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Abstract
In this paper, we study the post-hoc calibration of modern neural networks, a problem that has drawn a lot of attention in

recent years. Despite the plethora of calibration methods proposed, there is no consensus yet on the inherent complexity of

the task and, while some authors claim that simple functions solve the problem, others suggest that more expressive models

are needed to capture misscalibration. As a first approach, we focus on the task of confidence scaling, specifically on post-

hoc methods that generalize Temperature Scaling, which we refer to as the Adaptive Temperature Scaling family. We

begin by demonstrating that while complex models like neural networks provide an advantage when there is ample data,

they fail in scenarios where it is limited, notably common in fields like medical diagnosis. We then show how under this

ideal data conditions the more expressive methods learn a relationship between the entropy of a prediction and its level of

overconfidence, and based on this observation, we propose Entropy-based Temperature Scaling, a simple method that

scales the confidence of a prediction according to this relationship. Results show that our method obtains state-of-the-art

performance and is robust against data scarcity. Moreover, our proposed model enables a deeper understanding of the

calibration process by the interpretation of the entropy as a measure of uncertainty in the network outputs.
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1 Introduction

There is an increasing trend in using Deep Neural Net-

works (DNNs) to automate a multitude of tasks, like image

classification for healthcare [1] and speech recognition [2]

among many others. Some of these are high-risk applica-

tions in nature, for example, a False Negative given by a

DNN used for cancer detection could be fatal for the

patient. Hence it is of paramount importance to use reliable

Machine Learning (ML) systems that acknowledge the

uncertainty of their predictions. A probabilistic classifier

that outputs a confidence value, or probability, for each

class, allows to make Bayes decisions—i.e., optimum

decisions leveraging the cost of such decisions [3]. So, by

applying the Bayesian framework we can readily account

for such uncertainty, assuming that the system produces

calibrated confidence values.

The extent to which the confidence outputs of a classifier

can be interpreted as class probabilities is what is known as

the calibration of a classifier [4, 5]. Modern DNNs achieve

very low test error rates but are not necessarily well-cali-

brated [6, 7]. Hence, there is a growing interest from the

ML community toward improving the calibration of DNNs.
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1.1 Related work

One approach to obtain better confidence estimates is to

average the predictions of different models using ensem-

bles [8] or taking a Bayesian approach to model learning

[9, 10]. Data Augmentation techniques have also been used

to improve calibration [11–13], as well as modified training

objectives [14–16]. Among popular approaches, and the

focus of this work, is the approach of post-hoc calibration,

in which the predictions of an already trained classifier are

re-calibrated (Fig. 1). Typically, other model, the calibra-

tor, is trained on the outputs of the classifier to calibrate.

This approach is very convenient since one can take

advantage of the existing literature and use off-the-shelf

ML systems that present all the desirable properties that

make them so popular. Deep Learning models usually offer

a good solution for any Machine Learning task and, for this

reason, DNNs have become standard models with an easy

application via public frameworks like Pytorch [17] and

Tensorflow [18]. Post-hoc calibration allow us to use the

existing stack to solve high-risk tasks and address over-

confidence issues with little overhead.

Probably the most popular post-hoc calibration method

for DNNs is Temperature Scaling (TS) proposed by [6]. It

is a single parameter model that re-scales the confidence

predictions by a temperature factor. The simplicity of this

method and the fact that it seems to perform even better

than more complex ones, led the authors to believe that the

problem of re-calibration is inherently simple. However,

recent alternatives based on expressive models like Baye-

sian Neural Networks [19] and Gaussian Processes [20]

outperform TS, suggesting that re-calibration might be a

more complex problem than it was previously assumed. On

the other hand, expressive models can be more data-hungry

and may require careful tuning when the amount of data is

limited. Hence, TS still represents the standard calibration

method as it yields a good trade-off between simplicity and

performance, especially when recalibration data is limited.

Based on the observation that miscalibration on modern

DNNs is often caused by over-confidence [6, 21], recent

work proposes to learn more complex calibration functions

than TS but from a constrained space by imposing some

restrictions, like being accuracy-preserving [22] and order-

invariant [23], inducing a bias toward the desired calibra-

tion functions. This approach shows promising results, but

it may still fail in low-data scenarios, especially when

using over-parameterized models. This can be a huge

limitation in tasks where data for calibration is usually

scarce, like certain language recognition tasks where some

languages can be underrepresented [24, 25], or in the

medical diagnosis of very rare diseases [26]. Thus, there is

a need for calibration methods with low data requirements

in many real applications.

We propose to use a simple model with a suitable in-

ductive bias for the following reasons: First, the set of

possible calibration functions that the model can learn—

i.e., the hypothesis space—is reduced. This translates into

an easier training objective requiring less tuning.

Fig. 1 Post-hoc calibration
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Moreover, if the bias is well-specified, the learned cali-

bration function will be more robust against a lack of

training data, and will better generalize to other data [27].

The quality of the inductive bias depends on the knowledge

we have of the task at hand. For example, the specific

architecture of Convolutional Neural Networks (CNNs),

based on convolution filters, explains their success on

visual recognition tasks [28], even though by sharing

weights the total number of parameters is reduced, con-

straining the learning space.

1.2 Contributions

To gain knowledge about the calibration of modern DNNs,

we provide a study of post-hoc calibration methods. We

analyze several state-of-the-art calibrators of varying

degrees of expressiveness and robustness to help design

models more resilient to data scarcity. We focus on the

problem of confidence scaling as the bad calibration

properties of DNNs are mainly attributed to over-confi-

dence [6].

To perform this study we focus on Adaptive Tempera-

ture Scaling (ATS) methods, a family of calibration maps

that generalizes TS by making the temperature factor

input-dependent. This idea has already been proposed

before in the literature [29], but the ATS method differs

from those in the specific input-dependency. Previous

methods propose to estimate the temperature factor as a

function of the classifier input. ATS models, on the other

hand, compute temperature factors directly from the output

of the classifier via a temperature function. Within this

family, we can compare several calibration methods which

extend the expressiveness of TS in different ways.

We analyze and benchmark several calibration models

focusing on the shape of those temperature functions that

lead to better calibration. Results show that highly

parameterized methods achieve high performance when

there is plenty of data, but also that these are doomed to

failure in low-data scenarios. By examining the behavior of

expressive methods on ideal conditions, we notice that their

temperature function shows a dependency between the

entropy of a prediction and its degree of overconfidence.

Based on this gained knowledge about the post-hoc cali-

bration task, we develop Entropy-based Temperature

Scaling (HTS), a method with a strong inductive bias that

is robust to the size of the dataset and provides comparable

performance to other state-of-the-art methods. We provide

an interpretation of the method based on the use of entropy

as a measure of uncertainty. This interpretation helps to

understand the relation between overconfidence and

uncertainty estimation.

The rest of the paper is organized as follows. First, we

introduce some theoretical background of the calibration

task. In Sect. 3 we propose some post-hoc calibration

methods motivating their design, and also describe other

existing techniques to which we compare our methods.

Next, in Sect. 4 we describe the performed experiments,

point out some observations, and show the results. Finally,

in the last section, we give our conclusions and comment

on possible future work.

2 Background

In this work we focus on the calibration of classifiers, so

before delving into the concept of calibration we introduce

the following notation to describe the multi-class classifi-

cation task. Let x�X 2 X be the input random variable

with associated target y� Y 2 Y, where y ¼ ½y1; y2; ::; yK �
is a one-hot encoded label. The goal is to obtain a proba-

bilistic model f for the conditional distribution PðY jX ¼ xÞ.
Notice that, since Y is a categorical vector encoding the

true class, any distribution P(Y) on Y follows a categorical

distribution. The model defines the function

f ðxÞ ¼ z; x 2 X ; z 2 RK . The outputs z of the model are

known as logits since they are later mapped to probability

vectors via the softmax function:

q ¼ rSMðzÞ ¼ exp z
PK

k¼1 exp zk
; ð1Þ

where the exponential in the numerator is applied element-

wise. The output q 2 SK is the corresponding probability

vector that lies in the probability simplex in K classes SK

and qk is the model predicted value for PðykjxÞ.
In practice there is no distribution P(X, Y) (or we do not

have access to it). Instead, we have a labeled data set D of

N pair-realizations D ¼ fxðiÞ; yðiÞgNi¼1 that is used to

approximate it. For example, DNNs are normally trained

by minimizing the expected value of some loss function

Lðf ðxÞ; yÞ, over the empirical distribution induced by

placing a Dirac’s delta at each point D:
X

ðx;yÞ2D
Lðf ðxÞ; yÞ:

2.1 Calibration

A probabilistic classifier is said to be well-calibrated

whenever its confidence predictions for a given class match

the chances of that class being the correct one [4, 5]. We

can express this property as an equation in terms of the

probability distributions introduced earlier:

Pðy j qÞ ¼ q; 8q 2 SK ; ð2Þ
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where Pðy j qÞ represents the relative class frequency —i.e.,

the proportion of each class on the set of all possible

realizations of x for which the classifier predicts q.

