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ABSTRACT
Purpose  ARF1 was previously implicated in 
periventricular nodular heterotopia (PVNH) in only 
five individuals and systematic clinical characterisation 
was not available. The aim of this study is to provide 
a comprehensive description of the phenotypic and 
genotypic spectrum of ARF1-related neurodevelopmental 
disorder.
Methods  We collected detailed phenotypes of an 
international cohort of individuals (n=17) with ARF1 
variants assembled through the GeneMatcher platform. 
Missense variants were structurally modelled, and the 
impact of several were functionally validated.
Results  De novo variants (10 missense, 1 frameshift, 
1 splice altering resulting in 9 residues insertion) in 
ARF1 were identified among 17 unrelated individuals. 
Detailed phenotypes included intellectual disability (ID), 
microcephaly, seizures and PVNH. No specific facial 
characteristics were consistent across all cases, however 
microretrognathia was common. Various hearing and 
visual defects were recurrent, and interestingly, some 
inflammatory features were reported. MRI of the brain 
frequently showed abnormalities consistent with a 
neuronal migration disorder.
Conclusion  We confirm the role of ARF1 in an 
autosomal dominant syndrome with a phenotypic 
spectrum including severe ID, microcephaly, seizures and 
PVNH due to impaired neuronal migration.

INTRODUCTION
Periventricular nodular heterotopia (PVNH) is a 
neuronal migration disorder consisting of ectopic 
neuronal nodules along the lateral ventricles. 

Seizures, microcephaly and intellectual disability 
(ID) are frequently associated with PVNH.1

Neuronal migration during human cortical 
development is dependent on a wide range of 
interconnected cellular processes such as actin 
and microtubule cytoskeleton regulation, cell-
cell adhesion, apical adhesion, junction forma-
tion, vesicle trafficking and membrane protein 
turnover. Disruption of these processes can lead 
to periventricular heterotopia where neurons 
are unable to properly migrate into the devel-
oping cortical plate.1 2

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ ARF1-related disorder has been previously 
described as a syndromic intellectual disability 
associated with periventricular nodular 
heterotopia, but with a limited number of cases, 
most of them are poorly phenotyped.

WHAT THIS STUDY ADDS
	⇒ This study reports the first detailed phenotyped 
cohort of 17 individuals with variants in ARF1.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study implicates ARF1 in a more nuanced 
phenotype, suggesting a possible relevance 
for growth parameters or inflammatory 
manifestations surveillance.

	⇒ This study also recommends the specific use of 
Mistic predictor (>0.9) to discriminate between 
pathogenic and benign missense variants.
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ADP-ribosylation factor proteins (ARF1/3/4/6) are anchored to 
the membrane via N-terminal myristoylation.3 At the membrane, 
ARF1 acts as a molecular switch thanks to a transition between 
two structural conformations: inactive when bound to guanosine 
diphosphate (GDP), and active when bound to guanosine triphos-
phate (GTP). ARF1 activation is induced by Guanine Exchange 
Factors, such as ARFGEF2, which remove the GDP, triggering 
the GDP to GTP exchange. This causes a conformational change 
allowing ARF1 to bind different targets, notably through a shift 
of the loop from Leu39 to Ile49. ARF1GTP promotes trans-Golgi 
network through the recruitment of clathrin adaptor proteins 
and the fission step of the vesicle formation. As the vesicle is 
budding, ARF1 dimerisation is required to continue the coat-
omer polymerisation, notably when the slimming neck of the 
bud prohibits ARF1’s further anchorage to the lipid bilayer.4 
ARF1-dependent endocytosis has been strongly implicated in 
PVNH because of its association with genetic alterations of 
FLNA (MIM: 300049), ARFGEF2 (MIM: 608097) and ARF1 
(MIM: 618185) but clinical evidence to date is based on only 
five cases.5–7

The aim of this study is to further describe the phenotypic 
spectrum of ARF1-related disorder as we report a robust cohort 
of 17 individuals harbouring de novo pathogenic or likely patho-
genic variants in ARF1.

