View metadata, citation and similar papers at core.ac.uk brought to you by i

provided by VBN

Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

EMSim: An Extensible Simulation Environment for Studying High Performance
Microarchitectures

Ortiz-Arroyo, Daniel

Published in:
Proceedings of the 6th World Multiconference on Systemics, Informatics and Cybernetics

Publication date:
2002

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

Ortiz-Arroyo, D. (2002). EMSim: An Extensible Simulation Environment for Studying High Performance
Microarchitectures. In Proceedings of the 6th World Multiconference on Systemics, Informatics and Cybernetics
(Vol. 5)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbon@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2017

https://core.ac.uk/display/60419293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/emsim-an-extensible-simulation-environment-for-studying-high-performance-microarchitectures(505494a0-de3b-11dd-b0a4-000ea68e967b).html

EMSm: An Extensible Simulation Environment for Studying
High Performance Microar chitectures

Daniel Ortiz-Arroyd, Ben Le€, and Chansu Y U’

+{dortiz, benl} @eceorst.edu
Eledricd and Computer Engineering Department
Oregon State University
CorvalisOR, 97331 USA

#H{ cyu9l@csuohio.edu}
Eledricd and Computer Engineering Department
Cleveland State University
Cleveland OH, 44115, USA

Abstract

Modern microprocessors achieve high performance through the
use of speaulative exeaution and mechanisms to exploit instruc-
tion level parallelism. Performance evaluation d such architec-
tures is generally made using detailed, cycle-by-cycle simula
tion. Since detailed simulation is dow, the design d recent
simulators has been focused ondeveloping fast simulation en-
gines. However, these optimized simulators are difficult to
modify or extend. In addition, intensive benchmarking is re-
quired to validate simulation performance results. This task
consumes a significant amount of time even if very fast simula-
tors are used.

This paper presents a novel simulation environment to study
high performance microarchitedures. This environment con-
sists of an extensible simulator for superscdar architecures and
a group o utilities to perform benchmarking in paralel. The
new simulator developed has feaures that are not found in ather
simulators reported in the literature. These feaures include
extendibility, onthe-fly value pasding, and distributed architec-
ture.

Keywords: Microarchitedure, superscdar, simulation, objed
oriented, generic programming, parallel and dstributed comput-

ing.

1. Introduction

Simulation of modern, high-performance microachitedures is
caried ou using traceor exeattion-driven simulators. Trace
driven simulation is fast because traces typicdly contain the
opcodes as well as al memory addresses referenced when the
traceis creaed, i.e, the simulator does not need to cdculate
these values [25]. However, tracedriven simulators are unable
to emulate the speallative adions performed by modern mi-
croarchitedures [3][4]. In contrast, exeaution-driven simulation
is generally slower than its tracedriven counterpart. The reason
is that memory is accessed and instruction values are cdculated
and pocessed at eat stage of the pipeline. Thistype of simula-
tion acarately reproduces the dynamic behavior of modern
microarchitedures, including speculative exeaution. However,
acalracy isobtained at the expense of simulation speed.

The development of a detailed simulator for a superscdar
architedure is a complex task [6]. For this reason, reseachers
usually modify an existing simulator to study advanced architec-

tureisaues. However, existing simulators are designed for speed
but not to ease modificaions. Moreover, the structural com-
plexity of many fast simulators makes them difficult to uncer-
stand. To addressthese isaues, this paper presents anew simula
tion environment designed to study modern microarchitec-
tures—the Extensible Microarchitecture Smulator (EMSim).
EMSim’s design incorporates some of the latest developmentsin
objea oriented software technology aimed to handle cmplexity
and modifiability. The simulation environment includes a new
generic superscdar processor simulator, which can be extended
to simulate more complex architectures. EMSim has the follow-
ing feaures not found in other simulators reported in the litera
ture: Truly objed-oriented design, distributed and multithreaded
architedure, implementation based on generic programming,
and on-the-fly value passng.

Once asimulator has been developed, results from the simu-
lated architedure ae evaluated using intensive benchmarking.
Exeaution of benchmarks takes a significant amourt of time
even when a very fast simulator is employed; hundreds of mil-
lions of simulated clock cycles are required to validate simula-
tion results. To perform benchmarking efficiently, EMSim also
includes tools to cary out performance evaluation in a Beowulf
cluster of computers.

