
Real–Time Teaching with Java: JPR
3 ?

Diego Alonso and Juan A. Pastor and Bárbara Álvarez

diego.alonso@upct.es

Universidad Politécnica de Cartagena (Spain)

Abstract. This paper describes a development platform built around a
digital railroad scale–model: JPR

3 (Java Platform for Realtime Railway
Research). The laboratory equipment and software aims to achieve two
goals: help and motivate students of real–time systems and as support for
postgraduate students. Students find the scale–model really challenging
and are very motivated by it; thus it’s easy for them to really learn
and practice all the concepts of real–time systems. But it’s not only
for students use: it also serves as a research platform for postgraduate
students, thanks to the possibilities offered by the scale–model. Java has
been chosen as the programming language codify the platform and the
implementation of the system is described in this work.

1 Introduction

Although many undergraduate courses in computer engineering acquaint stu-
dents with the fundamental topics in real–time computing, many do not pro-
vide adequate laboratory platforms to exercise the software skills necessary to
build physical real–time systems. The undergraduate real–time systems course
at Technical University of Cartagena is practical and carries out in a laboratory
with a Digital Model Railroad Platform, where students can apply the real–time
concepts explained at class [1] and see them work in a real enviorment.

Thanks to the Real–Time Extension [2], Java now offers a wonderful API for
real–time systems’ teaching, because there is a clear relation between real–time
concepts and Java objects. Plus the fact that students can see it work in a real–
time operating system, the result is a complete “real–time experience” for them.
Also, Java has been chosen because students are already familiar to it, since
Java is studied during the first courses. This way, they can focus on applying
real–time techniques rather than in learning a new programming language.

But in the process of real–time learning, the railway scale–model is also of
great help, not only because its a real, physical system, but also because it
motivates the students, who find it very challenging. The total length of the
track plus the complexity added by the possibility of using the turnouts, results

? This work was supported in part by the Spanish Ministry of Education (with ref-
erence ACF2000–0037–IN) and the Regional Government of Murcia (Séneca Pro-
grammes with reference PB/8/FS/02)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Digital de la Universidad Politécnica de Cartagena

https://core.ac.uk/display/60418405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

in a complex circuit to control in which problems with several levels of difficulty
(and risk) can be simulated.

This paper is organised in five more sections. Section 2 gives a complete
description of the laboratory equipment, both hardware (Sect. 2.1) and software
(Sect. 2.2). In Sect. 3 the real–time problems related to the mock–up are outlined,
and the Java implementation of the server–side of JPR

3 is described in Sect. 4.
An example of a real practice is presented in Sect. 5. Finally, Sect. 6 summarised
the content of the paper and outlines future plans for JPR

3.

2 The Platform at the Laboratory

This section presents a brief description of the equipment present at the labora-
tory, focusing on the railroad scale–model and the software control platform. The
railroad scale–model has been developed around a commercial system designed
and built by Märklin[3]. Specifically, it is based on the Märklin Digital System.
Figure 1 shows a panoramic view of the railroad platform once finished.

Fig. 1. Overview photograph of the scale–model

On the other side, the control architecture is run on a normal Intel Pentium
computer, placed next to the scale–model and connected to it by an RS–232
serial wire.



3

2.1 The Digital Model Railroad

Märklin commercialises beautiful all–time locomotives and all kind of accessories
to simulate a real railway network. The railroad scale–model placed at the lab-
oratory is formed by the following elements and accessories:

? Five digital locomotives, capable of moving in both directions and with spe-
cial functions, such as play the bell, turn–on the lights, or even throw smoke.

? Sixteen digital turnout switches (where three tracks join) with manual and
automatic control.

? Six digital semaphores, which are only passive elements, i.e., the locomotive
doesn’t stop by itself if the semaphore is in red.

? Twenty one double reed contact sensors to manage and control the position
of the different locomotives in the mock–up.

? Around a hundred railway tracks, both straight and curved, that make up
our particular railway network.

