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Abstract

In this paper, a novel learning architecture based on neural networks is used for temperature

inverse modeling in microwave-assisted drying processes. The proposed design combines the

accuracy of the radial basis functions (RBF) and the algebraic capabilities of the matrix

polynomial structures by using a two-level structure. This architecture is trained by

temperature curves, T cðtÞ; previously generated by a validated drying model. The

interconnection of the learning-based networks has enabled the finding of electric field (E)

optimal values which provide the T cðtÞ curve that best fits a desired temperature target in a

specific time slot.
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1. Introduction

The conventional study of drying processes is mainly based on the numerical
resolution of the differential equations describing the physical phenomena. Several
simplifying drying models providing relatively accurate results can be found in the
literature [2,4]. However, these models, generally based upon differential equations,
present great limitations for solving the inverse problem. In contrast, the
architectures based on neural networks inherently provide ways to solve the
appearance of constraints. Additionally, most neural network structures applied to
model drying processes involve solutions in which the output of the network is
reduced to a set of values [1,3], but not to a time-dependent function. In this work,
however, the proposed architecture is able to generate complete temperature curves,
T cðtÞ; from only two numerical input parameters: the electric field (E) and the airflow
temperature (Tair). The neural architecture is configured in two levels by using radial
basis function (RBF) neural networks and polynomial learning structures, enabling
the prediction of E optimal values that force TcðtÞ to reach a desired temperature
target T c0 in a required time slot t0:
 O
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RO2. Structure of the neural architecture

In microwave-assisted drying processes, the evolution of T cðtÞ in the material is
highly dependent on the electric field (E) and the air temperature (Tair), provided
that the cavity structure and the internal conditions of the material do not vary [5].
Additionally, T cðtÞ can present non-linear variations during all drying stages. Due to
this, the design of the proposed neural network architecture is based on learning
structures and focused on non-linear problems, such as the mentioned temperature
inverse problem, in order to predict the optimal E input variable. Thus, RBF neural
networks have been selected for temperature identification (level 1) and a learning-
based polynomial network for mapping the RBF neuron weights obtained from each
training trial over the input variables E and Tair (level 2), as illustrated in Fig. 1,
where ~Wk is the vector of neuron weights for each k trial. In the first level of the
proposed architecture, the length interval of TcðtÞ; t ¼ ½0::T � 1�; is divided into M

time slots. Also in this level, the T points of TcðtÞ are projected onto M neurons
ðMoTÞ: The second level establishes the relationship between ~Wk and the ~Vk

vector, for all the M neurons and all the k trials, by means of the matrix WW. The
components of ~V are dependent on both E and Tair; which are the inputs variables
for the drying process.

The level 1 provides a solution to the interpolation of the non-linear function
T cðtÞ: For the kth pair (k ¼ ½1::N�) of input variables ½E;Tair�k; the estimation of
T ckðtÞ is given by

~TckðtÞ ¼
XM
j¼1

wjk exp �
t� mj
� �2

s2j

 !
¼
XM
j¼1

wjk � fjkðtÞ; (1)
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Fig. 1. General scheme of the proposed architecture. The RBF neural network in level 1 generates the

estimated temperature ~T ckðtÞ form E and Tair, while the polynomial network in level 2 establishes the

mapping between ~Wk and ~Vk for all the trials in level 1.
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where the Gaussian fjkðtÞ is the j radial function, mj and sj are the center and
standard deviation of fjkðtÞ, N is the number of trials during the learning stage, and
wjk is the value of the weight associated to fjkðtÞ for the kth trial. Transforming (1)
into a matrix notation, results in

~TckðtÞ ¼ ~Wk �
~fkðtÞ

T; (2)

where ~Wk is the 1�M dimension vector containing the RBF neuron weights for the
kth trial and ~fkðtÞ the vector whose elements are the M Gaussian functions. In level
2, the ~Wk obtained in each training trial is projected onto the input variables
½E;Tair�k; which have generated T ckðtÞ: By considering all the learning trials, this
mapping generates the matrix WW, whose dimension is equal to 9�M, 9 being the
length of the ~V vector according to Eq. (4), and M the number of RBF neurons. The
weights of the WW matrix are obtained by the minimization of the quadratic error
between ~Wk and W 0

k ¼
~Vk �WW: This mapping is carried out by a two-

dimensional (2D) polynomial network whose order in each dimension is established
in accordance to the dependence of each neuron with respect to E and Tair. From the
surface analyses in Fig. 2, one can observe that the proposed network has a third-
order dependence of the weights in the RBF network on E in T cðtÞ curves. At the
same time, these surfaces also show a linear dependence with respect to Tair, which
justifies the selection of the polynomial structure of level 2. By applying the
polynomial network to the RBF neuron weights and considering the matrix
formulation in (2), ~T cðtÞ can be generated from the input variables ½E;Tair� by means
of Eq. (3)
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Fig. 2. (a) Dependence of the considered weight over the input variables E and Tair. (b) Error produced by

the approximation of the third-order polynomial network in level 2 of the proposed architecture.
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T