This paper is organized as follows. Sedion 2 describes the
related work on microarchitedure simulators for superscdar
architedures. Next, the main comporent of the simulation envi-
ronment, i.e., the simulator of a superscdar architedure, is de-
scribed in detail. In sedion 4 the todls used to perform bench-
marking ona duster of computers are described. Finaly, sec-
tion 5 provides abrief conclusion and future work.

2. Related Work

There eist a number of simulation tools that contain detail ed
models of today’s high performance microprocessors. SmpleS-
calar (S9 tool suite [6] is a popuar ssimulation platform that
provides svera classes of simulators of varying acw-
ragy/speed. Amongthese, sim-outorder simulates a superscdar
microarchitedure and is the most complex simulator of the tool
suite; it is a hybrid of functional and tracesimulators. Traces
are generated onthe-fly by the front-end simulation engine.
This engine isales and exeautes instructions in-order, modifying
the values of registers and memory. In the badk-end, these
traces are used to emulate an out-of-order processor, without
modifying registers or memory. Sim-outorder handles g/stem
cdls by pasing them to the host operating system. The host OS

executes the system cdls and passs the results badk to sim-
outorder. SStool suite is being widely used in computer archi-
tedure reseach. SSis written in C, exeautes only user-level
applicaion programs, and hes been pated to many dfferent
platforms. A large percentage of the reseach published in ma-
jor conferences and journals is done using SS. However, sm-
outorder is not easy to modify due to its gructure and complex-
ity.

In contrast to the SS approach, SImOS simulates all the
hardware in a computer system, including 1/O devices auch as
hard disks and network interfaces [21]. SimOS simulates all the
hardware components in sufficient detail to boot and exeaute a
complete OS. Using this smulator, it is posshle to study the
effeds of more redistic workloads on the performance of a
complete mmputer system. SimOS is written in C, models the
MIPSR4000, R10000 and Digital Alpha processor famili es and
exeautes IRIX and Digital Unix OS. SimOS comes with an in-
order procesor simulator but an out-of-order version (MXS)
[11] isalso avail able.

P9m [7] is asimulator for the PowerPC architedure. PSim
implements the three levels of the PowerPC instruction set ar-
chitecture (ISA): User, virtual, and operating environments. In
the user mode, PSim can run static programs compiled for any
of the following operating systems: NetBSD, Solaris or Linux.
This smulator comes integrated with the gdb debugger.

Other superscdar procesor simulators were designed as
teading tools. Examples of this type of simulator are: Su-
perDLX [17], and SATSIim [27]. There ae dso simulators that
are variations of SS, such as SIMCA [13], which has multi-
threading cgpabiliti es. This gecia purpose simulator requires
support from the compil er to generate threads. In addition, some
simulators run only on spedfic platforms or require spedal
compilers such as MIPS [8] or SMTSim [26]. All these simula-
tors are exeaution-driven.

In contrast, there ae simulators that are both, event-driven
and exeaution-driven, e.g., RSIM [20]. RSIM simulates an ou-
of-order processor similar to MIPS R10000 and is partialy writ-
ten in C and C++. RSIM is also capable of simulating a multi-
procesor system using event-driven simulation.

Ancther hybrid simulator is fMW [3], which is a descendent
of the tracesimulator VMW [9]. This dmulator contains atrace
engine cdled MW that direds the order of instruction execution
of Pdm. P3m cdculates results and sends the data bad to
MW, which cdculates IPC and processor utili zation.

Most aforementioned simulators are written in C for fast
exeaution. However, since the main gaal of these simulators is
to provide mrred functionality and speed, their code structureis
complex. Therefore, modifications to such simulators are diffi-
cult to perform. Moreover, the use of centralized data structures
in these simulators increases the risk that modificaions in ore
sedion d the simulation code culd cause unintended side d-
feds in ather parts of the mde. Side effeds are undesirable,
since their presence (1) complicaes the tota understanding of a
simulator’s actions, (2) makes code reutilization dfficult, and
(3) causes bugs that are difficult to deted.

