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Abstract—1In this paper, a new spatial method has been
implemented for the efficient calculation of the mixed poten-
tial Green’s functions associated to elecirical sources, when
they are placed inside arbitrarily-shaped cylindrical cavities.
The technique consists of placing electric dipole images and
charges outside the cavity, imposing, at discrete points of the
metallic wall, the appropriate boundary conditions for the
potentials. Results show that the numerical convergence is
attained fast. The cut-off frequencies and potential patterns
for a trapezium-shaped waveguide are compared to those
obtained by a standard finite elements technique, showing
excellent agreement, Furthermore, a printed planar filier
shielded in a square cavity has been analyzed with the new
Green’s functions, showing the practical value of the new
theory.

Index Terms— Green functions, Cavities, Waveguides,
Waveguide filters, Printed Circuits

I. INTRODUCTION

The interest in studying techniques which allow for the
prediction of the electrical behavior of shielded printed
circuits and cavity backed antennas has increased in the
last vears. This is because of the increasing popularity of
these devices for use in practical communication systems
[1]. For the analysis of these components, the integral
equation technique has grown in popularity due to its
efficiency, and to the capability to push to a maximum
the analytical features of the problem [2].

The formulation of the integral equation requires an
algorithm which leads to the computation of the elec-
tromagnetic scalar and vector potentials of the problem,
under point source excitations (i.e. the so called mixed
potentials Green’s functions). For the calculation of the
Green'’s functions, only the rectangular enclosure has been
extensively treated in the past ([3]). One possibility is to
express the Green’s functions in terms of spectral domain
slowly convergent series of vector modal functions ([4]).
However, spatial domain formulations can also be used to
compute the Green’s functions, expressing them as slow
convergent series of spatial images ([5]).

On the other hand, a new spatial domain method for
the Green’s function computation inside circular cylin-
drical cavities was recently proposed in [6] and in [7].
The technique uses image theory to enforce the proper
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boundary conditions for the fields. However, the Green's
functions formulation inside arbitrarily shaped cavities has
never been treated in the past, and one has to resort to
pure numerical techniques, such as finite elements or finite
differences, to treat this kind of problems.

In this context, an extension of the original image
theory proposed in [6] is presented in this paper. This new
technique permits the calculation of the mixed potential
Green's functions in arbitrarily-shaped geometries. In this
contribution, the new formulation to compute both the
electric scalar potential and the magnetic vector potential
dvadic Green's functions produced by electric currents
inside arbitrarily shaped cavities is shown. Resonant fre-
quencies can also be computed with this new technique,
and some useful results are given. In addition, a compari-
son between the potentials obtained with the novel image
technique and the electric field computed with a finite
elements technique, inside a trapezium-shaped cavity, is
presented. Finally, a microstrip filter shielded in a square
cavity has been efficiently analyzed, showing the accuracy
and practical value of the technique proposed.

II. THEORY

A ftrapezium-shaped cylindrical metallic cavity is de-
picted in Fig. 1 in order to introduce the spatial images
mixed potential Green’s functions formulation, without
lack of generality.

For the electric scalar potential we should impose null
potential on the cavity wall. If the boundary condition is
imposed at only one point, then only one charge image will
be used; this situation is shown in Fig. 1. The idea is to
impose the boundary conditions at N points on the cavity
wall, using V charge images placed outside the cavity. The
key point of the procedure is to evaluate numerically the
value of the N charges so that the boundary conditions
for the electric scalar potential are satisfied at the N
tangent points. The following system of linear equations
is obtained:

N
> @Gy ) = —Gv (') 1=1,2,8,..,N
k=1

(1)
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Fig. 1. Image charge arrangement used to enforce the boundary
conditions for the electric scalar potential along the cylindrical wall. Point
P is a generic observation point.

where all position vectors are shown in Fig. 1, and
Gv (7, 7’) is the potential Green’s function of a unit point
charge in free-space. Real cavities, including dielectric
layers, can also be studied using the multilayered media
spatial domain Green’s functions, obtained through Som-
merfeld integrals [8].

The solution of this system provides the complex values
of the N-images charges (g ) needed to satisfy the poten-
tial boundary conditions at N-different points on the wall.
The final electric scalar potential Green’s function inside
the cavity is evaluated by reusing the already computed
charge amplitudes:

N

Gy, (F) = Gv(F i) + D Gv (7)) @)
k=1

For the evaluation of the magnetic vector potential
dyadic Green’s function, a similar procedure is followed.
We recall that the final boundary condition to impose is the
zero tangent component of the electric field on the cavity
wall. This condition leads to two different conditions for
the magnetic vector potential:

bnxA=0;, V-A=0 (3)
Where é€,, is the unit vector normal to the wall (see Fig. 2).
If the first equation is satisfied, the second is simplified,
working in rectangular coordinates, to a single condition
involving the magnetic vector potential normal component,
as follows:

(V-A)-é,=0 )

Considering a unit dipole oriented along the z-axis,
the utilization of two orthogonally oriented electric dipole
images is proposed in order to impose both conditions
at one point of the cylindrical wall (see Fig. 2). This
procedure can now be generalized, to impose the right
boundary conditions at N-points along the cavity wall. In

a=h

2a)

PA:

Fig. 2. Electric images dipoles used to enforce the boundary conditions
for the magnetic vector potential at a discrete point on the trapezium-
shaped cavity wall.

this way, N-image dipoles are used, obtaining a 2N x 2V
system of linear equations:

N N
—singpiZGim(ﬁ,Fk') Iy +cosg0iZGyAy(f;,Fk’) =
k=1 k=1
sin @; G5F (7,7 ") (5
N N
CosgoiZCffk I,erSingoiZCgkIg =
k=1 k=1

