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ABSTRACT Face inpainting is a challenging task aiming to fill the damaged or masked regions in face
images with plausibly synthesized contents. Based on the given information, the reconstructed regions should
look realistic and more importantly preserve the demographic and biometric properties of the individual.
The aim of this paper is to reconstruct the face based on the periocular region (eyes-to-face). To do this,
we proposed a novel GAN-based deep learning model called Eyes-to-Face GAN (E2F-GAN) which includes
two main modules: a coarse module and a refinement module. The coarse module along with an edge
predictor module attempts to extract all required features from a periocular region and to generate a coarse
output which will be refined by a refinement module. Additionally, a dataset of eyes-to-face synthesis has
been generated based on the public face dataset called CelebA-HQ for training and testing. Thus, we perform
both qualitative and quantitative evaluations on the generated dataset. Experimental results demonstrate
that our method outperforms previous learning-based face inpainting methods and generates realistic and
semantically plausible images. We also provide the implementation of the proposed approach to support

reproducible research via (https://github.com/amiretefaghi/E2F-GAN).

INDEX TERMS Face inpainting, generative adversarial networks, image inpainting.

I. INTRODUCTION

Image inpainting is used to complete missing information or
substituting undesired regions of pictures with conceivable
and fine-grained content. It encompasses a wide extend of
applications in fields of restoring harmed photos, editing
pictures, removing objects, etc. [1], [2]. Many conventional
methods typically use low-level and hand-crafted features
from the corrupted input image and utilize the priors or
additional data. By propagating the extracted features from
visible and well-structured parts to the missing regions or by
filling missed small areas by looking and melding compar-
ative patches from the same or other images. In spite of the
fact that these strategies have great effects in the completion
of replicating structures, they are restricted by the accessible
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regions in an image and cannot create novel image substance.
In recent years, learning-based strategies have been proposed
to overcome these confinements by utilizing huge volumes of
training data [3], [4]. Notably, despite of great achievements
of learning-based methods in this task, they are limited by
at least three challenges: the inpainted area should be C1)
semantically filled based on overall scene, C2) continuously
structured with unmasked regions, and C3) visually realistic.

Recently, deep convolutional neural networks (CNNs)
and generative adversarial networks (GANSs), known as
learning-based methods, have been widely used for var-
ious image inpainting tasks including removing objects,
noises, texts, and masks. Based on convolutional neu-
ral networks (CNNs) and using encoder-decoder network
structure several works have been proposed for image inpaint-
ing [5]-[8]. For instance, Sidorov and Hardeberg [6] pro-
posed an encoder-decoder network for denoising, inpainting
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Our Result

FIGURE 1. Example completion results of our proposed method in
comparison with original images.

Masked Image Original

and super-resolution for noised, inpainted and low-resolution
images. Zhu et al. [5] proposed a patch-based inpainting
method for various deep learning (DL) modules that have
been proposed recently.

Coarse-to-fine based methods exploit one [9]-[11] or
two [12]-[14]-stage architecture to complete content forma-
tion and texture refinement. A one-stage architecture (also
termed coarse-and-fine architecture) consists of two parallel
branches, coarse and fine, that extract two kinds of informa-
tion simultaneously, coarse and fine information. The missed
region, then, can be constructed from the extracted infor-
mation. Alternatively, a two-stage architecture generates an
intermediate coarse image after recovering structures in the
first stage, and then feeds it to the second stage for improv-
ing the texture. Additionally, another category called struc-
tural guidance-based methods uses an assistance algorithm
to provide more information for the main inpainting method.
An edge and a contour generator have been used within a
two-stage architecture in [15] and [16] respectively.

Although, it is worthy to mention that in face inpainting,
besides the above-mentioned challenges (i.e., C1-C3), we are
facing further requirements. Notably, a facial representation
can be considered for the purpose of biometric recognition
due to the special topology of different facial elements (i.e.,
forehead, eyes, eyebrows, nose, mouth, jaw, chin, cheek)
and their distinctive characteristics [42]. Thus, revealing the
hidden parts of a face by using other elements such that
the topological face elements along with consistency in face
attributes (e.g., demographic and other biometric informa-
tion [43]) are preserved is a challenging task, yet it will have a
strong impact on the feasibility of biometric recognition con-
ducted by human experts (i.e. in forensic investigation [44])
or by machine learning [45] or hand-crafted algorithms [46].
Therefore, the requirements of face inpainting are as follows:
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R1) the face topological structure should be reconstructed so
that all elements are placed in the right position semantically
and continuously. For this, first, the shape of the face (oval
shape, square shape, round shape, etc.) should be predicted.
Then all other elements should be placed proportionally
within the predicted frame. Additionally, to look more realis-
tic, the head pose should be naturally aligned and integrated
with other elements. These requirements are the main chal-
lenges (i.e., C1-C3) of every inpainting method modified for
face inpainting solutions. Since the aim of this paper is a
special case of face inpainting where a large region of the face
except eyes is hidden, besides R1, two other requirements
which make the inpainting task more challenging should
be considered. R2) Researchers have found that the area of
skin around the eyes is useful to determine soft biometric
information such as age or gender [17], [37]. The proposed
inpainting model should utilize the color, texture, and size
of eyes and eyebrows to estimate this kind of demographic
attributes and inpaint other face elements according to the
estimated features. R3) The proposed solution should pre-
serve the identity-related biometric properties present in the
eyes regions [18], [38] when generating the full face [39].
Noteworthy, this eye region is demonstrated to encode a
large part of the identity information present in the face [44]
enabling both person recognition and fake face detection [40].

Additionally, it is worth to mention that the hidden portion
of the image can directly affect the performance of proposed
solutions, and clearly large masks make meeting the referred
requirements (i.e., R1-R3) more difficult. Considering this
issue, the aim of this paper is to complete the face based on
the eyes region (periocular region), our used mask type will
cover most parts of the face.

In this paper, a novel DL-based architecture has been pro-
posed such that it complies with the referred requirements
(i.e., R1-R3, see Fig. 1). Therefore, our contributions and
novelties can be summarized as follows:

« In this work, an effective end-to-end solution for recon-
structing the face based on just the eyes region has
been proposed. This innovative GAN-based architecture
called E2ZF-GAN benefits from the advantages of coarse-
to-fine, coarse-and-fine, and structural guidance-based
architectures. The code for our proposed method is avail-
able in GitHub.!

