
A Multi-FPGA Distributed Embedded System for
the Emulation of Multi-Layer CNNs in Real Time

Video Applications

J. Javier Martínez-Alvarez , Javier Toledo-Moreo, Javier Garrigós-Guerrero, J.Manuel Ferrandez-Vicente
Dept. de Electrónica, Tecnología de Computadoras

Universidad Politécnica de Cartagena
Cartagena, Spain

jjavier.martinez@upct.es

Abstract— This paper describes the design and the
implementation of an embedded system based on multiple
FPGAs that can be used to process real time video streams in
standalone mode for applications that require the use of large
Multi-Layer CNNs (ML-CNNs). The system processes video in
progressive mode and provides a standard VGA output format.
The main features of the system are determined by using a
distributed computing architecture, based on Independent
Hardware Modules (IHM), which facilitate system expansion and
adaptation to new applications. Each IHM is composed by an
FPGA board that can hold one or more CNN layers. The total
computing capacity of the system is determined by the number of
IHM used and the amount of resources available in the FPGAs.
Our architecture supports traditional cloned templates, but also
the (simultaneous) use of time-variant and space-variant
templates.

Keywords-component; Multi-FPGA; Embedded Syseim,
Emulation CNN

I. INTRODUCTION

Different FPGA-based standalone systems have been
proposed to digitally emulate CNNs. Between the most recent,
in [1] the authors make use of the Falcon [2] architecture, while
in [3] a new approach is developed, derived from the model
proposed for the Carthago architecture [4]. In this paper, our
interest is to develop a multi-FPGA distributed system,
allowing the versatile emulation of large ML-CNNs. The
proposed system must be able to target standalone applications
processing real time video channels. The novel aspects that our
system incorporates are, in first place, a distributed structure,
consisting of multiple FPGAs, enabling increased computing
capacity; secondly, it has been adapted to support sequential
architectures, like Carthago, which was designed and
implemented to achieve an excellent compromise between area
and speed.

The main features of the system are derived by using a
distributed computing architecture, based on Independent
Hardware Modules (IHM), which facilitate system expansion
and adaptation to new applications. Our aim is to emulate a
CNN by distributing the electronic circuitry through different
IHMs in order to increase the versatility and computational
performance of the platform. The system will support an
expansion interface to allow for cascading of multiple IHM

modules and facilitate the incorporation of new modules to the
system. Every IHM processes a video data stream received at
its input interface and provides an output compatible with the
input of the next module. Each IHM is composed by an FPGA
board that can hold one or more CNN layers. The total
computing capacity of the system is determined by the number
of IHM used and the amount of resources available in the
FPGAs. The system incorporates a frame grabber which
corrects the latency introduced by the IHM and provides a
VGA compatible output. Fig. 1 shows the structure of the
proposed system.

Both, IHMs and interface blocks, must be designed to work
in a data flow configuration, and support a distributed
sequential computing architecture. For this, IHM modules must
support Processing Elements (PEs) pipelining to run multiple
Euler iterations simultaneously, while IHM interfaces have to
be able to support and propagate the control signals and data
buses in real time with enough versatility.

 To facilitate the understanding of the proposed
methodology and to verify its functionality, a system has been
developed for the particular case in which both the IHMs and
theirs expansion interfaces have been adapted to the CNN
Carthago architecture.

Figure 1. Outline of the proposed distributed computing system

II. CARTHAGO-BASED IHM MODULE

 The electronic circuit inside the IHM and the expansion
interfaces have been adapted to use an enhanced version of the
Carthago architecture [1], which was originally developed to
emulate the discrete Euler model of a CNN using templates of
size 3x3, Dirichlet boundary conditions and the standard output
function. PEs of this architecture has been designed to
maximize the use of internal resources of the Virtex4 FPGAs,
without requiring the use of external memory. Our architecture
was then optimized in area and speed to be able to process real
time standard video. Finally, the initial Carthago architecture
has been enhanced to support space and time variant templates.
The following items summarize the main features of the EPs
used to test a specific case of system:

 One Euler iteration is carried out by a single PE that
performs: 2 convolutions (one with each template, A
and B), the addition with the bias and the evaluation of
the standard output function.

 PEs support traditional cloned templates, but also the
(simultaneous) use of time-variant and space-variant
templates. Here, the templates are of size 3x3.