MATERIALS AND METHODS
Previously unreported individuals harbouring de novo ARF1 
variants were recruited using GeneMatcher.8 In addition, 
two previously reported individuals have been included: the 
detailed unpublished clinical and radiographic information were 
collected on an individual previously included in a large cohort 
of >2200 families with various Mendelian phenotypes and the 
updated phenotype of one previously published individual has 
been obtained.6

Phenotypic and genotypic information was obtained using a 
standardised questionnaire to evaluate clinical, electroenceph-
alography (EEG) and brain MRI (bMRI) findings as well as 
genetic variant information. Variants were identified using trio 
exome sequencing (ES) or genome sequencing (GS) as trio, duo 

or singleton analyses (table 1). When photos were available, a 
specific informed consent was obtained from the parents. When 
available, the bMRI findings were re-evaluated by a single 
neuroradiologist.

Variants were interpreted using the American College of 
Medical Genetics and Genomics/Association for Molecular 
Pathology guidelines.9 The effects of missense variants were 
predicted by several in silico tools (table 1, online supplemental 
figure 1), and mapped to the missense tolerance landscape from 
MetaDome.10

The pathogenicity of five missense variants was further 
supported by in vitro functional pulldown assays. We function-
ally analysed ARF1 activation for four of the patient variants 
(p.Thr48Ile, p.Phe51Leu, p.Arg99His, p.Lys127Glu) as previ-
ously reported for p.Y35H.5 For reproducibility, p.Y35H was 
also included. Each of the five variants was introduced by site-
directed mutagenesis into the ARF1 myc-tagged cDNA (plasmid 
pCMV6-ARF1-myc, transcript NM_001130408, GenScript, 
Piscataway, New Jersey, USA), and verified by sequencing 
prior to transfection (DNA Sequencing and Genotyping Core, 
CCHMC). Plasmids with reference and mutant sequences were 
transfected into HEK293T cells in 10 cm2 plates, using the Lipo-
fectamine 3000 Transfection Kit (Invitrogen, Thermo Fisher, 
Waltham, Massachusetts, USA). HEK293T cells were cultured 
in Dulbecco’s Modified Eagle’s Medium with 10% fetal bovine 
serum, 2 mM L-glutamine, Penicillin-Streptomycin per manufac-
turer’s recommendations. To assess activated ARF1, GST-GGA3 
pulldown was performed on cell lysates prior to western blot 
analysis, using the Active ARF1 Pull-Down and Detection Kit 
(Thermo Fisher, Waltham, Massachusetts, USA), per manufac-
turer’s instructions. Processing of samples was performed at 4°C 
and followed by incubation with GST-GGA3-PBD for 1 hour. 
For western immunoblotting, anti-ARF1 rabbit monoclonal IgG 
as primary antibody was diluted at 1:2000 in Intercept buffer 
prior to incubation at −4°C for 24 hours under agitation. The 
blot was then incubated with IRDye 800CW Goat antirabbit 
antibody at 1:15 000 dilution for 1 hour at room temperature 
under agitation. Western blot analysis results were imaged using 
Odyssey Sa IFred scanner (LI-COR, Bad Homburg, Germany), 
equipped with Imaging Studio (Analysis Software V.4.0). Results 
were quantified using Empiria Studio V.1.3 software. The exper-
iment was performed three times.

Whole blood was collected on PAXgen tube and total RNA was 
extracted from patient’s lymphoblastoid cell lines using PAXgene 
Blood RNA kit (Qiagen). cDNA was generated from 1 μg RNA 
with the addition of random hexamers and oligo dT primers 
using the SuperScript II Reverse Transcriptase (ThermoFisher 
Scientific). Impact on transcription of the c.384+1G>T substi-
tution was then characterised by PCR Sanger sequencing on 
cDNA according to standard procedures, using primers localised 
in exons 3 and 5 of ARF1 gene, (F=​ACCG​TGGA​GTAC​AAGA​
ACATCAGC, R=​ACTT​CTGG​TTCC​GGAG​CTGAT).