Due to its modular design centered on class hierarchies,
EMSim structure is easy to urderstand. In addition, EMsim’s
design employs generic containers and virtual functions, which
alow minimizing the impad of modifications. Moreover, the
objeds defined alow new comporents to reuse the eisting
functionality included in the simulator. Thus, the simulator can
be tailored to new architectures by refining perts of its code.
Next sedion describes in detall EMSIm’s internal structure and
design.

Decode/
Memory Fetch |« BTB Dispatch
y
I-Cache | 2N F L,
I-Queue u
—» F
L2-Cache u I
ROB «—» RF “—>
L, bl
D-Cache
A4
Load/Store Reservation
|‘_. Queue Stations

Figure 1. EMSIm's superscdar processor model.

3. EMSim Superscalar Smulator

The spedfic superscdar architedure that EMSim simulates is
shown in Figure 1. It consists of six main stages. Fetch, De-
code/ Dispatch, Isaue, Exeaute, Write-Bad, and Commit. Inthe
Fetch stage, instructions are fetched from memory and daced in
the instruction queue (1-Queue). In this gage, branch prediction
mechanisms are enployed to avoid stalli ng the fetch unit. Using
branch prediction, the fetch unit can continue fetching at the
most probable path of exeaution, speculatively. Later, if the
speaulation turns out to be wrong all mispredicted instructions
are flushed from the pipeline and fetching resumes at the mrred
path of exeaution [12] [14]. A speda mechanism in the Fetch
unit cdled the Branch Target Buffer (BTB) provides the predic-
tion value (i.e., taken, not-taken) and the target address of a
branch.

During Deoode/Dispatch stage, instructions are deaded and
renaming mechanisms resolve false dependencies (WAW and
WAR hazads) [12], which al ow independent instructions to be
dispatched for exeaution. On the other hand, instructions with
true (RAW) dependencies are placed in the Reservation Stations
(RSs9), i.e., instruction window, where they remain until their
dependencies are resolved. Once this occurs, the instructions
areisaled to the Functional Units (FU) for exeaution. Supersca-
lar procesors exeaute instructions out-of-order to exploit in-
struction level paralelism (ILP). However, instructions are
committed in-order to preserve the semantic content of a pro-
gram. Control of instruction retiring and dependency handling
is performed by the Reorder Buffer (ROB) using a spedal tag-
ging mechanism that eliminates WAW and WAR hazads [14]
[23].

Onceingtructions are exeauted their results are written badk
to RSs, during the Write-Badk stage, enabling dependent in-
structions that were waiting for those values to become realy for
exeadtion. Finaly, during the Commit stage, instructions are
retired from the ROB in-order and their results committed to the
Register File (RF).

Speaulation is adively reseached to predict data values
from registers or memory [23]. In ather approaches, speaulation
is used to dynamicdly generate threads from a sequentia flow
of control [15]. Furthermore, some recent architedures support
the overlapped exeaution of multiple, independent threads using
Simultaneous Multithreading (SMT) [26]. Therefore, it is obvi-
ousthat to simulate these cmplex architedures, flexible simula-
tion tools are required.

Benchmark Simulation

Program Parameters

\
Y A 4
))
SSgee EMSim Simulation
'L Core Simulator > Results
SS
Libraries
A 4
) PISA System Ho_st oS
SS tool suite | inst.set |... Calls Linux

Figure 2. EMSim’ s programming environment.

EMSim was designed using object oriented (OO) tedh-
niques. The advantages of an OO approach to software design
in genera are well documented [5]. They include many well-
accepted design gas of quality program development, such as
moduarity, modifiability, and maintainability [16]. Moreover,
designs centered on dbjeds are espedally suited for simulation.

Simulation spedd is obviously an important fador in a simu-
lator. However, the feaures that provide the OO approach to
software design are equally or perhaps more important in a
simulator. Languages such as C++ provide useful OO meda
nisms, such as inheritance, polymorphism, and templates. Tem-
plates support the design of software using generic program-
ming [2] techniques. In generic programming, software ampo-
nents are aeded so that they can be eaily reused in a wide
variety of situations. The data structures and agorithms in the
Standard Template Library (STL) [2] are examples of the gpli-
caion d generic programming. In this library, software com-
porents such as queues, sets, lists, etc., are aleto handle differ-
ent types of objeds employing dfferent algorithms.