« By using various loss functions during the training pro-
cess [41], not only the quality of inpainted regions but
also demographic and biometric features have been pre-
served and measured by several quantitative and quali-
tative evaluation metrics.

« A new dataset of masked faces called E2Fdb has been
generated and made publicly available (same GitHub
indicated before).

o In terms of selecting the most informative guidance-
based method, we experimentally show that edges

1 https://github.com/amiretefaghi/E2F-GAN
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provide more structural and contextual information
compared to landmarks.

Il. RELATED WORKS

In eyes-to-face inpainting, a face (a raw image indicated by
THXWXN hereafter) is corrupted by a binary image mask
(MHXWXNy where H, W, and N show the height, width,
and number of channels of the image respectively, and the
corrupted image will be shown by 1,,, (I, = I ® M, where
O is the element-wise production). The inpainting model H
takes I,, and M as input, and its output, reconstructed face,
should fulfill the R1, R2, and R3 (I = 1 ). The proposed
inpainting methods use different architectures and various
types of masks. In this section, we review recent face inpaint-
ing methods based on DL architectures and widely used mask

types.

A. FACE INPAINTING METHODS

Apart from traditional methods which utilize low-level fea-
tures extracted from the same image or a group of images,
the learning-based strategy is the main focus of recent pro-
posed methods due to using high-level features that enable
them to inpaint the damaged regions semantically. In the
following, we review several learning-based existing works
that attempted to inpaint corrupted faces, similar to the aim
of this paper.

The coarse-to-fine structure has been used in recent face
inpainting tasks. Li et al. [19] proposed a generative-based
coarse-to-fine structure that benefits from an attention layer
to capture long dependency between features to generate
more realistic images. Yu ef al. [13] uses a coarse-to-fine
structure to inpaint free-form masks. In the same context,
Liu et al. [12] proposed a coarse-to-fine architecture with
a novel attention layer. Chen et al. [19] proposed a coarse-
and-fine structure including a coarse network for extracting
global semantic information and a fine network to extract
multi-level local features. Besides the coarse-to-fine based
strategies, another category so-called structural guidance uses
additional information to assist the main inpainting module.
Nazari et al. [15] leverage an edge generator first to recover
the edges, and the corrupted image is fed to the image inpaint-
ing network along with predicted edges. Chen and Liu [16]
use a dual branch network including texture and edge
branches to extract features and recover structures and tex-
tures of missed regions. Some works estimate facial land-
marks to assist the main inpainting network [20], [21]. In this
paper, we will take the advantages of different architectures,
i.e., coarse-to-fine, coarse-and-fine, and structural guidance.

The above-mentioned methods produce a unique result
per each input. On the other hand, some approaches inpaint
the corrupted regions differently per each execution for each
specific input. Zheng et al. proposed a Variational Auto-
Encoders (VAEs)-based [22] dual pipeline including a recon-
structive path that uses the ground truth to learn the prior
distribution of missing regions and a generative path for
which the conditional prior is connected to the distribution
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obtained in the reconstructive path. An unsupervised condi-
tional framework based on generative adversarial networks
for varied image inpainting that can learn conditional com-
pletion distribution has been proposed by Zhao et al. [23].
A similar approach using GANs to restore low quality face
images was recently proposed in [47]. It should be noted that,
in E2F-GAN, we need a unique output for each input even
after several executions to fulfill the requirements R2 and R3.

B. MASK COVERAGE

The used masks in face inpainting scenarios can be classi-
fied into two categories called free and fixed-form masks.
In widely used free-form masks [8], [10], [15], [21], [22],
[24], [26], there are irregular shapes randomly placed on
the images (Fig. 2a). Instead, in the fixed-form masks [13],
[21], [24], [25], regular shapes cover part of the images which
are located on the images randomly or purposefully (Fig. 2b)
[24], [25]. Since the aim of this paper is to complete the face
based on eyes, our used mask type is in the latter category
with a large-size mask (*75% of the face).

lll. PROPOSED METHOD

The overall network architecture of our proposed method,
which is based on a coarse-to-fine architecture and includes
two main modules called coarse and refinement, is shown in
Fig. 3. Different from others [2], [3], [7], [13], [19], both mod-
ules (i.e., coarse and refinement) are GAN-based networks,
therefore, each of which includes a generator and a discrimi-
nator. The coarse module, which comprises a generator called
coarse generator (C), has a dual encoder that follows the
coarse-and-fine structure to capture global semantic features
and extract multi-level features from the eyes region. Besides
this module, a GAN-based refinement module which consists
of a refinement generator (F) and a discriminator (D) has
been utilized to improve the coarse outputs. Intuitively, the
refinement network sees a more completed scene than the
masked images, so its network can learn better feature repre-
sentations than the coarse network. Therefore, our end-to-end
method includes two GAN-based modules which are training
to generate the final result. In the following subsections, each
module is described in detail.

Notably, facial landmarks [21] or edges [15] are usually
the most widely-used structural guidance in image inpaint-
ing tasks. In our proposed E2F-GAN, where the used mask
covers most parts of the face, predicting both landmarks and
edges is a challenging problem. As a consequence, our pro-
posed method utilizes both landmarks and edges during our
experiments, in an effort to use the most effective structure
(e.g., landmarks or edges). For facial landmarks, we used
the landmark prediction method proposed in [27] and for
predicting edges, we used the edge predictor proposed by
Nazari ef al. [15]. Both methods have been trained again
on our generated dataset that contains specific eye masks.
As we will see in the experiments, our quantitative and qual-
itative metrics will show that the edge structural guidance
provides more effective information for our coarse generator.
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FIGURE 2. Examples of two types of widely used masks called free-form [26] (a) and fixed-form [24], [25] (b).

Coarse Module

@
‘Crec

L

style

_Discriminator (Dy)

Refinement Module

SPD 4

SPD 8
.Cnnv .dllatmn .d\lat\on .GatedCcnv .4

rates

Refinement Generator (F)

Discriminator (D,)
Dilated

Self- and
attention Residual

Bilinear up
CSAB sampling and

convolution
networks

FIGURE 3. Overview of our architecture with three main modules including Edge Predictor (Ee), Coarse Module (C), and Refinement

Generator (F).

Therefore, in our final setup we use edges generated by an
edge predictor (E,) as structural guidance for C.