From this expression, it is easy to derive a measure of

miscalibration or Calibration Error (CE):

CE ¼ EPðX;YÞ
�
Pðy j qÞ � qk kd

�
: ð3Þ

This is, the expected value of the d-norm of the difference

between prediction vectors and the relative class

proportions.

While this equation might be useful to illustrate the

concept of miscalibration, it does not provide a feasible

way to measure it. First, we cannot compute the expected

value w.r.t. the non-existent distribution P(X, Y), and, more

importantly, there is no simple way of evaluating Pðy j qÞ.
The former can be readily solved by using the labeled

dataset D as MC samples, yet the later is still a main

limitation. Thus, further approximations are required to

estimate the miscalibration of a classifier.

2.1.1 ECE

The most popular metric used to estimate the Calibration

Error is the Expected Calibration Error (ECE) [6, 30]. This

metric uses a histogram approach to model Pðy j qÞ and

considers only top-label predictions—i.e., maxðqÞ. The

samples of a given evaluation set Dtest are partitioned into

M bins B1;B2; :::;BM according to the confidence of their

top prediction:

Bi:¼
n
ðx; yÞ 2 Dtest :

i� 1

M
\maxðqÞ� i

M

o
:

Then the ECE is computed as:

ECE ¼
XM

i¼1

jBij
jDtestj

jaccðBiÞ � cofðBiÞj; ð4Þ

where j � j denotes the number of samples in a set, accðBiÞ
is the accuracy of the classifier evaluated only on Bi, and

cofðBiÞ is the mean confidence of the top-label predictions

in Bi.

Despite its popularity, this estimator provides unreliable

results as it is biased and noisy [31–33]. Many improve-

ments over the ECE have been proposed to mitigate these

problems such as class-wise ECE and using variable con-

fidence intervals [33]. However, there is not any binning

scheme consistently reliable [34]. Anyway, ECE remains

the most popular metric used by the community to measure

miscalibration and we use it in our experiments to report

results for the sake of comparison.

2.1.2 Proper scoring rules

One way to implicitly measure calibration is to use Proper

Scoring Rules (PSRs). Any PSR can be decomposed into

the sum of two terms [35], a refinement term and the so-

called reliability or calibration. Thus, when evaluating the

goodness of a classifier with a Proper Scoring Rule, one is

also indirectly measuring calibration. The fact that the

calibration component cannot be evaluated in isolation is

what drives the community to use approximated metrics

like ECE. Moreover, different PSRs may rank differently

the same set of systems evaluated on the same data. Nev-

ertheless, PSRs provide a theoretically grounded way of

measuring the goodness of a classifier. Throughout this

work, we use two different PSRs to evaluate models, the

log-score or Negative Log-Likelihood (NLL) and the Brier

score, both of them well-known [36].

2.1.3 Entropy

Because the output of a probabilistic classifier represents a

categorical distribution, the entropy of a prediction vector q

is defined as:

HðqÞ ¼ �
XK

k¼1

qk log qk: ð5Þ

It is easy to check that entropy reaches its maximum of

HðqÞ ¼ � log 1=K ¼ logK at q ¼ ½1=K; 1=K; :::; 1=K�.
Likewise, it is minimized at the vertices of the probability

simplex—i.e., qk ¼ 1 for any class k—where it takes a

value HðqÞ ¼ 0. From this behavior it follows naturally the

interpretation of the entropy of the predictive class distri-

bution as a measure for uncertainty quantification [37, 38].

The ECE metric considers only the confidence value

assigned to the top-rated class. This value represents the

class probability estimated by the classifier. While it is a

confidence value, it does not represent the ‘confidence’ of

the classifier on the prediction, it just concerns the pre-

dicted class in particular. Conversely, the entropy of the

prediction vector is a measure of uncertainty of the whole

prediction—i.e., an alternative and more comprehensive

way of assessing the classifier’s confidence in some

prediction.

For instance, we may have two predictions qðiÞ ¼
½0:6; 0:2; 0:2� and qðjÞ ¼ ½0:6; 0:4; 0:0� in a 3-class problem.

Both assign the same confidence 0.6 to class 1, but it is

clear that qðiÞ is a higher entropy predictive than qðjÞ—i.e.,

it is a more uncertain prediction.
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2.2 Post-hoc calibration

Ideally, a model f trained on some data D would generalize

and show good calibration properties when evaluated on

other data Dtest, assuming both sets are reasonably similar.

However, many classification systems turn out to be badly

calibrated in practice; for instance, Convolutional Neural

Networks (CNNs) tend to produce overconfident predic-

tions [6, 21]. Moreover, in some tasks, it cannot be guar-

anteed that the training data is similar enough to the actual

data on which the model will be deployed. For instance, a

language recognition system may be trained on broadcast

narrowband speech (BNBS) data but applied in a telephone

service where the audio characteristics are different. To

solve this problem, one common approach is that of post-

hoc calibration, in which a function is applied to the out-

puts of the model. This function can be seen as a decoupled

classifier that learns to map uncalibrated outputs to cali-

brated ones—i.e., q 7!q̂. We use the �̂ notation to denote the

calibrated prediction. The standard practice is to fit this

calibration map, or simply calibrator, in a held-out data set

Dcal, also called calibration data, that is supposed to

resemble the data on which the model will make

predictions.

Many post-hoc calibration methods take as input pre-

diction logits instead of the final probability vectors. Notice

that this does not limit their applicability since the outputs

q of a probabilistic model can be mapped to the logit

domain through the logarithmic function z ¼ log qþ k,

where k is an arbitrary scalar value and the logarithm is

applied element-wise. Since post-hoc calibration only

requires access to the outputs of the uncalibrated model it is

common practice to work directly with logit-groundtruth

pairs (z, y) directly. So, throughout this work when we talk

about the calibration set we might refer to the set defined

as:

D0
cal ¼ fðf ðxÞ; yÞjðx; yÞ 2 Dcalg;

where z ¼ f ðxÞ are the logit outputs of the uncalibrated

model. For the sake of simplicity we will refer to this as

just Dcal.

The standard procedure for post-hoc calibration is layed

out in Algorithm 1. Note that we can use the same

trainClassifier function to train the classification model and

the calibration model. This is because, as we explained

above, post-hoc calibration can be seen as a classification

task in which the inputs are the outputs of an uncalibrated

model.

Algorithm 1 Procedure to train and calibrate a classifier.

2.2.1 Accuracy-preserving calibration

Modern classification systems achieve very low test error

rates and their miscalibration is attributed mainly to over-

confidence—i.e., predicted confidences that call for higher

accuracy rates than those actually obtained. Under this

assumption, it is reasonable to constrain the calibration

transforms so that the predicted ranking over the classes is

maintained. This condition is known as accuracy-preserv-

ing [22] because functions that meet it do not change the

top-label prediction:

argmaxk qk ¼ argmaxk q̂k:

When using expressive, and unconstrained, classification

models like DNNs for the task of calibration, it is possible

to improve calibration at the cost of losing accuracy

[19, 23]. This trade-off is avoided by restricting the cali-

bration functions to be accuracy-preserving so that the

class decision, left to the classifier, is decoupled from the

confidence estimation of each decision.

In this work, we compare only accuracy-preserving

methods and avoid altogether the consequently trade-off

often encountered in the calibration task: The question of

determining which calibrator is better, one that improves

more calibration but degrades the accuracy, or one that

does not degrade the accuracy but shows less improvement

on calibration. This decision is often application dependent

but can be circumvented by using an accuracy-preserving

method.
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2.2.2 Temperature scaling

Temperature Scaling (TS) is probably the most widely used

post-hoc calibration approach in the literature. It belongs to

the family of accuracy-preserving methods. It scales the

output logits by a temperature factor T0 2 Rþ:

ẑ ¼ z

T0

: ð6Þ

This factor is obtained by minimizing the NLL on some

calibration data consisting of predictions of the uncali-

brated classifier. Since the NLL is a Proper Scoring Rule,

TS is encouraged to improve calibration. The simplicity of

the method presents several advantages: The resulting

optimization problem of its training has a closed solution

and is cheap to compute. Moreover, it is an inter-

pretable method by design since its temperature factor

conveys information about the level of over-confidence of

the classifier. A high temperature T0 [ 1 flattens the logits

so the probability vectors approach the uniform distribution

q ¼ ½1=K; 1=K; :::; 1=K�, thus relaxing the confidences and

fixing over-confidence. On the other hand, a low temper-

ature T0\1 sharpens the confidence values moving the

top-label predictions toward 1 and the others toward 0.

Hence, fixing under-confidence.

3 Methods

In this section, we first describe the Adaptive Temperature

Scaling family and illustrate it by proposing some methods

of our contribution. Then, we introduce other accuracy-

preserving methods, not necessarily of the ATS family,

with state-of-the-art performance that we use as bench-

marks in the experiments.

3.1 The adaptive temperature scaling family

We use the term ATS family to denote the group of

accuracy-preserving maps that generalizes Temperature

Scaling and can be expressed as:

ẑ ¼ z

TðzÞ ; ð7Þ

where T : RK 7!Rþ is the temperature function.

This family generalizes Temperature Scaling by making

the temperature factor input-dependent. TS is limited to the

temperature function TðzÞ ¼ T0, where T0 is the scalar

parameter of the model. Hence, TS implicitly assumes that

a classifier will generate predictions with the same level of

over-confidence independently of the specific sample being

classified.

