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ABSTRACT

This paper describes an adaptive mesh refinement algorithm for improving the accuracy in the solution of electromagnetic
problems in transmission lines. A residual error indicator is used for detecting the refinement zones, and two h-refinement
techniques for triangular meshes (the longest edge bisection and the regular split) are applied for increasing the degrees of
freedom in the mesh. This procedure has been applied in several structures and the results show that the adaptive meshing allows
obtaining accurate solution with a small amount of unknowns.
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1. INTRODUCTION

Adaptive mesh refinement has been successfully used in civil
engineering and fluid dynamics applications in last years. In
this work, an adaptive finite element method for
electromagnetic problems in transmission lines is presented.

This type of problems are governed by the vector wave
equation:
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where u
r

 is the electric or magnetic field (depending on the
formulation used), μ  and ϑ  are magnetic and dielectric
properties of the materials, and ω  is the angular frequency of
the problem.

The application of the finite element method (FEM) on this
partial differential equation yields an eigensystem, whose
eigenvalues are the propagation constants for the different
solutions of the problem. If a direct eigensystem solver is
used, the computational cost of the problem increases
approximately as n3, where n is the number of unknowns in
the mesh. Adaptive methods try to distribute the degrees of
freedom of the problem in such a way that an accurate
solution can be obtained maintaining a low number of
unknowns. In that sense, the adaptation procedure generates
an optimal mesh, that is, the best mesh for a specific problem.

Figure 1 shows the flow diagram of a general adaptive
procedure, where, at each iterative step, the problem is
solved, an indication of the error for each element is obtained
and the mesh is refined in those zones with a bigger error.

Figure 1. Adaptive mesh refinement flow diagram
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For error detection, a residual error indicator [1] [2] has been
used, although it is possible to employ other type of indicator,
as patch recovery or smoothing indicators [3] [4] [5].

Basically, the residual error indicator measures the non-
fulfillment of the vector wave equation and the boundary
conditions:
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where the first term is the measure of the inner residual, and
the second one measures the singular residual at the inner
edges

int
k

lr
r  or Neumann boundary edges

Neumann
k

lr
r , sf

and lf  are weighting factors for both residuals, ih  is the size
of the element (that is, the length of the longest edge in
triangular elements), 

mini ,1−νλ  is the smaller eigenvalue of the

tensor 1−
iν , and p is the degree of the interpolation functions

employed in the FEM (in this work p=1).

The internal and singular residuals are:
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where eur  is the solution of the FEM in the element i and kur

is that solution at the edge k.

This measure of the error is qualitative, that is, allows to
detect elements or zones in the mesh with a bigger error, but
it does not provide a bound of the error in the problem.

2. MESH REFINEMENT

2.1 Element Selection
The qualitative measure of the error, provided by the
elemental indicator, allows selecting those elements with
a bigger error. As a criterion, elements which fulfil

max
i ee κ> (6)

are selected for refinement.

In (6) ie  is the error indication for the element i, maxe

is the maximum error in the mesh and κ  ( 10 << κ ) is a
parameter which controls the number of elements to be
refined and, therefore, the number of new elements at
each step of the adaptive process. When κ  is close to 1,
the refinement takes place only at the elements with an
error measure close to the maximum. This behavior
implies a lot of steps in the adaptive process for obtaining
accurate results. On the other hand, when κ  is close to 0,
a great quantity of elements are refined, even those with a
little error. So, the computational cost of the FEM solver
is highly increased and most of the new unknowns do not
improve the accuracy of the solution. The results
presented in this paper have been obtained with κ =0.5.
Figure 2 shows a scheme of this refinement.

     a)       b)

Figure 2. Simple refinement: a) selected
elements, b) refined mesh

Also, it is possible to design a multiple-level refinement
[6] [7] [8] where the refinement criterion specifies several
thresholds and several refinement intensities:

• ⇒≤ max
i ee 1κ no refinement

• ⇒≤< + maxp
i

maxp eee 1κκ p refinement

• ⇒< i
maxn eeκ maximum refinement

where ] [1,0∈pκ  and 1+< pp κκ .