A. COARSE MODULE

The proposed GAN-based coarse module is responsible for
extracting the required features from the masked image and
generating the first coarse result. To do this, we designed the
module with three submodules including edge predictor (E,),
coarse generator (C), and discriminator (Dp). In the follow-
ing, we explain the role of each network, its architecture, and
the used loss functions.

1) COARSE GENERATOR

The coarse generator has the main responsibility for meeting
the three requirements (i.e., R1-R3). Not only the biometric
and demographic feature should be extracted from the peri-
ocular region, but also the initial coarse prediction should
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look realistic, and semantically and continuously structured.
This is achieved using three networks: two encoders so-called
fine encoder (Ef) and pose encoder (E,), and a decoder.
The encoder Ey deals with the finest features of I, and E),
deals with the predicted structure of faces obtained from E,.
Therefore, first I,, is fed to E, to predict edges of visible and
hidden regions (/.4e.) and then /4. is concatenated with ,,
to fed E,. This assists to predict the pose of different elements
of the face. Additionally, I,, will be fed to Ef with the aim of
extracting identity attributes. Finally, the decoder will predict
and inpaint the hidden regions based on the two feature maps
received from Ey and E,. In the following, we describe each
of these networks and their roles in our scheme.

a: FINE ENCODER
The aim of using this encoder is mainly to extract demo-
graphic (e.g., age, gender) and biometric properties (e.g.,
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identity, skin color) from 7,,,. Therefore, the skin color around
the eyes, wrinkles, the size of eyes and eyebrows, the distance
between two eyes, and other possible properties should be
considered. On the other hand, it should be noted that due
to the high coverage ratio of I,,, Ef is fed with a lot of
unusable information (the black region). To prevent deterio-
rating the quality of output and filter out these pixels, the first
seven blocks of Ef are configured as with gated convolutions
(GC) [14]. These blocks contain parallel convolution layers
with different sorts of activation functions which assist to
extract an appropriate feature map and eliminate extracted
features from the masked region. Then, three interleaved
gated residual blocks (IGRB) [19] have been placed after GC
blocks to extract multi-level features.

b: POSE ENCODER

For extracting coarse structure and global semantics features,
and consequently preserving the quality as well as the struc-
ture of the predicted face, an encoder called pose encoder (E))
has been placed in the Coarse Module (C). It has been fed by
concatenation of /I,4g. and I,,. Doing this, a receptive field for
recognizing face structures will be available for E,. However,
the inputs /,4¢, and I, are both sparse. To extract a meaningful
feature map, similar to [29], we used three spatial pyramid
dilation blocks (SPD) after six convolution layers. Notably,
SPD blocks contain parallel convolution layers with various
dilation rates to extract a large receptive field from the given
input image.

c: DECODER

To inpaint the coarse output based on features extracted by
E, and Ef, a decoder including seven layers (one atten-
tion layer and six upsampling convolution layers) has been
used. In common encoder-decoder approaches, the decoder
receives features directly from the encoder but in our pro-
posed method, the decoder receives two types of features
including low-level features extracted by large receptive
fields that may lack detailed information (i.e., the output of
Ep), and high-level detailed features with a small receptive
field (i.e., the output of Ef). Thus, we use a CSAB as the
first layer of the decoder to discriminate the more effective
features from others by assigning more weights.

Channel and Spatial Attention Block (CSAB): According
to the outputs of E, and Ef, the input to the attention block
contains two types of features: a) large receptive field that
may lack detailed information and b) output of Ef, i.e., high-
level detailed features with small receptive fields. We adopt
the concatenating operation to aggregate these two types of
features. On the other hand, we may achieve redundant infor-
mation about multi-level contextual information and this situ-
ation will not be efficient for our goals. Thereby, as shown in
Fig.3, we adopt a specific attention block called channel and
spatial attention block (CSAB) [19] to assign more weight
to important features [48] and alleviate the interference of
redundant features by channel and spatial attention. Hence,
attention block composes of two main attentions which we
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will introduce. Convolution operation leads to local contex-
tual information. Discriminative features representation is
essential for inpainting. We leverage the attention mecha-
nism to fulfill this desire. The channel attention emphasizes
interdependent feature maps by exploiting the dependencies
between channels. Meanwhile, the spatial attention encodes
a wide range of contextual dependency within each channel,
thereby improving the overall representation capability by
gaining mutual for similar features.

B. REFINEMENT MODULE

The coarse module’s output (ic) consists of face coarse
structure including placed face elements, stated face pose,
specified color skin, etc., suffering from fine details. To add
more details to the 7., we propose a GAN-based refinement
module.

1) REFINEMENT GENERATOR

Inspired by the U-Net architecture [28] and the refinement
network proposed by [29], we proposed a more effective
architecture by replacing some DL blocks with SPD and self-
attention (SA) blocks which receive the concatenation of fc
and I.qg. as its input. We have adopted SPD blocks with
four dilation rates in the middle of our architecture to extract
features with various receptive fields from input images and
then used SA blocks between middle layers. SA benefits from
the concept of self-similarity, which is useful for reclaiming
the reconstructed pattern based on the remaining ground truth
in a masked image. As mentioned before, the duty of this
stage is that it should improve fine details of images, hence,
we use reconstruction and perceptual losses to adjust the fine
details.

C. DISCRIMINATOR

To inpaint and generate more realistic high-quality faces,
both coarse and refinement modules have been designed
based on GAN structures, thus, two discriminators have the
responsibility of evaluating the output of C and F'. The coarse
module’s discriminator (D) receives I. and consequently the
refinement module’s discriminator (D>) has been fed by ff.
We have combined the concept of SN-GAN [30] and Patch-
GAN [31] for these discriminators to distinguish real or fake
images. Besides this combination, we have used the hinge
adversarial loss function for our discriminators. These combi-
nations and loss functions help us to train our discriminators
faster and more stable, distinguishing real or fake images
efficiently.

D. E2F-GAN END-TO-END TRAINING

The E2F-GAN model is trained in a supervised and end-
to-end manner. We have defined four groups of loss func-
tions [41] for various parts of our proposed method to achieve
considerable results. To train C, we have utilized four specific
loss functions including reconstruction loss, perceptual loss,
style loss, and adversarial loss; and just reconstruction and
perceptual losses have been used for training F. With the aim
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TABLE 1. Quantitative results over EtoF dataset for EtoFGAN and other
compared methods (PIC, LaFIn, EC). The best result of each column is
boldfaced. 1 indicates that the higher the number the better is the model
and | indicates the lower the number the better is the model.