Structural consequence of missense variants were predicted 
using SwissModel11 (V.4.1.0), DynaMut212 and visualised with 
Mol*.13

RESULTS
Clinical findings
The 17 individuals (9 females, 8 males) heterozygous for de novo 
ARF1 variants ranged in age from 16 months to 14 years (online 
supplemental table 1). The recurrent substitution c.296G>A; 
p.(Arg99His) was found in four unrelated individuals, resulting 
in a total of five different de novo occurrences, including the 

Table 1  Clinical characteristics of the cohort

Prevalence This study Ge et al5 Gana et al7

Intellectual disability 100% 14/14 3/3 1/1

Age at walking 27 months 14 0/0 0/0

Speech delay 100% 17/17 2/2 0

First words 19 months 7 0/1 0

Sentences 30% 5/16 0/1 0

ADHD, autism 50% 6/11 1/2 0/1

Microcephaly (<−3 SD) 50% 10/17 0/2 0/1

Head circumference −1.3 SD 14/17 2/3 1/1

Seizures 48% 8/17 2/3 0/1

Hypotonia 68% 12/17 1/1 0/1

Spasticity 25% 4/17 1/1 0/1

Ataxia 21% 4/17 0/1 0/1

PVNH 30% 4/17 1/3* 1/1

Thin corpus callosum 55% 9/17 1/2 0/1

Growth delay 25% 4/16 1/2 0/1

The three last columns (right) depict the number of informative individuals in each 
report.
*The R99H individual in Ge et al was incorrectly described with PVNH.
ADHD, attention deficit hyperactivity disorder; PVNH, periventricular nodular 
heterotopia.
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individual from Ge et al5 (figure  1, for the detailed clinical 
description of the cohort, see online supplemental table 1).

.
All individuals with available information presented with 

varying degrees of ID, ranging from mild to severe. Individuals 
#2, #7 and #9 (aged 18, 16 and 24 months, respectively) had 
motor delay along with speech delay, but have not been formally 
diagnosed with ID.

Microcephaly below 3 SD was noted in 10 individuals (50%; 
10/20), seizures of various types were reported in 8 (50%; 8/16) 
and PVNH in 3 (20%, 3/15). No correlation was found between 
seizure history and PVNH. bMRI frequently showed abnormal-
ities: small cerebellum (3/20) and neuronal migration defects 
including PVNH, cortical dysplasia, polymicrogyria (45%; 9/20) 
and corpus callosum abnormalities (50%; 10/20) (see online 
supplemental figure 5).

Facial characteristics (figure  1) included micrognathia or 
retrognathia (26%; 5/19), low-set ears (16%; 3/19), dental 
malposition (10%; 2/19) and short philtrum (10%; 2/19). Of 
note, individual #4 had obstructive sleep apnoea secondary to 
her microretrognathia that benefited from mandibular distrac-
tion. Visual or hearing impairments were common (58%; 
11/19), and included bilateral profound sensorineural hearing 
loss, cortical vision impairment, strabismus, astigmatism and 
hyperopia.

Additional findings included sleep disturbance (32%; 
6/19), cardiac defects (16%; 3/19) and hypospadias (2/6 male 
individuals).

Interestingly, some idiopathic cutaneous or hepatic mani-
festations were reported, including hand hyperkeratotic 
skin (individual #3, individuals from Gana et al), pernio-
like rashes involving the hands, feet, upper helices of the 
ears (individual #9), idiopathic and persistent elevation 
of liver enzymes (individuals #8 and #9). For individual 
#9, a liver biopsy was performed at age 1, showing sparse 
patchy lobular necroinflammatory lesions, no sign of portal 
inflammation, no haemochromatosis and negative staining 
for glycogen storage disease.

