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Abstract. In this paper a control scheme is proposed for anticipatory and dis-
crete event sensory motor driven. The control system elaborates a sensory-
motor program based on its internal data and a high level objective. The global 
system implements several biological models in each one of its subsystems. 
One of the novelties of this work is the structure of the sensory-motor algo-
rithms which are based on cell distributions of the sensorial spaces. Indeed, the 
correspondence between cells and the sensorial spaces is distributed by Koho-
nen maps. This control scheme has been tested on a robotic platform consti-
tuted by an industrial robot and a stereohead. More relevant results are pre-
sented and analyzed in this paper. 

1   Introduction 

Today, a lot of work has been made to achieve the performance of movement, and 
skills of the humans in reaching, grasping and manipulation tasks. It is important to 
emphasize the models of the control system in humans developed by Grossberg [1], 
Bullock [2], Greve [3] and Guenther [4]. These models were adapted by Guerrero-
González, Pedreño-Molina and Lopez-Coronado [5], for robotics platforms formed by 
a robotic hand, arm and a stereohead. Flexibility, adaptability, real time response and 
learning capabilities were demonstrated with that platform. Initially, these authors 
implemented the DIRECT model for spatial positioning. This model is characterized 
for several control loops, based on visual information and propioceptive information. 
One of the difficulties in this work was the necessity to have a totally well-mapped 
spatial-motor and motor-spatial information, also the close-loops produce slow re-
sponses in the positioning tasks. So the proposed model uses previous learned infor-
mation for anticipatory planning an action program. In this way, the actions are pro-
duced quickly without a close-loop, and after the movement, an assessment of the task 
is made which permits to update the learning information of the neural controllers.   



2   Characteristics and Benefits of the Proposed Control Scheme 

The proposed controller implement several neuro-biological models proposed in the 
CNS research group of the Boston University, which are the base of the real time 
control system proposed. This controller, also implements Kohonen maps for autono-
mous organization of the neural structures of the neurocontroller. This control archi-
tecture for reaching carries out the cinematic control of a redundant robot arm guided 
by the visual information given by acquisition system of the LINCE1 stereohead. The 
most important characteristic is that the neurocontroller does not need the robotic 
model of the experimental platform, and therefore, does not need to calibrate the sys-
tem. All the necessary knowledge of the robotic platform is learned by means of ac-
tion – reaction cycles from visual-motor trials. This neural architecture has been de-
veloped integrating a set of neural networks of some discovered biological functions 
carried out by the animal neural system. This architecture is characterized by: 

 
� Integration of multiple algorithms. This architecture integrates different algorithms 

which execute concrete tasks. The consistency of the communication between these 
algorithms warrants the global robustness of the architecture.  

� Parallel. The architecture is able to execute multiple algorithms, and simultane-
ously each algorithm is executed in parallel.  

� Relocation of resources, dynamically. With the purpose of facilitating the image 
processing, the system is able to lead the visual sensors in order to find a better 
point of view which alleviates the visual processing load.  

� Active. The global system has active perception capability. 
�  Reactive. It means the capability to be data-driven by environment changes. 

Predictive behaviour. The final position is reached in one anticipatory movement. 
 
 In the structure of neurocontroller, several real-time concurrent processes are de-

veloped for the performance of the different tasks intervening in the final reaching 
operation. This architecture contains three main modules, shown in figure 1, which 
correspond with the interconnected processes: spatial internal representation module, 
stereohead controller and robot arm controller. 

3  Sensory-Motor Coordination Neural Structure 

The structure of the proposed model is based on two interconnected neural models 
which in a sequential way, project the 3D final position (sensorial information) of the 
object to be grasped over the joint positions (spatial information) of the robot arm 
end-effector. This task is made in a predictive way. The base of the control scheme is 
to discretize with random positions the 3D workspace of the robot arm in small cells 
in whose centre the precise position of the robot joints are well known, by means of 
the propioceptive information and a previous learning phase. Then, the non-

                                                           
1 LINCE Stereohead has been entirely developed by NEUROCOR Research Group, Spain  



supervised neural model based on Kohonen maps starts a competitive algorithm to 
select the winner cell and so to obtain, in this first step, the nearest position of the arm 
in which the reaching error is minimum. That is the centre of the winner cell.  
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Fig 1. This scheme shows the scene for the control system. The 3D space is divided into small 
learning cells. So, the system obtains several sensorial-motor coordination maps in order to 
achieve precise reaching operations in open-loop mode.  