¼ ~V ðE;TairÞ �WW � ~Fðt;mi; sÞ
T; ð3Þ

where

~V ðE;TairÞ ¼ E;Tair;E
2;E � Tair;Tair � E

2;E3; 1
� �

: (4)

In order to apply this neural architecture for solving the temperature inverse
problem, in this work we have fixed Tair at 45 1C and a target value for the sample
temperature (T c0) which has to be reached within t0 seconds. With these conditions,
the proposed model is able to estimate the optimal value for E that generates the
T cðtÞ curve that fits to the desired target point ½T c0; t0�: By particularizing (3) for t0
and Tair, Eq. (5) is obtained:

Tcðt0;EÞ ¼ ~V ðEÞ �WW � ~Fðt0Þ
T
¼ T c0: (5)

By solving (5) for the variable E; expressions (6)–(7) have been obtained. It must
be pointed out that, in this case, an accurate solution for the inverse problem can be
reached only if desired target T c0ðt0Þ belongs to the learned range for E and Tair.

A6ðt0ÞE
3 þ ðA3ðt0Þ þ TairA5ðt0ÞÞE

2

þ ðA1ðt0Þ þ TairA4ðt0ÞÞE þ A7ðt0Þ þ TairA2ðt0Þ ¼ T c0; ð6Þ

Akðt0Þ ¼
XM
j¼1

W ~Wkj � ~Fkðt0Þ
T: (7)
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3. Results

In order to test the ability of the proposed neural model for solving inverse
problems, the neural architecture has been previously trained with random values for
the input variables. The training intervals have been set to 1214oEo3565 and
30,3oTairo69,8. For all the Gaussian functions of the RBF neural network mi ¼
Ti=Mði 2 ½1::M�Þ and s ¼ 3T=M: The initial conditions and parameters for the used
microwave-assisted drying model have been: microwave frequency f0 ¼ 245GHz;
initial sample temperature T0 ¼ 26; 25 1C; initial moisture content X ¼ 0912 (dry
basis); dry material and liquid specific heat cps ¼ 1600 J/Kg 1C and cpw ¼ 4180 J/
Kg 1C, respectively. For other simulation parameters the reader should refer to [1].
For all simulations the training trials number has been set to 50, T ¼ 600 s and
M ¼ 15:

Fig. 3 illustrates the temperature target, the optimum value for E and the
temperature curves provided by the drying and the neural model. As Fig. 3 shows,
the matching error at the targets, Tc0 ¼ 50 1C and t0 ¼ 20, 30, 50, 100 and 150 s, is
negligible, while the predictive identification of the temperature curves is precise.

Finally, the behavior of the proposed architecture has been analyzed for different
values of M and learning trials. Fig. 4 shows the accuracy of the architecture by
comparing the values of Tcðt0Þ provided by the drying model [4] and the magnitude
~T cðt0Þ estimated by this architecture. From Fig. 4, it can be concluded that 10 trials
during the learning stage and 12 RBF neurons are sufficient to obtain a good
NCORRECTED P
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Fig. 3. Estimation of E for several drying conditions. Tair ¼ 45 1C. In the figure, both temperature

function estimated by this neural architecture, TcNNðtÞ;and that generated by the drying model, TcðtÞ; [1]
are represented.
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Points appear only when Eq. (6) provides real roots in the learning interval of E.
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Fprediction of TcðtÞ for the drying process and, consequently, to accurately solve the
inverse problem. Dots appear only when Eq. (6) provides values for E within the
learning interval.
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4. Conclusions

In this paper, the capabilities of neural networks have been applied to the design
of a novel architecture and tested for solving temperature inverse problems in
microwave-assisted drying processes. Precise results are obtained by interconnecting
the adaptive characteristics of the RBF with the algebraic tools of polynomial
structures. As a result, the proposed architecture is able to obtain the optimal value
for an input variable of the process, in this case the electric field intensity, which
generates the proper temperature function whatever the imposed temperature
condition. The main advantage of the proposed learning-based model is to provide a
closed solution for the described inverse problem, which is difficult to be solved by
conventional drying models based on differential equations. Additionally, the
adaptive capabilities of neural networks could be used to extend the excellent
performance of the proposed model to other different drying conditions, materials
and techniques.
NCO
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Juan Monzó-Cabrera was born in Elda (Alicante), Spain, on January 1973. He

received the Dipl. Ing. and Ph.D. degrees in telecommunications engineering
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