—CosgpiC'zO; i=1,2,3,...,N

(6)
where the following constants have been defined:
. OGR (') . OGH(r, )
C7y = cos e + sin g —=— —— @)
IGY (v, ") IGY (ri, ")
Yy . . A iy Tk " . A i Tk
Ci,k = sing; 733; + sin @, B Pa— (8)

Both constants can be computed, for a general multi-
layered medium, using the spectral domain formulation
combined with the Sommerfeld integral transformation.
For the free space case, they can be calculated in closed
form as:

G (77 0GR ()

ox dx
pro e~ FkolTi=7e | (o — 2y (1 4 jko|Fs — 7 /|)
_ ko b NG )
47 |7 — 7% |
OGY (') 0GR (i)
oy dy
o e—Jkol i —7k I (yz - yl/c) (1 +j]€o|ﬁ‘ — T /D
_ b —Y) (10)
A |7 —rk 1|2

Once the system is solved, the magnetic vector potential
is recovered inside the arbitrary geometry by using all the
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amplitudes of the (2V) image electric dipoles (JF, I}):

N

G5, (770 ") = G (R ) + ) IR G (7, 7)) (1)

k=1
N

G (77 ) = I G, ) (12)

k=1

It is worth mentioning that all the equations are in-
dependent on the geometry of the waveguide, because
a specific coordinates system is not used, and a fixed
location of the images and the tangent points is not
assumed. The selection of the tangent points and the
distribution of the images surrounding the geometry is also
important for the convergence of the algorithm. Since the
proposed formulation pretends to be useful for arbitrarily
geometries, the situation of the images will vary depending
on the waveguide shape.

As already said, the spatial images technique can easily
be extended to consider a multilayered medium. This can
be done by replacing the free-space Green’s functions with
the multilayered media Green’s functions formulated in
the spatial domain through the well known Sommerfeld
tranformation [8]. This allows to impose automatically the
boundary conditions at the top and the bottom covers, and
to take into account for the presence of dielectric layers

[6].
III. RESULTS

In order to analyze the trapezium-shaped cavity pre-
sented in Fig. 1 as a real three-dimensional enclosure,
the cavity height (z-axis in Fig. 3) is taken as 0.4A. In
this case, 31 images are used to enforce the boundary
conditions on the wall of the trapezium-shaped cavity, as
shown in Fig. 3. To obtain the resonances of the cavity,
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Fig. 3. Trapezium waveguide analyzed with 31 images. Source is placed
at point (0.4x,0) and Observation is at point {(—0.4X, 0).

the potentials are represented as a function of frequency
for a fixed position of source and observation points (see
Fig. 3). Resonant frequencies can be clearly observed
in Fig. 4, corresponding to sharp peaks in the response.
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Fig. 4. Mixed potentials as a function of frequency in the trapezium-
shaped cavity shown in Fig, 3.

TABLE 1
CUT-OFF FREQUENCIES FOR CAVITY IN FIG. 4.
Cut-off frequencies, | Cut-off frequencies, Relative
HFSS®@ (£) Spatial images (£) | Difference (%)

0.3878 0.3885 0.1805
0.4012 0.4007 0.1246
0.4049 0.4047 0.0494
0.4376 0.4372 0.0914
0.4499 0.4493 0.1333
0.4757 0.4747 0.2102
0.4836 0.4831 0.1033
0.4870 0.4878 0.1642
0.4910 0.4919 0.1832

The resonant frequencies predicted with the novel space
image technique are compared to those obtained by a finite
elements technique in Table [, High accuracy has been
achieved, maintaining in all cases a relative error below
0.21%.

To show that this technique can compute the potentials
(even at the cavity resonances) without any converge
problems, the electric scalar potential inside the trapezium-
shaped cavity is depicted at the middle-height plane,
and at the normalized frequency of: & = 0.4831. The
results in Fig. 5 are compared with those obtained by a
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Fig. 5. Electric scalar potential obtained with the new spatial images
technique at the normalized resonant frequency % = 0.4831.
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commercial finite elements HFSS© method in Fig. 6. The
same distribution of the T'M3;; mode is observed with
both methods.
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Fig. 6. Electric field z-component obtained by HESS® at the same
normalized frequency of % = 0.4831.

The technique developed can also be used for the
analysis of practical printed circuits shielded in arbitrarily-
shaped enclosures. A shielded band-pass filter based on
coupled lines sections inside a square box is presented
in Fig. 7. For this simple geometry, only 12 images are
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Fig. 7. Boxed microstrip band-pass filter based on coupled lines sections.

needed to obtain good convergence. The images are placed
at the dielectric height, surrounding the structure. Scatter-
ing parameters are depicted in Fig. 8, showing an excellent
agreement between our results and those obtained with a
spectral domain technique presented in [9].

IV. CONCLUSIONS

In this paper, we have presented a novel technique for
the evaluation of the boxed Green’s function in arbitrarily-
shaped cylindrical cavities.The approach is based on the
imposition of the boundary conditions for the mixed poten-
tial Green’s functions at discrete points of the cavity wall.
This imposition is achieved with the aid of discrete spatial
images. The technique has been formulated entirely in the
spatial domain and it has shown to converge rapidly. For
validation, cut-off frequencies and potential patterns from
a trapezium waveguide are compared to those obtained by
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Fig. 8. Results for the band-pass filter shown in Fig. 7. Results from a
spectral method are included as a validation

HFSS©. Moreover, a practical microwave bandpass filter
inside a square cavity is analyzed, confirming the accuracy
of the method, and its usefulness when modeling practical
circuits.
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