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ABSTRACT

An FPGA-based approach is proposed for implementing a
compression system developed specifically for the signal of
phonocardiogram. The compression method offers better
rate and distorsion than standard audio compression tech-
niques. Both the algorithm and the details on the solutions
adopted for its implementation are presented in this paper.

1. INTRODUCTION

In last few years, the auscultation of the heart has regained
the interest lost in past decades in favour of more accurate
and expensive techniques. The automated analysis of the
phonocardiogram (PCG) has been rediscovered as a use-
ful, fast and low cost technique to diagnose valvular dis-
eases. In this context, we are working on the development
of a set of tools for the follow-up of patients suffering from
cardiopathies. Like in any telemedicine application, an ef-
ficient transmission is required for ubiquitous monitoring.
With this aim, we have developed a specific algorithm to
compress the PCG signal. No PCG compression works have
been found in the literature to the authors’ knowledge. Since
PCG s the graphical representation of heart sounds and mur-
murs, standard audio compression techniques could be used.
However, they are mainly focused on music or speech, and
their performance in PCG compression is low.

In this paper, an FPGA-based embedded system for the
efficient compression and transmission of the PCG signal is
proposed. It is a mixed hardware/software approach, based
on the MicroBlaze processor. The system digitizes the PCG
signal from a stethoscope, compresses it and sends it to a
remote PC through a wireless serial communication. In the
PC, the PCG is decompressed and analyzed by experts.

Next, the compression algorithm is presented in Sec-
tion 2. In Sections 3 and 4, the two main processing blocks
are described: the Discrete Wavelet Transform module and
the MicroBlaze-based system. Details about the prototype
and results are reported in Section 5. Finally, conclusions
are drawn in Section 6.
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2. COMPRESSION ALGORITHM

The proposed algorithm is a lossy compression method ap-
plied to non-overlapping blocks of N samples of the PCG
signal. Each block is compressed independently from the
others. It is adapted from the algorithm proposed in [1], and
congsists of the following four steps:

¢ Decomposition of the PCG signal using the WT
¢ Dynamic thresholding of the wavelet coefficients

¢ Compression of the wavelet coefficient vector using
zero removal

¢ Compression of the significance map using Run-Length
and Huffman enconding.

First, the Wavelet Transform (WT) decomposes a signal
block in J + 1 subbands, where J is the number of decom-
position levels or octaves of the WT. The WT represents the
information of the signal block as a vector WC of wavelet
coefficients extracted from each subband, defined as:

WC = (CA;,CD;,CDy_yq,...,CDy) (1)
where CA; is the approximation coefficient vector in the
level J, and CDy are the detail coefficient vectors in the le-
vels §, with § = 1,2,...,.J. The length of each vector is
given by N/27~1 and the total length of WCis N, the same
as the original block signal.

In the second step, the WC coefficient vector is thres-
holded using an iterative algorithm which looks for the best
compression rate, while ensuring that a desired error per-
centage, fixed a priori, is achieved. A modified version of
the Percent Root-mean-square Difference (PRD;,, ) has been
used as measure of the error:

SN (we; — W6;)?

PRD,,, = x 100 (2)

where we; are the N elements of the WC vector given by
the wavelet transform and w¢; are the elements after thres-
holding.

The algorithm modifies the threshold value to reach the
target value specified for the PRD,,. For the first iteration,
the threshold is fixed to a percentage of the maximum abso-
lute value of WC. This is its highest value in the algorithm,



and yields to the highest PRDy, error and the highest com-
pression rate. In the next iterations, the threshold value is
modified until the desired PRD,,, is reached.

This step gives two outputs: the thresholded coefficient
vector (TC), which is the same as WC but with the coeffi-
cients with absolute value less or equal to the threshold made
zero; and the significance map (SM), which is a binary vec-
tor that indicates with "1” the position of nonzeroes in WC.
The third step of the compression algorithm simply consists
of removing zero coefficients from TC. Finally, with the aim
of further reducing the size, the SM vector is compressed us-
ing the Run-Length and the Huffman encoding techniques.

The tests performed during the development of the al-
gorithm revealed that the optimum value for the size N of
a block signal is 4096 samples, and that the most suitable
wavelet transform is a 4-octave Daubechies order 10. So,
this configuration has been the implemented one. More de-
tails on the compression method like, for example, the rela-
tionship between the compression rate and the percentage of
the signal energy retained after compression, or a compar-
ison with premier standard audio compression techniques,
can be found in [1].

3. IMPLEMENTATION OF THE DWT

The hardware implementation of the Discrete Wavelet Trans-
form (DWT}) is based on Mallat’s work [2], who demons-
trated that the wavelet representation of a signal can be com-
puted by convoluting the signal with a pyramidal structure
of quadratare mirror filters. This algorithm leads to a di-
rect implementation with .J two-channel filter banks in cas-
cade performing low-pass and high-pass filtering operations.
However, the direct implementation derived from Mallat al-
gorithm is not efficient, since the computational load is not
well shared out among the functional units due to the deci-
mation between stages. To optimize the hardware imple-
mentation, two different approaches have been evaluated:
folding and digit-serial.