EMSim provides modularity, code reutilization, and ex-
tendibility through the use of classes, inheritance and generic
programming. Modificaions to EMSim are eaily integrated
since these features are available to a developer. To oltain fast
exeaution spead, EMSim was developed in C++. In addition, the
implementation of EMSim was caried out employing STL’s
generic containers and iterators. Moreover, the interfaces de-
fined using virtua functions all ow subclasses to spedalize meth-
ods with their particular implementation.

Figure 2 shows EMSim's programming environment. As
this figure ill ustrates, the simulator in its current versionis com-
patible with the compiler, linker, assembler, and libraries of the
SStool suite. As a result, EMSim shares with SSthe way in
which data, stadk, and code aeas are mapped into memory.
Parts of the macaos that define the implementation d the in-
struction set and the system cdls of SSwere modified to make
them compatible with EMSim. EMSim’'s smulation parameters
can be onfigured from the command line or from a text file.
The onfiguration parameters of EMSim include: size and aso-
ciativity of cade memories and BTB; size of the instruction
queue, ROB and reservation stations; and number and type of
functional units.

EMSim superscdar simulator is exeation-driven. The
simulator is able to operate in different modes of exeaution,

Socket++ Host B

Host A communication
libraries
GUI (Java)
.......... Y. EMSm
Thread Comm.

Thread | simulator
b — (C++)

v

Figure 3. EMSim’ s distributed architecure.

which are (a) fast, in-order smulation and (b) detailed wide-
isae, out-of-order smulation. The fast simulation mode dlows
the user to quickly placethe simulator in a particular sedion o
the benchmark code, skipping winteresting perts like initi ali za-
tion. During fast mode simulation, instructions are read dredly
from memory and exeauted in sequence Conversaly, in the
detailed ssimulation mode, al the memory hierarchy and the
pipeline stages of the simulator are exercised. In this mode,
EMSim loads a binary program into its internal memory and
then simulates in detail, cycle-by-cycle, al the processng per-
formed by the pipeline. During instruction processng, register
values are calculated and passd from producer instructions to
consumer instructions or memory on-the-fly. EMSim’'s on-the-
fly vaue passng closely emulates the behavior of red supersca-
lar processors, and is also used as a means for chedking the r-
red operation of the tagging and out-of-order exeaution mecha
nisms inside the simulator. In this way, EMSim ensures corred
manipulation d instruction values during speaulative exeaution.

Functional validation of EMSim was performed in two
ways. First, the ontents of EMSIim's memory and registers
were compared on a gycle-by-cycle basis with the crresponding
values obtained by sim-outorder during the exeaution d the
same benchmark. In addition, speda benchmarks, which per-
form intensive mathematicd cdculations, were exeauted on a
red machine. The results obtained by these benchmarks were
compared with the results obtained from EMSim. In bah cases,
EMSim obtained the same results as sm-outorder and the red
machine.

EMSm has a distributed architedure that consists of a
graphicd user interface (GUI), a cre simulation engine, and
communication fadliti es. Thisisin contrast with existing simu-
lators that consists of only asingle exeautable with a simple text
mode user interface The Java language provides, through the
Swing library, abundant graphical elements to build complex
user interfaces that are portable aaossdifferent platforms [10].
To make use of these capabiliti es and without saaificing speed
of exeaution, EMSim was designed using Java's Swing in the
user interface ad C++ in the wre simulator. This architedure
allows deaupling the GUI from the simulator, which is a useful
feaure during testing or when benchmarking is performed.
Figure 3 shows EMSim'’ s distributed architecure.

