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Abstract— This paper describes the design and the 
implementation of an embedded system based on multiple 
FPGAs that can be used to process real time video streams in 
standalone mode for applications that require the use of large 
Multi-Layer CNNs (ML-CNNs). The system processes video in 
progressive mode and provides a standard VGA output format. 
The main features of the system are determined by using a 
distributed computing architecture, based on Independent 
Hardware Modules (IHM), which facilitate system expansion and 
adaptation to new applications. Each IHM is composed by an 
FPGA board that can hold one or more CNN layers. The total 
computing capacity of the system is determined by the number of 
IHM used and the amount of resources available in the FPGAs. 
Our architecture supports traditional cloned templates, but also 
the (simultaneous) use of time-variant and space-variant 
templates. 
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I. INTRODUCTION 

Different FPGA-based standalone systems have been 
proposed to digitally emulate CNNs. Between the most recent, 
in [1] the authors make use of the Falcon [2] architecture, while 
in [3] a new approach is developed, derived from the model 
proposed for the Carthago architecture [4]. In this paper, our 
interest is to develop a multi-FPGA distributed system, 
allowing the versatile emulation of large ML-CNNs. The 
proposed system must be able to target standalone applications 
processing real time video channels. The novel aspects that our 
system incorporates are, in first place, a distributed structure, 
consisting of multiple FPGAs, enabling increased computing 
capacity; secondly, it has been adapted to support sequential 
architectures, like Carthago, which was designed and 
implemented to achieve an excellent compromise between area 
and speed.  

The main features of the system are derived by using a 
distributed computing architecture, based on Independent 
Hardware Modules (IHM), which facilitate system expansion 
and adaptation to new applications. Our aim is to emulate a 
CNN by distributing the electronic circuitry through different 
IHMs in order to increase the versatility and computational 
performance of the platform. The system will support an 
expansion interface to allow for cascading of multiple IHM 

modules and facilitate the incorporation of new modules to the 
system. Every IHM processes a video data stream received at 
its input interface and provides an output compatible with the 
input of the next module. Each IHM is composed by an FPGA 
board that can hold one or more CNN layers. The total 
computing capacity of the system is determined by the number 
of IHM used and the amount of resources available in the 
FPGAs. The system incorporates a frame grabber which 
corrects the latency introduced by the IHM and provides a 
VGA compatible output. Fig. 1 shows the structure of the 
proposed system. 

Both, IHMs and interface blocks, must be designed to work 
in a data flow configuration, and support a distributed 
sequential computing architecture. For this, IHM modules must 
support Processing Elements (PEs) pipelining to run multiple 
Euler iterations simultaneously, while IHM interfaces have to 
be able to support and propagate the control signals and data 
buses in real time with enough versatility.  

 To facilitate the understanding of the proposed 
methodology and to verify its functionality, a system has been 
developed for the particular case in which both the IHMs and 
theirs expansion interfaces have been adapted to the CNN 
Carthago architecture. 

 

 

 

 

 

 

 
Figure 1.  Outline of the proposed distributed computing system 

 



II. CARTHAGO-BASED IHM MODULE 

 The electronic circuit inside the IHM and the expansion 
interfaces have been adapted to use an enhanced version of the 
Carthago architecture [1], which was originally developed to 
emulate the discrete Euler model of a CNN using templates of 
size 3x3, Dirichlet boundary conditions and the standard output 
function. PEs of this architecture has been designed to 
maximize the use of internal resources of the Virtex4 FPGAs, 
without requiring the use of external memory. Our architecture 
was then optimized in area and speed to be able to process real 
time standard video. Finally, the initial Carthago architecture 
has been enhanced to support space and time variant templates.  
The following items summarize the main features of the EPs 
used to test a specific case of system: 

 One Euler iteration is carried out by a single PE that 
performs: 2 convolutions (one with each template, A 
and B), the addition with the bias and the evaluation of 
the standard output function. 

 PEs support traditional cloned templates, but also the 
(simultaneous) use of time-variant and space-variant 
templates. Here, the templates are of size 3x3. 