The Märklin Digital System uses the tracks as power and control lines for all
elements present in the scale–model, so the number of wires is minimum and new
elements can be easily added. Moreover, it uses the centre of the tracks as the
main conductor line, so the polarity of the signal is independent of the direction
of the movement of the locomotives. But this kind of communication, based on
friction, has a great drawback: it’s very noisy. So the transmission speed is set to
a very low value and every command is sent several times to ensure its correctly
received.

All the active elements of the scale–model (turnouts, semaphores and loco-
motives) have a unique identification number and carry a device to decode the
control commands that travel by the tracks. Because of the noise in the system,
each decoder needs to decode, at least, three times the same command for it
to proceed with it. This non-desired feature greatly increases the latency of the
system.

The reed contacts are placed before and after every turnout around the mock–
up, in order to monitor the traffic on the railroad. Each reed contact is really
composed by two switches, which are activated depending on the direction of
the locomotive that is stepping through it. To get the state of the reed contacts,
three Märklin S88 Decoders are used. Each one provides a reading of the status
of up to eight reed contacts, resulting in a total of sixteen sensors.

The scale–model can be manually operated by means of the Märklin 6021
Control Unit, the core of the Märklin Digital System. This module is in charge
of both converting the control orders to electric signals, that are transmitted
through the rails, and of reading the state of the Märklin S88 Decoders. Finally,
to be able to control the scale–model with a computer, a module that provides
a RS–232 serial interface with the Control Unit is used (see Fig. 2).



4

SERIAL
INTERFACE TRANSF.UNIT

CONTROLSENSOR
DECODER

RS−232

V
ID

E
O

 S
IG

N
A

L

SERVER

Fig. 2. Diagram of the configuration of the scale–model

2.2 The Software Platform: JPR
3

The software design of the JPR
3 was started following a four view design ap-

proach [4][5]. The initial development of the platform was guided by three ob-
jectives:

1. The application has to run in a host system that doesn’t make use of the
Real–Time Java extension. The user has to be able to configure whether the
Real–Time API has to be used or not.

2. The architecture has to be modular and easily extendable, so new features
could be added (such as the use of some video camera or a simulator of the
mock–up).

3. The architecture should be distributed, so different clients (such as an au-
tomatic control module or a web client) could make use and monitor the
mock–up.

With all these objectives in mind, the application was developed following
the schema shown in Fig. 3. This paper presents only the, what is called, server–

side of the application, which is, after all, the only that really has real–time
constraints.

To control the elements of the mock–up, the Märklin Serial Interface pro-
vides several commands to send to the Control Unit. Section 3 presents all the
issues related to the implementation of the communication with the scale–model,
which, as we will see, is not trivial. The available implemented control commands
are:

� Stop the mock–up � Start the mock–up
� Change turnout track � Read reed contacts
� Manage semaphores � Use locomotives functions
� Change locomotive speed � Change locomotive direction



5

Fig. 3. Architecture overview

3 Real–Time Characterisation of the Scale–Model

The greatest time constraint imposed by the scale–model is due to the commu-
nication system. As said before, the Märklin Digital System provides a great
advantage (there are practically no wires) but at a great cost (the communica-
tion is noisy, commands are sent several times and it works at a very low speed).
Moreover, a small unknown delay has to be introduced between two consecutive
commands, because, otherwise, the last command could be lost in its way and
thus completely ignored by the Control Unit.

Although the available set of commands is reduced, as seen in last section,
it is obvious that not all commands have the same priority. Commands such as
stop and start have a greater priority over the rest. Indeed, the emergency-stop
or stop-all order has to executed at fast as possible, to avoid collision between
locomotives. Also the scale–model ignores all commands until the start one has
been received, making the sending of other commands useless.

The other important time constraint is imposed by a simple fact: locomotives

do not have to crush!. This desirable objective means in practice that there has
to be a free track between two locomotives. In this case, the word track groups
all tracks between two reed contacts. As said in Sect. 2, there’s a reed contact
sensor before and after every turnout element of the mock–up, and they are the
only available source of information to know where a locomotive may be. We say
may be to mean that we only know that some locomotive has stepped through
one reed contact in a given direction, thus it is only known that the locomotive
is somewhere over the track.

