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Abstract

QUANTUM COMPUTING combines two of the main scientific
achievements of the 20th century: Information Theory and
Quantum Mechanics. Its interdisciplinary character is one
of the most stimulating and appealing attributes. The new
Quantum Information Theory augurs powerful machines
that obey the “entangled” logic of the subatomic world. Par-
allelism, entanglement, teleportation, no-cloning and quan-
tum cryptography are typical peculiarities of this novel way
of understanding computation. In this article, we highlight
and explain these fundamental ingredients that make Quan-
tum Computing potentially powerful.

1. Classic versus Quantum: bit versus qubit

A two stable positions classical device can store one bit of information,
e.g., the answer “yes” (1) or “no” (0) to a question.
The description of physical phenomena starts needing the Quantum
Theory as the energy (or action) gap between the states |0〉 and |1〉 (in
Dirac’s bracket notation) becomes smaller and smaller. This happens
with more probability in the subatomic world than in the macroscopic
world. Quantum alternatives |n〉 whose action gap is of the order of the
Planck constant ~, coexist in some sort of quantum superposition or
wave function like

|ψ〉 = c0|0〉 + c1|1〉 (1)

with complex weights cn (probability amplitudes) fulfilling |c0|2 + |c1|2 = 1.
Thus, the wave function (1) carries an information different from the
classic one, which we agree to call qubit (quantum bit). Physical de-
vices that store one qubit of information are two-level quantum systems
like: spin 1/2 particles and atoms (electrons, silver atoms, etc), polar-
ized light (photons), energy levels of some ions, etc. For example, it
is possible to prepare a quantum state like (1) striking a laser beam of
proper frequency and duration on some ions.
Loosely speaking, the manipulation and processing of classical infor-
mation comes down to swapping 0’s and 1’s around though logic gates
(viz, NOT, AND, OR). Note that, except for NOT, classical logic gates
are irreversible; that is, knowing the result c = a + b, we can not
guess a and b. This loss of information leads to the well known heat
dissipation of classical computers. Actually, we could make classical
computation reversible, by replacing traditional logic gates by the new
ones: NOT, CNOT and CCNOT, in Figure 1, the price being perhaps
a waste of memory. However, Quantum Computation must be intrinsi-
cally reversible, since it is based on a unitary time evolution of the wave
function (probability must be conserved), dictated by the Schrödinger
equation.

Figure 1: Truth tables of the basic reversible gates: NOT, CNOT and
CCNOT or Toffoli gates.

2. Interference and Quantum Parallelism
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Quantum Computing would not have any appeal if it wasn’t that the
quantum state described by the wave function (1) is not only a statis-
tical mixture with probabilities p0 = |c0|2 and p1 = |c1|2 but, in addition,
it incorporates two important new ingredients: interference, or “paral-
lelism”, and entanglement, or “quantum correlations” (see next section)
The coexistence of quantum alternatives gives rise to interference
effects that defy the common sense, like the well-known two-splits
Young’s experiment which highlights the particle-wave duality of the
electron.

F

R0

R1

SPLITS SCREEN CLASSIC QUANTUM

PP P

0

1

II’

Figure 2: Two-splits (Young’s) experiment

The interference between the two electron’s path (namely 0 and 1) gives
rise to a resulting intensity (quantum case) I ∝ |c0+c1|2 6= |c0|2+|c1|2 ∝ I ′

different from just adding up the intensities through each split (classical
case).
Note that, with two qubits, we can prepare a register in a quantum su-
perposition of 22 = 4 numbers from 0 up to 3 (we ignore normalization,
for simplicity):

|ψ〉 = |a〉 |b〉 = (|0〉+|1〉)⊗(|0〉+|1〉) = |00〉+|01〉+|10〉+|11〉 =

3∑
x=0

|x〉. (2)