 Every PE propagates its result to the next PE, together 
with its input value, in order to perform inter-neuronal 
functions and to develop structures that use the CNN 
input data in successive iterations. 

 The latency of the EPs depends on the template size, 
and its value is equal to n*r+1 pixels, where n is the 
number of pixels per line of the image and r is the 
radius of the template. For templates of size 3x3, the 
latency of each EP will be a line and a pixel.         

 PEs operate internally with 18 bit, full-precision, fixed 
point arithmetic. Inputs and outputs are truncated to 9 
bits and templates use 18 bits coefficients. 

 PEs have been designed with an area-optimized 
architecture that uses the fewest possible resources of 
the FPGA: 1 BlockRAM and 1 DSP48 block per 
convolution. 

 PEs work internally at 410 MHz and require 17 clock 
cycles to process one pixel. This is equivalent to a rate 
of 24.1 megapixels/s and a total computing capacity of  
850 MOP/s by PE (considering  18 MAC per pixel). 

 PEs have been designed to process standard VGA 
video format: 640x480 @ 50-70Hz. However, it would 
possible to work with 1024x1024 images at a rate of 22 
frames/s.  

The high performance in area and speed of the PEs was 
obtained through a supersegmented sequential architecture 
based on two interdependent clock regions, which was 
optimized to maximize the use of resources embedded in the 
FPGA. In order to achieve maximum operating speed, PEs 
architecture was described in VHDL language using low-level 
hardware primitive instantiation techniques, and implemented 
through a customized placing and routing process with the use 
of RPMs (Relationally Placed Macros). Fig. 2 shows, in a 
simplified form, the internal schema and connections used by 

EPs Carthago architecture. More details and implementation-
specific parameters can be reviewed in [4] and [5]. 

III. IHM INTERFACE 

The expansion interface is designed to expand the system 
and provides the modules (either IHMs or frame grabber) with 
the video data and control signals necessary to perform a 
sequential processing. On the other hand, the modules 
connected to the interface, supply the processed video data and 
control signals to be used in further stages of the chain. 

 Fig. 3 shows the input/output ports defined for the 
expansion interface and a simple connection example. The 
IHM module used for this example has been configured with a 
simple internal layout consisting of a pipeline of several EPs 
connected in series. In general, the complexity of the internal 
structure of each IHM, and the number of EPs used, depend 
essentially on the type of processing required by the application 
and available resources in the FPGA, which are both 
independent of the interface. 

In order for the system to support sequential computing, the 
expansion interface has been designed using a simple scheme 
based on pairs of ports: one input and one output, among which 
a direct connection can be established. This feature allows IHM 
modules to be connected and disconnected from the system 
quickly taking into account only two considerations: the first 
one is that IMHs must be plugged and unplugged when the 
system is powered off and, second, that pairs of ports on an 
unused connector must be bypassed so that information can 
reach the following modules. This feature allows over-sizing 
the number of connectors in the system and using only those 
which are necessary according to each application. Once the 
IHMs have been connected and the system powered, the 
FPGAs can be independently configured with the required 
structure of EPs. 

The video signal provided by the interface is supplied to the 
modules through two input ports: the Pu_in, which spread the 
video stream to the chain from the main entrance of the system, 
and Py_in, which forwards the video data that, has been 
processed by a given stage, to the following. Within each IHM, 

Figure 2.  A simple Carthago IHM module connected to the expansión 
interface. 

Uij

Yij[0]

Uij

Yij[1]

OECE

I

A

B

Control 
Unit

RSTPCLK

GCE

Pu_in

OE

Pu_out

Py_in

Py_out

EP

 



the two video streams are combined and processed by the EPs. 
The result is returned to the interface through the output port 
Py_out to be used in the next module. The output port, Pu_out, 
propagates the system’s video input (Pu_in) to the next 
module, without any special processing but the necessary delay 
stages to keep the system synchronized.  