Having said that, the safety condition for the system is the following: the
frequency of the reading of the state of the reed contacts has to ensure that no
locomotive could have activated two different reed contacts between two consec-
utive readings. So, given the maximum locomotive speed and the shortest track



6

(group of tracks between two consecutive reed contacts) the minimum period
between reads is around 500 msec.

4 Java Implementation Issues

Once the architecture of the application was finally defined and the server–side
finished, it was time to test it. At that time, we chose the solution proposed
by Timesys[6]: a modification of the Linux Kernel and an implementation of
the Virtual Machine over it. So, by now we are using version LEK-X86BSP-
4.1-155.3 of Timesys’ Linux Kernel and version RTJ-X86BSP-1.0-547.1 of the
Java Virtual Machine. Everything has been installed, as said before, in the Intel
Pentium computer present at the laboratory.

Fig. 4. Execution layer class diagram

As said in Sect. 2.2, the most important objective seeked by the development
of the application was to make it as highly configurable as possible. The goal was



7

to be able to configure the kind of threads it would use (normal Java threads or
RealtimeThreads [7]). This choice, as well as many more, are made during the
application start–up by means of configuration files. Figure 4 shows an UML
diagram of the execution layer. Among these configurable characteristics, two
will be named:

• The use of the Java Real–Time extension.
• The time constraints of the different threads, such as the deadline, period,

priority, . . . Some values are obviously ignored when non real–time execution
is selected.

When the initial creation and configuration step is over, every component
shown in Fig. 3 runs in it’s own thread (whether real or non real–time one). Each
one of these threads supervises and controls every object and thread created in
the component it’s in charge of. This way, the platform can be easily and safely
stopped.

Figure 5 shows the configuration of the component we have named “Mock–
Up Interface”. This component is the core of the server–side of the application,
because is in charge of managing the communication between the mock–up and
the different possible clients.

Fig. 5. Inner configuration of the mock–up interface

As can be seen in the figure, the constraint imposed by the latency of the
communication is solved by the use of two circular buffer with different priorities.
This was necessary to ensure that high–priority commands are executed nearly
when they are send to the component. The application consider only two such
commands: emergency stop and release of the system, whose importance can be



8

derived by their names. Besides the circular buffer, the server also follows an
observer pattern [8] to notify every client of the state of mock–up.

When the initital configuration and creation of objects is finished, three
threads are kept running in the server component:

– One thread, with the highest priority of all, to send commands to the mock–
up and read the sensors.

– Another thread to notify the observers of the state of the mock–up that it
has changed.

– One thread to execute different control strategies, developed by the students,
when in automatic control mode.

5 A Practical Exercise

The laboratory has been used in courses such as Concurrent Programming and
Real-Time Systems. These courses are placed in the last year of the Industrial
Electronics and Control Engineer graduate curriculum, and they cover a good
percent of ACM/IEEE-CS recommendations in computing technologies [9]. In
particular, the course Real-Time Systems has seven lectures which concentrated
on the following topics:

1. Characteristics of real–time systems and introduction to the Real–Time
Specification for Java.

2. Concurrent programming.
3. Scheduling schemes (cyclic executive and priority–based models).
4. Reliability, fault tolerance and low–level programming.

The practical exercises must provide opportunities for these theoretical con-
cepts testing. With the basic infrastructure described in the above sections, a
highly comprehensive set of programming practices were developed. One of them
is briefly described in this section, simply to give an overall idea of the labora-
torys possibilities.

The railroad platform simulator focuses on modularity. Students should be
able to design an application module using simulator module interfaces. An
example of practical exercise is carried out by the students starting from the
following requirements specification. Once the students know the railroad plat-
form, we fix the turnout switches in order to have a lineal problem, as can be
seen in Fig. 6.