Molecular analysis
Thirteen different de novo variants in ARF1 (NM_001658.4; 
ENST00000272102.10) were identified in 17 individuals: 
10 missense variants, 1 splice variant and 1 frameshift 
variant. (Nota bene: the missense p.(Phe51Leu) was caused 
by two different variants, c.153C>A and c.151T>C.) All 
variants were absent from gnomAD14 (V.2.1.1; V.3.1.2) or 
deCAF15 and the 10 missense variants were predicted to 
be deleterious by multiple in silico tools (see ‘Discussion’ 
section and online supplemental figure 1A). The frameshift 
variant p.(Asp72Thrfs*17) is predicted to elicit nonsense-
mediated decay according to the 50 nucleotides rule,16 and 
is identified by the Loss-Of-Function Transcript Effect Esti-
mator (V.1.0.314) to result in a loss of function with high 
confidence.

Figure 1  Clinical overview of 21 individuals with ARF1 variants (17 individuals from this study, 3 individuals previously reported from Ge et al5 and one 
from Gana et al.7 Tolerance landscape from MetaDome.10 Plain lines point to the missense location, dashed lines point to non-missense altered residues 
(either to the premature terminating codon or to the nine residues insertion).
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The splice variant c.384+1G>T is predicted by SpliceAI17 to 
create an in-frame donor site, resulting in the inclusion of nine 
residues near the GTP-binding site (online supplemental figure 
1B).

No other pathogenic or likely pathogenic variant was reported 
in any of the cases.

Structural analysis
The locations of the 10 missense variants in ARF1 are mostly 
clustered near the GDP-binding domain (figure 1 and figure 2).

The Arg19 residue is located at a key position of the GDP-
GTP switch. In the inactive conformation (GDP-bound), the 

Figure 2  (A) Locations of the eight residues (yellow) altered in the two conformations of ARF1. Left, ARF1 in its inactive conformation from 1r8q20; right, 
ARF1 in active conformation from 6cm936; blue chain: ARF1; grey chain: ARFGEF sec7 domain. Images created using Mol*.13 (B, C) Deleterious effect of 
patient ARF1 variants on nucleotide activation. Comparison of ARF1 nucleotide activation in lysates of 293 T cells transfected with either the wild-type (WT) 
ARF1 plasmid or that harbouring one of the five variants (p.Tyr35His, p.Thr48Ile, p.Phe51Leu, p.Arg99His, p.Lys127Glu). Lane 1, basal activated ARF1 in 
293 T cells without plasmid transfection. Pulldown for GTP-activated ARF1 in cells transfected with WT (lane 2) vs patient variant-containing ARF1 plasmid 
(lanes 3–7). ARF1 band is visible at 21 kDa. Western blot analysis results are representative of three independent transfection and pulldown experiments. 
(C) Quantification of relative nucleotide activation in lysates of 293 T cells transfected with ARF1 plasmids harbouring one of five patient ARF1 variants 
compared with a WT ARF1 and no plasmid. Mean results are presented as the mean (±SEM) of three separate experiments. P value of the result of each 
variant in comparison to the WT is presented.
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Arg19 sidechain points towards an adjacent helix of ARF1 (via 
Tyr81), however when ARF1 binds GTP, the sidechain of Arg19 
is uncovered by the switch, and binds to ARF1 target (adaptor 
protein AP-1 complex, gamma-1 subunit, Glu41).

Tyr35 is required for the dimerisation of ARF1 and the 
Tyr35Ala has been previously shown to prevent in vitro vesicle 
scission.4

Thr48 is directly bound to the third phosphate group of GTP. 
It has been demonstrated to be crucial for the exchange of GDP 
for GTP during the activation of ARF1.18

Lys127 is part of the conserved NKXD motif, which binds 
to the guanine ring of GDP (online supplemental figure 2).19 
In ARF1, Lys127 closely interacts with Asp93. Asp93 stabilises 
the Lys127 sidechain position through a hydrogen bond (online 
supplemental figure 2).