Method FID ! SSIMT | PSNR T VI ¢ Loss |
PIC 57.02 0.41 11.19 8.50 50.37
LaFIn 63.16 0.47 13.18 6.89 40.94
EC 70.63 0.42 12.67 5.27 121.08
E2F-GAN 46.39 0.51 13.66 0.02 41.54
(ours)

of having an end-to-end training process, we define the total
loss £ which consists of four groups of component losses as
below:

L= Arec (['fec + Efec) + )‘P‘«”C (LICJerc + E{Wec)
+ )“Slyleﬁityle + (kidv‘cﬁdv + )“Zdv‘ctajdv)' (1

In the following, the formulation of the used losses and the
notion behind each loss is described. The reconstruction loss
(Lyec) or per-pixel loss measures the pixel-wise difference
between the synthesized image and the ground truth image.
This loss is essential for maintaining texture information. It is
calculated as the L1-norm between fz and the corresponding
ground truth /,. L. is defined as follows:

. 1 H w
Biee = FrW N 2ot e
where z is replaced with ¢ or f depending on the L. is used
for C or F, respectively.

It is worth to mention that, an element-wise loss can-
not consider high-level semantics. Accordingly, recent
research [19], [21], [22] suggests using perceptual distances
based on a pre-trained network, VGG19 which was trained
on the ImageNet. The perceptual loss (Lp.,c) measures the
difference between features extracted from the various layers
of the VGG19 network for I and its corresponding ground
truth.

LG.j)— LG @

z L mz - ‘Pg’
Lpere = Zz:l Ny x H; x W, ©

where ¢ and ¢, are extracted features from 1 and I, respec-
tively, and z is replaced with ¢ or f depending on the Lperc
is used for coarse or refinement, respectively. We extract
features from L layers of the pre-trained network. relul_1,
relu2 1, relu3_1,relud_1, and relu5_1 of the VGG19 utilized
to calculate Ly¢,c as well as Ly described below.

In order to provide richer texture, we also employ style loss
(Lstyie)- In style loss, a Gram matrix calculates the correlation
between channels in a feature map. The style loss then calcu-
lates on the features map produced by the pre-trained VGG19
network.

G (ic) — Gy (I)

H; x W; x N;

C — L 1
e = 2 N “)
1
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FIGURE 4. FNMR curve for our proposed method (E2F-GAN) and other
compared methods (PIC, LaFIn, EC).

where G; () = ¢ ()T ¢; () stands for the Gram matrix
corresponding to ¢ (.).

For generative adversarial learning, our discriminators are
trained to distinguish between generated images and ground
truth images. on the other hand, the generators strive to
cheat the discriminators by hardening that classification.
We employ hinge loss to train our model, Lgdv and Lffdv
computed as follows:

L8, =—E[Di(C (Inledge))] — E [Dz (F (fc»ledge))]
®)

Laaw = E[Retu (14 D1 (C (n: Teage)))]

+E [Relu (1 +D, (F (1c Iedge)))]

+E [Relu (1 — Dy (Iy))] + E [Relu (1 — D2 (Iy))]

(6)

As mentioned before, we combine the used loss functions

with appropriate weights as follows: Ae = 1, Apere =
0.1, Agyie = 250,28, = 0.1,24, = 1.

IV. EXPERIMENTS AND DISCUSSION

In this section, we evaluate the E2F-GAN performance on a
new generated face dataset (E2Fdb) based on CelebA-HQ.
We compared our results with three other methods called
EdgeConnect (EC) [15], Pluralistic Image Completion
(PIC) [22], LaFIn [21]. To have fair comparison, the
three methods have been trained using the E2Fdb. For
quantitatively measuring the performance difference among
the methods, we employ several statistical metrics. More-
over, to measure the amount of preservation of demographic
and biometric features, we calculate False Non-Match Rate
between original and inpainted faces. Using a competitive
face biometric matcher [49] based on ArcFace [36].

A. DATASETS

We conduct all experiments on our generated dataset called
E2Fdb (available on project’s GitHub page)® extracted from
the well-known CelebA-HQ dataset [32], [49]. To extract
the periocular region from each face image, the images are

2https ://github.com/amiretefaghi/E2F-GAN
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TABLE 2. The effect of various parts of E2F-GAN on final results.

Edge Attention Refinement

Pr egdictor Blook ol FID! | SSIMT | PSNRT TVI | £Loss!
x v v 64.89 0.34 12.18 12.91 45.99
v x v 50.12 0.48 13.24 6.33 43.97
v v x 75.21 0.46 13.22 5.49 42.13
v v v 46.39 0.52 13.66 0.02 41.54

Masked Image

E2F-GAN(Ours) Original

FIGURE 5. Quality comparison among PIC, EC, LaFIn, and our proposed method.

reshaped to size 256 x 256 and then by utilizing a land-
mark detector [27], eyes are detected, similar to [50]. Doing
this, M and I,,, are produced for each image. Moreover, we
removed misleading samples including those eyes covered by
sunglasses or faces that have more than 45 degrees in one
angle (roll, pitch, yaw) leading to hiding one of the eyes by
using WHENet [33] algorithms. Finally, the total number of
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samples is 24,554 among which 22,879 will be used for the
training process and the rest, which is 1,685 images, for the
test.

B. EVALUATION METRICS

We evaluate the image inpainting performance of the pro-
posed model using quantitative and qualitative comparisons.
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FIGURE 6. Illustration of image reconstruction at different age of the subject among our proposed method, PIC, EC, LaFIn, and original image.

For quantitative comparison, two types of metrics called
statistical and identity metrics have been measured. In the
following, we describe each category and its corresponding
metrics briefly.

1) STATISTICAL METRICS

We use five statistical metrics: £; loss, Peak Signal to
Noise Ratio (PSNR), Structural Similarity (SSIM) [34],
Frenchet Inception Distance (FID) [35], and Total Varia-
tion (TV). Notably, the £; loss shows the model’s recon-
struction ability for images. PSNR measures the visibility
of errors between the ground truth /, and image inpaint-
ing 1 to evaluate the image quality. SSIM aims at estimat-
ing the perceptual changes in the structural information,
which shows human’s subjective feelings more accurately
than PSNR. FID is a widely used metric in the image
generation field to measure the visual quality. TV assists
to measure the amount of noise in the image by calcu-
lating the sum of the absolute differences for neighboring
pixels.