It is necessary to avoid that a train collides with other train. Evidently,
because of the turnout switches are fixed, we have a one–way railroad and it
is not possible that a train meets to other train in a turnout switch or two
trains collide. In order to avoid accidents, it has always to have a “free stretch”1

between two trains. In accordance with this idea, if a train (train A) has gone
over a reed contact sensor which represents the beginning of a track and other

1 We define a “free stretch” as the space of tracks between two reed contacts



9

Fig. 6. A practical scheme

train (train B) is on the following track then we have to stop the first train
(train A) until the second train (train B) leaves the occupied track. In this
moment, the stopped train must recovery its initial speed.

As Fig. 6 describes, the train A is over a stretch between s9–s10 reed con-
tacts and can go on towards the stretch delimited by s10–s11 reed contacts.
However, this train must be stopped when standing on s11 reed contact if the
train B has not stood on s1 reed contact.

To avoid the constant execution of stopping and starting procedures, it is
recommended to increase the speed of the forward train (in our example train

A) around 20% until having a “free stretch” between the trains again. From this
moment, the forward train travels with its initial speed2.

The students must implement a program for monitoring the state of the dif-
ferent sensors and modifying the speed of the trains in order to avoid collisions
between them as the above specification describes. Each train must be imple-
mented as RealtimeThreads. In this way, the control is distributed and other
manager task will centralize the occupation of the tracks. Some real–time char-
acteristics of the railroad platform are: critical safety operations (to stop a train,
to stop the whole system, to change the state of a turnout switch, . . . ) need to
have a very high priority; the time needed to stop a train must be bounded; the
detection of a possible collision between trains must be in certain limits, and
so on. In addition, the times of standing on each reed contact sensor must be
registered.

Finally, the student must take into account possible fails and manage them
using the mechanism of exceptions. In this way, the exercise allows to prac-
tice the different topics reviewed during the course as concurrent programming,
scheduling schemes, fault tolerance, etc . . .

2 We suppose in this example that the students know the simulator and its interface
to reading all sensorial information accurately



10

6 Conclusion and Future Work

JPR
3 aims to help students exercise their knowledge of concurrent program-

ming, real–time systems, control application, etc . . . as well as research tool for
postgraduate students. The platform was designed to be easy to use and config-
ure for students, but also extensible so new features could be added in a painless
way.

Obviously, the research and development of JPR
3 does not end here. We’ve

already started up a number of activities to extend its functionalities.emphasiseese,
we wish to emphasize the following ones: design of a simulator of the mock–up
(so students could test their control strategies without using the real mock–up),
use of video cameras to carry out visual supervision and control of the loco-
motives (cameras can also be placed inside the locomotives) and, finally, make
it a real distributed application by using a communication middleware, such as
CORBA and/or RMI.

Although we have chosen a particular implementation of the Virtual Machine,
we also plan to test JPR

3 with other implementations of the JVM and real–time
operating systems.

References

1. Burns, A. Wellings, A.: “Real–Time Systems and Programming Languages”.
Addison–Wesley (2001)

2. Real–Time Specification for Java v1.0 http://www.rtj.org/rtsj-V1.0.pdf
3. Märklin Trains homepage http://www.marklin.com
4. Hofmeister, C. et als.: “Applied Software Architecture”. Addison–Wesley (2000)
5. Powel, B.: “Real–Time Design Patterns”. Addison–Wesley (2003)
6. TimeSys Corporation homepage http://www.timesys.com
7. Dibble, P.: “Real–Time Java Platform Programming”. Prentice Hall (2002)
8. Gamma, E. et als.: “Design Patterns: Elements of Reusable Object Oriented Soft-

ware”. Addison–Wesley (1995)
9. CM and IEEE-CS. Year 2001 model curricula for computing (Computing curric-

ula 2001). The joint IEEE computer society/ACM task force. [Online]. Available:
http://www.acm.org/education/curricula.html.


	Real--Time Teaching with Java: JPR3 
	Diego Alonso and Juan A. Pastor and Bárbara Álvarez
	Introduction
	The Platform at the Laboratory
	The Digital Model Railroad
	The Software Platform: JPR3

	Real--Time Characterisation of the Scale--Model
	Java Implementation Issues
	A Practical Exercise
	Conclusion and Future Work



