

Aalborg Universitet

EMSim: An Extensible Simulation Environment for Studying High Performance
Microarchitectures
Ortiz-Arroyo, Daniel

Published in:
Proceedings of the 6th World Multiconference on Systemics, Informatics and Cybernetics

Publication date:
2002

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Ortiz-Arroyo, D. (2002). EMSim: An Extensible Simulation Environment for Studying High Performance
Microarchitectures. In Proceedings of the 6th World Multiconference on Systemics, Informatics and Cybernetics
(Vol. 5)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60419293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/emsim-an-extensible-simulation-environment-for-studying-high-performance-microarchitectures(505494a0-de3b-11dd-b0a4-000ea68e967b).html

EMSim: An Extensible Simulation Environment for Studying
High Performance Microarchitectures

Daniel Ortiz-Arroyo†, Ben Lee†, and Chansu Yu†

†{ dortiz, benl} @ece.orst.edu

Electrical and Computer Engineering Department
Oregon State University

Corvalli s OR, 97331, USA

†{ c.yu91@csuohio.edu}
Electrical and Computer Engineering Department

Cleveland State University
Cleveland OH, 44115, USA

Abstract

Modern microprocessors achieve high performance through the
use of speculative execution and mechanisms to exploit instruc-
tion level parallelism. Performance evaluation of such architec-
tures is generally made using detailed, cycle-by-cycle simula-
tion. Since detailed simulation is slow, the design of recent
simulators has been focused on developing fast simulation en-
gines. However, these optimized simulators are diff icult to
modify or extend. In addition, intensive benchmarking is re-
quired to validate simulation performance results. This task
consumes a significant amount of time even if very fast simula-
tors are used.

This paper presents a novel simulation environment to study
high performance microarchitectures. This environment con-
sists of an extensible simulator for superscalar architectures and
a group of utiliti es to perform benchmarking in parallel. The
new simulator developed has features that are not found in other
simulators reported in the literature. These features include
extendibili ty, on-the-fly value passing, and distributed architec-
ture.

Keywords: Microarchitecture, superscalar, simulation, object
oriented, generic programming, parallel and distributed comput-
ing.

1. Introduction

Simulation of modern, high-performance microachitectures is
carried out using trace or execution-driven simulators. Trace-
driven simulation is fast because traces typically contain the
opcodes as well as all memory addresses referenced when the
trace is created, i.e., the simulator does not need to calculate
these values [25]. However, trace-driven simulators are unable
to emulate the speculative actions performed by modern mi-
croarchitectures [3][4]. In contrast, execution-driven simulation
is generally slower than its trace-driven counterpart. The reason
is that memory is accessed and instruction values are calculated
and processed at each stage of the pipeline. This type of simula-
tion accurately reproduces the dynamic behavior of modern
microarchitectures, including speculative execution. However,
accuracy is obtained at the expense of simulation speed.

The development of a detailed simulator for a superscalar
architecture is a complex task [6]. For this reason, researchers
usually modify an existing simulator to study advanced architec-

ture issues. However, existing simulators are designed for speed
but not to ease modifications. Moreover, the structural com-
plexity of many fast simulators makes them diff icult to under-
stand. To address these issues, this paper presents a new simula-
tion environment designed to study modern microarchitec-
tures—the Extensible Microarchitecture Simulator (EMSim).
EMSim’s design incorporates some of the latest developments in
object oriented software technology aimed to handle complexity
and modifiabilit y. The simulation environment includes a new
generic superscalar processor simulator, which can be extended
to simulate more complex architectures. EMSim has the follow-
ing features not found in other simulators reported in the litera-
ture: Truly object-oriented design, distributed and multithreaded
architecture, implementation based on generic programming,
and on-the-fly value passing.

Once a simulator has been developed, results from the simu-
lated architecture are evaluated using intensive benchmarking.
Execution of benchmarks takes a significant amount of time
even when a very fast simulator is employed; hundreds of mil-
lions of simulated clock cycles are required to validate simula-
tion results. To perform benchmarking eff iciently, EMSim also
includes tools to carry out performance evaluation in a Beowulf
cluster of computers.