EMSim's user interface handles user events and credes a
specia thread for communicaion with the main simulator
through TCP/IP sockets. On the other hand, the core simulator
credes a Posix thread (pthreads) to exeaute the @mmunication
routines. The cmmunicaion threal in the GUI receives com-
mands from the user to control the simulation exeaution. A
simple protocol was designed to transfer data between the simu-
lator and the GUI. The communication library socket++ [24] is
employed to receve/send the C++ input/output streams from/to

CRegFile CObject

I I 1
CResStat CROB CMMem ClnsPool
CInsQueue CWBQueue CCache

I T A 1
CBTB CDCache ClCache

Figure 4. UML diagram of EMSim’s main classes.

the simulator. EMSim'’s distributed architedure makes it feasi-
ble to use the simulator with the GUI on a single cmomputer or
remotely over the network. EMSim is also able to run onasin-
gle omputer without the GUI in text mode. In the latter case,
the output streams generated by the smulator are re-direded to
the standard autput instead of through the TCP/IP sockets.

EMSim’'s design is organized in a hierarchy of clases. A
partial UML diagram of the main classesin EMSim is shown in
Figure 4. The base dass CObjed provides common methods
and variables to all other classes derived from it. Instruction
cade (ClCacde), data cache (CDCacde), and BTB (CBTB)
clases are spedalizaions of the base dass CCache to store
instructions, data, and kranch information, respedively. Classes
are dso defined to ke the state and provide the adions per-
formed by the register file (CRegFile), main memory
(CMMem), reservation stations (CResStat), instruction pool
(CInsPool) and writebad queue (CWBqueue).

EMSim pipeline was modeled using the UML class hierar-
chy diagram shown in Figure 5. The dassCSimulator contains
the dasss used to model the pipeline stages and the main
simulation loop. As is illustrated in Figure 5, classes were
defined to emulate a processor pipeline @nsisting o fetch
(CFetch), decode/dispatch (CDecode), issue (Clssue), exeaute
(CExeaute), write-badk (CWriteBad), and commit (CCommit)
stages. In addition, memory instructions are procesed during
the memory stage (represented by CMemory). The base dass
CProcess provides the fedures that are common to al derived
clases representing the pipeliine stages (e.g., bandwidth).
Utility classes (not shown) were dso designed to handle
statistics, exceptions, memory data, clock, timers, etc.

The design & EMSim also provides suppat for debugging.
The dassCBre&k in Figure 5 al ows breakpaoint conditionsto be
dedared. This classalso contains methods to dump the state of
a pipeline stage when a breapoint condition occurs during
simulation. The information dumped includes the state and
contents of the queues handled by the stage. The dump method
can be overridden by a new class derived from CBre& to print
any other information required by the user.

In its design, EMSim utili zes different STL generic contain-
ers gauch as s, lists and qleues. Although the design o STL
was optimized for fast exeaution, this library adds an overhead
to the total simulation time. Hence, to minimize this overhead,

CBreak

T

CSimulator CProcess
(2
CFetch CDispatch Clssue CMemory
CWriteBack CExecute CCommit

Figure 5. UML diagram of EMSim' s pipeline dasses.

STL’s generic containers were employed only in those parts of
the simulator that do nd negatively impad EMSim's perform-
ance Therefore, containers of objeds that are used very fre-
guently were implemented using templates and arrays instead of
STL generic containers.

EMSim’s main loop processes al the pipeline stages at eat
simulation cycle in the following way:

obj list_iterator p;
for(;::){
for(p=s_RunLi st. begin();
p! = s_RunList.end();
p++)
(*p) ->Run();
cl ock. Tick();
}

As this code segment ill ustrates there ae no spedfic refer-
ences to particular pipeline stages in the main loop. Pipeline
objeds are stored in the STL generic container s_RunLi st dur-
ing initiali zation, and then, accessed through the iterator p. This
approach reduces the anourt of changes and at same time, sim-
plifies modification to EMSim. As an example, to add a new
pipeline stage into EMSim, a new classderived from CProcess
is creaed. This class will include the implementation of the
virtual method Run shown in the segment of code adowve. Vir-
tual methods are the interfacethat is implemented in different
ways a ead pipeline stage. Then, an instance of the dass
would be stored in s_RunLi st . Pipeline objeds are stored us-
ingthe push_back() method of the mntainer s_RunLi st. The
iterator in the main loop d EMSim will automaticdly process
the new pipeline stage by cdling its Run method. Using this
generic programming approad, the main loop of the simulator
remains unchanged regardless of how many pipeline stages are
added (changes occur mainly in the new classcode).