On the other hand, a general ATS method computes a

different temperature factor for each prediction via the

temperature function T(z). The computed factor for some z

estimates the degree of over-confidence of the corre-

sponding prediction q ¼ rSMðzÞ. Hence, ATS methods

acknowledge the possibility that a classifier’s over-confi-

dence may depend on the samples being classified.

The input-dependent property was first exploited by [29]

with their Local Temperature Scaling method. However,

this approach relies on the classifier input x to estimate a

temperature factor Tx ¼ TðxÞ. An ATS method estimates

the factor based on the classifier output instead, Tx ¼ TðzÞ,
thus separating further the calibration step from the original

classification task. The former approach tries to learn for

which inputs x, e.g., images, the classifier is likely over-

confident. ATS, on the other hand, is independent of the

classification task requiring only access to precomputed

predictions z. In other words, Local TS should be tailored

for each classification task. For instance, if the input is

audio one might use an RNN but choose a CNN instead for

images. But both of them will output a logit vector in a

classification task; thus, the input space of ATS methods is

always the logit domain so these are more likely to gen-

eralize across classification tasks.

We acknowledge that this may reduce the potential

expressive power of ATS since z is a processed version of

x. Nevertheless, we believe that such constraint is not

necessarily detrimental since, as we show in our experi-

ments, the logit vector of a prediction already conveys

information about its degree of miscalibration. Moreover,

one advantage of post-hoc methods is the decoupling of the

classification step from the calibration step. This is in some

sense lost if the original classifier input is required for the

calibration.

3.2 Proposed methods

We introduce three different ATS methods based on simple

temperature functions. For each method we provide an

hypothesis of why it can be used for recalibration and how

the corresponding temperature function could be inter-

preted. Before delving into the methods we note that to

meet the positivity constraint on the temperature factor we

apply the softplus function to the outputs of ATS calibra-

tion models:

rSPðaÞ ¼ lnð1 þ eaÞ: ð8Þ
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3.2.1 Linear temperature scaling

We call this method Linear Temperature Scaling (LTS)

since it is based on a linear combination of the logit vector,

its temperature function is given by:

TLTSðzÞ ¼ rSPðwLzþ bÞ; ð9Þ

where wL 2 RK and b 2 R are the learnable parameters of

the model.

The weight vector wL takes into account the score

assigned to each class to determine the level of over-con-

fidence. Hence, LTS can predict higher temperature factors

for certain predicted classes than for others. The scalar

parameter b allows LTS to recover the base TS by zeroing

the wL parameter.

We motivate this method by giving the following

example: an uncalibrated classifier can make over-confi-

dence predictions for only certain classes. Since LTS

weights each component of the logit vector to obtain the

temperature factor, it should be able to raise (shrink) it by

increasing (decreasing) the weight component wL
i depend-

ing on whether the classifier is more (less) likely to make

an over-confident prediction when predicting class i.

From this follows the interpretation of the method. After

fitting LTS on a calibration set, the weight vector will point

toward the direction of the highest degree of overconfi-

dence in the logit space.

3.2.2 Entropy-based temperature scaling

Motivated by the fact that the entropy of the predictive

class distribution can be interpreted as the uncertainty of

such prediction, we propose HTS. The temperature func-

tion of this method is given by:

THTSðzÞ ¼ rSP wH logHðzÞ þ b
� �

; ð10Þ

where HðzÞ ¼ HðrSMðzÞÞ= logK is the normalized entropy,

and wH 2 R and b 2 R are the learnable parameters of the

model. We normalize the entropy so that it is always upper-

bounded by 1 irrespective of the number of classes. This

allows us to generalize the interpretation of wH between

tasks with a different number of classes. We apply the

logarithm to the entropy because, as we show later in the

experiments, the temperature shows a linear trend with the

logarithm of the entropy. We give b the same interpretation

as in the previous model. The parameter wH determines

how much the uncertainty of the prediction vectors—i.e.,

the logHðzÞ—influences the temperature factor. The higher

the magnitude of wH the more variability we can expect in

the computed temperature factors. On the other hand, a

model with wH ! 0 will resemble the base TS.

We motivate the method with a hypothetical example.

Suppose that we have a classifier that produces predictions

with variable degrees of over-confidence. One way in

which a prediction-logit can convey information about its

level of over-confidence is via its entropy. This is, for two

predictions with the same predicted confidence, we may

assume that the more uncertain of the 2—i.e., the higher

entropy prediction—is more likely to be over-confident

since it reports the same value of confidence despite its

higher uncertainty.

This model makes a strong assumption about the level of

over-confidence in a prediction. Mainly, that it can be

expressed as a simple linear function of the log-entropy.

The resulting model is easy to train since the set of possible

calibration functions, or hypothesis space, is constrained by

the number of trainable parameters. However, its perfor-

mance is completely conditioned on the assumption being

met. We provide experiments validating the model and its

assumptions in Sect. 4.

3.2.3 Combined system

Finally we propose HnLTS, a model that combines the

previous two with a single temperature function given by:

THnLTSðzÞ ¼ rSP wLzþ wH logHðzÞ þ b
� �

; ð11Þ

where wL 2 RK , wH 2 R, and b 2 R are the learnable

parameters to which we give the same interpretation as

above.

The motivation behind this model is to increase the

expressiveness of the system in a controlled way to see

how this affects its performance and training procedure

compared to the more simpler methods. The hypothesis

space of this method is a combination of LTS and HTS so it

should be able to, at least, recover the solution of either one

and achieve the same or better performance. However, we

argue that the increased hypothesis space also makes the

model more difficult to train with higher data requirements

and this may impact its applicability depending on the task

at hand, specially in data-scarce scenarios.

3.3 Baseline methods

We now describe other accuracy-preserving methods

already existing in the literature with state-of-the-art per-

formance. Some of these, but not all of them, belong to the

ATS family as they can be expressed in the general form

given by Eq. 3.1.
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3.3.1 Parameterized temperature scaling

parameterized Temperature Scaling (PTS) [15] is a specific

instance of the ATS family in which the temperature

function is conditioned to be a neural network (NN). The

input to the NN is the logit vector sorted by decreasing

value of confidence zs. Sorting the logit vector makes the

model order-invariant [23] simplifying the hypothesis

space at the cost of losing the possibility of discriminating

between classes—i.e., it cannot consider the predicted

ranking over the classes. PTS can be expressed as an ATS

method with temperature function:

TPTSðzÞ ¼ NNðzsÞ; ð12Þ

where NN is the function defined by the neural network.

Instead of optimizing the parameters of the NN to

minimize some PSR as other methods do, authors propose

to minimize an ECE-based loss given by:

LECE ¼
XM

i¼1

jBij
jDtestj

accðBiÞ � cofðBiÞk k2; ð13Þ

where Bi, cofðBiÞ, and accðBiÞ, are defined as in Eq. 2.1.1.

During training, samples are re-partitioned into Bi at each

loss evaluation since the confidence is re-scaled differently.

In their experiments, authors always use the same

architecture, a Multi-Layer Perceptron (MLP) with two

5-unit hidden layers. Authors limit the input size of the

network to the 10 highest confidence values whenever the

number of classes is greater than 10. We use the same

architecture in our experiments.

3.3.2 Bin-wise temperature scaling

Bin-Wise Temperature Scaling (BTS) [39] is a histogram-

based method that applies a different temperature factor to

each bin of the histogram. First, test samples are partitioned

into N bins according to their top-label confidence. Authors

force a high-confidence bin that ranges from 0.999 to 1.

The samples with predicted confidence below 0.999 are

partitioned into the other N � 1 intervals such that each bin

contains the same number of samples.

This method can also be included in the ATS family.

The temperature function in this case is just a look-up

table that assigns the corresponding temperature factor to

the input confidence value.

3.3.3 Ensemble temperature scaling

Ensemble Temperature Scaling (ETS) [22] obtains a new

logit vector as a convex combination of the uncalibrated

vector, a maximum entropy logit vector, and the temper-

ature-scaled vector:

ẑ ¼ w1

z

TETS

þ w2zþ w3

1

K
;

subject tow1 þ w2 þ w3 ¼ 1;wi � 0

ð14Þ

where w1, w2, w3 are the learnable weights of the convex

combination and TETS is the temperature parameter of the

TS component. All the parameters are optimized en bloc to

minimize some PSR.

This method is also an extension of the standard TS,

however, it does not belong to the ATS family. This can be

easily verified by noting that ATS methods compute for

some logit vector a single scalar temperature factor which

applies equally to every entry of the logit vector. On the

other hand, ETS scales by a different temperature factor

each component of the logit vector.

4 Experiments

We present two sets of experiments. First, we report a

study of the proposed methods that motivate their design

and present ways in which calibration performance

improves with model complexity. With these, we give

evidence that the logit vector conveys information about its

degree of over-confidence and motivate the design of new

calibration methods that take this into account. Then, we

compare our methods with other state-of-the-art accuracy-

preserving calibration techniques in different dataset-size

settings to assess their robustness to data scarcity.