 Every PE propagates its result to the next PE, together
with its input value, in order to perform inter-neuronal
functions and to develop structures that use the CNN
input data in successive iterations.

 The latency of the EPs depends on the template size,
and its value is equal to n*r+1 pixels, where n is the
number of pixels per line of the image and r is the
radius of the template. For templates of size 3x3, the
latency of each EP will be a line and a pixel.

 PEs operate internally with 18 bit, full-precision, fixed
point arithmetic. Inputs and outputs are truncated to 9
bits and templates use 18 bits coefficients.

 PEs have been designed with an area-optimized
architecture that uses the fewest possible resources of
the FPGA: 1 BlockRAM and 1 DSP48 block per
convolution.

 PEs work internally at 410 MHz and require 17 clock
cycles to process one pixel. This is equivalent to a rate
of 24.1 megapixels/s and a total computing capacity of
850 MOP/s by PE (considering 18 MAC per pixel).

 PEs have been designed to process standard VGA
video format: 640x480 @ 50-70Hz. However, it would
possible to work with 1024x1024 images at a rate of 22
frames/s.

The high performance in area and speed of the PEs was
obtained through a supersegmented sequential architecture
based on two interdependent clock regions, which was
optimized to maximize the use of resources embedded in the
FPGA. In order to achieve maximum operating speed, PEs
architecture was described in VHDL language using low-level
hardware primitive instantiation techniques, and implemented
through a customized placing and routing process with the use
of RPMs (Relationally Placed Macros). Fig. 2 shows, in a
simplified form, the internal schema and connections used by

EPs Carthago architecture. More details and implementation-
specific parameters can be reviewed in [4] and [5].

III. IHM INTERFACE

The expansion interface is designed to expand the system
and provides the modules (either IHMs or frame grabber) with
the video data and control signals necessary to perform a
sequential processing. On the other hand, the modules
connected to the interface, supply the processed video data and
control signals to be used in further stages of the chain.

 Fig. 3 shows the input/output ports defined for the
expansion interface and a simple connection example. The
IHM module used for this example has been configured with a
simple internal layout consisting of a pipeline of several EPs
connected in series. In general, the complexity of the internal
structure of each IHM, and the number of EPs used, depend
essentially on the type of processing required by the application
and available resources in the FPGA, which are both
independent of the interface.

In order for the system to support sequential computing, the
expansion interface has been designed using a simple scheme
based on pairs of ports: one input and one output, among which
a direct connection can be established. This feature allows IHM
modules to be connected and disconnected from the system
quickly taking into account only two considerations: the first
one is that IMHs must be plugged and unplugged when the
system is powered off and, second, that pairs of ports on an
unused connector must be bypassed so that information can
reach the following modules. This feature allows over-sizing
the number of connectors in the system and using only those
which are necessary according to each application. Once the
IHMs have been connected and the system powered, the
FPGAs can be independently configured with the required
structure of EPs.

The video signal provided by the interface is supplied to the
modules through two input ports: the Pu_in, which spread the
video stream to the chain from the main entrance of the system,
and Py_in, which forwards the video data that, has been
processed by a given stage, to the following. Within each IHM,

Figure 2. A simple Carthago IHM module connected to the expansión
interface.

Uij

Yij[0]

Uij

Yij[1]

OECE

I

A

B

Control
Unit

RSTPCLK

GCE

Pu_in

OE

Pu_out

Py_in

Py_out

EP

the two video streams are combined and processed by the EPs.
The result is returned to the interface through the output port
Py_out to be used in the next module. The output port, Pu_out,
propagates the system’s video input (Pu_in) to the next
module, without any special processing but the necessary delay
stages to keep the system synchronized.

Other ports used by the expansion interface are: PCLK
(Pixel Clock), RST (Reset), GCE (General Cell Enable), OE
(Output Enable), Start and FODD. The CGE port is used to
enable the modules connected to the interface, while OE is an
output port that is activated when the IHM provides valid
results on its ports Pu_out and Py_out. To maintain consistency
of information and synchronization processing, OE output must
be connected to the CGE input of the next module. Signals
Start and FODD are generated by the main video source and
are propagated through the system chain to be used by the
frame grabber. These signals are used to enable the frame
grabber and to check whether the video stream is being
generated in progressive or interlaced mode, respectively.