The Phe51 residue is located in a switching region of ARF1, 
which penetrates the hydrophobic groove of guanine exchanging 
factor. Phe51 is thought to serve as an hydrophobic grip to be 
‘pinched off ’ by the GEF in order to open the switch region, 
enabling the GEF to dislodge the GDP from its site (online 
supplemental figure 3).20

The recurrent Arg99His variant is predicted to significantly 
destabilise the region (−1.55 kcal/mol, DynaMut2), with the 
disruption of one hydrogen-bond stabilising the GDP binding 
domain (via Asp26, online supplemental figure 2).12

Pro131 is not located in an established interacting region of 
ARF1 and is not in direct contact with GDP.

Functional assay
The following variants (p.Tyr35His, p.Thr48Ile, p.Phe51Leu, 
p.Arg99His, p.Lys127Glu, accounting for 11 known individ-
uals) were evaluated by the functional pulldown assay all caused 
a significant decrease in ARF1 activity (figure 2, p<0.05).

DISCUSSION
PVNH has been associated with X linked dominant, autosomal 
recessive and autosomal dominant syndromes.21–25

The phenotypic spectrum of ARF1-related disorder includes 
ID, microcephaly, PVNH and seizures associated with impaired 
neuronal migration.

ARF1 is a small GTPase which regulates vesicle trafficking and 
plays a role in cell adhesion molecule turnover.2 26 Furthermore, 
ARF1 is implicated in mitochondrial trafficking of endoplasmic 
reticulum proteins, as well as mitochondrial cholesterol traf-
ficking and fatty acid uptake into the mitochondria.27 ARF1 acts 
as a molecular switch by alternating between GDP-bound (inac-
tive) and GTP-bound (active) conformations. This activation is 
performed at the membrane via GDP/GTP exchange by brefeldin 
A-inhibited guanine nucleotide exchange factor 2 (BIG2, 
encoded by ARFGEF2). ARF1GTP then can initiate vesicle forma-
tion through recruitment of various effectors to the membrane 
including coat proteins and coat protein adaptors.28 Inhibition 
of ARF1 has been shown to disrupt neuronal migration, cell-cell 
adhesion and dendritic Golgi polarisation.26 29

It is still unclear whether the pathogenicity of ARF1 variants 
results from a dominant effect or from ARF1 haploinsufficiency.

Based on gnomAD data, ARF1 is strongly constrained against 
missense variants.5 14 GeVIR score, a missense intolerance 
metric,30 ranks ARF1 as the 34th most intolerant gene; GeVIR 
%: ARF1=17.56 (34/19 361), which is consistent with the 
missense observed/expected upper bound fraction (MOEUF) 
from gnomAD; MOEUF: ARF1=0.208 (31/19 704).

Up to now, the intolerance of ARF1 for truncating variants 
has been uncertain. ARF1 loss-of-function observed/expected 
upper bound fraction (LOEUF) metric=0.402 (3595/19 198) 
is in favour of intolerance, but with limited statistical signifi-
cance due to the short coding sequence of ARF1. Moreover, a 
few heterozygous loss-of-function variants have been identified 
in control individuals: two males (aged >45 yyears and >60 
years) carrying a 25 nucleotides deletion resulting in frameshift 
(rs1010202646) in gnomAD V.2.1.1 (non-neuro), and eight 
individuals carrying multigenic deletions encompassing ARF1 
(nsv523935; nsv516409). For additional information, see online 
supplemental note 1.