Other ports used by the expansion interface are: PCLK 
(Pixel Clock), RST (Reset), GCE (General Cell Enable), OE 
(Output Enable), Start and FODD. The CGE port is used to 
enable the modules connected to the interface, while OE is an 
output port that is activated when the IHM provides valid 
results on its ports Pu_out and Py_out. To maintain consistency 
of information and synchronization processing, OE output must 
be connected to the CGE input of the next module. Signals 
Start and FODD are generated by the main video source and 
are propagated through the system chain to be used by the 
frame grabber. These signals are used to enable the frame 
grabber and to check whether the video stream is being 
generated in progressive or interlaced mode, respectively. 

IV. SYSTEM ARCHITECTURE 

Fig. 4 shows a detailed diagram of the system and the 
internal structure of the frame grabber. As shown, the digital 
video source is connected in the first position to the system 
chain, using the same expansion interface. The video source 
provides video data and control signals needed for 
synchronization. These are mainly Vsyn, used for enabling the 
frame grabber, and Hsyn, used to initiate processing by the first 
module in the chain (IHM_1). 

While the video stream is propagated along the chain, with 
a latency determined by each IHM, the modules are activated 
and involved in processing. Since the latency of the modules 
produces a mismatch between video stream and frame 
synchronization, the frame grabber is used to correct the 
mismatch. 

The frame grabber is connected to the system using the last 
expansion connector. The input that receives comes from the 
last module (IHM) and the output it provides is compatible 
with standard VGA. The frame grabber is designed with an 

architecture divided into two clock regions in order to 
simultaneously deal with video input timing (PCLK) and VGA 
output timing (VGA_CLK). For the frame grabber to work 
properly, the vertical synchronism frequency of the input video 
must be multiple of the VGA vertical synchronism frequency.  

 

When the video processed by the chain reaches the frame 
grabber, information is stored in a static RAM with capacity for 
2 frames. This memory has been divided into two blocks, what 
allows storing the incoming frame, while reading the previous 
one and sending it to the VGA output. When an incoming 
frame is written in one of the two blocks, the hardware 
automatically switches them, changing from write to read mode 
and vice versa. The writing and reading of both blocks is done 
by inserting 1 write cycle for every 3 read cycles. In each write 
cycle 4 pixels are stored in memory simultaneously. This is 
possible through the use of an input register that links the last 4 
pixels received in a 32 bits word. The words read from 
memory, corresponding to the outgoing frame, are carried to a 
dual clock FIFO of 512 words to decouple the two clock 
regions. Since the number of reading cycles is at least 3 times 
the number of write cycles, the FIFO always has enough 
information. Each word read from the FIFO using the clock 
VGA_CLK is then stored in the output register and 
demultiplexed to separate the information into 4 independent 
pixels. To synchronize the pixel output, the architecture 
incorporates a standard VGA synchronization generator circuit. 
Finally, the video stream goes through the DAC and together 
with the synchronization signals is output by the VGA 
connector. 

Figure 3.  A simple Carthago IHM module connected to the expansión 
interface. 

V. IMPLEMETATION 

A particular case of the proposed system, comprising 2 
IHMs, has been implemented on three FPGA prototyping 
boards to verify our design methodology and components 
functionality. This prototype consists of: a digital video camera 
(OV7620), two IHM modules, a frame-grabber and a VGA 
monitor. The camera is set to progressive mode, 640x480 gray 
scale images at 30 fps, and a digital output of 8 bits/pixel. The 
IHM modules have very small dimensions (7x8 cm) and have 
been implemented by standalone PICO E-12 boards [6], which 
include a Xilinx FPGA, model XC4VFX12, with 32 DSP48 
and 36 BlockRAMs. Finally, the frame grabber has been 
implemented using the low cost SP3-EVL1500 board [7] 
comprising: an XC3S1500 Xilinx FPGA, 1 MB of external 
memory and a DAC from Analog Device, model ADV7125. 