IV. SYSTEM ARCHITECTURE

Fig. 4 shows a detailed diagram of the system and the
internal structure of the frame grabber. As shown, the digital
video source is connected in the first position to the system
chain, using the same expansion interface. The video source
provides video data and control signals needed for
synchronization. These are mainly Vsyn, used for enabling the
frame grabber, and Hsyn, used to initiate processing by the first
module in the chain (IHM_1).

While the video stream is propagated along the chain, with
a latency determined by each IHM, the modules are activated
and involved in processing. Since the latency of the modules
produces a mismatch between video stream and frame
synchronization, the frame grabber is used to correct the
mismatch.

The frame grabber is connected to the system using the last
expansion connector. The input that receives comes from the
last module (IHM) and the output it provides is compatible
with standard VGA. The frame grabber is designed with an

architecture divided into two clock regions in order to
simultaneously deal with video input timing (PCLK) and VGA
output timing (VGA_CLK). For the frame grabber to work
properly, the vertical synchronism frequency of the input video
must be multiple of the VGA vertical synchronism frequency.

When the video processed by the chain reaches the frame
grabber, information is stored in a static RAM with capacity for
2 frames. This memory has been divided into two blocks, what
allows storing the incoming frame, while reading the previous
one and sending it to the VGA output. When an incoming
frame is written in one of the two blocks, the hardware
automatically switches them, changing from write to read mode
and vice versa. The writing and reading of both blocks is done
by inserting 1 write cycle for every 3 read cycles. In each write
cycle 4 pixels are stored in memory simultaneously. This is
possible through the use of an input register that links the last 4
pixels received in a 32 bits word. The words read from
memory, corresponding to the outgoing frame, are carried to a
dual clock FIFO of 512 words to decouple the two clock
regions. Since the number of reading cycles is at least 3 times
the number of write cycles, the FIFO always has enough
information. Each word read from the FIFO using the clock
VGA_CLK is then stored in the output register and
demultiplexed to separate the information into 4 independent
pixels. To synchronize the pixel output, the architecture
incorporates a standard VGA synchronization generator circuit.
Finally, the video stream goes through the DAC and together
with the synchronization signals is output by the VGA
connector.

Figure 3. A simple Carthago IHM module connected to the expansión
interface.

V. IMPLEMETATION

A particular case of the proposed system, comprising 2
IHMs, has been implemented on three FPGA prototyping
boards to verify our design methodology and components
functionality. This prototype consists of: a digital video camera
(OV7620), two IHM modules, a frame-grabber and a VGA
monitor. The camera is set to progressive mode, 640x480 gray
scale images at 30 fps, and a digital output of 8 bits/pixel. The
IHM modules have very small dimensions (7x8 cm) and have
been implemented by standalone PICO E-12 boards [6], which
include a Xilinx FPGA, model XC4VFX12, with 32 DSP48
and 36 BlockRAMs. Finally, the frame grabber has been
implemented using the low cost SP3-EVL1500 board [7]
comprising: an XC3S1500 Xilinx FPGA, 1 MB of external
memory and a DAC from Analog Device, model ADV7125.

The system functionality has been evaluated using a 3-layer
ML-CNN, with space-variant templates. The 3 layers are
applied in sequence over the entire image. Taking a typical
Euler iteration as the base unit, the 3 layers represent a
computational cost of x1, x5, and x5, respectively. While the
ML-CNN can be implemented in a single IHM comfortably,
layers were divided between two IHM modules to verify the
operation of the system when the circuit is distributed over
different modules. Thus, IHM_1 implements the first 2 layers
and IHM_2 the third one.

The selected algorithm performs a space-variant processing,
which is a function of the quadrant of the image. To this end,
PEs have been programmed with four sets of templates per

layer, which will be applied depending on the position of the
pixel being processed.The pixels of the upper-left quadrant are
processed using the template layers: diffusion, edge detection
and identity, in that order. The pixels of the upper-right
quadrant used: inverting, edge detection and diffusion. For the
lower-left quadrant, the three layers are the same: the identity
template. Finally, for the lower-right quadrant, we selected also
the same diffusion template for the 3 layers. Fig. 5 shows the
implementation of the proposed system and the result after
applying the ML-CNN to the scene captured by the camera.