4.1 Setup

4.1.1 Datasets and tasks

We refer to model-dataset pairs as calibration tasks. So a

task is composed of the predictions of a model, for instance

a ResNet-101 [40], on a specific dataset, like CIFAR-100

[41]. Every dataset is partitioned into three splits: train,

calibration, and test. The model of each task is trained

using the train set and then it is used to generate predictions

on the calibration and test sets. We evaluate a calibration

method on a certain task using the following procedure:

First we fit the calibration method using the predictions on

the calibration set. Then we apply it to the test set pre-

dictions and compute metrics over these.

4.1.2 Training details

We use NLL as the optimization objective to fit calibrators.

Additionally, in all tasks, we fit a second version of the

PTS method, minimizing the ECE-based loss instead (see

Sect. 3.3). All methods except TS and ETS are imple-

mented in Pytorch [17] and optimized using Stochastic
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Gradient Descent (SGD) with an initial learning rate of

10�4, Nesterov momentum [42] of 0.9, and a batch size of

1000. We reduce the learning rate on plateau by a factor of

10 until the learning rate reaches 10�7, at that point we

consider that the algorithm has converged and we stop

training. These are default hyperparameters suggested by

authors and provide good convergence across all calibra-

tion tasks in our experiments. The standard TS is optimized

with SciPy [43] and the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm. To calibrate with ETS we use

the code uploaded by authors [22].

4.2 Analysis of the ATS methods

For the first round of experiments, we first calibrate a

ResNet-50 [40] on CIFAR-10 [41] with the proposed

interpretable ATS methods, Entropy-based TS (HTS) and

Linear TS (LTS), and discuss each separately. Then, we

present an study of the relation between the number of

parameters of a model and its data requirements for train-

ing. We calibrate a DenseNet-121 [44] trained on CIFAR-

100 [41] with LTS, HTS, and HnLTS using varying

number of calibration samples.

4.2.1 Linear TS: Introducing class dependence

With this experiment, we aim to illustrate the example that

we give to motivate the LTS method. This is, that LTS can

adapt to a classifier that makes more or less over-confident

predictions depending on which class it predicts as correct.

First, we train a ResNet-05 [40] on the CIFAR-10 train

dataset. Then, we use the calibration set to calibrate the

model using TS and the LTS method.

To check our hypothesis, we divide the test set

according to their true class:

Dk ¼ fðx; yÞ 2 DtestjargmaxðyÞ ¼ kg;

and compute for each subset Dk the optimum temperature

factor Tk, which is obtained by optimizing TS directly on

Dk.

Then, we use the LTS model optimized on the calibra-

tion set to compute a temperature factor for every test

prediction, group them according to their true class, and

take the average for every group:

T̂k ¼
1

jDkj
X

ðx2DkÞ
ðTLTSðf ðxÞÞÞ:

Finally, we represent in Fig. 2 T̂k against the optimum

temperature Tk. For reference, we include the TS temper-

ature factor learned on the calibration set (dashed orange

line).

From Fig. 2 we notice that the classifier does produce

more over-confident predictions for some classes than for

others, even in a curated and well-balanced dataset such as

CIFAR-10. We can expect this effect to be even more

present in real-life applications in which the prevalence of

classes may vary and some distribution mismatch between

development and production data can be expected. LTS

exploits this difference between classes and manages to

adapt the temperature factor in each subset closely

matching the optimum.

4.2.2 Entropy-based TS: Leveraging uncertainty
of predictions

Our motivation for the HTS method is that the level of

over-confidence in a prediction is related to the entropy of

such prediction. If our hypothesis is correct, we can expect,

for the same value of confidence in the predicted class,

higher entropy predictions to be more over-confident on

Fig. 2 Mean predicted temperature (blue) against optimum temperature factor (green) for each class on the test set
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average. So, we might expect higher temperature factors

for higher entropy predictions. The relation between

overconfidence and entropy has already been explored and

exploited in [38]. However, in this case, authors penalize

low-entropy predictions as over-confident. Our hypothesis

does not necessarily oppose to theirs; we suggest that the

inverse relation exists for fixed confidence values, while

theirs account for a general relationship across confidence

values. The relation is driven in this case by the fact that

high values of confidence for a given class imply low

entropy in the prediction.

In Fig. 3 we depict the temperature function learned by

HTS in the calibration set. We train two models, one with

the full calibration set, plotted in a darker shade, and the

other using a random subset of 200 samples. We also plot

the optimum temperature factor estimated in the test set for

different ranges of normalized entropy. We partition the

log-domain of the normalized entropy into 15 equally

spaced bins and divide the test samples according to this

binning scheme Dtest ¼ fD1; :::;D15g. For each set Di, we

estimate the optimum temperature Ti factor given by TS in

the same way we do in the first experiment:

Ti ¼ TSðDiÞ:

Note how for values of logH� 10�5 the optimum tem-

perature increases linearly with the log-entropy, and that

this behavior is captured by the temperature function learnt

by HTS. We also notice that when there is plenty of cali-

bration data, the model captures better the linear trend, but

when data is limited the slope flattens—i.e., wH=to0—

approaching the standard TS.

We also fit the PTS method on the same subsets as HTS

resulting in 2 calibration methods, PTS trained with 200

samples and PTS trained with the full 10000 calibration

samples. Then we plot the temperature factor that each PTS

assigns to each prediction on the test set on Fig. 4. With

this plot, we aim to see if a very expressive method like

PTS learns any relation between the entropy of a prediction

and its temperature factor. Note how the model trained

with full data produce temperature factors that resemble the

linear trend showed by HTS, but that when data is scarce

PTS fails to grab any relation and produce very variable

factors.

We find that, at least in this particular task, there exists

some positive relation between the entropy of the predic-

tive and its level of over-confidence. Figure 3 shows that a

linear function is a fair approximation to the relation

between entropy and temperature and that HTS manages to

capture it even in the face of low data. We can check in

Table 1 that PTS and HTS are highly correlated when both

methods are trained using the whole calibration set.

Moreover, if HTS is trained using only a small subset of the

data (N ¼ 200), this method still produces temperature

factors highly correlated with those issued by PTS on a

large set. On the other hand, the temperature factors given

by PTS trained with low-data (N ¼ 200) are much less

correlated with those given by the full-data trained PTS.

This suggests that the behavior that PTS has to learn from

abundant data, is already ingrained in the inductive bias of

HTS.

In Fig. 4 we show that a much more expressive method

like PTS also captures this linear relationship when given

enough data. However, in the face of limited data, it fails to

do so. Moreover, in Fig. 5 we plot for all samples in the

test set the temperature factors given by PTS against those

by HTS, both methods fitted using all samples. The plot

shows that when data is plentiful the function learnt by

both methods is reasonable similar, suggesting that the

function space of HTS contains well-performing solutions

similar to those learnt by PTS despite being much more

constrained.

Fig. 3 Temperature function of HTS fitted using 200 (light blue) and

10000 (dark blue) calibration samples and optimal temperature on the

test set (green)

Fig. 4 Temperature factors of PTS for test samples fitted using 200

(light orange) and 10000 (dark orange) calibration samples and

optimal temperature on the test set (green)
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4.2.3 Performance degradation with model complexity

In order to validate our hypothesis that more complex

methods require more data and are inherently more difficult

to fit, we conduct the following experiment. We use a

DenseNet-121 [44] trained on CIFAR-100 train dataset to

generate predictions on a calibration set, disjoint from the

training set, of 10000 samples. From it we sample 2

additional subsets with 200 and 1000 samples respectively,

having in total 3 calibration sets with increasing number of

samples. We use each calibration set to fit the TS, LTS,

HTS and HnLTS methods giving a total of 12 different

combinations.

We compare LTS, a highly parameterized model, hence

more expressive, with HTS, a 2 parameter model but with a

strong inductive bias. We also include HnLTS that acts as a

control in the following sense: If there is a difference in

performance between LTS and HTS in low-data scenarios,

one could argue that LTS is not expressive enough and that

its complexity does not hinder the training. Would that be

the case, HnLTS should be able to match the HTS per-

formance since its function space includes all solutions of

both models, HTS and LTS. So we expect HnLTS to fail in

the same low-data scenerarios as LTS because of being

highly parameterized. The TS scaling method is included

as baseline.

We evaluate all of them in the CIFAR-100 test dataset

and report performance in terms of NLL and ECE using

(M ¼ 50) bins in Tables 2 and 3 respectively for each

scenario we mark the score (either NLL or ECE) of the

best performing model in bold.

We first note that when data is plentiful (N ¼ 10000) all

calibration models achieve similar performance both in

terms of NLL and ECE. But as we reduce the number of

calibration samples (N ¼ 1000 and N ¼ 200), the perfor-

mance of both LTS and HnLTS are greatly impacted. On

the other hand, its remarkable how with only N ¼ 200

calibration samples both simple models maintain a similar

performance.

4.3 Benchmarking

In this section, we compare the performance of the pro-

posed ATS methods: LTS, HTS, and HnLTs; with state-of-

the-art accuracy-preserving methods: TS, ETS, BTS, and

PTS. We fit two versions of PTS: One trained to minimize

the NLL, the calibration objective we use to train every

method; and a second version optimizing the ECE-based

loss instead as reported in [15](see Sect. 3.3). We refer to

the former as PTS and the latter as PTSe where the ‘e’

stands for the ECE-based objective.