The folding approach [3] allows implementing any .J-
octave wavelet in just one time-multiplexed filter bank. Since
it is not necessary to compute the data that will be discarded
later in the decimation process, the pyramidal algorithm can
be reformulated [4], and, with the right multiplexing of in-
puts and outputs, it is possible to compute the DWT with
one filter bank and some registers where to store the data
required by the filter bank.

For this folded approach, different structures and design
parameters have been analyzed in this work, pursuing the
most efficient implementation in the PCG signal processing
application. Thus, for the two-channel filter bank three con-
figurations have been comnsidered: two parallel FIR filters,
two MAC filters and just one MAC filter (multiplexed to
compute the high-pass and the low-pass filtering). In addi-
tion, multiplication operations have been implemented using
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embedded multipliers and general purpose logic resources,
and, in this last case, with parallel and fully-serial structure.

Digit-serial computation is based on the division of n-
bit data into k m-bit digits, with e € (1,n) and k& = n/m.
Computations are carried out on one digit at a time, and
therefore & cycles are required to operate on the data. Re-
garding the DWT, this technique allows implementing it with
s0 many stages as octaves, but each one with a different digit
size m = n/2771, with § = 1,2,...J. This considerably
reduces the required resources within a direct implementa-
tion, and makes it feasible to achieve a 100% hardware uti-
lization. Again, different alternatives have been considered:
the filters have been designed with MAC structure and based
on distributed arithmetic; polyphase decomposition has also
been applied to the filter banks.

For both approaches and their design alternatives their
resources and timing features have been evaluated. Figure 1
shows the influence of these alternatives on the resources re-
quired and on the maximum bandwidth of the input signal,
when implementing a 3-octave Daubechies order 4 DWT
with 16-bit input data resolution. The impact of the num-
ber of octaves and the data size have been also evaluated.
Detailed information and conclusions can be found in [5].

Looking at Fig. 1, the a priori more interesting options
for our application are the folded with one MAC filter and
the digit-serial with distributed arithmetic and polyphase de-
composition. Both of them have been implemented to de-
sign the 4-octave Daubechies order 10 DWT used in the
compression method. According to the results shown in the
Table 1, and bearing in mind the low bandwidth of the PCG
signal, the folded architecture with just one MAC FIR fil-
ter has been considered the most suitable choice, since it
achieves real time processing of the PCG signal reducing
to the maximum the required resources. The FIR filter has
been implemented with an embedded multiplier, which is
successively multiplexed to perform the high-pass and the
low-pass filtering of each filter bank. A 16-bit data resolu-
tion has been adopted for inputs and outputs; internally, the
DWT module works with up to 32-bit data.

4. MICROBLAZE SUBSYSTEM

Once the wavelet coefficients have been generated, they are
thresholded using a dynamic algorithm. Then, zero coeffi-
cients are removed and RLE and Huffman encoding tech-
niques are applied. In the proposed embedded system, all of

Table 1. Resources used in the implementation of the DWT
in the compression algorithm on a Xiling Virtexd LX25.

4-input LUTs  FFs  Slices DEP48&s
Folded [ MAC with 2312 1368 1183 1
embedded mult.
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Fig. 1. Evaluation of the different approaches and alter-
natives considered for the implementation of a 3-octave
Daubechies db4 DWT on Xilinx Virtex4 FPGAs.

these steps are performed in a software application running
in the MicroBlaze soft processor. Therefore, a MicroBlaze-
based system has been implemented. The overall architec-
ture is shown in Fig. 2.

As can be seen in Fig. 2, the communication between
MicroBlaze and the DWT module has been designed with a
data buffer and an interrupt signal. In accordance with the
block size and the data resolution, the buffer is a 4K x 16
memory, implemented with BlockRAM. It is connected to
MicroBlaze through an FSL channel. The DWT module
controls the writing of each wavelet coefficient in its suit-
able buffer address. When a 4096-sample PCG signal block
has been transformed into wavelet coefficients and stored in
the buffer, the DWT module activates the interrupt to Mi-
croBlaze, and begins the acquisition and transformation of
a new 4096-sample block. In the software application, the
interrupt handler manages the execution of the steps of the
compression algorithm and the transmission of the output
data. In the first place, data are read from the buffer and
written in an internal memory. This avoids data overwriting
with the wavelet coefficients corresponding to a new block.
Like the buffer, this internal memory is a 4Kx 16 memory
implemented with BlockRAM. As the data are read from
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Fig. 2. Overall architecture of the proposed system.

the buffer to be written in the internal memory, the maxi-
mum absolute value is found. It is required to fix the initial
threshold. Then, the thresholding process starts: in each
iteration the internal memory is read, the coefficients with
absolute value less or equal to the threshold are zeroed and
the PRD,,, is calculated. The process iterates until the target
PRD,,, is reached or a timer warns about the time available
to complete the compression. To speed up the reading from
the memory, the FSL bus has been the adopted communica-
tion channel.