 

Fig. 2. The scheme of the neurocontroller (left) is formed by two interconnected neural models 
for mapping the 3D workspace (non-supervised model) and for compensating the spatial error 
between the current and desired final spatial position (supervised AVITE model). In the 
scheme of neurocontroller learning phase (right) a multi-dimension neuron weights matrix is 
generated by means of the contribution of the sensory-motor associative maps generated in 
each cell of the Kohonen map. 

By means of a second learning phase, one neural weight map is obtained for each 
cell. It’ll permit a fast projection of the difference vector (DV) in visual coordinates 
between the current and desired position of the end-effector over the incremental 
angular positions of the robot arm. Once the centre of the cell has been reached, a 
supervised neural model based on AVITE (Adaptive Vector Integration To End Point) 
architecture is executed in order to reduce the 3D visual distance inside that cell with 



high precision and fast operation. The general performance of the proposed neural 
model and block scheme of the learning module are represented in figure 2. 

In this neural model, the vision system of the stereohead detects the position of the 
object to be grasped. The internal representation of that position will be the input to 
the cell selector module. By means of a competitive algorithm, this module calculates 
the cell in whose workspace, the target is located. The projection of the visual position 
of the centre of the cell, over the arm joint positions is achieved with the centre of cell 
visual projection module. Once the non-supervised model has been executed, the 
difference between the centre of the cell and the desired position, in visual coordinates 
(DV), is estimated by means of the distance estimator module. Then, the distance 
reduction by means of robot arm movements is made by the DV compensation mod-
ule. Finally, the produced error is used to update the neuron weights of the AVITE 
model. It’ll permits to detect if an unexpected situation happens or if a block in some 
joint of the robot arm is produced.  

In a first learning level, an ERG (Endogenous Random Generator) module carries 
out movements of the robot arm along the 3D workspace. The non-supervised neural 
model creates non-uniform cells by means of the displacement of initial positions of 
centroids toward final positions in which the possibility distribution of robot arm posi-
tion is higher. Then, the final neuron weights are obtained from each cell bay means of 
a new ERG phase but, in this case, it is only carried out inside the workspace of each 
cell. Each cell generates a neuron weights matrix with a dimension equal to the size of 
sensorial coordinates (x, y, z) by the size of spatial coordinates (number of degrees of 
freedom of the robot arm). So, the dimension of W matrix will be Nx3xD, being N, 
the number of the Kohonen map cells and D, the robot arm d.o.f. 

3.1   Non-supervise Generation of Cells   

The non-supervised neural model implemented in the proposed architecture is based 
on Kohonen maps and it is oriented to workspace discretization. Each 3D region will 
be different and will be characterized by the position of its centroid and the Voronoi 
frontiers. For learning sequence initially, N centroids wijk are placed in random posi-
tions.Then, the robot arm movements from the ERG module gives, by means of the 
visual detection algorithm, the 3D position of the end-effector in each movement. It’ll 
be represented by θv vector. Taking D the number of d.o.f. of the robot, each position 
will be represented by the vector (θ1, θ2, …. θD). In each trial, the winner centroid 
wijk* is selected. It’ll correspond to the nearest to end-effector position. Then, the 
value of each weight associated to that centroids, will be updated by means of next 
expression: 
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 The process will be repeated T times until the convergence of the neuron weights of 
the Kohonen map was reached. The accuracy inverse cinematic of the robot in the 
centre of the cells is calculated by and adjusting algorithm. It moves the calculated 
neuron weights toward the nearest position of the training phase in which the joint 



position is known. Finally, the 3D Voronoi frontiers are generated over the map. In 
the operation phase, when a target position is detected, the algorithm calculates by 
computing the minimal distance, the cell in which it is placed. Then it’ ll project that 
sensorial position over the spatial position of the robot arm, by means of the propio-
ceptive information learned by the ERG module. The next step will be to compensate 
the DV between the calculated current position of the robot arm and the desired posi-
tion is sensorial coordinates.  

3.2   Neural Associative Maps for Sensory-Motor Transformation   

The second neural model is dedicated to make that error compensation. Each cell has 
an independent behaviour of the others, that is, if one cell is excited the others are 
inhibits. Each cell implements the spatial – rotation transformation. In order to control 
the robot arm, the neurocontroller must obtain the propioceptive data from the joints 
and visual information also according to the AVITE learning model from which is 
inspired. Figure 3 shows the scheme of learning system.  
 

 
Fig. 3. Learning cell algorithm. The elements of the cell learning algorithm are: TPVs (desired 
spatial position of the arm), PPVs (spatial position of the cell centre), PPVm (angular position 
of robot arm joints), DVs (difference between TPVs and PPVs) and DVm (result of the trans-
formation between spatial and rotation increments). The centre of the cell stores the spatial 
coordinates and the motor coordinates in that point. 