All experiments are run 50 times with different random

initializations and the results are averaged across runs. For

experiments in which we subsample the calibration set to

simulate data-scarcity scenarios, we sample one subset at

each run and use that subset to train all calibration

Table 1 Sample Pearson correlation coefficient between the temper-

atures given by HTS and PTS temperature functions on the test set.

rxy HTS (N=1000) HTS (N=200) PTS (N=200)

PTS (N=1000) 0.89025 0.89060 0.19945

All coefficients are computed against the temperatures given by the

PTS method trained with the full set (N=10000)
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methods. So, in each of the 50 runs, all the calibration

methods see the same N-sized calibration set, but this

subset is different across tasks. The training procedure is

layout in Algorithm 2.

Algorithm 2 Procedure to evaluate calibration models on a model-dataset task.

4.3.1 Results

For the sake of space and simplicity, we depict results

for each dataset and average across models—e.g., average

ECE of HTS on all CIFAR-10 tasks. We defer detailed

results to Appendix 1. Results are shown in Fig. 6. We

normalize each metric by the performance of TS as we

consider it the main benchmark. The performance of the

base TS is computed in the same conditions as the evalu-

ated calibrator—i.e., trained and evaluated using the same

calibration and test sets. We report performance in terms of

normalized ECE and normalized NLL, namely ECE and

NLL. For each method, we plot five markers, the size of

which increases with the size of the data set. From smallest

to biggest these are N ¼ ð200; 500; 1000; 5000; 10000Þ.
The y-axis position of the marker indicates the mean value

across tasks, where each task is a different NN architecture

calibrated.

We first point out that almost all models outperform the

simple TS when there is enough data (big markers),

although, on average, there are no big differences between

models. However, when data is scarce all the highly-pa-

rameterized models show severe performance degradation

and only ETS and HTS seem to provide consistent per-

formance. Moreover HTS provides better results in most of

the individual tasks while ETS barely outperforms the

baseline TS.

Also, it is worth noting the difference between datasets.

In the highly dimensional CIFAR100, we can see a greater

advantage in using calibration methods more complex than

TS. On the other hand, the best methods barely outperform

TS in CIFAR10 tasks. This suggests that the problem of

calibration may grow more complex with the number of

classes, although the number of datasets included in our

experiments is limited and more experiments are required

to validate this observation.

Interestingly, HnLTS fails in low-data scenarios, even

though it could, in theory, recover the HTS solution by

zeroing the wL parameter. This suggests that increasing

expressiveness can do more harm than good by compli-

cating the training objective.

5 Conclusions

We have shown that post-hoc calibration of DNNs can

benefit from more expressive models than the widely used

Temperature Scaling, especially in tasks with a high

number of classes. For instance, simply adjusting the

temperature factor of TS with a linear combination of the

logit prediction improves calibration by taking into account

the score assigned to each class.

However, more complex models require higher amounts

of data to find a good-performing solution. This poses a

trade-off between the complexity of the calibration model

and the available data to train the model. There are many

real-world tasks where data for re-calibration is limited and

hinders the calibration with a complex model.

By analyzing the calibration functions learned by

expressive models on plenty of data, we can design simpler

Fig. 5 Temperature factor computed by PTS against temperature

factor computed by HTS for test set predictions. The black dotted line

represents a perfect one to one relation

Table 2 NLL for different calibration models

Calibration samples TS LTS HTS HnLTS

N ¼ 200 0.837 – 0.829 –

N ¼ 1000 0.836 0.922 0.826 0.899

N ¼ 10000 0.835 0.836 0.825 0.819

Table 3 ECE (M=50) for different calibration models

Calibration samples TS LTS HTS HnLTS

N ¼ 200 4.01 33.77 3.56 25.95

N ¼ 1000 3.85 5.67 3.34 5.03

N ¼ 10000 3.93 4.20 3.31 3.48
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models with a strong inductive bias toward similar cali-

bration functions. In this work, we have introduced HTS, a

2-parameter model that scales predictions according to

their entropy. The temperature factors estimated by PTS, a

much more expressive model, follow the same linear

relation with the predictive entropy that HTS implicitly

assumes. HTS shows calibration performance comparable

to that of more expressive methods on ideal data condi-

tions. However, the application of these other methods is

limited to conditions where data is plentiful and one has to

resort to simpler methods like TS when data is limited. On

the other hand, HTS maintains good performance across all

ranges of data availability making it a good default for

calibration. Moreover, an important feature of the model is

that it is interpretable, characterizing the link between a

prediction’s uncertainty and its over-confidence.

With this work, we motivate the study of expressive

methods as a way to design practical models with a suit-

able inductive bias. As a first approach, we propose to use a

hand-designed low-parameter model to achieve this bias.

This model achieves comparable performance to other

state-of-the-art methods while being robust to low data

scenarios. In future work, we plan to try other forms of

inducing the desired bias, for instance, via the prior spec-

ification in a Bayesian inference setting. This option may

allow training higher capacity models while still being

robust to data scarcity.

Appendix

Results

In this section, we provide in tables the results for each

model-dataset task. Additionally, we give average perfor-

mance normalized by that of the uncalibrated model across

tasks in each dataset.

Fig. 6 Average results for CIFAR-10 (left) and CIFAR-100 (right) tasks of all calibration methods in terms of ECE (top) and NLL (bottom)

normalized by the performance of TS, namely ECE and NLL
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Table 4 ECE (M ¼ 50)

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 2.84 1.39 2.26 1.09 1.41 1.30 1.35 1.13 3.20

DenseNet 169 2.79 1.65 2.31 1.27 1.10 1.29 1.02 0.91 2.18

ResNet 50 10.71 2.54 2.84 1.86 1.62 2.43 2.12 1.66 6.61

ResNet 101 4.45 1.37 1.49 1.72 1.54 1.42 1.47 1.43 4.20

ResNext 29 8x16 2.88 1.03 0.85 1.19 1.06 1.11 1.15 1.01 3.39

VGG 19 4.61 2.51 3.30 1.38 1.62 2.15 1.67 1.49 5.02

WRN 28x10 1.93 0.70 1.59 1.07 0.88 0.88 0.87 0.86 1.25

WRN 40x10 3.12 1.04 1.14 1.28 1.11 1.21 1.21 1.03 3.55

Avg. Relative ECE 1.00 0.40 0.55 0.38 0.37 0.40 0.37 0.33 0.94

CIFAR 100 DenseNet 121 8.76 3.93 2.96 2.77 3.27 4.12 3.23 3.22 3.26

DenseNet 169 8.93 3.95 2.85 3.19 3.36 4.15 3.67 3.21 2.76

ResNet 101 11.45 2.25 2.22 2.22 2.32 2.66 2.32 1.92 2.44

ResNext 29 8x16 9.69 3.14 2.80 2.06 2.09 3.51 2.55 1.79 2.79

VGG 19 17.63 5.13 5.36 3.89 3.78 3.60 3.56 3.28 4.22

WRN 28x10 5.19 4.63 3.64 3.11 3.52 4.59 3.69 3.33 4.10

WRN 40x10 14.78 4.20 2.76 3.55 3.85 4.19 3.87 4.09 2.95

Avg. Relative ECE 1.00 0.41 0.33 0.31 0.33 0.41 0.35 0.31 0.34

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model

Table 5 NLL

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 0.1881 0.1618 0.1673 0.1835 0.1611 0.1606 0.1604 0.1585 0.2407

DenseNet 169 0.1870 0.1608 0.1686 0.2035 0.1590 0.1593 0.1584 0.1542 0.1934

ResNet 50 0.7897 0.4473 0.4515 0.4498 0.4447 0.4399 0.4385 0.4444 0.6847

ResNet 101 0.3047 0.2163 0.2199 0.2411 0.2173 0.2132 0.2142 0.2168 0.3570

ResNext 29 8x16 0.1997 0.1621 0.1617 0.1909 0.1623 0.1635 0.1634 0.1628 0.2820

VGG 19 0.2998 0.2355 0.2424 0.2672 0.2330 0.2313 0.2299 0.2296 0.4191

WRN 28x10 0.1497 0.1362 0.1424 0.1750 0.1364 0.1348 0.1355 0.1346 0.1390

WRN 40x10 0.2068 0.1634 0.1642 0.1729 0.1634 0.1632 0.1633 0.1607 0.2783

Avg. Relative NLL 1.0000 0.7876 0.8060 0.9096 0.7842 0.7804 0.7798 0.7750 1.1797

CIFAR 10 DenseNet 121 0.8939 0.8355 0.8589 0.8271 0.8253 0.8351 0.8209 0.8161 0.8321

