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Abstract

In this contribution, a novel learning architecture based on the interconnection of two different learning-based

neural networks has been used to both predict temperature and drying curves and solve inverse modelling

equations in microwave-assisted drying processes. In this way, a neural model that combines the accuracy of neural

networks based on Radial Basis Functions (RBF) and the algebraic capabilities of the matrix polynomial structures

is presented and validated. The architecture has been trained by temperature (Tc(t)) and moisture content (Xt(t))

curves, which have been generated by a previously validated drying model. The results show that the neural model

is able to very accurately predict both kind of curves for any combination of the considered input variables (electric

field and air temperature) provided that an appropriate training process is performed. The proposed configuration

also permits the solution of the inverse problem in the drying process by finding the optimal value for the electric

field. This provides Tc(t) or Xt(t) curves that fit to a desired drying condition in a specific time slot.
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1. Introduction

The conventional analysis of heat and mass transfer processes is mainly based on the physical

modelling of these phenomena, by finding and solving the differential equations that describe them. In

this way, many authors have published very different mathematical models which produce good results

under several constraints as described in [1]. Yet, the key shortcomings for this kind of models are the

need of an accurate characterization of the model coefficients, particularly temperature and/or moisture

content dependency [1,2]. In contrast, the neural-network-based architectures give solutions to the

appearance of equations restraints when the operating environment is unknown. Since this kind of

structures is learning based, the rest of the process or environment parameters are no longer necessary

when the mapping between the input variables of the process and the output functions is known.

Although the employment of neural networks allows for the determination of parameter optimization

problems [4], they are commonplace for the identification and prediction of dynamic processes. Thus, a

fuzzy neural algorithm is employed in [5] to control wood drying processes and a back-propagation

neural structure is developed for the precise modelling of rice drying in [6]. On the other hand, most

neural network structures applied to drying processes involve solutions in which the output of the

network is a unique solution [7] for an input set of one-dimensional parameters, rather than a time-

dependent function.

In this work, however, the proposed model is able to learn and predict complete drying curves, such as

sample temperature Tc(t) or moisture content Xt(t) evolution, from only two numerical input parameters.

The proposed neural structure, based on Radial Basis Functions (RBF) neural networks and polynomial

learning structures, has been trained from several temperature and drying curves which have been

obtained from a previously validated microwave-assisted drying model [2,3].
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2.1. Neural architecture design

From previous contributions concerning microwave-assisted drying processes [2,3,8], one can

conclude that Xt(t) varies smoothly along the different drying stages while Tc(t) shows steeper changes

during dehydration. Additionally, both curves are highly dependent on the electric field strength (E) and

the air-flow temperature (Tair). It is for this reason that both E and Tair have been chosen as the input

parameters for the neural network model.

In order to design a neural architecture which is able to predict both Xt(t) or Tc(t) from E and Tair, it is

necessary to consider neural network models based on learning algorithms mainly focused on the

solution of non-linear problems. In this case, the same neural architecture will be used to learn and

predict Xt(t) or Tc(t) regardless of their time evolution characteristics, as illustrated in Fig. 1. Two

different levels can be distinguished in this architecture, where wjk are the neuron weights of the first

network for the kth trial, WW is the matrix associated to the second network and y(t) is a general

purpose time-dependent curve that represents either Xt(t) or Tc(t). In the first level of the proposed

architecture, the output function length, t=[0, T�1], is divided into M time intervals in order to project

the T points of y(t) ontoM neurons (MbT) whose weights have been properly learned. If we assume that

Zi (i=[1, 2]) are the input parameters of the drying process (E and Tair respectively), the relationship
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Fig. 1. General scheme of the proposed neural model.
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between Zi and y(t) within each time interval will be learned by the RBF neural network during the

training stage and then, it is later assigned to a neuron weight wj ( j =[1, M]), where M is the time

interval number. The second architecture level projects the M weights of the RBF neurons onto E and

Tair. This projection is carried out by other network whose structure depends basically on the

relationship between each wk and Zi. In this case, a third degree polynomial model has been employed,

which provides sufficient final precision for the MY2 projection in each interval as discussed further

on. This second level permits the generation of appropriate RBF neuron weights from whatever value

for E and Tair.