This treatment will be studied in future work. The
corresponding scheme (for 2-level refinement) is shown in
figure 3.



     a)        b)

Figure 3. Multiple refinement (2-level): a) selected
elements, b) refined mesh

2.2 Element Split
In an h-refinement approach, there are different ways for
refining the mesh. For instance, by adding new nodes in the
selected elements and running a Delaunay triangulation [9].
In this work, procedures based on the “longest edge”
bisection [10] and the regular split of triangles have been
employed. The first technique splits the triangle up into two
new elements (figure 4), and the second one into four
elements with the same aspect ratio (figure 5a). Moreover, a
maximum angle criterion (figure 5b) has been applied in
order to obtain an additional improvement in the aspect ratio
of some triangles. It is very important to maintain or
improve the regularity of the elements throughout the
adaptive procedure because the exactness of the FEM
solution is directly related to it.

Figure 4. Longest edge (1:2) bisection

a)

b)

Figure 5. Regular (1:4) split: a) normal, b) with
maximum angle criterion

These two types of split lead to non-conformal meshes, as
those of the figure 2 (quadrilaterals) or figure 6

(triangles). In order to obtain a conformal mesh, that is, to
avoid “hanging nodes”, a new generation of elements is
needed (figure 7).

Figure 6. Non-conformal meshes: a) initial mesh,
b) first refinement, c) second refinement

Figure 7. Generation of conformal mesh

In both split techniques, five non-conformal situations can be
identified:

1. The element has hanging nodes in its three edges.

2. The element has hanging nodes in the two shortest
edges.

3. The element has a hanging node in the longest edge.

4. The element has a hanging node in a different edge than
the longest one.

5. The element has a hanging node in the longest edge and
other one in other edge.

The corresponding solutions for these situations are
(figure 8):

1. Regular split (1:4).

2. Regular split (1:4).

3. Union of the hanging node and the opposite vertex (1:2
split).

4. Union of the hanging node and the middle point of
longest edge + union of the middle point of the longest
edge and the opposite vertex.

5. Union of the hanging node and the middle point of
longest edge + union of the middle point of the longest
edge and the opposite vertex.



Figure 8. Solution of non-conformal cases

This strategy guarantees that in every mesh of the
adaptation process the minimum angle is, at least, the half
of the minimum angle in the initial mesh; that is, the loss
of regularity in the elements is bounded.

3. RESULTS

The adaptive refinement procedure has been applied on
several waveguiding structures. Here, the results obtained for
structures with abrupt variation in the field distribution or
singularities are shown. In those cases, an adaptive procedure
improves significantly the accuracy of the FEM solution
obtained from a uniform or graded meshes

3.1. L-shaped Homogeneous Waveguide
Figure 9 shows the transversal component (the dominant one)
of the electric field distribution for the first mode or solution.
A singularity in the electric field can be observed at the inner
corner of the guide. Therefore, the optimal mesh must
accumulate more degrees of freedom in that zone.

Figure 9. Transversal component of the first-mode
electric field in an L-shaped homogeneous

waveguide

The quality of the adaptive procedure can be established by
comparing the convergence of the solution (the eigenvalue)
with that obtained from the classical FEM. The convergence
for this one has been obtained using different uniform meshes
(figure 10) for the same problem, which have been generated,
as the graded meshes for the other examples, by means on an
hybrid advancing front / interpolation method [11] [12]. The
first of these meshes is, also, the initial mesh for the adaptive
process.

Figure 10. Uniform meshes in an L-shaped
waveguide

The adaptation process has been tested for both refinement
techniques (1:2 and 1:4). Figure 11 shows the adapted
meshes throughout the process when a “longest edge”
technique is applied, and figure 12 shows the results for the
regular (maximum angle criterion) method. In both cases, the
singularity is properly detected and the refinement is more
intense in the singularity zone.

1)

2) 3)

4) 5)



The convergence rate (figure 13) is similar for both cases,
and much better than that obtained from a classical (uniform
mesh) FEM. In fact, at the end of the process, the adaptation
obtains a 10-times more accurate solution, for the same
number of edges (about 600). In order to obtain this accuracy
by means of a uniform mesh, it would be necessary about
10,000 edges.

Despite of the similar results in both refinement techniques,
the 1:2 technique has needed 12 steps of refinement and,
therefore, 12 FEM simulations, whilst the 1:4 refinement has
obtained a similar error with 6 steps. So, the last refinement is
preferable because it has a lower computational cost.

The improvement in the convergence rate is due to the
progressive reduction and confinement of the error
throughout the adaptation process. In figure 14, the
distribution of the error density in the eigenvector (the
electric field) for the meshes of the adaptive process (figure
12) is shown. Comparing these distributions with those
obtained from the uniform meshes (figure 15) it is evident
that the adaptation reduces the area with the highest error.