DenseNet 169 0.8748 0.8156 0.8328 0.8082 0.8061 0.8152 0.8021 0.7950 0.8112

ResNet 101 1.1343 1.0007 1.0088 1.0040 1.0002 1.0061 1.0035 0.9971 1.0037

ResNext 29 8x16 0.9398 0.8220 0.8404 0.8190 0.8128 0.8282 0.8182 0.8044 0.8173

VGG 19 1.5414 1.1997 1.2069 1.1926 1.1941 1.1825 1.1821 1.1737 1.1939

WRN 28x10 0.8173 0.8135 0.8343 0.7876 0.7868 0.8040 0.7765 0.7719 0.8054

WRN 40x10 1.2248 0.9055 0.9261 0.9037 0.8987 0.8969 0.8821 0.8832 0.8959

Avg. Relative NLL 1.0000 0.8767 0.8938 0.8687 0.8661 0.8739 0.8611 0.8548 0.8720

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model
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Table 6 Brier Score

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 0.0764 0.0729 0.0724 0.0722 0.0726 0.0727 0.0724 0.0720 0.0787

DenseNet 169 0.0754 0.0717 0.0712 0.0711 0.0712 0.0714 0.0710 0.0705 0.0740

ResNet 50 0.2392 0.2037 0.2029 0.2036 0.2027 0.2020 0.2014 0.2025 0.2233

ResNet 101 0.1102 0.1011 0.1010 0.1019 0.1011 0.1004 0.1004 0.1007 0.1113

ResNext 29 8x16 0.0828 0.0783 0.0782 0.0791 0.0784 0.0783 0.0783 0.0781 0.0869

VGG 19 0.1101 0.1019 0.1007 0.1003 0.1005 0.1011 0.1000 0.0999 0.1139

WRN 28x10 0.0629 0.0608 0.0609 0.0611 0.0607 0.0606 0.0606 0.0606 0.0612

WRN 40x10 0.0820 0.0768 0.0764 0.0770 0.0767 0.0767 0.0767 0.0764 0.0853

Avg. Relative Brier 1.0000 0.9312 0.9275 0.9304 0.9275 0.9272 0.9245 0.9231 1.0069

CIFAR 100 DenseNet 121 0.3171 0.3048 0.3043 0.3052 0.3049 0.3040 0.3036 0.3024 0.3029

DenseNet 169 0.3142 0.3017 0.3010 0.3020 0.3016 0.2999 0.2995 0.2984 0.2990

ResNet 101 0.4053 0.3817 0.3816 0.3825 0.3817 0.3817 0.3814 0.3805 0.3817

ResNext 29 8x16 0.3275 0.3096 0.3093 0.3096 0.3090 0.3100 0.3097 0.3068 0.3085

VGG 19 0.4433 0.3918 0.3910 0.3880 0.3897 0.3882 0.3878 0.3848 0.3868

WRN 28x10 0.2892 0.2886 0.2877 0.2871 0.2872 0.2851 0.2839 0.2831 0.2868

WRN 40x10 0.3700 0.3276 0.3270 0.3293 0.3288 0.3240 0.3240 0.3245 0.3239

Avg. Relative Brier 1.0000 0.9394 0.9378 0.9387 0.9382 0.9341 0.9328 0.9289 0.9328

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model

Table 7 ECE (M ¼ 50) using 5000 samples

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 2.84 1.39 2.26 1.09 1.41 1.29 1.34 1.10 2.99

DenseNet 169 2.79 1.65 2.31 1.27 1.10 1.29 1.02 0.97 2.33

ResNet 50 10.71 2.54 2.84 1.86 1.62 2.43 2.14 1.70 5.53

ResNet 101 4.45 1.37 1.49 1.72 1.54 1.42 1.47 1.43 4.46

ResNext 29 8x16 2.88 1.03 0.85 1.19 1.06 1.11 1.14 1.03 3.12

VGG 19 4.61 2.51 3.30 1.38 1.62 2.15 1.67 1.41 5.08

WRN 28x10 1.93 0.70 1.59 1.07 0.89 0.89 0.86 0.88 1.24

WRN 40x10 3.12 1.04 1.14 1.28 1.11 1.21 1.22 1.02 3.64

Avg. Relative ECE 1.00 0.40 0.55 0.38 0.37 0.40 0.37 0.33 0.93

CIFAR 100 DenseNet 121 8.76 3.93 2.95 2.77 3.28 4.11 3.23 3.19 3.10

DenseNet 169 8.93 3.95 2.85 3.19 3.36 4.16 3.67 3.20 2.91

ResNet 101 11.45 2.25 2.23 2.22 2.30 2.65 2.34 1.90 2.41

ResNext 29 8x16 9.69 3.14 2.83 2.06 2.09 3.50 2.56 2.01 2.45

VGG 19 17.63 5.13 5.36 3.89 3.79 3.58 3.58 3.28 3.82

WRN 28x10 5.19 4.63 3.65 3.11 3.54 4.60 3.68 3.23 4.08

WRN 40x10 14.78 4.20 2.77 3.55 3.86 4.19 3.87 4.03 2.81

Avg. Relative ECE 1.00 0.41 0.33 0.30 0.33 0.41 0.35 0.31 0.33

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model
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Table 8 NLL using 5000 samples

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 0.1881 0.1618 0.1673 0.1835 0.1611 0.1606 0.1604 0.1582 0.2267

DenseNet 169 0.1870 0.1608 0.1686 0.2035 0.1590 0.1593 0.1584 0.1545 0.2111

ResNet 50 0.7897 0.4473 0.4515 0.4498 0.4447 0.4399 0.4385 0.4446 0.7042

ResNet 101 0.3047 0.2163 0.2199 0.2411 0.2173 0.2132 0.2142 0.2169 0.3689

ResNext 29 8x16 0.1997 0.1621 0.1617 0.1909 0.1623 0.1635 0.1634 0.1627 0.2557

VGG 19 0.2998 0.2355 0.2424 0.2672 0.2330 0.2313 0.2299 0.2291 0.4007

WRN 28x10 0.1497 0.1362 0.1424 0.1750 0.1364 0.1348 0.1355 0.1347 0.1423

WRN 40x10 0.2068 0.1634 0.1642 0.1729 0.1634 0.1632 0.1633 0.1608 0.2849

Avg. Relative NLL 1.0000 0.7867 0.8060 0.9096 0.7842 0.7804 0.7798 0.7748 1.1727

CIFAR 100 DenseNet 121 0.8939 0.8355 0.8587 0.8271 0.8253 0.8351 0.8209 0.8152 0.8331

DenseNet 169 0.8748 0.8156 0.8328 0.8082 0.8061 0.8152 0.8021 0.7943 0.8104

ResNet 101 1.1343 1.0007 1.0088 1.0040 1.0002 1.0060 1.0035 0.9972 1.0044

ResNext 29 8x16 0.9398 0.8220 0.8404 0.8190 0.8128 0.8282 0.8182 0.8065 0.8144

VGG 19 1.5414 1.1997 1.2069 1.1926 1.1941 1.1826 1.1821 1.1751 1.1903

WRN 28x10 0.8173 0.8135 0.8342 0.7876 0.7868 0.8041 0.7765 0.7691 0.8069

WRN 40x10 1.2248 0.9055 0.9261 0.9037 0.8987 0.8969 0.8821 0.8828 0.8943

Avg. Relative NLL 1.0000 0.8767 0.8937 0.8687 0.8661 0.8739 0.8611 0.8545 0.8714

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model

Table 9 Brier Score using 5000 samples

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 0.0764 0.0729 0.0724 0.0722 0.0726 0.0727 0.0724 0.0720 0.0778

DenseNet 169 0.0754 0.0717 0.0712 0.0711 0.0712 0.0714 0.0710 0.0706 0.0747

ResNet 50 0.2392 0.2037 0.2029 0.2036 0.2026 0.2020 0.2014 0.2026 0.2199

ResNet 101 0.1102 0.1011 0.1010 0.1019 0.1011 0.1004 0.1004 0.1007 0.1123

ResNext 29 8x16 0.0828 0.0783 0.0782 0.0791 0.0784 0.0783 0.0783 0.0781 0.0856

VGG 19 0.1101 0.1019 0.1007 0.1003 0.1005 0.1011 0.1000 0.0998 0.1139

WRN 28x10 0.0629 0.0608 0.0609 0.0611 0.0607 0.0606 0.0606 0.0606 0.0614

WRN 40x10 0.0820 0.0768 0.0764 0.0770 0.0767 0.0767 0.0767 0.0764 0.0858

Avg. Relative Brier 1.0000 0.9312 0.9275 0.9304 0.9275 0.9272 0.9245 0.9231 1.0048

CIFAR 100 DenseNet 121 0.3171 0.3048 0.3043 0.3052 0.3049 0.3040 0.3036 0.3023 0.3029

DenseNet 169 0.3142 0.3017 0.3010 0.3020 0.3016 0.2999 0.2995 0.2982 0.2991

ResNet 101 0.4053 0.3817 0.3816 0.3825 0.3817 0.3817 0.3814 0.3805 0.3818

ResNext 29 8x16 0.3275 0.3096 0.3093 0.3096 0.3090 0.3100 0.3097 0.3071 0.3079

VGG 19 0.4433 0.3918 0.3910 0.3880 0.3897 0.3882 0.3878 0.3851 0.3850

WRN 28x10 0.2892 0.2886 0.2877 0.2871 0.2872 0.2851 0.2839 0.2827 0.2871

WRN 40x10 0.3700 0.3276 0.3270 0.3293 0.3288 0.3240 0.3240 0.3245 0.3232

Avg. Relative Brier 1.0000 0.9394 0.9378 0.9387 0.9382 0.9341 0.9328 0.9289 0.9320

