328-337.

[15] Tullsen, T. M. et al., “Simultaneous Multithreading: Maxi-
mizing On-Chip Paxdlelism”, Proc. tz” ~nnual Int‘Z. Sym-
posium on Computer Architecture, Jun. 1995.

[16] Waldspuger, C. A. and WeihJ, W. E., “Register Relocation:
A Flexible Contexts for Multithreading”, Proc. Z@ Annual
Int’l Symposium on Computer Architecure, 1989, pp. 273-
280.

233