In EMSim, pipeline stages communicate through instruction
queues. Hence after being processed, instructions must be
placel in the gpropriate output queue so that the next pipeline
stage can acessthose instructions. Thus, no globa structures
are accessed duing this process In contrast, adding a new pipe-

Sim.

Descrip
tion

—-—C®

SWARM . world

I : : Beowulf Cluster " eeeeeemesnwennnenee

Figure 6. Benchmarking on a duster of computers.

line stagein SS's sm-outorder requires changing the main simu-
lationroutine. In addition, the new procedure must update, in an
appropriate way, the global structures and variables (e.g., queues
and flags) that keep tradk of the procesor’s gate in the RUU
unit [6]. However, sincethe RUU unit is a centralized structure,
this process must be performed very caefully to avoid causing
unintended effedsin ather parts of the simulator.

The OO structure of EMSim facilit ates extending its cgpa
biliti es to simulate other types of architedures and allows visu-
dizaion of the changes that will be required to perform those
extensions. As an example, extending EMSim to simulate a
SMT procesor entail s creaing additional instances for the reg-
ister file (or processor’s context), instruction queue, ROB, and
Load/Store Queue (LSQ). In addition, using the generic pro-
gramming approad, such instances will be stored in generic
containers that the gpropriate pipeline stage would acces in
order to processinstructions corresponding to dff erent contexts.
Other changes involve extending the cade memory to support
multiple ports, overriding the fetch method that access the in-
struction cache memory to support a new fetching pdicy, over-
riding the method that is used to dispatch instructions, etc.

4. Efficient Benchmarking

Performance evaluation of new microarchitectures requires in-
tensive benchmarking. During benchmarking, overal simula
tion time can be substantially reduced if a group of networked
computers is employed. Each computer in the network is pro-
grammed to exeaute a simulation wsing dfferent parameters.
However, in this environment it is difficult to achieve good load
balancing among computing rodes, espedally if nodes are not
dedicaed exclusively to simulation, i.e., nodes may finish at
unpredictable times. Moreover, there is no way to synchronize
simulations without explicit communication support. Synchro-
nizaion is required when all the nodes are exeauting the same
benchmark using dightly different parameters. Once al the
nodes finish a simulation, they synchronize to cdculate the
group o parameters that will be used for the next simulation
run.

A computing cluster, such as the SWARM Beowulf cluster
[18] can ameliorate these hurdles. In SWARM, load balancing
is obtained through spedalized software, such as Load Sharing
Facility (LSF) [18], which analyzes the load assgned to eah
nock, i.e., nodes with lesser load are assgned more cmputation.

Exeauting synchronized simulations in a duster of com-
puters requires communicaion among simulation nodes. The

@ EMSim Simulation on SWARM v1.0 _lo|x]

File Eot Hel

EMSim Microarchitecture Simulator

Interface for Parallel Benchmarking
using MPI on SWARM

Starting syele Endingcysle Mumber of nodes
SpecFP-Applu -
1 20000000 8
Inputiile name of benchinak [v] Display simutation graph [T Display data results
YeAxis HeAis
File name for simulation results [pc] [D-Cache Miss Rate hd
ENSim.res|

Simulate ‘ View Results | Quit ‘

Figure 7. GUI to configure benchmarking parameters.

Message Passing Interface (MPI) [19] library provides the
communicaion gimitives required for this task. Using MPI,
speda communicaion worlds are aeaed for ead simulation
[19]. Simulation nodes that participate in a communicaion
world are &le to perform a simulation cycle wordinately. Us-
ing MPI it is even possble to define several communicaion
worlds where participating nodes work on dfferent benchmark-
ingtasks.

Figure 6 shows EMSim paralel benchmarking environment.
This environment consists of (a) a GUI applicaion written in
Java, (b) a wlledion d Perl and shell scripts, and (¢) EMSIm
simulator modified with MPI cdls. EMSim employs MPI func-
tions to send, receéve, and synchronize with ather simulation
nodesin the duster of computers.