Based on clinical data, the pathogenicity mechanism of ARF1 
variants remains unsolved. First, as suggested by ARFGEF2 bial-
lelic loss-of-function mutations22 31–33 and the clinical overlap of 
the two syndromes (ID, microcephaly, PVNH, seizures, growth 
retardation), the defect in neuronal migration is presumed to be 
caused by reducing the BIG2-ARF1 pathway activity, rather than 
a gain of function. Furthermore, the two individuals described 
with truncating variants (one frameshift variant in our cohort and 
one nonsense variant from Gana et al7) favour a loss-of-function 
mechanism through haploinsufficiency, rather than a toxic gain of 
function. However, this is discordant with the existence of several 
control individuals with putative loss-of-function variants in ARF1 
(rs1010202646; nsv523935; nsv516409). Interestingly, in vitro 
and in vivo functional assays on ARF1 mutants have shown domi-
nant negative effects. For example, ARF1T31N, a constitutively 
inactive mutant, has been reported to act as dominant negative 
when overexpressed.26 The functional assay of Arf1Y35H reduced 
activation previously reported could not discriminate between a 
toxic gain of function or a loss of function5 (see online supple-
mental note 2). Still, to further delineate the exact pathogenicity 
mechanism, future studies with additional patients will be needed.

The recurrence of the chr1(GRCh38):g.228097627G>A 
p.(Arg99His) de novo transition in five individuals suggests a 
highly mutable position, consistent with the CpG nucleotide 
context (see online supplemental figure 4).

We compared the ability of six in silico prediction tools to 
discriminate pathogenic missense from benign missense variants. 
Since MISTIC34 showed the best performance (online supple-
mental figure 1), we recommend its use to apply the prediction 
criteria (PP3 for variants with MISTIC scores >0.90) during the 
interpretation of future variants in ARF1.

Clinical findings confirm the phenotypic spectrum of a 
neuronal migration disorder, with severe ID, microcephaly 
and seizures. Unexpectedly, PVNH appeared to be inconsistent 
(30%), and seizures were poorly correlated with the presence 
of PVNH, or any other brain malformation. Seizures types 
were not consistent either: generalised tonic-clonic epilepsy 
was present in only one individual (#13). bMRI frequently 
showed abnormalities related to neuronal migration disorders 
(microcephaly, corpus callosum hypoplasia, polymicrogyria and 
PVNH), and occasional small cerebellum, which is uncommon 
in PVNH. Facial characteristics revealed some more common 
features, like microretrognathia, but were not universal, even 
between subjects with the same variant. Visual or hearing defects 
were frequent.

No major correlation between genotype and phenotype was 
found. Although of the four verbal individuals (#4, #5, #6, 
#15), three had alterations of residue Thr48 or Phe51, located 
in a conserved conformational switch domain.28 This could 
suggest an association between alterations of this switch-1 region 
(residues Gly40 to Phe51) and a milder cognitive phenotype, 
compared with the other alterations.
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Except for the Pro131 residue, all missense variants were 
located on patently important residues for ARF1 function. We 
report two different likely pathogenic missense variants on 
Pro131: one replacing the hydrophobic proline with a positively 
charged arginine (Pro131Arg), and the other replacing it with 
another hydrophobic residue (Pro131Leu). This last hydro-
phobic to hydrophobic change could suggest a proline-specific 
role of Pro131 in ARF1 function. To our knowledge, Pro131 
does not interact with other ARF1 partner. However, proline 
residues are known to rigidify the peptidic backbone. Pro131 
connects the GDP binding loop to the rest of the C-terminal 
chain. Notably, the precise position and orientation of Asp129 
and Lys127 are likely to be crucial for GDP binding. It is possible 
that Pro131 exerts a favourable constraint to the backbone of 
this loop, and helps the favourable positioning of GDP binding 
residues.

Cutaneous and hepatic manifestations among several indi-
viduals are rare and still not significant. However, this could 
suggest some more systemic roles for ARF1, beyond its implica-
tion in cortical neurons development. More patients need to be 
described to investigate this hypothesis.

Interestingly, C9orf72, a gene implicated in neuronal degener-
ation, has recently been reported to act as an effector of ARF1.35 
While none of the subjects in this series had evidence of neuro-
degeneration, the large number of young subjects makes this an 
important feature to evaluate in the future, as the natural history 
of this entity becomes better known.