2) IDENTITY METRICS

To measure the amount of preservation of demographic
and biometrics characteristics after completing inpaint-
ing process, we calculate the False Non-Match Rate
(FNMR). FNMR is the rate at which a biometric algorithm
miss-categorizes two captures from the same individual as
being from different individuals. Here, we assumed that 1
and [ are two faces for the same individual and using Arc-
Face [36], we calculate the corresponding embedding vec-
tors for each face, and finally calculate the cosine similarity
between each pair. Finally, the FNMR for different thresholds
is shown.
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C. COMPARISON WITH EXISTING WORK

By using the above-mentioned metrics and presenting some
outputs, the results of our proposed method have been qual-
itatively and quantitatively compared against three state-of-
the-art approaches, named PIC, EC, and LaFIn. We trained
the three methods over our generated dataset (i.e., E2Fdb)
according to the best configurations of each method men-
tioned in the corresponding paper. In the following subsec-
tions, we present the results.

1) QUANTITATIVE COMPARISONS

The results of the statistical metrics calculated on the val-
idation set of E2Fdb including 1,675 samples are reported
in Table 1. As can be seen from the numbers in Table 1,
E2F-GAN is superior over PIC, LaFIn, and EC in most
metrics, except for the £ loss for which LaFIn works slightly
better. Overall, our E2F-GAN outperforms the others by large
margins in terms of FID, SSIM, PSNR, and TV metrics.
More specifically, our large margins in FID and TV metrics
demonstrate that our method can inpaint the masked image
with much higher quality compared to other methods. More-
over, FNMR has been measured for E2F-GAN and other
three compared methods as shown in Fig. 4. For different
thresholds, E2F-GAN has lower false non-match rate which
shows the ability of our algorithm extracting identity infor-
mation from the periocular region and transferring it to the
reconstructed face. Notably, since the PIC method generates
different outputs for a specific input, we executed this method
five times and the best results have been reported.

2) QUALITATIVE COMPARISONS
Fig. 5 shows some faces generated by our model, PIC, EC,
and LaFIn. Our model is able to generate high quality results
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Without Refinement

E2F-GAN Original

Without Edge Predictor ~ Without Attention Block
Module
FIGURE 7. Illustrative comparison of the effect of various parts on final output.
TABLE 3. The effect of landmark or edge guidance on final results. - - -
10 1 — None-Refinement Module
FID | SSIM | PSNR vV ¢1Loss | Landmark — Non-Attention Block
1 T T l 1 Loss 84— None-Edge Predictor
Landmark - Landmark Guidance
Guidance 48.56 | 0.44 13.33 7.31 42.48 15.37 . E2F-GAN(ours)
Bdze 1 4630 | 519 | 13.66 | 0.02 | 4154 15.42 g
Guidance =
“ o4
and a large fraction of face structures including face shape, 02
nose, mouth, forehead, etc. are appropriately placed with a
plausible size. Moreover, to compare the quality of results in e ! ! ! ! !
terms of gender and skin color, we present different faces in 00 02 04Threshol doe 08 10

Figs. 5 and 6. As it can be observed, the quality of PIC and EC
is really low compared to our and LaFIn results. Therefore,
although like EC we used edge predictor in our scheme, there
is a large margin between our outcomes.

Additionally, with aim of further investigation of the mod-
els’ outputs regarding age and gender prediction based on the
periocular region, we presented some challenging examples
in Fig. 6. That figure shows three faces including two elders
(a man and a woman) and a young woman. As seen in those
examples, E2F-GAN can assess the age based on periocular
region and reconstruct the face with a reasonable quality.

V. ABLATION STUDY

In this section, firstly we qualitatively and quantitatively
analyze the effect of three main components of our pro-
posed model including the edge predictor, the refinement
module, and the attention block. Table 2 and Fig. 8 report
statistical and identity metrics indicating the degree of effec-
tiveness each of the three components in the performance
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FIGURE 8. The impact of various parts of E2F-GAN on FNMR ratio.

of E2F-GAN. Specifically, the refinement network is the
most conspicuous one which benefits the model by providing
conformity and consistency among face components and skin
texture around the eyes, such as wrinkles and skin color. The
edge guidance contributes to ensuring that the structure of the
face is well-preserved (see Fig. 7). Visually, the effectiveness
of the attention block may not seem tangible. However, the
quantitative results demonstrate the advantages of attention
block. We also compared the effect of edge and landmark
predictors. As shown in Table 3, the edge guidance provides
better values in most quantitative metrics specially for SSIM
metric.

Finally, Fig. 9 shows a few challenging examples for pre-
serving the gender of the person based on the periocular
region. Our observations show that E2F-GAN can preserve
the gender of subjects with a high accuracy.
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Masked Image Original

FIGURE 9. lllustration of gender preserve in our proposed method.

VI. CONCLUSION

The aim of this paper is a particular case of face inpainting
where we try to reconstruct the face based on just using
the periocular region. To do this, we presented E2F-GAN,
a GAN-based architecture that benefits from the advantages
of coarse-to-fine, coarse-and-fine, and structural guidance-
based architectures for face inpainting. It includes three main
modules for extracting face’s edges (edge predictor), coarse
prediction of face elements (coarse generator) and refining
the coarse predicted image (refinement generator). We ana-
lyzed E2F-GAN and compared it with other well-known face
inpainting methods to measure the efficiency and quality
performance. For doing this, we modified a widely used face
inpainting dataset called CelebA-HQ such that the whole
face except the periocular region is masked and used for
E2F-GAN input, calling the resulting dataset E2Fdb. Our pro-
posed inpainting algorithm E2F-GAN and the used dataset
E2Fdb are both available in the project GitHub.?

Several qualitative and quantitative metrics have been mea-
sured during our experiments to show the performance of
E2F-GAN in terms of preserving identity and non-identity
features of each face after inpainting. Experimental results
show that our method outperforms previous learning-based
face inpainting methods and E2F-GAN can generate realistic
and semantically plausible images.

Future work includes analyzing biometric quality
aspects of the resulting faces using recent objective mea-
sures [51], [52]; analyzing [49] and reducing [53] undesired
biases in the face generation process; and combining multiple
face generation approaches for better outputs [48].