Figure 7 shows the GUI that allows configuring simulation
parameters for parallel exeaution of benchmarks on SWARM.
Some of the information provided by the user includes meas-
urement variables aich as IPC, cathe missrate, branch predic-
tion acarragy, etc. The user aso enters the name of the bench-
mark program to exeaute, the number of simulation nodes, the
number of simulated clock cycles to exeaute, and the format of
the output results. Once dl these information is entered, the
GUI credes a text file aitomatically. Then, a script written in
Perl, reads the simulation information and cdls LSF, passng it
the required number of simulation nodes. Then, LSF sends the
simulation processes to SWARM, and finally the EMSim simu-
lation nodes are initialized by the MPI system to work in paral-
lel. A spedal root node wordinates al other nodesin the duster
to initiate anew simulation run.

During initidization, ead simulation rode cdculates its
own identification number. This number is used by a noce to
obtain its particular simulation parameters. Then, through the
network file system (NFS) installed on SWARM, it obtains the
objed file mrresponding to the benchmark program that the
noce will exeate. Afterwards, it exeates a simulation run
independently. When a node finishes a simulation run, it syn-
chronizes with @l other nodes in its communicaion world send-
ing its results bad to the root node. Once this occurs, the node
is freeto start a new simulation cycle. Finally, when all nodes
terminate their ssmulation workload, eacy ore sends its final
simulation results to the root node. With these results, the root
noce aedes a single file with the complete simulation results.
At this point, the LSF system automaticdly sends an email to
the user indicaing that a simulation cycle has finished. The user
can then execute the GUI to rea the file cntaining simulation
results and opionally generate agraph with those results.

5. Conclusions

A new simulation environment designed to study modern mi-
croarchitedures was presented in this paper. This environment
contains a generic superscdar simulator model that provides the
basic dementsto simulate other more complex architectures.

Traditionally, the development of simulators for modern mi-
croarchitectures has focused on producing fast simulators. Even
though simulation speed is important, other feaures such as
moduarity, reusability, easse of debugging, and modifiability
have been negleded or only partially addressed in existing simu-
lators. We believe that such features are esential to ease the
development of advanced simulators for computer architecture
reseach. EMSim's design provides modularity and reusabili ty
through the use of class hierarchies. Moreover, the impaa of
modifications is minimized through the use of generic pro-
gramming. In addition, the structure of the simulator is easy to
understand since there is a one-to-one rrespondence between
elements in the processor and the dasses defined. EMSim pro-
vides all these caabilities without saaificing exeaution speed
since it is written in a fast OO language, e.g., C++. Findly,
EMSm’'s distributed architedure dlows decougding the GUI
during benchmarking.

The simulation environment presented in this paper also
provides the tools required to facilit ate the mordinated exeau-
tion d benchmarking in a duster of computers. Moreover,
software utili ties allow automatic data gathering and presenta-
tion of simulation results.

EMSim and the todls presented in this paper are airrently in
itsaphaversion. At thistime, the GUI and debugging fadliti es
of EMSim provide minimum functionality and are still under
development.

Our future work includes porting of EMSim to a different
ISA, repladng in this way the SStods used during develop-
ment. In addition, later versions will i nclude more daborated
debugging and visualization fadlities. Spedficdly for debug-
ging, we plan to implement checkpoints [21], which will enable
EMSim to save the entire state of the simulator to disk. Using
this feaure, the simulator can restore the procesor’'s date & a
chedkpoint, and continue exeaution from there, saving simula-
tion time. Finally, a Dynamic Smultaneous Multithreaded
processor (DSMT) simulator is also planed for development by
extending EMSim.

Acknowledgments

The aithors would like to thank Mark Daley for his contribution
during theinitial development phase of this projed.

6. References

[1] K. Arndd and J. Godling, The Java Programming Lan-
guage, Addison-Wesley, Realing Massadusetts, May
1996.

[2] M. Austern, Generic Programming and the STL, Addison-
Wesley, 1998. ISBN 0-201-30956-4.

[3] C. Bedhem et al., “An Integrated Functional Performance
Simulator,” IEEE Micro, May-June 1999.