The system functionality has been evaluated using a 3-layer 
ML-CNN, with space-variant templates. The 3 layers are 
applied in sequence over the entire image. Taking a typical 
Euler iteration as the base unit, the 3 layers represent a 
computational cost of x1, x5, and x5, respectively. While the 
ML-CNN can be implemented in a single IHM comfortably, 
layers were divided between two IHM modules to verify the 
operation of the system when the circuit is distributed over 
different modules. Thus, IHM_1 implements the first 2 layers 
and IHM_2 the third one.  

The selected algorithm performs a space-variant processing, 
which is a function of the quadrant of the image. To this end, 
PEs have been programmed with four sets of templates per 



layer, which will be applied depending on the position of the 
pixel being processed.The pixels of the upper-left quadrant are 
processed using the template layers: diffusion, edge detection 
and identity, in that order. The pixels of the upper-right 
quadrant used: inverting, edge detection and diffusion. For the 
lower-left quadrant, the three layers are the same: the identity 
template. Finally, for the lower-right quadrant, we selected also 
the same diffusion template for the 3 layers. Fig. 5 shows the 
implementation of the proposed system and the result after 
applying the ML-CNN to the scene captured by the camera.  

The photograph in Fig. 5.c was taken with short exposure 
time to capture the falling of the ball. The VGA monitor shows 
a certain delay in the fall as a result of the delay that is inserted 
by the frame-grabber. The figure includes, in the lower-right 
corner, a picture of an IHM board.   

The implemented prototype is limited in processing power 
by both IHM and the FPGAs used (XC4VFX12). The total 
computing capacity is 32 Euler iterations simultaneously, as the 
FPGAs only features 32 DSP48 blocks. The prototype can be 
easily extended by adding new expansion connectors and new 
IHM modules.   

VI. CONCLUSION 

In this work a versatile, multi-FPGA based system has been 
developed, allowing the emulation of large ML-CNNs. The 
system can be used in standalone applications to process real 
time standard video channels. A prototype, consisting of 2 IHM 
modules, has been implemented to emulate a 3-layer ML-CNN 
with space-variant templates.  

The test of the prototype have demonstrated the system’s 
correct operation and validated the methodology proposed in 
this paper. 

ACKNOWLEDGMENT 

This work has been partially supported by the Fundación 
Séneca de la Región de Murcia through the research projects 
08801/PI/08 and 08788/PI/08, and by the Spanish Government 
through project TIN2008-06893-C03.  

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

External Static RAM
(256K/32b)

Mem
Block1

Mem
Block 2

VGA
 Sync 

Generator

R6

R7

R8

R3

R2

R1

Dual clock
FIFO (512/36b)

Output 
RegisterInput Register

Writing 
Counter

Reading 
Counter

Address
Bus

Data
Bus

18b

32b

Blank

Sync

Vsyn

Hsyn

Enable

32b

8b
8b

Memory Address 
Counter

RST

PCLK

Start

OE

FODD

8b

P_out

VGA 
Connector

D/A 
Converter

RST

PCLK

Vsyn

Href

FODD

8b

P_in

RST

PCLK

Start

GCE

FODD

8b

Pu_in

RST

PCLK

Start

GCE

FODD

8b

Pu_in

RST

PCLK

Start

OE

FODD

8b

Pu_out

F
P

G
A

F
P

G
A

Digital video in 
progressive mode

FRAME GRABBER BOARD

   
IHM_1 n IHMs IHM_n+1

Expansion 
Interface

Expansion 
Interface

Py_in

8b8b

Py_out

8b

Py_in

8b 8b

Pu_out

Py_out

Single or 
ML CNN 

Single or 
ML CNN 

Clock Region A: CLK<=PCLK Clock Region B: CLK<=VGA_CLK

RST Button

M
U

X

M
U

X

 
Figure 4.  Complete  system architecture and internal structure of the Frame Grabber module 
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Figure 5.  Photographs of the system. a) Prototype consisting of the frame grabber board, 2 IHM modules and the digital video camera OV7620. b) Detail of 
a IHM module and the interface expansion connector. c) Photograph of the system and test bench  