The photograph in Fig. 5.c was taken with short exposure
time to capture the falling of the ball. The VGA monitor shows
a certain delay in the fall as a result of the delay that is inserted
by the frame-grabber. The figure includes, in the lower-right
corner, a picture of an IHM board.

The implemented prototype is limited in processing power
by both IHM and the FPGAs used (XC4VFX12). The total
computing capacity is 32 Euler iterations simultaneously, as the
FPGAs only features 32 DSP48 blocks. The prototype can be
easily extended by adding new expansion connectors and new
IHM modules.

VI. CONCLUSION

In this work a versatile, multi-FPGA based system has been
developed, allowing the emulation of large ML-CNNs. The
system can be used in standalone applications to process real
time standard video channels. A prototype, consisting of 2 IHM
modules, has been implemented to emulate a 3-layer ML-CNN
with space-variant templates.

The test of the prototype have demonstrated the system’s
correct operation and validated the methodology proposed in
this paper.

ACKNOWLEDGMENT

This work has been partially supported by the Fundación
Séneca de la Región de Murcia through the research projects
08801/PI/08 and 08788/PI/08, and by the Spanish Government
through project TIN2008-06893-C03.

REFERENCES

External Static RAM
(256K/32b)

Mem
Block1

Mem
Block 2

VGA
 Sync

Generator

R6

R7

R8

R3

R2

R1

Dual clock
FIFO (512/36b)

Output
RegisterInput Register

Writing
Counter

Reading
Counter

Address
Bus

Data
Bus

18b

32b

Blank

Sync

Vsyn

Hsyn

Enable

32b

8b
8b

Memory Address
Counter

RST

PCLK

Start

OE

FODD

8b

P_out

VGA
Connector

D/A
Converter

RST

PCLK

Vsyn

Href

FODD

8b

P_in

RST

PCLK

Start

GCE

FODD

8b

Pu_in

RST

PCLK

Start

GCE

FODD

8b

Pu_in

RST

PCLK

Start

OE

FODD

8b

Pu_out

F
P

G
A

F
P

G
A

Digital video in
progressive mode

FRAME GRABBER BOARD

IHM_1 n IHMs IHM_n+1

Expansion
Interface

Expansion
Interface

Py_in

8b8b

Py_out

8b

Py_in

8b 8b

Pu_out

Py_out

Single or
ML CNN

Single or
ML CNN

Clock Region A: CLK<=PCLK Clock Region B: CLK<=VGA_CLK

RST Button

M
U

X

M
U

X

Figure 4. Complete system architecture and internal structure of the Frame Grabber module

[1] Z. Voroshazi, A. Kiss, Z. Nagy, P. Szolgay, “Standalone FPGA Based
Emulated-Digital CNN-UM System,” in Proc. Cellular neural networks
and their applicaions, 2008, pp. 4–4.

[2] Z. Nagy and P. Szolgay, “Configurable Multi-Layer CNN-UM Emulator
on FPGA,” IEEE Trans. Circuits Syst. I, vol. 50, pp. 774–778, 2003.

[3] K. Kayaer, V. Tavsanoglu, “A new approach to emulate CNN on FPGAs
for real time video processing,”, in Proc. Cellular neural networks and
their applicaions, 2008, pp. 23-28

[4] J. Javier Martínez, F. Javier Garrigós, F. Javier Toledo, José Manuel
Ferrández Vicente, “High performance implementation of an
FPGAbased sequential DT-CNN,”. IWINAC (2) 2007, pp. 1−9.

[5] J. Javier Martínez, F. Javier Toledo, E. Fernández, J. Manuel Ferrández
“A retinomorphic architecture based on Discrete-Time Cellular Neural
Networks using reconfigurable hardware”, Neurocomputing, vol. 71,
Elsevier, January 2008, pp. 766-775

[6] “Card Products,” [Online] http://www.picocomputing.com

[7] “Line Card,” [Online] http://www.avnet.com/

(b)

(a)

(c)

Figure 5. Photographs of the system. a) Prototype consisting of the frame grabber board, 2 IHM modules and the digital video camera OV7620. b) Detail of
a IHM module and the interface expansion connector. c) Photograph of the system and test bench