ACKNOWLEDGMENT
(Ahmad Hassanpour, Amir Etefaghi Daryani, and Mahdieh
Mirmahdi contributed equally to this work.)

3 https://github.com/amiretefaghi/E2F-GAN

VOLUME 10, 2022

REFERENCES

[11

2

3

—

[4

=

[5

—

[6]

[71

[8]

[9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting,” IEEE Trans. Image Pro-
cess., vol. 13, no. 9, pp. 1200-1212, Sep. 2004.

O. Elharrouss, N. Almaadeed, S. Al-Maadeed, and Y. Akbari, “Image
inpainting: A review,” Neural Process. Lett., vol. 51, no. 2, pp. 2007-2028,
2019.

D. Pathak, P. Krihenbiihl, J. Donahue, T. Darrell, and A. A. Efros, “Context
encoders: Feature learning by inpainting,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2016, pp. 2536-2544.

H. Yamauchi, J. Haber, and H.-P. Seidel, “Image restoration using mul-
tiresolution texture synthesis and image inpainting,” in Proc. Comput.
Graph. Int., Jul. 2003, pp. 120-125.

X. Zhu, Y. Qian, X. Zhao, B. Sun, and Y. Sun, “A deep learning approach
to patch-based image inpainting forensics,” Signal Process., Image Com-
mun., vol. 67, pp. 90-99, Sep. 2018.

O. Sidorov and J. Y. Hardeberg, “‘Deep hyperspectral prior: Single-image
denoising, inpainting, super-resolution,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. Workshop (ICCVW), Oct. 2019, pp. 3844-3851.

Y. Zeng, J. Fu, H. Chao, and B. Guo, “Learning pyramid-context encoder
network for high-quality image inpainting,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 1486-1494.

H. Liu, B. Jiang, Y. Xiao, and C. Yang, “Coherent semantic attention for
image inpainting,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 4170-4179.

Z. Guo, Z. Chen, T. Yu, J. Chen, and S. Liu, “Progressive image inpaint-
ing with full-resolution residual network,” in Proc. 27th ACM Int. Conf.
Multimedia, Oct. 2019, pp. 2496-2504.

J. Li, N. Wang, L. Zhang, B. Du, and D. Tao, “Recurrent feature reasoning
for image inpainting,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 7760-7768.

H. Zhang, Z. Hu, C. Luo, W. Zuo, and M. Wang, “Semantic image
inpainting with progressive generative networks,” in Proc. 26th ACM Int.
Conf. Multimedia, Oct. 2018, pp. 1939-1947.

H. Liu, B. Jiang, Y. Xiao, and C. Yang, ‘“‘Coherent semantic attention for
image inpainting,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 4170-4179.

J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, ““Generative image
inpainting with contextual attention,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 5505-5514.

J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. Huang, ‘‘Free-form image
inpainting with gated convolution,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 4471-4480.

K. Nazeri, E. Ng, T. Joseph, F. Qureshi, and M. Ebrahimi, “Edge-
Connect: Structure guided image inpainting using edge prediction,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW), Oct. 2019,
pp. 3265-3274.

M. Chen and Z. Liu, “EDBGAN: Image inpainting via an edge-aware
dual branch generative adversarial network,” IEEE Signal Process. Lett.,
vol. 28, pp. 842-846, 2021.

E. Bobrov, A. Georgievskaya, K. Kiselev, A. Sevastopolsky,
A. Zhavoronkov, S. Gurov, K. Rudakov, M. D. P. B. Tobar, S. Jaspers, and
S. Clemann, “‘PhotoAgeClock: Deep learning algorithms for development
of non-invasive visual biomarkers of aging,” Aging (Albany NY), vol. 10,
no. 11, p. 3249, 2018.

C. Rathgeb and C. Busch, Handbook Iris and Periocular Biometric Recog-
nition. London, U.K.: Institution of Engineering and Technology (IET),
2017.

M. Chen, Z. Liu, L. Ye, and Y. Wang, ““Attentional coarse-and-fine genera-
tive adversarial networks for image inpainting,” Neurocomputing, vol. 405,
pp. 259-269, Sep. 2020.

L. Song, J. Cao, L. Song, Y. Hu, and R. He, “Geometry-aware face
completion and editing,” in Proc. AAAI Conf. Artif. Intell., vol. 33, no. 1,
Jul. 2019, pp. 2506-2513.

Y. Yang and X. Guo, “Generative landmark guided face inpainting,” in
Proc. Pattern Recognit. Comput. Vis., Oct. 2020, pp. 14-26.

C. Zheng, T.-J. Cham, and J. Cai, “Pluralistic image completion,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 1438-1447.

L. Zhao, Q. Mo, S. Lin, Z. Wang, Z. Zuo, H. Chen, W. Xing, and D. Lu,
“UCTGAN: Diverse image inpainting based on unsupervised cross-space
translation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 5741-5750.

32415



IEEE Access

A. Hassanpour et al.: E2F-GAN: Eyes-to-Face Inpainting via Edge-Aware Coarse-to-Fine GANs

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

N. U. Din, K. Javed, S. Bae, and J. Yi, “A novel GAN-based network for
unmasking of masked face,” IEEE Access, vol. 8, pp. 4427644287, 2020.
Y. Zeng, J. Fu, H. Chao, and B. Guo, ‘““Learning pyramid-context encoder
network for high-quality image inpainting,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 1486-1494.

G. Liu, F. A. Reda, K. J. Shih, T. C. Wang, A. Tao, and B. Catanzaro,
“Image inpainting for irregular holes using partial convolutions,” in Proc.
Eur. Conf. Comput. Vis., Sep. 2018, pp. 85-100.

A.Bulat and G. Tzimiropoulos, “How far are we from solving the 2D & 3D
face alignment problem? (and a dataset of 230,000 3D facial landmarks),”
in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 1021-1030.
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Med. Image Comput.
Comput.-Assist. Intervent, 2015, pp. 234-241.

C. T. Li, W. C. Siu, Z. S. Liu, L. W. Wang, and D. P. K. Lun, “Deep-
GIN: Deep generative inpainting network for extreme image inpainting,”
in Proc. Comput. Vis. ECCV 2020 workshops, Glasgow, U.K., 2020,
pp. 5-22.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normaliza-
tion for generative adversarial networks,” in Proc. ICLR, Vancouver, BC,
Canada, 2018, pp. 1-29.