This paper is organized as follows. Section 2 describes the
related work on microarchitecture simulators for superscalar
architectures. Next, the main component of the simulation envi-
ronment, i.e., the simulator of a superscalar architecture, is de-
scribed in detail . In section 4, the tools used to perform bench-
marking on a cluster of computers are described. Finally, sec-
tion 5 provides a brief conclusion and future work.

2. Related Work

There exist a number of simulation tools that contain detailed
models of today’s high performance microprocessors. SimpleS-
calar (SS) tool suite [6] is a popular simulation platform that
provides several classes of simulators of varying accu-
racy/speed. Among these, sim-outorder simulates a superscalar
microarchitecture and is the most complex simulator of the tool
suite; it is a hybrid of functional and trace simulators. Traces
are generated on-the-fly by the front-end simulation engine.
This engine issues and executes instructions in-order, modifying
the values of registers and memory. In the back-end, these
traces are used to emulate an out-of-order processor, without
modifying registers or memory. Sim-outorder handles system
calls by passing them to the host operating system. The host OS

executes the system calls and passes the results back to sim-
outorder. SS tool suite is being widely used in computer archi-
tecture research. SS is written in C, executes only user-level
application programs, and has been ported to many different
platforms. A large percentage of the research published in ma-
jor conferences and journals is done using SS. However, sim-
outorder is not easy to modify due to its structure and complex-
ity.

In contrast to the SS approach, SimOS simulates all the
hardware in a computer system, including I/O devices such as
hard disks and network interfaces [21]. SimOS simulates all the
hardware components in suff icient detail to boot and execute a
complete OS. Using this simulator, it is possible to study the
effects of more realistic workloads on the performance of a
complete computer system. SimOS is written in C, models the
MIPS R4000, R10000 and Digital Alpha processor famili es and
executes IRIX and Digital Unix OS. SimOS comes with an in-
order processor simulator but an out-of-order version (MXS)
[11] is also available.

PSim [7] is a simulator for the PowerPC architecture. PSim
implements the three levels of the PowerPC instruction set ar-
chitecture (ISA): User, virtual, and operating environments. In
the user mode, PSim can run static programs compiled for any
of the following operating systems: NetBSD, Solaris or Linux.
This simulator comes integrated with the gdb debugger.

Other superscalar processor simulators were designed as
teaching tools. Examples of this type of simulator are: Su-
perDLX [17], and SATSim [27]. There are also simulators that
are variations of SS, such as SIMCA [13], which has multi-
threading capabiliti es. This special purpose simulator requires
support from the compiler to generate threads. In addition, some
simulators run only on specific platforms or require special
compilers such as MIPS [8] or SMTSim [26]. All these simula-
tors are execution-driven.

In contrast, there are simulators that are both, event-driven
and execution-driven, e.g., RSIM [20]. RSIM simulates an out-
of-order processor similar to MIPS R10000 and is partially writ-
ten in C and C++. RSIM is also capable of simulating a multi-
processor system using event-driven simulation.

Another hybrid simulator is fMW [3], which is a descendent
of the trace simulator VMW [9]. This simulator contains a trace
engine called MW that directs the order of instruction execution
of PSim. PSim calculates results and sends the data back to
MW, which calculates IPC and processor utili zation.

Most aforementioned simulators are written in C for fast
execution. However, since the main goal of these simulators is
to provide correct functionali ty and speed, their code structure is
complex. Therefore, modifications to such simulators are diff i-
cult to perform. Moreover, the use of centralized data structures
in these simulators increases the risk that modifications in one
section of the simulation code could cause unintended side ef-
fects in other parts of the code. Side effects are undesirable,
since their presence (1) complicates the total understanding of a
simulator’s actions, (2) makes code reutilization diff icult, and
(3) causes bugs that are diff icult to detect.