2.2. RBF neural networks for drying processes identification

RBFs are supervised neural networks [9] whose structure provides a solution to the local interpolation

of non-linear functions. This is the case of the generic function y(t) considered in this work since Xt(t) or

Tc(t) do not have a linear behaviour. Although the neurons activation in the RBF model is carried out by

radial functions, the RBF model has a linear expression for the estimation (ỹ(t)) of y(t). Therefore, for

each pair of input variables [E, Tair]k corresponding to the kth trial, the estimation of ỹk(t) is given by

Eqs. (1) and (2),

ỹyk tð Þ ¼
XM
j¼1

wjk/j tð Þ ð1Þ

/j tð Þ ¼ exp
� ðt � lj

�2
r2
j

 !
ð2Þ

where /j(t) is the jth Gaussian radial function, lj and rj are the centre and standard deviation of /j(t),

wjk is the weight value associated to /j(t) for the kth trial (k=[1, N]), and N is the number of trials

during the learning period.
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The estimation of wjk is carried out by using the gradient descent algorithm [10] to minimize the cost

function described in Eq. (3)

Hk ¼
XT
t¼0

yk tð Þ � ỹyk tð Þð Þ2 ð3Þ

As a conclusion, the application of the RBF neural network to the estimation of ỹk(t) permits to

obtain, after the training stage, the optimal values for wjk from curves generated by the validated drying

model [2,3]. In the prediction stage, Eq. (1) supplies the approximation of yk(t) for Tc(t) or Xt(t).

Transforming Eq. (1) into a matrix notation,

ỹyk tð Þ ¼ Wk �FðððtÞÞÞT ð4Þ

with Wk being the 1�M dimension vector containing the RBF neuron weights for the kth trial, and

%(t)T the vector whose elements are the M Gaussian functions, which are independent of k, as described

in Eq. (2).

2.3. Interpolation network for curves prediction

In order to obtain information about the dependence order of each RBF neuron with respect to the

input variables of the process and to design the second level network, the Wk obtained in each trial have

been projected onto [E, Tair]k, which are the input variables used to generate yk(t). Taking into account

all the trials used in the learning stage, this projection results in theWW matrix. This matrix contains the

mapping between E and Tair and the contribution of each Gaussian function to the generation of ỹ(t). In

order to establish the dependence of each neuron versus E and Tair variations, a two-dimensional

projection of all the M neuron weights has been generated. Fig. 2 shows, for both Xt(t) and Tc(t), the

projection for the fourth neuron of the weight matrix. The rest of the M�1 neuron weights present very

similar behaviours with respect to E and Tair. From the surface analyses in Fig. 2, one can conclude that

there is a third-order dependence of the weights in the RBF network versus E in both Xt(t) and Tc(t)
UNCORR

Fig. 2. 3D projection of the 4th RBF weight over E and Tair for estimated (a) Xt(t) and (b) Tc(t).
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curves. At the same time, these surfaces also show a linear dependence with respect to Tair, which

justifies the selection of the polynomial structure of the second architecture level.

By following the scheme in Fig. 1, applying the polynomial model to the RBF neuron weights and

considering the matrix expression in Eq. (4), ỹ(t) can be generated, for each pair of inputs [E, Tair], by

means of

yðt;Tair;EÞ ¼ wjdAðt;li;rÞT ¼ Y
V ðE;TairÞdWWdAðt;li;rÞT ð5Þ

where the
Y
V components are represented in Fig. 1, and the matrixWW is learned by following the linear

regression algorithm for the R and S matrixes shown in Eqs. (6) and (7).

S ¼

Tair1 E1

Tair2 E2

v v
TairN EN

3
775 R ¼

w11 w12
: : : w1M

w21 w22
: : : w2M

v v v
wN1 wN2

: : : wNM

3
775

2
664

2
664 ð6Þ

WW ¼ ðST dSÞ�1
dST dR ð7Þ

2.4. Inverse calculation for electric field intensity estimation

One of the main advantages of using the proposed neural configuration, based on interconnected RBF

neural networks and polynomial matrix equations, is the possibility to readily solve the inverse problem.

In this case, this implies the estimation of the optimal value of one of the input variables of the process

from desired output results in terms of temperature or moisture content. This is particularly important for

microwave-assisted drying processes since it provides the initial drying configuration that ensures a final

drying level to be reached in a previously established time. In this work, we have fixed Tair and a target

value (K) for the sample temperature (Tc0) or the moisture content (Xt0), which has to be reached within

t0 seconds. With these conditions, the proposed model is able to estimate the optimal value for E that

generates the Tc(t) or Xt(t) curves that fit to the desired points [Tc0; t0] or [Xt0; t0]. By particularizing

expression (5) for a specific t0 and Tair, Eq. (8) is obtained.

yðt0;EÞ ¼ Y
V ðEÞdWWdAðt0ÞT ¼ K ð8Þ

Solving Eq. (8) for the variable E, a solution for the inverse problem can be reached provided that the

desired target point [K, t0] belongs to the learned range for E and Tair. Thus, the solution for the optimal

electric field, considering the form of the vector
Y
V from Fig. 1, will be obtained by solving the third

degree equation given by,

aE3 þ bE2 þ cE þ d ¼ K ð9Þ

a ¼ A6 t0ð Þ
b ¼ A3 t0ð Þ þ TairA5 t0ð Þ
c ¼ A1 t0ð Þ þ TairA4 t0ð Þ
d ¼ A7 t0ð Þ þ TairA2 t0ð Þg ð10Þ
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3. Results and discussion