K. Lata, M. Dave, and K. N. Nishanth, “Image-to-image translation using
generative adversarial network,” in Proc. 3rd Int. Conf. Electron., Com-
mun. Aerosp. Technol. (ICECA), Jun. 2019, pp. 186—189.

T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of
GANs for improved quality, stability and variation,” in Proc. ICLR,
Vancouver, BC, Canada, 2018.

Y. Zhou and J. Gregson, ‘“WHENet: Real-time fine-grained estimation for
wide range head pose,” in Proc. 31st Brit. Mach. Vis. Conf. (BMVC), 2020.
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs trained by a two time-scale update rule converge to a local
nash equilibrium,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 6626-6637.

J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive angular
margin loss for deep face recognition,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4690-4699.

F. Alonso-Fernandez, K. Hernandez-Diaz, S. Ramis, F. J. Perales, and
J. Bigun, “Facial masks and soft-biometrics: Leveraging face recognition
CNNs for age and gender prediction on mobile ocular images,” IET
Biometrics, vol. 10, no. 5, pp. 562-580, Sep. 2021.

F. Alonso-Fernandez, K. B. Raja, R. Raghavendra, C. Busch, J. Bigun,
R. Vera-Rodriguez, and J. Fierrez, ““Cross-sensor periocular biometrics for
partial face recognition in a global pandemic: Comparative benchmark and
novel multialgorithmic approach,” 2019, arXiv:1902.08123.

F. Alonso-Fernandez, R. A. Farrugia, J. Fierrez, and J. Bigun, “Super-
resolution for selfie biometrics: Introduction and application to face
and iris,” in Selfie Biometrics. Cham, Switzerland: Springer, 2019,
pp. 105-128.

R. Tolosana, S. Romero-Tapiador, R. Vera-Rodriguez, E. Gonzalez-Sosa,
and J. Fierrez, ““DeepFakes detection across generations: Analysis of facial
regions, fusion, and performance evaluation,” Eng. Appl. Artif. Intell.,
vol. 110, Apr. 2022, Art. no. 104673.

A.Morales, J. Fierrez, A. Acien, R. Tolosana, and I. Serna, ““SetMargin loss
applied to deep keystroke biometrics with circle packing interpretation,”
Pattern Recognit., vol. 122, Feb. 2022, Art. no. 108283.

P. Tome, J. Fierrez, R. Vera-Rodriguez, and D. Ramos, “Identification
using face regions: Application and assessment in forensic scenarios,”
Forensic Sci. Int., vol. 233, nos. 1-3, pp. 75-83, Dec. 2013.

E. Gonzalez-Sosa, J. Fierrez, R. Vera-Rodriguez, and F. Alonso-Fernandez,
“Facial soft biometrics for recognition in the wild: Recent works, annota-
tion, and COTS evaluation,” IEEE Trans. Inf. Forensics Security, vol. 13,
no. 8, pp. 2001-2014, Aug. 2018.

P. Tome, J. Fierrez, R. Vera-Rodriguez, and J. Ortega-Garcia, “‘Combina-
tion of face regions in forensic scenarios,” J. Forensic Sci., vol. 60, no. 4,
pp. 1046-1051, Jul. 2015.

R. Ranjan, S. Sankaranarayanan, A. Bansal, N. Bodla, J. C. Chen,
V. M. Patel, C. D. Castillo, and R. Chellappa, “Deep learning for under-
standing faces: Machines May be just as good, or better, than humans,”
IEEE Signal Process. Mag., vol. 35, no. 1, pp. 66-83, Jan. 2018.

32416

(46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

P. Tome, R. Vera-Rodriguez, J. Fierrez, and J. Ortega-Garcia, “Facial
soft biometric features for forensic face recognition,” Forensic Sci. Int.,
vol. 257, pp. 171-284, Dec. 2015.

J. Hernandez-Ortega, J. Fierrez, 1. Serna, and A. Morales, “FaceQ-
gen: Semi-supervised deep learning for face image quality assessment,”
in Proc. 16th IEEE Int. Conf. Autom. Face Gesture Recognit. (FG),
Dec. 2021, pp. 1-8.

J. Fierrez, A. Morales, R. Vera-Rodriguez, and D. Camacho, “Multiple
classifiers in biometrics. Part 2: Trends and challenges,” Inf. Fusion,
vol. 44, pp. 103-112, Nov. 2018.

I. Serna, A. Morales, J. Fierrez, and N. Obradovich, Sensitive
loss: Improving accuracy and fairness of face representations with
discrimination-aware deep learning,” Artif. Intell., vol. 305, Apr. 2022,
Art. no. 103682.

R. Daza, D. DeAlcala, A. Morales, R. Tolosana, R. Cobos, and J. Fierrez,
“ALEBk: Feasibility study of attention level estimation via blink detec-
tion applied to e-learning,” in Proc. AAAI Workshop Artif. Intell. Educ.
(AI4EDU), 2022.

J. Hernandez-Ortega, J. Galbally, J. Fierrez, R. Haraksim, and L. Beslay,
“FaceQNet: Quality assessment for face recognition based on deep learn-
ing,” in Proc. Int. Conf. Biometrics (ICB), Jun. 2019, pp. 1-8.

J.  Hernandez-Ortega, J. Fierrez, L. F. Gomez, A. Morales,
J. L. Gonzalez-de-Suso, and F. Zamora-Martinez, ‘‘FaceQvec: Vector
quality assessment for face biometrics based on ISO compliance,” in
Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. Workshops (WACVW),
Jan. 2022, pp. 84-92.

A. Morales, J. Fierrez, R. Vera-Rodriguez, and R. Tolosana, “Sen-
sitiveNets: Learning agnostic representations with application to face
images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 6,
pp. 2158-2164, Jun. 2021.

AHMAD HASSANPOUR received the M.Sc.
degree in computer engineering from the Shiraz
University of Technology. He is currently pur-
suing the Ph.D. degree with the Department of
Information Security and Communication Tech-
nology (IIK), Norwegian University of Science
and Technology (NTNU), Norway. He is also a
Marie Sklodowska-Curie Fellow and part of an
EU project called Privacy Matters. His research
interests include deep learning, computer vision,
and privacy.