Due to its modular design centered on class hierarchies,
EMSim structure is easy to understand. In addition, EMsim’s
design employs generic containers and virtual functions, which
allow minimizing the impact of modifications. Moreover, the
objects defined allow new components to reuse the existing
functionali ty included in the simulator. Thus, the simulator can
be tailored to new architectures by refining parts of its code.
Next section describes in detail EMSim’s internal structure and
design.

3. EMSim Superscalar Simulator

The specific superscalar architecture that EMSim simulates is
shown in Figure 1. It consists of six main stages: Fetch, De-
code/ Dispatch, Issue, Execute, Write-Back, and Commit. In the
Fetch stage, instructions are fetched from memory and placed in
the instruction queue (I-Queue). In this stage, branch prediction
mechanisms are employed to avoid stalli ng the fetch unit. Using
branch prediction, the fetch unit can continue fetching at the
most probable path of execution, speculatively. Later, if the
speculation turns out to be wrong all mispredicted instructions
are flushed from the pipeline and fetching resumes at the correct
path of execution [12] [14]. A special mechanism in the Fetch
unit called the Branch Target Buffer (BTB) provides the predic-
tion value (i.e., taken, not-taken) and the target address of a
branch.

During Decode/Dispatch stage, instructions are decoded and
renaming mechanisms resolve false dependencies (WAW and
WAR hazards) [12], which allow independent instructions to be
dispatched for execution. On the other hand, instructions with
true (RAW) dependencies are placed in the Reservation Stations
(RSs), i.e., instruction window, where they remain until their
dependencies are resolved. Once this occurs, the instructions
are issued to the Functional Units (FU) for execution. Supersca-
lar processors execute instructions out-of-order to exploit in-
struction level parallelism (ILP). However, instructions are
committed in-order to preserve the semantic content of a pro-
gram. Control of instruction retiring and dependency handling
is performed by the Reorder Buffer (ROB) using a special tag-
ging mechanism that eliminates WAW and WAR hazards [14]
[23].

Once instructions are executed their results are written back
to RSs, during the Write-Back stage, enabling dependent in-
structions that were waiting for those values to become ready for
execution. Finally, during the Commit stage, instructions are
retired from the ROB in-order and their results committed to the
Register File (RF).

Speculation is actively researched to predict data values
from registers or memory [23]. In other approaches, speculation
is used to dynamically generate threads from a sequential flow
of control [15]. Furthermore, some recent architectures support
the overlapped execution of multiple, independent threads using
Simultaneous Multi threading (SMT) [26]. Therefore, it is obvi-
ous that to simulate these complex architectures, flexible simula-
tion tools are required.

Load/Store
Queue

Reservation
Stations

Memory

Fetch

I-Cache
 I-Queue

Decode/
Dispatch

1.1 D

is

p

at

c

h

L2-Cache

D-Cache

ROB

F
U

F
U

F
U

RF

BTB

Figure 1. EMSim’s superscalar processor model.

EMSim was designed using object oriented (OO) tech-
niques. The advantages of an OO approach to software design
in general are well documented [5]. They include many well -
accepted design goals of quali ty program development, such as
modularity, modifiabili ty, and maintainabil ity [16]. Moreover,
designs centered on objects are especially suited for simulation.

Simulation speed is obviously an important factor in a simu-
lator. However, the features that provide the OO approach to
software design are equally or perhaps more important in a
simulator. Languages such as C++ provide useful OO mecha-
nisms, such as inheritance, polymorphism, and templates. Tem-
plates support the design of software using generic program-
ming [2] techniques. In generic programming, software compo-
nents are created so that they can be easily reused in a wide
variety of situations. The data structures and algorithms in the
Standard Template Library (STL) [2] are examples of the appli-
cation of generic programming. In this library, software com-
ponents such as queues, sets, li sts, etc., are able to handle differ-
ent types of objects employing different algorithms.