[4] B. A. Bryan et al., “Can Trace-Driven Simulators Accu-
rately Predict Superscdar Performance?” Proc. of Interna-
tional Conference on Computer Design, Oct. 1996, pp.
478-485,

[5] T.Budd, An Introduction to Object Oriented Programming,
(2nd Edition), Addison Wedey, Realing Massadhusetts,
1997. ISBN 0-201-82419-1.

[6] D. Burger and T. M. Austin, “The SimpleScdar Todl Set,
Version 20,” Computer Architecture News, Vol. 25, No. 3,
June 1997, pp. 13-25. http://www.simplescdar.com

[71 A. Cagney, PSim PowerPC simulator.
http://sources.redhat.com/psim

[8] Clemson University. MIPS Superscdar Simulator (for
Sparc-Solaris big-endian platform).
http://www.eng.clemson.edu/~ilp/sim.html.

[9] T.A. DiepandJ. P. Shen, “VMW: A Visualizaion Based
Microarchitecdure Workbench,” |EEE Computer, 28(12),
Decanber 1995 pp. 57-64.

[10] R. Eckstein, M. Loy, and D. Wood, Java Swing, O'Rellly
Ed., 1998.

[11] M. J Flynn, P. Hung and A. Peymandoust, “Using simple
tools to evaluate mmplex architedural trade-offs,” IEEE
Micro, July-August 2000.

[12] J. Hennesy, and D. Patterson, Computer Architecture-A
Quantitative Approach, 2nd Edition, Morgan Kaufmann
Publishersinc., 1996.

[13] J. Huan, The Simulator for Multithreaded Computer Archi-
tedure (SIMCA).
http://www.mourt.cs.umn.edu/Reseach/Agassz/simca.htm

[14] M. Johnson, Superscalar Microprocessor Design, Prentice
Hall, Englewood Cliffs, NJ., 1990.

[15] P. Marcuello, J. Tubella, and A. Gonzdez “Vaue Predic-
tion for Speaulative Multithreaded Architedures,” Proc. of
the 32nd. Ann. Int. Symposium on Microarchitecture
(MICRO-32), Haifa (Israd), November 16-18 1999.

[16] H. Mili, F. Mili, and A. Mili, “Reusing software: Isaies and
reseach dredions,” |EEE Transactions on Software Engi-
neering, vol. 21, June 1995.

[17] Cedle Moura, “SuperDLX a generic Superscdar Simula-
tor,” ACAPS technical memo. McGill University, School of
Computer Science April 13, 1993.

[18] Oregon State University, Computer Science Department.
SWARM cluster. http://www.cs.orst.eduw/swarm

[19] P. Pachem, Parallel Programming with MPI, Morgan-
Kauff man Publishers Inc., 1996.

[20] V. S. Pai, R. Parthasarathy, and S. V. Adve, “RSIM: An
execution-driven simulator for ILP-based shared-memory
multiprocessors and uriprocesors,” |EEE TCCA Newslet-
ter. October 1997. http://www-ecericeedu/~rsim

[21] M. Rosemblum et al., “Using the SimOS Machine Simula-
tor to Study Complex Computer Systems,” ACM TOMACS
Secial Issue on Computer Smulation, 1997.

[22] E. G. Sirer, “Measuring Limits of fine grain parallelism,”
Undergraduate thesis, Princeton University, 1993
http://www.cs.washington.edu/homes/egs/mipsi/mipsi.html

[23] J. E. Smith, and G. S. Sohi, “The Microarchitedure of Su-
perscdar Processors,” Proceedings of the |EEE, Decanber
1995.

[24] Socket++ source ode and user manual.
http://www.cs.utexas.edu/users/|avender/courses/socket++/

[25] A. Srivastava and A. Eustace “ATOM: A system for build-
ing customized program analysis toadls,” Proc. of the 1994
Conf. on Programming Languages Design and Implemen-
tation, 1994.

[26] D. M. Tullsen, “Simulation and modeling of a simultaneous
multithreading procesor,” Computer Measurement Group
Conference, Decanber 1996.

[27] M. Wolf, and L. Willis, “SATSim a Superscdar Architec-
ture Trace Simulator Using Interadive Animation,” Work-
shop on Computer Architecture Education, June 2000.