Once the data have been thresholded, the zero values
are removed and the non-zero values are saved. Next, the
significance map, derived from the zero removing, is com-
pressed using Run-Length and Huffman encoding. Both of
these techniques have been also implemented in the soft-
ware application running in MicroBlaze. Due to the size
and amount of data involved and generated in these steps, a
second internal memory, connected to MicroBlaze through
an FSL channel, has been included. This option has been
preferred to the definition of large variables in the software
application.

Finally, the compression resulting data are sent to a re-
mote PC via a bluetooth connection. The communication
has been implemented using a UART peripheral connected
to MicroBlaze and a Promi-SD module, from Initium, as
RS232/bluetooth interface. The UART has been configured
to operate at 230400 bauds, the maximum data rate achieved
by the Promi-SD module. A small header is included in the
data packet in order to implement a simple communication
protocol. It contains information that allows the software in
the remote PC to manage correctly the received data and to
rebuild the PCG from the successive compressed block.

All of these steps are executed while new PCG data are
being acquired, transformed by the DWT and stored in the
buffer. Therefore, an V-sample block of the PCG signal
must be compressed and transmitted before the following
is ready to be compressed. Since the signal is sampled at
8 KHz and each block is made of 4096 samples, the total
available time (the time between consecutive interrupts from
the DWT module) is 512 ms. To avoid exceeding that time,



Table 2. Summary of resources used.

DWT & logic  MicroBlaze Total %
Slices 1637 2432 38%
Flip flops 2163 1848 19%
4input LUTs 2681 3812 30%
DSP48 1 7 17%
BlockRAMs 0 28 39%

and bearing in mind that the compression is independent for
each block and hence it can take different time in each one,
the timer included in the block diagram of Fig. 2 is used.

Finally, it must be remarked that the implementation of
the DWT as a specific coprocessor, instead of in the software
application, frees the processor from computing the wavelet
coefficients. It allows the execution of the dynamic thres-
holding algorithm, and, briefly, makes it feasible the real-
time compression of non-overlapping blocks without losing
any data between blocks.

5. DETAILS OF THE PROTOTYPE AND RESULTS

A first prototype has been built using a Xilinx Virtex-4 FPGA
and Avnet boards. The FPGA is the Virtex-4 LX25, popu-
lated in the Virtex-4 Evaluation kit from Avnet. This board
includes the RS§232 connection where the Promi-SD module
is plugged in. To acquire the signal from the stethoscope,
the Philips UCB1400 stereo 20-bit audio codec has been
used. It is available in the Audio/Video module, also from
Avnet. This audio codec is initialized and managed with
a controller implemented on the same FPGA. The FPGA
resources occupied by the design are summarized in Ta-
ble 2. The percentages refer to the resources available in the
mentioned FPGA (21504 4-inputs LUTs, 21504 flip-flops,
10752 slices, 72 BRAMSs and 48 DSP48s).

MicroBlaze works at [00MHz, its memory size is 32 KB
and its architecture includes a Floating Point Unit. The men-
tioned clock frequency let the functions that make ap the al-
gorithm take the times indicated in Table 3, in function of the
compression rate. These results show that a lower compres-
sion rate requires more iterations in the thresholding, and
that the Huffman encoding is more complicated and longer.
Besides, as the compression rate decreases, fewer wavelet
coefficients are thresholded and the Huffman code is larger,
which implies that the transmision takes more time. On the
other hand, the zero removing and the RLE encoding hardly
suffer modifications.

The algorithm was originally developed in Matlab®, us-
ing real PCG records in WAV format {16 bits, §KHz). The
Table 3 indicates the times required to compress a signal
block in Matlab using a Pentiumd at 2.8 GHz and in the
proposed system. Due to the different internal data reso-
lutions and to small modifications in the original algorithm
motivated for increasing the efficiency in the software run-
ning in MicroBlaze, the output vectors resulting in both ap-
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Table 3. Time required for the compression algorithm (ms).
Compression Rate

10 13 20 25

Steps
Thresholding 1054 964 78.9 71.5
Zero removing 2.54 253 2.50 2.50
Run-length encoding 0.93 094 0.93 093
Huffman encoding 4.84 403 2.94 248
Transmission 332 239 17.4 143
Complete algorithm
FPGA-based 1469 127.8 1027 917
Matlab 205.2 2121 1957 1929

proaches are not always identical. Nevertheless, the com-
pression rates do behave exactly equally.

6. CONCLUSION

The implementation of a novel compression method de-
signed for the PCG signal is presented. An FPGA device
has been used as hardware platform to design a MicroBlaze-
based solution which can compress and transmit in real
time the PCG signal. For the implementation of the DWT,
which has been included as specific coprocessor to Micro-
Blaze, different architectures, structures and design parame-
ters have been evaluated, looking for the best solution in the
described PCG signal processing application.

The use of an FPGA-based approach has made it possi-
ble the design of a low cost and small size embedded sys-
tem which can compress and transmit the PCG signal in real
time, and faster than the PC solution initially developed.

Future works are focused on developing an “smart
stethoscope”™. It will be an FPGA-based embedded system
where the PCG signal is not only compressed and transmited
but also processed, with the purpose of being helpful for
medical diagnosis of people suffering from cardiopathies.
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