EMSim provides modularity, code reutili zation, and ex-
tendibili ty through the use of classes, inheritance and generic
programming. Modifications to EMSim are easily integrated
since these features are available to a developer. To obtain fast
execution speed, EMSim was developed in C++. In addition, the
implementation of EMSim was carried out employing STL’s
generic containers and iterators. Moreover, the interfaces de-
fined using virtual functions allow subclasses to specialize meth-
ods with their particular implementation.

Figure 2 shows EMSim’s programming environment. As
this figure ill ustrates, the simulator in its current version is com-
patible with the compiler, linker, assembler, and libraries of the
SS tool suite. As a result, EMSim shares with SS the way in
which data, stack, and code areas are mapped into memory.
Parts of the macros that define the implementation of the in-
struction set and the system calls of SS were modified to make
them compatible with EMSim. EMSim’s simulation parameters
can be configured from the command line or from a text file.
The configuration parameters of EMSim include: size and asso-
ciativity of cache memories and BTB; size of the instruction
queue, ROB and reservation stations; and number and type of
functional units.

EMSim superscalar simulator is execution-driven. The
simulator is able to operate in different modes of execution,

which are (a) fast, in-order simulation and (b) detailed wide-
issue, out-of-order simulation. The fast simulation mode allows
the user to quickly place the simulator in a particular section of
the benchmark code, skipping uninteresting parts li ke initializa-
tion. During fast mode simulation, instructions are read directly
from memory and executed in sequence. Conversely, in the
detailed simulation mode, all the memory hierarchy and the
pipeline stages of the simulator are exercised. In this mode,
EMSim loads a binary program into its internal memory and
then simulates in detail , cycle-by-cycle, all the processing per-
formed by the pipeline. During instruction processing, register
values are calculated and passed from producer instructions to
consumer instructions or memory on-the-fly. EMSim’s on-the-
fly value passing closely emulates the behavior of real supersca-
lar processors, and is also used as a means for checking the cor-
rect operation of the tagging and out-of-order execution mecha-
nisms inside the simulator. In this way, EMSim ensures correct
manipulation of instruction values during speculative execution.

Functional validation of EMSim was performed in two
ways. First, the contents of EMSim’s memory and registers
were compared on a cycle-by-cycle basis with the corresponding
values obtained by sim-outorder during the execution of the
same benchmark. In addition, special benchmarks, which per-
form intensive mathematical calculations, were executed on a
real machine. The results obtained by these benchmarks were
compared with the results obtained from EMSim. In both cases,
EMSim obtained the same results as sim-outorder and the real
machine.

EMSim has a distributed architecture that consists of a
graphical user interface (GUI), a core simulation engine, and
communication faciliti es. This is in contrast with existing simu-
lators that consists of only a single executable with a simple text
mode user interface. The Java language provides, through the
Swing library, abundant graphical elements to build complex
user interfaces that are portable across different platforms [10].
To make use of these capabiliti es and without sacrificing speed
of execution, EMSim was designed using Java’s Swing in the
user interface and C++ in the core simulator. This architecture
allows decoupling the GUI from the simulator, which is a useful
feature during testing or when benchmarking is performed.
Figure 3 shows EMSim’s distributed architecture.

EMSim’s user interface handles user events and creates a
special thread for communication with the main simulator
through TCP/IP sockets. On the other hand, the core simulator
creates a Posix thread (pthreads) to execute the communication
routines. The communication thread in the GUI receives com-
mands from the user to control the simulation execution. A
simple protocol was designed to transfer data between the simu-
lator and the GUI. The communication library socket++ [24] is
employed to receive/send the C++ input/output streams from/to

Comm.
Thread

 Core
simulator

(C++)

GUI (Java)

Comm.
Thread

Socket++
communication

libraries
Host A

Host B

EMSim

Figure 3. EMSim’s distributed architecture.