In summary, we confirm the role of ARF1 as an autosomal 
dominant ID gene associated with neuronal migration defects. 
The phenotypic spectrum is characterised by ID, microcephaly, 
seizures and PVNH.
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Supplementary note 1: 

During the compilation of ARF1 putative loss-of-function variant, we excluded four gnomAD 

individuals with presumed loss-of-function variants. Indeed, two individuals in 

gnomADv2.1.1 (rs755638275, available at https://gnomad.broadinstitute.org/variant/1-

228285417-G-

GACCTCCCCAACGCCATGAATGCGGCCGAGATCACAGACAAGCTGGGGCTGCAC?dataset=gnoma

d_r2_1 ; and at https://gnomad.broadinstitute.org/variant/1-228285417-G-

GACC?dataset=gnomad_r2_1) and two individuals in gnomAD v3.1.1 (79 nucleotides 

deletion, c.148+2_149del, available at https://gnomad.broadinstitute.org/variant/1-

228097260-

TAGGTGAGGTGGGGGCCAGCAGGGAGTGGGCTGGGCTGGGCTGGGCCAAGGTACAAGGCCTCACC

CTGCATCCCGCACCC-T?dataset=gnomad_r3) were identified with alleles predicted to be 

splice disruptive but could not be counted as germline loss-of-function variants with enough 

confidence after examination. We observed the following issues: long alternative alleles 

matching a processed pseudogene and poor read support. The two variants in 

gnomADv2.1.1 (rs755638275) had high strand bias (Phred-scaled p-value of Fisher’s exact 
test = 45.347) and a very low QD score (QD < 6), which failed to meet satisfying confidence 

for germline variants. Alternative alleles were compatible with a processed pseudogene 

(inserted/deleted nucleotides concordant with exon4/exon5 junction, intronic heterozygous 

SNV present in the supposedly heterozygous 79pb deletion). This issue has been submitted 

to gnomAD production team and resulted in the suppression of the read data of the 

gnomAD v3.1.1 individuals. 

Supplementary note 2: 

The in-vitro activation of Arf1Y35H in transfected cells previously reported was weaker 

compared to Arf1WT transfected cells but stronger compared to basal activation, which is 

compatible with the Arf1 overexpression in transfected cells compared to non-transfected 

cells.1  
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MISTIC discriminates pathogenic from benign variants with better accuracy than CADD, M-

CAP, BayesDel, REVEL or Varity. Potential splicing alteration of the cohort variants were 

investigated with spliceAI, which predicted no impact.10 

B) RNA results for NM_001658.4(ARF1):c.384+1G>T. Above panel showing SpliceAI-

visual predictions.11 Above: predictions for the wild-type sequence, middle: 

predictions for the c.384+1G>T variant, below: close-up of the predicted amino-acid 

sequence inserted after Gln128. The variant is highlighted in red. Below panel 

showing ARF1 cDNA PCR and Sanger analysis. 
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Supp. Fig. 2 

Stabilization of the Lys127 sidechain by Asp93. The second phosphate of GDP is interacting 

with the Ala26-Asp27 backbone, in close contact with Arg99. 
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Supp. Fig 5. Brain MRI images 

A) Individual #1, 2 years, axial T1-weighted MRI section showing periventricular nodular 

heterotopia. 
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B) Individual #9, 12 years old. Sagittal T1-weighted section showing relative 

microcephaly, cerebral atrophy, partial hypoplasia of corpus callosum (especially 

posterior), and cerebellar vermis hypoplasia. Axial T2-weighted sections showing 

bilateral enlargement of parietal subarachnoid spaces. 
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C) Individual #11, 2 years old. Sagittal T1-weighted section showing thin aspect of the 

corpus callosum (more pronounced at the splenium), relative microcephaly and 

cerebellar vermis hypoplasia. 
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D) Individual #13, age unknown, T2-weighted sections showing PNH (red arrows). 
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