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model
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Table 10 ECE (M ¼ 50) using 1000 samples

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 2.84 1.52 2.29 2.12 1.51 1.30 1.49 1.34 3.09

DenseNet 169 2.79 1.55 2.40 1.79 1.32 1.20 1.35 1.22 3.08

ResNet 50 10.71 2.56 2.75 3.19 2.16 2.38 2.22 1.90 7.79

ResNet 101 4.45 1.46 1.57 2.72 1.66 1.64 1.73 1.53 4.09

ResNext 29 8x16 2.88 1.04 1.08 2.24 1.28 1.29 1.40 1.25 3.16

VGG 19 4.61 2.54 3.20 2.65 1.99 1.99 1.95 1.72 4.88

WRN 28x10 1.93 0.87 1.57 1.68 0.91 0.88 1.14 0.97 2.24

WRN 40x10 3.12 1.16 1.23 2.30 1.29 1.32 1.39 1.29 3.49

Avg. Relative ECE 1.00 0.42 0.57 0.66 0.42 0.40 0.44 0.39 1.04

CIFAR 100 DenseNet 121 8.76 3.85 3.01 3.78 3.20 5.25 4.76 3.21 5.67

DenseNet 169 8.93 4.07 2.97 3.82 3.31 5.31 5.04 3.24 4.78

ResNet 101 11.45 2.28 2.26 3.32 2.47 4.03 4.20 2.09 4.08

ResNext 29 8x16 9.69 3.20 2.80 3.24 2.26 4.82 4.48 2.06 3.13

VGG 19 17.63 5.08 5.25 4.20 4.02 4.00 4.61 3.96 6.14

WRN 28x10 5.19 4.69 3.72 3.79 3.59 5.26 4.56 3.38 6.16

WRN 40x10 14.78 4.34 3.16 4.46 4.09 5.46 5.00 4.21 7.89

Avg. Relative ECE 1.00 0.42 0.34 0.39 0.34 0.52 0.49 0.33 0.56

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model

Table 11 NLL using 1000 samples

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 0.1881 0.1621 0.1685 0.3142 0.1618 0.1651 0.1710 0.1648 0.2331

DenseNet 169 0.1870 0.1611 0.1685 0.2973 0.1598 0.1649 0.1710 0.1594 0.2525

ResNet 50 0.7897 0.4477 0.4520 0.5999 0.4461 0.4441 0.4438 0.4476 0.7613

ResNet 101 0.3047 0.2166 0.2199 0.4069 0.2175 0.2188 0.2217 0.2200 0.3255

ResNext 29 8x16 0.1997 0.1624 0.1633 0.3835 0.1635 0.1719 0.1775 0.1730 0.2420

VGG 19 0.2998 0.2358 0.2421 0.4146 0.2337 0.2371 0.2426 0.2352 0.3991

WRN 28x10 0.1497 0.1364 0.1419 0.2575 0.1367 0.1389 0.1491 0.1380 0.1730

WRN 40x10 0.2068 0.1637 0.1653 0.3747 0.1642 0.1701 0.1730 0.1690 0.2813

Avg. Relative NLL 1.0000 0.7880 0.8080 1.5240 0.7874 0.8053 0.8304 0.8010 1.2101

CIFAR 100 DenseNet 121 0.8939 0.8359 0.8601 0.9227 0.8260 0.9021 0.8849 0.8161 0.9383

DenseNet 169 0.8748 0.8161 0.8326 0.9240 0.8070 0.8797 0.8682 0.7971 0.8577

ResNet 101 1.1343 1.0010 1.0084 1.0979 1.0012 1.0636 1.0663 0.9992 1.0385

ResNext 29 8x16 0.9398 0.8224 0.8407 0.9218 0.8133 0.9011 0.8938 0.8072 0.8238

VGG 19 1.5414 1.1998 1.2064 1.2993 1.1947 1.2158 1.2194 1.1799 1.2454

WRN 28x10 0.8173 0.8138 0.8334 0.9257 0.7873 0.8600 0.8242 0.7736 0.8644

WRN 40x10 1.2248 0.9058 0.9259 0.9883 0.8997 0.9533 0.9309 0.8843 1.1977

Avg. Relative NLL 1.0000 0.8770 0.8937 0.9742 0.8668 0.9329 0.9190 0.8568 0.9522

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model
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Table 12 Brier Score using 1000 samples

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 0.0764 0.0729 0.0726 0.0755 0.0727 0.0730 0.0732 0.0725 0.0782

DenseNet 169 0.0754 0.0718 0.0713 0.0735 0.0714 0.0719 0.0718 0.0712 0.0777

ResNet 50 0.2392 0.2037 0.2030 0.2110 0.2034 0.2030 0.2026 0.2032 0.2281

ResNet 101 0.1102 0.1011 0.1011 0.1069 0.1012 0.1011 0.1012 0.1011 0.1101

ResNext 29 8x16 0.0828 0.0784 0.0784 0.0838 0.0786 0.0793 0.0796 0.0790 0.0853

VGG 19 0.1101 0.1019 0.1008 0.1053 0.1009 0.1017 0.1011 0.1007 0.1131

WRN 28x10 0.0629 0.0608 0.0610 0.0638 0.0609 0.0609 0.0614 0.0609 0.0644

WRN 40x10 0.0820 0.0768 0.0766 0.0823 0.0770 0.0774 0.0775 0.0771 0.0851

Avg. Relative Brier 1.0000 0.9317 0.9286 0.9754 0.9303 0.9340 0.9347 0.9300 1.0162

CIFAR 100 DenseNet 121 0.3171 0.3048 0.3046 0.3095 0.3047 0.3130 0.3126 0.3024 0.3117

DenseNet 169 0.3142 0.3017 0.3013 0.3054 0.3014 0.3087 0.3085 0.2986 0.3055

ResNet 101 0.4053 0.3818 0.3818 0.3874 0.3820 0.3908 0.3908 0.3810 0.3867

ResNext 29 8x16 0.3275 0.3096 0.3095 0.3142 0.3093 0.3197 0.3201 0.3072 0.3096

VGG 19 0.4433 0.3920 0.3911 0.3917 0.3904 0.3950 0.3943 0.3865 0.3946

WRN 28x10 0.2892 0.2887 0.2880 0.2905 0.2871 0.2919 0.2900 0.2836 0.2935

WRN 40x10 0.3700 0.3278 0.3273 0.3345 0.3295 0.3317 0.3312 0.3250 0.3475

Avg. Relative Brier 1.0000 0.9397 0.9384 0.9508 0.9387 0.9581 0.9567 0.9304 0.9570

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model

Table 13 ECE (M ¼ 50) using 500 samples

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 2.84 1.55 2.36 2.94 1.54 1.33 1.76 1.90 2.99

DenseNet 169 2.79 1.59 2.41 2.58 1.44 1.32 1.66 1.87 3.14

ResNet 50 10.71 2.69 2.76 5.09 2.48 2.56 2.58 2.53 9.71

ResNet 101 4.45 1.53 1.82 3.96 1.75 1.77 2.04 2.18 4.42

ResNext 29 8x16 2.88 1.21 1.22 3.29 1.42 1.55 1.89 2.23 3.35

VGG 19 4.61 2.58 3.29 3.88 2.06 2.07 2.28 2.60 4.65

WRN 28x10 1.93 0.90 1.80 2.37 0.97 0.95 1.40 1.62 2.37

WRN 40x10 3.12 1.13 1.55 3.23 1.28 1.34 1.58 2.03 3.48

Avg. Relative ECE 1.00 0.44 0.62 0.95 0.44 0.44 0.54 0.61 1.07

CIFAR 100 DenseNet 121 8.76 4.04 3.30 4.94 3.44 7.55 8.12 3.54 8.26

DenseNet 169 8.93 4.09 3.19 4.89 3.41 7.62 8.59 3.54 8.31

ResNet 101 11.45 2.29 2.48 4.62 2.51 6.31 7.24 2.23 5.17

ResNext 29 8x16 9.69 3.34 2.99 4.99 2.52 7.62 8.86 2.53 6.31

VGG 19 17.63 5.08 5.33 5.27 4.07 5.56 6.50 3.82 6.62

WRN 28x10 5.19 4.73 3.80 4.77 3.63 6.65 7.00 3.54 6.78

WRN 40x10 14.78 4.12 3.33 5.30 3.81 6.88 6.67 4.03 9.67

Avg. Relative ECE 1.00 0.42 0.36 0.52 0.35 0.73 0.80 0.35 0.76

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model
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Table 14 NLL using 500 samples

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 0.1881 0.1623 0.1690 0.4336 0.1625 0.1765 0.2032 0.2051 0.2180