SS gcc EMSim
Core Simulator

Benchmark
Program

SS
Libraries

Simulation
Parameters

PISA
Inst. Set

Host OS
Linux

Simulation
Results

SS tool suite
System

Calls

Figure 2. EMSim’s programming environment.

the simulator. EMSim’s distributed architecture makes it feasi-
ble to use the simulator with the GUI on a single computer or
remotely over the network. EMSim is also able to run on a sin-
gle computer without the GUI in text mode. In the latter case,
the output streams generated by the simulator are re-directed to
the standard output instead of through the TCP/IP sockets.

EMSim’s design is organized in a hierarchy of classes. A
partial UML diagram of the main classes in EMSim is shown in
Figure 4. The base class CObject provides common methods
and variables to all other classes derived from it. Instruction
cache (CICache), data cache (CDCache), and BTB (CBTB)
classes are specializations of the base class CCache to store
instructions, data, and branch information, respectively. Classes
are also defined to keep the state and provide the actions per-
formed by the register file (CRegFile), main memory
(CMMem), reservation stations (CResStat), instruction pool
(CInsPool) and writeback queue (CWBqueue).

EMSim pipeline was modeled using the UML class hierar-
chy diagram shown in Figure 5. The class CSimulator contains
the classes used to model the pipeline stages and the main
simulation loop. As is ill ustrated in Figure 5, classes were
defined to emulate a processor pipeline consisting of fetch
(CFetch), decode/dispatch (CDecode), issue (CIssue), execute
(CExecute), write-back (CWriteBack), and commit (CCommit)
stages. In addition, memory instructions are processed during
the memory stage (represented by CMemory). The base class
CProcess provides the features that are common to all derived
classes representing the pipeline stages (e.g., bandwidth).
Utility classes (not shown) were also designed to handle
statistics, exceptions, memory data, clock, timers, etc.

The design of EMSim also provides support for debugging.
The class CBreak in Figure 5 allows breakpoint conditions to be
declared. This class also contains methods to dump the state of
a pipeline stage when a breakpoint condition occurs during
simulation. The information dumped includes the state and
contents of the queues handled by the stage. The dump method
can be overridden by a new class derived from CBreak to print
any other information required by the user.

In its design, EMSim utili zes different STL generic contain-
ers such as sets, li sts and queues. Although the design of STL
was optimized for fast execution, this library adds an overhead
to the total simulation time. Hence, to minimize this overhead,

STL’s generic containers were employed only in those parts of
the simulator that do not negatively impact EMSim’s perform-
ance. Therefore, containers of objects that are used very fre-
quently were implemented using templates and arrays instead of
STL generic containers.

EMSim’s main loop processes all the pipeline stages at each
simulation cycle in the following way:

obj_list_iterator p;
for(;;;){
 for(p=s_RunList.begin();
 p!= s_RunList.end();
 p++)

 (*p)->Run();
 clock.Tick();
}

 As this code segment illustrates there are no specific refer-
ences to particular pipeline stages in the main loop. Pipeline
objects are stored in the STL generic container s_RunList dur-
ing initialization, and then, accessed through the iterator p. This
approach reduces the amount of changes and at same time, sim-
plifies modification to EMSim. As an example, to add a new
pipeline stage into EMSim, a new class derived from CProcess
is created. This class will i nclude the implementation of the
virtual method Run shown in the segment of code above. Vir-
tual methods are the interface that is implemented in different
ways at each pipeline stage. Then, an instance of the class
would be stored in s_RunList. Pipeline objects are stored us-
ing the push_back() method of the container s_RunList. The
iterator in the main loop of EMSim will automatically process
the new pipeline stage by calli ng its Run method. Using this
generic programming approach, the main loop of the simulator
remains unchanged regardless of how many pipeline stages are
added (changes occur mainly in the new class code).

In EMSim, pipeline stages communicate through instruction
queues. Hence, after being processed, instructions must be
placed in the appropriate output queue so that the next pipeline
stage can access those instructions. Thus, no global structures
are accessed during this process. In contrast, adding a new pipe-

Figure 4. UML diagram of EMSim’s main classes.