AMIR ETEFAGHI DARYANI received the
B.Sc. degree in electrical engineering from the
University of Guilan, in 2019. He is currently
pursuing the M.Sc. degree in electrical engineering
with the Amirkabir University of Technology.

He was a Research Assistant at the Digi-
tal Systems Laboratory, Amirkabir University
of Technology, which was directed by Prof.
Saeed Sharifian to pursue his M.Sc. degree. His
research interests include the development of

decision-making systems based on the reinforcement learning approaches
and image processing by using deep learning-based techniques to build
autonomous systems that act like humans.

VOLUME 10, 2022



A. Hassanpour et al.: E2F-GAN: Eyes-to-Face Inpainting via Edge-Aware Coarse-to-Fine GANs

IEEE Access

MAHDIEH MIRMAHDI received the B.Sc.
degree in computer science and the M.Sc. degree
in computer engineering-artificial intelligence and
robotics from the University of Isfahan, in
2018 and 2021, respectively. During her master’s
degree, she focused on computer vision, specif-
ically the deep learning, and worked on video
semantic segmentation under the supervision of
Prof. Amirhassan Monadjemi. Her research inter-
ests include in the intersection of computer vision,
machine learning, and 3D visual computing. She was awarded as an excep-
tional talent in computer science at the University of Isfahan, in 2018.

KIRAN RAJA (Senior Member, IEEE) received
the Ph.D. degree in computer science from the
Norwegian University of Science and Technol-
ogy, Norway, in 2016. He is currently a Faculty
Member of the Department of Computer Science,
Norwegian University of Science and Technology.
He was/is participating in EU projects SOTAMD
and iMARS, and other national projects. His main
research interests include statistical pattern recog-
nition, image processing, and machine learning
with applications to biometrics, security, and privacy protection. He is a
member of the European Association of Biometrics (EAB) and the Chair
of the Academic Special Interest Group at EAB. He is also a member of the
editorial board for various journals. He serves as a reviewer for a number of
journals and conferences.

BIAN YANG received the B.S., M.S., and Ph.D.
degrees in electronic engineering and information
security from the Harbin Institute of Technology,
in 2000, 2002, and 2006, respectively. He visited
Fraunhofer IGD, Darmstadt, from 2003 to 2005,
for research on data hiding and media secu-
rity, worked as a Lecturer at the School of
Computer Science and Technology, Harbin Insti-
tute of Technology, from 2005 to 2007, and
as a Research Engineer at Thomson Corporate
Research, Beijing, from 2007 to 2008. He joined the Norwegian Informa-
tion Security Laboratory (NISlab), Gjgvik University College, working on
privacy-preserving biometrics, from 2008 to 2015, and founded in 2016 and
has since been coordinating the eHealth and Welfare Security (eHWS)
Group, Department of Information Security and Communication Tech-
nology, Norwegian University of Science and Technology (NTNU). His
research interests include cybersecurity and privacy for e-health and welfare
technologies and services, privacy modeling and enhancing technologies,
security biometrics and identity management, and security practice and
human factors.

VOLUME 10, 2022

CHRISTOPH BUSCH (Senior Member, IEEE)
received the Ph.D. degree in computer graphics,
in 1997.

He is a member of the Department of Infor-
mation Security and Communication Technol-
ogy (IIK), Norwegian University of Science and
Technology (NTNU), Norway. He holds a joint
appointment with the Computer Science Faculty,
Hochschule Darmstadt (HDA), Germany. Further,
he has been lecturing on biometric systems at the
Technical University of Denmark (DTU), since 2007. In 1997, he joined the
Fraunhofer Institute for Computer Graphics (Fraunhofer IGD) as the Head
of the Department of Security Technology. He has been responsible for the
acquisition, the management, and the control of various applied research
and development projects. On behalf of the German Federal Office for
Information Security (BSI), he has been the responsible Project Coordinator
for the project series BioIS, BioFace and BioFinger, BioKeyS Pilot-DB, and
KBEinweg—all projects dealing with biometric applications in general and
performance and security testing in detail. In the European research program,
he was the Initiator of multiple projects (e.g., 3D-Face, FIDELITY, and
iMARS). Further, he was/is the partner in the projects TURBINE, BEST
Network, ORIGINS, INGRESS, PIDaaS, SOTAMD, RESPECT, and TReS-
PAsS. He is also the Principal Investigator at the National Research Center for
Applied Cybersecurity (ATHENE). He has coauthored more than 600 tech-
nical papers and has been a speaker at international conferences. He has
served for various program committees (NIST IBPC, ICB, BTAS, 1JCB,
ISBA, BSI-Congress, and EUROGRAPHICS) and a Reviewer of journals,
such as ACM-SIGGRAPH, ACM-TISSEC, IEEE CoMPUTER GRAPHICS AND
AppLICATIONS, IEEE TRANSACTIONS ON SIGNAL PROCESSING, IEEE TRANSACTIONS
on INFORMATION FoRrENsicS AND SecURITY, IEEE TRANSACTIONS on PATTERN
ANALYSIS AND MACHINE INTELLIGENCE, and the Elsevier journal Computers
and Security. He is also an appointed member of the editorial board of the
IET Biometrics and has served previously for the IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY journal.

JULIAN FIERREZ (Member, IEEE) received the
M.Sc. and Ph.D. degrees in telecommunications
engineering from the Universidad Politécnica de
Madrid, Spain, in 2001 and 2006, respectively.
Since 2004, he has been with the Universidad
Auténoma de Madrid, where he is currently an
Associate Professor. From 2007 to 2009, he was
a Visiting Researcher with Michigan State Uni-
versity, USA, under a Marie Curie Postdoctoral.
His research interests include signal and image
processing, HCI, responsible Al, and biometrics for security and human
behavior analysis. He is actively involved in large EU projects in these topics
(e.g., TABULA RASA and BEAT in the past and currently IDEA-FAST and
TRESPASS-ETN), and has attracted notable impact for his research. He is a
member of the ELLIS Society. He was a recipient of a number of distinctions,
including the EAB Industry Award 2006, the EURASIP Best Ph.D. Award
2012, and the 2017 IAPR Young Biometrics Investigator Award. He has
received best paper awards at ICB and ICPR. He is an Associate Editor of
the IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY and the IEEE
TRANSACTIONS ON IMAGE PROCESSING.

32417