 When a cell is excited, the centre of the cell applies its content into PPVm and 
PPVs vector. The DVs vector calculates the difference between the centre of the cell 
and the desired position. The DVs is transformed into the DVm through a set of neu-
rons. The resulting increments are integrated into the PPVm. The learning phase is 
based in the knowledge acquired in action-reaction cycles. During this phase, random 
increments are introduced in the DVm vector, the system produces these movements 
and its spatial effect is taken over the DVs vector, updating the neuron weights by: 
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The expression for error position compensation produced by the DV will be: 

SZ ∆⋅=∆θ  (3) 

 where ∆θ vector computes the incremental values to be added to the current posi-
tion of the robot arm in spatial coordinates, and  ∆S stores the DV in visual coordi-
nates. The final reaching operation is separated in two movements. The gross process 
is carried out by means of mapping of three-dimensional spatial positions of prefixed 
points (centres of cells) and the end-effector position of the arm. The fine approxima-
tion is carried out by means of implemented AVITE model for learning the mapping 
between increments of arm joints and difference of position between present position 
(end-effector position) and desired position (target visual position).   

4  Robotic Installation and Experimental Results 

The implementation of the proposed system has been carried out in both simulation 
and real robotic installation, formed by the LINCE stereohead and a commercial ABB 
robot arm. In order to verify the capabilities of the proposed neural algorithm, the 
results have been analyzed. 
 
 
 
 
 
 
   

 
 
 
 
 
 

Fig. 4. This picture shows the iteration number of the non-supervised algorithm when 
the 3D centroid weight reach the convergence of final value of a random cell for 500 
trials of learning position of the robot arm and 40 for the iterations of the non-
supervised algorithm. Star symbols at the end of the training indicate the corrected 
position of the weight in order to give the nearest position in which the inverse cine-
matic is known.    
 
The first set of trials has been focused to the generation of the 3D cells with different 
learning parameters. Figure 4 shows the evolution of the neuron weights of one ran-
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dom cell and figure 5 shows the 3D Voronoi regions projected over XY and XZ 
planes. 

Fig. 5. Results of the implemented algorithm for 3D Voronoi regions generation, represented 
by 2D projections: XY for right picture and XZ for the left one. The selected parameters have 
been N=20 and 500 learning positions of the robot arm. The number of cells is greater in spa-
tial coordinates where the robot arm has a higher possibility of being configured. 

 The implemented neural model for cells generation starts from an initial parameter 
N indicating the final number of cells in which the workspace will be segmented. This 
parameter in no critical for the accuracy of a reaching operation. However, a high 
value for N implies a greater time for the computing of the Kohonen map, but the 
number of cells which will have the same value for some neuron weights will be 
higher.  To test the performance of the AVITE supervised algorithm for compensating 
the DV in visual coordinates by means of calculating the incremental position for the 
motor commands, a learning phase in each cell is carried out. The result will be a 3x5 
matrix of neuron weights Z for each cell. In the real experiments, a 5 d.o.f configura-
tion for the robot arm has been selected. 
 

 
 
 
 
 
 
 
 
 
 
Fig. 6.  On the left, the final position distribution of the centroids of the Kohonen map 
is represented. On the right the results for the AVITE learning phase is shown.  
 

Figure 6 shows the final position of the centre of the cells and the end-effector spa-
tial points resulting from the learning phase. Finally, results obtained from real plat-
form have show errors about 2% in visual coordinates in cells near the normal work-



space of the robot arm. The final position for the robot arm is obtained in two steps 
but executed in only one. For each cell, random movements of the robot arm joint 
positions are generated inside the Voronoi region of the cell. The weights matrix is 
obtained from the mapping between the incremental spatial positions and the pro-
duced incremental visual positions.   

4  Conclusions 

In this paper a neural architecture based on human biological behaviour has been 
presented and the obtained results have been analyzed for robotic reaching applica-
tions with a head-arm system. Open-loop behaviour for reaching operations allows to 
carry out precise and fast reaching operations and the possibility of remote execution, 
due to it needn’ t visual feedback during the reaching movement. The 3D spatial seg-
mentation of the robot arm workspace is solved by means of a non-supervised neural 
algorithm based on Kohonen maps. In the same process of cells generation the 
propioceptive information is learned. The produced error in the reaching operation 
using the position of the cells is compensated by means of an AVITE (Vector Associa-
tive Map) adaptive architecture which projects the difference vector of visual position 
into incremental joint positions of the robot arm. The obtained results have demon-
strated that final error in reaching applications can be very low, taking into account 
the robustness and fast operation of the model.   
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