CObject

CResStat

CROB

CMMem

CInsPool

CInsQueue

CWBQueue

CCache

CDCache

CICache

CBTB

CRegFile

Figure 5. UML diagram of EMSim’s pipeline classes.

CMemory

CIssue

CDispatch

CFetch

CSimulator

CWriteBack

CExecute

CCommit

CBreak

CProcess

line stage in SS’s sim-outorder requires changing the main simu-
lation routine. In addition, the new procedure must update, in an
appropriate way, the global structures and variables (e.g., queues
and flags) that keep track of the processor’s state in the RUU
unit [6]. However, since the RUU unit is a centralized structure,
this process must be performed very carefully to avoid causing
unintended effects in other parts of the simulator.

The OO structure of EMSim facilit ates extending its capa-
biliti es to simulate other types of architectures and allows visu-
alization of the changes that will be required to perform those
extensions. As an example, extending EMSim to simulate a
SMT processor entails creating additional instances for the reg-
ister file (or processor’s context), instruction queue, ROB, and
Load/Store Queue (LSQ). In addition, using the generic pro-
gramming approach, such instances will be stored in generic
containers that the appropriate pipeline stage would access in
order to process instructions corresponding to different contexts.
Other changes involve extending the cache memory to support
multiple ports, overriding the fetch method that access the in-
struction cache memory to support a new fetching policy, over-
riding the method that is used to dispatch instructions, etc.

4. Efficient Benchmarking

Performance evaluation of new microarchitectures requires in-
tensive benchmarking. During benchmarking, overall simula-
tion time can be substantially reduced if a group of networked
computers is employed. Each computer in the network is pro-
grammed to execute a simulation using different parameters.
However, in this environment it is diff icult to achieve good load
balancing among computing nodes, especially if nodes are not
dedicated exclusively to simulation, i.e., nodes may finish at
unpredictable times. Moreover, there is no way to synchronize
simulations without explicit communication support. Synchro-
nization is required when all the nodes are executing the same
benchmark using slightly different parameters. Once all the
nodes finish a simulation, they synchronize to calculate the
group of parameters that will be used for the next simulation
run.

A computing cluster, such as the SWARM Beowulf cluster
[18] can ameliorate these hurdles. In SWARM, load balancing
is obtained through specialized software, such as Load Sharing
Facility (LSF) [18], which analyzes the load assigned to each
node, i.e., nodes with lesser load are assigned more computation.

Executing synchronized simulations in a cluster of com-
puters requires communication among simulation nodes. The

Message Passing Interface (MPI) [19] library provides the
communication primitives required for this task. Using MPI,
special communication worlds are created for each simulation
[19]. Simulation nodes that participate in a communication
world are able to perform a simulation cycle coordinately. Us-
ing MPI it is even possible to define several communication
worlds where participating nodes work on different benchmark-
ing tasks.

Figure 6 shows EMSim parallel benchmarking environment.
This environment consists of (a) a GUI application written in
Java, (b) a collection of Perl and shell scripts, and (c) EMSim
simulator modified with MPI calls. EMSim employs MPI func-
tions to send, receive, and synchronize with other simulation
nodes in the cluster of computers.

Figure 7 shows the GUI that allows configuring simulation
parameters for parallel execution of benchmarks on SWARM.
Some of the information provided by the user includes meas-
urement variables such as IPC, cache miss rate, branch predic-
tion accuracy, etc. The user also enters the name of the bench-
mark program to execute, the number of simulation nodes, the
number of simulated clock cycles to execute, and the format of
the output results. Once all these information is entered, the
GUI creates a text file automatically. Then, a script written in
Perl, reads the simulation information and calls LSF, passing it
the required number of simulation nodes. Then, LSF sends the
simulation processes to SWARM, and finally the EMSim simu-
lation nodes are initialized by the MPI system to work in paral-
lel. A special root node coordinates all other nodes in the cluster
to initiate a new simulation run.