Figure 11. Adapted meshes (1st, 3rd, 5th, 7th, 9th and
12th) using 1:2 refinement

Figure 12. Adapted meshes (1st, 2nd, 3rd, 4th, 5th and
6th) using 1:4 refinement
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Figure 13. Convergence in the L-shaped waveguide



Figure 14. Distribution of the estimated error
density in the adapted meshes

Figure 15. Distribution of the estimated error
density in the uniform meshes

3.2. Shielded Microstrip Line
The structure shown in figure 16 consists of a substrate of a
given relative electric permittivity (εr2), a metallic trip and a
rectangular metallic framework.

In order to decrease the computational cost of the problem,
the study of the adaptation has been carried out for one half
of the whole domain, taking benefit from the symmetry of the
waveguide. In this case, magnetic wall conditions are
imposed in the plane of symmetry.

Comparing the refined meshes (figure 19) and the
distribution of the transverse component (the dominant
component) of electric field for the first mode (figure 17), it
can be verified that refined regions are those where the
electric field undergoes the biggest variation.

Figure 20 shows the convergence of the phase constant for
the adaptation process compared with the convergence for
consecutive graded meshes (figure 18). The convergence is
clearly accelerated with the adaptive refinement.

Figure 16. Cross-section of the microstrip line

Figure 17. Transversal component of the first mode
electric field in the microstrip line
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Figure 18. Graded meshes in the microstrip line

Figure 19. Adapted meshes (1st, 2nd, 3rd, 4th, 5th and
6th) using 1:4 refinement
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Figure 20. Convergence in the microstrip line

3.3. Shielded Unilateral Finline
Finally, a unilateral finline surrounded by a cylindrical
metallic framework (figure 21) is analyzed. This structure
consists of a substrate and a zero-thickness metallic strip.
Again, this waveguide presents a symmetric cross-section.
Therefore, only one half of the structure has been analyzed,
imposing in this case an electric wall condition in the
symmetry axis.

In the transversal component (the dominant one) of the first-
mode electric field (figure 22) appears again a singularity, in
this case near the edge of the strip.

Figure 21. Cross-section of the unilateral finline

The meshes generated in the adaptation process (figure 24)
indicate that, again, the singularity is properly detected and,
therefore, the error in the problem is minimized with a little
quantity of unknowns.

0.5 mm

3.175 mm

εr2=2.22

εr1=1



Figure 25 compares the convergence rate of the adaptive
mesh refinement and that of the classical FEM (meshes of
figure 23). At the end of the process, the adaptation obtains a
4-times more accurate solution, for the same number of edges
(about 600). A similar accuracy can be obtained with a
classical FEM and a graded mesh like those of figure 23,
using about 40,000 edges. An HP C160 700 Series
workstation needed about 8 hours for obtaining this accuracy
by means of the adaptive procedure, whilst the use of 40,000
edges in a classical FEM will spend, due to the high
computational cost of the eigensystem solving, about 50
years.

Figure 22. Transversal component of the first-mode
electric field in the unilateral finline

Figure 23. Graded meshes in the unilateral finline

Figure 24. Adapted meshes (1st, 2nd, 3rd, 4th, 5th and
6th) using 1:4 refinement
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Figure 25. Convergence in the unilateral finline

4. CONCLUSIONS

The application of an adaptive mesh refinement procedure for
solving the vector wave equation in transmission line
electromagnetic problems has been presented. The indication
of the elemental errors has been obtained by means of a
residual error indicator. A one-level h-refinement, based on
longest edge bisection and regular (maximum angle criterion)
split, has been applied for the enrichment of the mesh.

After the element split, an element generation strategy has
been performed for maintaining the conformity in the mesh
and a bounded regularity of triangles along the adaptation
process.

Results obtained with this procedure in several waveguiding
structures show that the adaptive mesh refinement detects
properly the regions of the problem where a bigger density of
degrees of freedom is necessary. The intelligent distribution
of the unknowns throughout the problem domain reduces the
computational cost of the FEM application (time and memory
resources) and allows more accurate solutions.

The next step in this research is the development of 3D error
indicators for tetrahedra and the adequate refinement
techniques in order to deal with problems in the design of
cavities, circulators and other microwave devices.
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