DenseNet 169 0.1870 0.1617 0.1686 0.4080 0.1623 0.1728 0.1969 0.2225 0.2386

ResNet 50 0.7897 0.4481 0.4515 0.9523 0.4474 0.4529 0.4545 0.4740 0.9776

ResNet 101 0.3047 0.2170 0.2212 0.5993 0.2184 0.2310 0.2476 0.2664 0.3541

ResNext 29 8x16 0.1997 0.1640 0.1646 0.5475 0.1663 0.1895 0.2304 0.2754 0.2628

VGG 19 0.2998 0.2362 0.2433 0.5869 0.2348 0.2468 0.2825 0.2895 0.3802

WRN 28x10 0.1497 0.1367 0.1438 0.3427 0.1378 0.1463 0.1757 0.1835 0.1813

WRN 40x10 0.2068 0.1638 0.1679 0.5126 0.1651 0.1803 0.1989 0.2361 0.2742

Avg. Relative NLL 1.0000 0.7902 0.8132 2.1410 0.7938 0.8519 0.9691 1.0584 1.2445

CIFAR 10 DenseNet 121 0.8939 0.8367 0.8604 1.0944 0.8268 1.0817 1.1304 0.8238 0.9738

DenseNet 169 0.8748 0.8164 0.8346 1.0912 0.8075 1.0688 1.1528 0.8040 1.0126

ResNet 101 1.1343 1.0012 1.0117 1.2453 1.0017 1.2018 1.2464 1.0022 1.0918

ResNext 29 8x16 0.9398 0.8234 0.8410 1.1430 0.8146 1.1242 1.2370 0.8124 0.9120

VGG 19 1.5414 1.2004 1.2079 1.4489 1.1955 1.2952 1.3199 1.1796 1.2775

WRN 28x10 0.8173 0.8147 0.8335 1.0770 0.7883 0.9975 1.0226 0.7791 0.8900

WRN 40x10 1.2248 0.9065 0.9315 1.2020 0.9007 1.0961 1.0846 0.8899 1.2474

Avg. Relative NLL 1.0000 0.8777 0.8953 1.1464 0.8676 1.0919 1.1415 0.8619 1.0166

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model

Table 15 Brier Score using 500 samples

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 0.0764 0.0729 0.0727 0.0790 0.0728 0.0736 0.0745 0.0751 0.0778

DenseNet 169 0.0754 0.0718 0.0713 0.0770 0.0715 0.0724 0.0729 0.0738 0.0777

ResNet 50 0.2392 0.2040 0.2032 0.2228 0.2038 0.2045 0.2043 0.2061 0.2394

ResNet 101 0.1102 0.1012 0.1013 0.1135 0.1014 0.1022 0.1027 0.1042 0.1114

ResNext 29 8x16 0.0828 0.0786 0.0786 0.0895 0.0788 0.0807 0.0821 0.0838 0.0862

VGG 19 0.1101 0.1020 0.1009 0.1110 0.1010 0.1026 0.1027 0.1043 0.1118

WRN 28x10 0.0629 0.0608 0.0611 0.0668 0.0609 0.0615 0.0627 0.0637 0.0649

WRN 40x10 0.0820 0.0768 0.0769 0.0878 0.0769 0.0781 0.0787 0.0814 0.0849

Avg. Relative Brier 1.0000 0.9323 0.9303 1.0301 0.9314 0.9429 0.9511 0.9671 1.0232

CIFAR 100 DenseNet 121 0.3171 0.3051 0.3051 0.3151 0.3051 0.3294 0.3313 0.3040 0.3209

DenseNet 169 0.3142 0.3018 0.3015 0.3109 0.3016 0.3259 0.3295 0.2997 0.3202

ResNet 101 0.4053 0.3818 0.3820 0.3929 0.3820 0.4056 0.4071 0.3816 0.3923

ResNext 29 8x16 0.3275 0.3098 0.3099 0.3219 0.3095 0.3387 0.3433 0.3081 0.3204

VGG 19 0.4433 0.3920 0.3913 0.3958 0.3903 0.4051 0.4043 0.3861 0.3966

WRN 28x10 0.2892 0.2888 0.2882 0.2952 0.2872 0.3039 0.3048 0.2843 0.2960

WRN 40x10 0.3700 0.3277 0.3276 0.3421 0.3295 0.3455 0.3455 0.3255 0.3547

Avg. Relative Brier 1.0000 0.9399 0.9393 0.9677 0.9391 1.0013 1.0066 0.9327 0.9792

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model
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Table 16 ECE (M ¼ 50) using 200 samples

Task Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 2.84 1.72 2.24 4.01 1.77 1.96 3.00 3.69 3.08

DenseNet 169 2.79 1.70 2.86 3.99 1.56 1.74 2.66 3.62 3.05

ResNet 50 10.71 2.69 3.23 7.88 2.51 2.92 3.19 5.47 10.04

ResNet 101 4.45 1.81 2.16 5.11 2.03 2.26 3.11 4.45 4.67

ResNext 29 8x16 2.88 1.34 1.72 4.12 1.51 1.87 3.00 3.95 3.04

VGG 19 4.61 2.59 3.16 5.42 2.40 2.83 3.77 4.96 4.96

WRN 28x10 1.93 1.10 2.24 3.56 1.23 1.46 2.46 2.73 2.43

WRN 40x10 3.12 1.39 1.89 4.08 1.62 1.92 2.96 3.77 3.37

Avg. Relative ECE 1.00 0.49 0.71 1.31 0.51 0.59 0.89 1.15 1.08

CIFAR 100 DenseNet 121 8.76 4.01 3.44 8.78 3.49 19.00 17.72 4.77 9.01

DenseNet 169 8.93 4.22 3.44 8.56 3.68 18.93 17.19 5.19 9.76

ResNet 101 11.45 2.77 3.17 8.59 3.11 17.43 19.18 3.98 9.94

ResNext 29 8x16 9.69 3.39 3.23 8.55 2.73 19.13 18.16 3.55 7.13

VGG 19 17.63 5.16 5.53 8.46 4.41 14.55 15.33 4.48 11.71

WRN 28x10 5.19 4.88 4.18 7.93 4.01 13.85 15.35 5.34 8.12

WRN 40x10 14.78 4.52 3.83 9.64 4.47 15.71 17.47 5.23 9.87

Avg. Relative ECE 1.00 0.44 0.40 0.89 0.38 1.76 1.79 0.50 0.95

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model

Table 17 NLL using 200 samples

Model Uncalibrated TS ETS BTS HTS LTS HnLTS PTS PTS (LECE)

CIFAR 10 DenseNet 121 0.1881 0.1654 0.1709 0.6331 0.1671 0.2511 0.3918 0.4297 0.2263

DenseNet 169 0.1870 0.1633 0.1748 0.5877 0.1646 0.2285 0.3335 0.4008 0.2342

ResNet 50 0.7897 0.4489 0.4553 1.4653 0.4489 0.5041 0.5241 1 0.8810

ResNet 101 0.3047 0.2199 0.2248 0.7817 0.2256 0.2811 0.4023 0.5189 0.3902

ResNext 29 8x16 0.1997 0.1668 0.1734 0.6465 0.1698 0.2523 0.3968 0.4850 0.2282

VGG 19 0.2998 0.2377 0.2422 0.8606 0.2385 0.3304 0.4858 0.5694 0.3981

WRN 28x10 0.1497 0.1381 0.1476 0.4952 0.1457 0.1955 0.2971 0.2930 0.1830

WRN 40x10 0.2068 0.1662 0.1746 0.6286 0.1766 0.2525 0.3927 0.4728 0.2533

Avg. Relative NLL 1.0000 0.7997 0.8329 2.9233 0.8188 0.1263 1.6678 2.1004 1.2213

CIFAR 100 DenseNet 121 0.8939 0.8374 0.8595 1.7011 0.8285 2.2353 2.3776 0.9091 1.0147

DenseNet 169 0.8748 0.8181 0.8359 1.6978 0.8089 2.1935 2.2927 0.9039 0.9845

ResNet 101 1.1343 1.0036 1.0147 1.8572 1.0059 2.3447 2.7525 1.0721 1.2336

ResNext 29 8x16 0.9398 0.8248 0.8420 1.6495 0.8174 2.3144 2.4890 0.8691 0.9635

VGG 19 1.5414 1.2013 1.2099 1.8499 1.1977 2.0490 2.2260 1.2177 1.6701

WRN 28x10 0.8173 0.8168 0.8362 1.5552 0.7920 1.6668 2.0215 0.9093 0.9380

WRN 40x10 1.2248 0.9073 0.9323 1.9061 0.9046 2.0570 2.4555 0.9438 1.2121

Avg. Relative NLL 1.0000 0.8791 0.8967 1.6993 0.8704 2.0837 2.3254 0.9419 1.0849

Models are denoted by their architecture and depth (and width if applicable)

Bold would be the best performing model

Neural Computing and Applications

123



Results of ECE using 50 bins (M ¼ 50), NLL, and Brier

score, using the whole set are shown in TableS 4, 5, and 6,

respectively. Tables 7, 8, and 9, show average results using

5000 samples, randomly chosen at each experiment run, to

calibrate models. Equivalently, Tables 10, 11, and 12, show

the same results but using 1000 samples; Tables 13, 14, and

15 show average results using 500 samples. Lastly,

Tables 16, 17, and 18 show average results using 200

samples.
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