During initialization, each simulation node calculates its
own identification number. This number is used by a node to
obtain its particular simulation parameters. Then, through the
network file system (NFS) installed on SWARM, it obtains the
object file corresponding to the benchmark program that the
node will execute. Afterwards, it executes a simulation run
independently. When a node finishes a simulation run, it syn-
chronizes with all other nodes in its communication world send-
ing its results back to the root node. Once this occurs, the node
is free to start a new simulation cycle. Finally, when all nodes
terminate their simulation workload, each one sends its final
simulation results to the root node. With these results, the root
node creates a single file with the complete simulation results.
At this point, the LSF system automatically sends an email to
the user indicating that a simulation cycle has finished. The user
can then execute the GUI to read the file containing simulation
results and optionally generate a graph with those results.

G
U
I

Sim.
Descrip
tion

EMSim-
MPI

node 1

EMSim-
MPI

node 2
EMSim-

MPI
node n

EMSim-
MPI
root

node 0

SWARM
Beowulf Cluster

Results

L
S
F

MPI communication
world

root
S
c
r
i
p
t

Figure 6. Benchmarking on a cluster of computers.

Figure 7. GUI to configure benchmarking parameters.

5. Conclusions

A new simulation environment designed to study modern mi-
croarchitectures was presented in this paper. This environment
contains a generic superscalar simulator model that provides the
basic elements to simulate other more complex architectures.

Traditionally, the development of simulators for modern mi-
croarchitectures has focused on producing fast simulators. Even
though simulation speed is important, other features such as
modularity, reusability, ease of debugging, and modifiabil ity
have been neglected or only partially addressed in existing simu-
lators. We believe that such features are essential to ease the
development of advanced simulators for computer architecture
research. EMSim’s design provides modularity and reusabili ty
through the use of class hierarchies. Moreover, the impact of
modifications is minimized through the use of generic pro-
gramming. In addition, the structure of the simulator is easy to
understand since there is a one-to-one correspondence between
elements in the processor and the classes defined. EMSim pro-
vides all these capabili ties without sacrificing execution speed
since it is written in a fast OO language, e.g., C++. Finally,
EMSim’s distributed architecture allows decoupling the GUI
during benchmarking.

The simulation environment presented in this paper also
provides the tools required to facilit ate the coordinated execu-
tion of benchmarking in a cluster of computers. Moreover,
software utili ties allow automatic data gathering and presenta-
tion of simulation results.

EMSim and the tools presented in this paper are currently in
its alpha version. At this time, the GUI and debugging faciliti es
of EMSim provide minimum functionality and are still under
development.

Our future work includes porting of EMSim to a different
ISA, replacing in this way the SS tools used during develop-
ment. In addition, later versions will i nclude more elaborated
debugging and visualization faciliti es. Specifically for debug-
ging, we plan to implement checkpoints [21], which will enable
EMSim to save the entire state of the simulator to disk. Using
this feature, the simulator can restore the processor’s state at a
checkpoint, and continue execution from there, saving simula-
tion time. Finally, a Dynamic Simultaneous Multithreaded
processor (DSMT) simulator is also planed for development by
extending EMSim.

Acknowledgments

The authors would like to thank Mark Daley for his contribution
during the initial development phase of this project.

6. References

[1] K. Arnold and J. Gosling, The Java Programming Lan-

guage, Addison-Wesley, Reading Massachusetts, May
1996.

[2] M. Austern, Generic Programming and the STL, Addison-
Wesley, 1998. ISBN 0-201-30956-4.

[3] C. Bechem et al., “An Integrated Functional Performance
Simulator,” IEEE Micro, May-June 1999.

[4] B. A. Bryan et al., “Can Trace-Driven Simulators Accu-
rately Predict Superscalar Performance?,” Proc. of Interna-
tional Conference on Computer Design, Oct. 1996, pp.
478-485.