The diagram in Fig. 1 and Eqs. (1)–(11) have been used both for curves’ learning and prediction and to solve the

inverse problem in microwave-assisted drying processes. The temperature and drying curves for the learning and

validation procedures have been provided by the drying model described in [2,3]. During the learning stage,

random values for the input parameters E and Tair have been generated and different curves were obtained. A

moisture content of 0.912 (dry basis) and sample temperature of 26 8C have been used as initial boundary

conditions for all the simulations. For other initial simulation parameters, the readers should refer to [2,3]. The time

interval for training and testing the neural model was set to T=600 s. For all the Gaussian functions of the RBF

neural network li =Td i/M (ia [1, M]) and r =3T/M. The learning intervals for each input parameter (E and Tair)

are [1246.6; 3630.8] and [30.30; 69.84], respectively. Moreover, it must be pointed out that the proposed neural

model has been trained separately for the identification of Xt(t) or Tc(t) curves.
UNCOR
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The model performance for the prediction of Xt(t) from the input parameters (E and Tair) has been evaluated as a

function of the number of trials and RBF neurons. For this purpose, different neuron weight matrixes and training

curves have been autonomously generated and learned. Fig. 3a shows the neural model prediction of Xt(t) as a

function of the number of trials while Fig. 3b illustrates the neural model estimation of Xt(t) versus the neuron

weights’ number. From this figure, one can conclude that the higher the trials and neurons number, the more

accurate performance for the neural model, which is normally expected. Yet, Fig. 3 also shows that 10 trials for the

neural network training and 10 neuron weights are sufficient to precisely predict the temporal evolution of Xt(t),

and that the model is much more sensitive to trial amount than to neurons number for smooth curves such as Xt(t).

The same assessment has been carried out for to the other involved curve: Tc(t). Fig. 4a shows the behaviour of

the temperature neural model prediction versus the number of training trials for the RBF neural network, while Fig.

4b represents the prediction convergence of this model versus the number of RBF neuron weights. From Fig. 4, it

can be concluded, unlike that for Xt(t), that 15 trials during the learning stage and 12 RBF neurons are sufficient to

obtain a good prediction of the temporal evolution for Tc(t) in the considered drying process. Again the neural

model seems to be very sensitive to the training process as expected from Fig. 3. Nevertheless, it is clear from Fig.

4b that the temperature prediction is more sensitive to the number of neurons than in the case of moisture content.

This may be due to the fact that temperature time evolution is less linear than moisture content evolution which

implies the need of more slots for the considered time interval ta [0, T].

Finally, the capabilities of the proposed model to give accurate solutions for the inverse problem are evaluated

and analysed. Eqs. (8)–(11) have been applied to solve the inverse problem in the drying process to find the

optimal value of E that matches the desired target point [Tc0; t0] or [Xt0; t0]. In order to test the resolution of

inverse problems, the temperature (Tc0) and moisture content (Xt0) targets have been kept constant and different

values for t0 have been considered, and the results are shown in Fig. 5.

In Fig. 5a, the optimum value for E, the moisture content target objective (0.5 dry basis), the drying curves for

both the drying model [2,3] and the neural network architecture are shown. Likewise, Fig. 5b illustrates the

temperature target (50 8C), the optimum value for E and the temperature curves provided by the drying and the

neural model. As Fig. 5 shows, the matching error at the targets [Tc0; t0] or [Xt0; t0] is negligible, while the

predictive identification of the drying and temperature curves is very precise.
179

180
181
4. Conclusions

In this paper, a model based on artificial intelligence has been applied to the design of a novel

architecture which interconnects the adaptive characteristics of the RBF (Radial Basis Function) neural
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networks with the algebraic tools of the polynomial matrix equations. This neural architecture has been

applied to model and predict the sample temperature and moisture content evolution in microwave-

assisted drying processes during a long time interval, where the air temperature and the electric field are

considered as the input parameters of the process. Additionally, the use of RBF and polynomial networks

has allowed the resolution of the inverse problem by finding the optimal value of the microwave electric

field that forces Tc(t) or Xt(t) to reach a target value, Tc0 or Xt0, at a desired instant t0. The obtained

results for both the temperature and moisture content prediction and the inverse calculation show that

this modelling technique is very precise provided that a proper training process and neuron number

estimation is carried out. The main advantage of the proposed learning-based model is to provide a

closed solution for the described inverse problem, which is difficult to solve by the conventional drying

models based on differential equations. Although this neural architecture has been tested on a very

particular microwave-assisted drying model, the obtained conclusions can be readily extended to other

drying models or techniques due to the adaptive capabilities of neural networks.
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