[5] T. Budd, An Introduction to Object Oriented Programming,
(2nd Edition), Addison Wesley, Reading Massachusetts,
1997. ISBN 0-201-82419-1.

[6] D. Burger and T. M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Computer Architecture News, Vol. 25, No. 3,
June 1997, pp. 13-25. http://www.simplescalar.com

[7] A. Cagney, PSim PowerPC simulator.
http://sources.redhat.com/psim

[8] Clemson University. MIPS Superscalar Simulator (for
Sparc-Solaris big-endian platform).
http://www.eng.clemson.edu/~ilp/sim.html.

[9] T. A. Diep and J. P. Shen, “VMW: A Visualization Based
Microarchitecture Workbench,” IEEE Computer, 28(12),
December 1995, pp. 57-64.

[10] R. Eckstein, M. Loy, and D. Wood, Java Swing, O’Reill y
Ed., 1998.

[11] M. J Flynn, P. Hung and A. Peymandoust, “Using simple
tools to evaluate complex architectural trade-offs,” IEEE
Micro, July-August 2000.

[12] J. Hennessy, and D. Patterson, Computer Architecture-A
Quantitative Approach, 2nd Edition, Morgan Kaufmann
Publishers Inc., 1996.

[13] J. Huan, The Simulator for Multithreaded Computer Archi-
tecture (SIMCA).
http://www.mount.cs.umn.edu/Research/Agassiz/simca.htm

[14] M. Johnson, Superscalar Microprocessor Design, Prentice
Hall , Englewood Cli ffs, NJ., 1990.

[15] P. Marcuello, J. Tubella, and A. González, “Value Predic-
tion for Speculative Multi threaded Architectures,” Proc. of
the 32nd. Ann. Int. Symposium on Microarchitecture
(MICRO-32), Haifa (Israel), November 16-18 1999.

[16] H. Mili , F. Mili, and A. Mil i, “Reusing software: Issues and
research directions,” IEEE Transactions on Software Engi-
neering, vol. 21, June 1995.

[17] Cecile Moura, “SuperDLX a generic Superscalar Simula-
tor,” ACAPS technical memo. McGill University, School of
Computer Science. April 13, 1993.

[18] Oregon State University, Computer Science Department.
SWARM cluster. http://www.cs.orst.edu/swarm

[19] P. Pacheco, Parallel Programming with MPI, Morgan-
Kauffman Publishers Inc., 1996.

[20] V. S. Pai, R. Parthasarathy, and S. V. Adve., “RSIM: An
execution-driven simulator for ILP-based shared-memory
multiprocessors and uniprocessors,” IEEE TCCA Newslet-
ter. October 1997. http://www-ece.rice.edu/~rsim

[21] M. Rosemblum et al., “Using the SimOS Machine Simula-
tor to Study Complex Computer Systems,” ACM TOMACS
Special Issue on Computer Simulation, 1997.

[22] E. G. Sirer, “Measuring Limits of f ine grain parallelism,”
Undergraduate thesis, Princeton University, 1993.
http://www.cs.washington.edu/homes/egs/mipsi/mipsi.html

[23] J. E. Smith, and G. S. Sohi, “The Microarchitecture of Su-
perscalar Processors,” Proceedings of the IEEE, December
1995.

[24] Socket++ source code and user manual.
http://www.cs.utexas.edu/users/lavender/courses/socket++/

[25] A. Srivastava and A. Eustace, “ATOM: A system for build-
ing customized program analysis tools,” Proc. of the 1994
Conf. on Programming Languages Design and Implemen-
tation, 1994.

[26] D. M. Tullsen, “Simulation and modeling of a simultaneous
multithreading processor,” Computer Measurement Group
Conference, December 1996.

[27] M. Wolf, and L. Willi s, “SATSim a Superscalar Architec-
ture Trace Simulator Using Interactive Animation,” Work-
shop on Computer Architecture Education, June 2000.