This can be the spin state (|↓〉 ≡ |0〉 , |↑〉 ≡ |1〉) of carbon (a) and hy-
drogen (b) nucleus in a chloroform molecule CHCl3. This “toy quantum
computer” can implement the CNOT (controlled not) gate in Figure 1, by
placing the molecule in an external magnetic field and acting on it with
radiowave pulses that flip the spin of the nucleus. Actually, only when
the spin of the carbon points in the direction of the external magnetic
field (i.e., | ↑〉 = |1〉), it is possible to flip the spin of the hydrogen. That
is, the carbon is the “control” and the hydrogen acts as a XOR gate (see
Figure 1). It is proved that, assembling (two-qubit) CNOT and arbitrary
one-qubit unitary (quantum) gates is enough to design any classical al-
gorithm like: addition, multiplication, etc (classically, they are the CNOT

and CCNOT gates that constitute a universal set).
In order to process more complex quantum information, it is promis-
ing to use lineal ion traps, where the coupling between electron and
vibrational degrees of freedom allows (in principle) the implementation
of operations in a multi-qubit register by absorbtion and emission of
photons and phonons.
In a four-qubits quantum computer, the application of the unitary oper-
ation U⊕ that implements the adding algorithm modulo 4 between the
state (2) and a second one like |ψ′〉 = |x′〉, with x′ = 0, . . . , 3, gives an
output of the form:

|ψ〉 |ψ′〉 =

3∑
x=0

|x〉|x′〉 U⊕−→
3∑

x=0

|x〉|x⊕ x′〉. (3)

That is, we have simultaneously computed the addition x ⊕ x′ for four
different values of of x, equivalent to four four-bits classical computers
working in parallel. This feature is called quantum parallelism.
However, we can only measure or “amplify” one of the four answers of
the output

∑3
x=0 |x⊕ x′〉 measure−→ |x0 ⊕ x′〉. Let us see that it is not exactly

superposition or parallelism what makes powerful quantum computa-
tion, but it is quantum entanglement or correlation between answers.

3. Entanglement: EPR paradox

There are physical situations in which (quantum) particle pairs (or
higher groupings) are created as if the state of one member would “in-
stantaneously” determine or influence the state of the other, though
they were hundreds of kilometres apart. It is not exactly like hav-
ing couples of loaded dice that always offer the same face, but much
more “intriguing”. For example, spin positron-electron entangled pairs
|EP 〉 = |↑〉e |↓〉p − |↓〉e |↑〉p are created in the decay of spin cero neutral
particles; also pairs of photons with orthogonal polarizations (V means
vertical and H horizontal) |VH〉 = |l〉1 |↔〉2 − |↔〉1 |l〉2 are created by
striking laser pulses on certain non-linear crystals. These are just par-
ticular examples (the so called “singlet states”), but more general situa-
tions are also possible.
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Figure 3: Measuring entangled pairs |EP 〉

In the case of entangled spins like EP , we propose the following
“gedankenexperiment” (imaginary experiment depicted in Figure 3. Al-
ice A and Bob B are equipped each of them with magnetic fields ~HA

and ~HB, which can be oriented in the directions: ↑,→ and ↗,↘, re-
spectively, like in the Stern-Gerlach experiment for silver atoms. From
the result RA of the electron’s (E) spin in the Alice’s measurement
(which can result in: either parallel |↑〉e or antiparallel |↓〉e to the ex-
ternal magnetic field ~HA), one can predict with certainty the result RB

of the positron’s (P ) spin in Bob’s measurement, when measuring in
the same direction ~HB|| ~HA as Alice (RB ought to be antiparallel to RA

in this case). This would happen even if Alice and Bob were far away,
so that no information exchange between them could take place before
each measurement, according to Einstein’s causality principle.
The insight of these experiments is that, contrary the classical (macro-
scopic) systems, subatomic entities do NOT have well defined val-
ues of their properties before they are measured ; instead, all pos-
sible values must coexist in a quantum superposition like (1). This in-
terpretation upset Albert Einstein, who once said: “Good does not play
dice”.
It is clear that these kind of experiences at subatomic level, utterly un-
common in the macroscopic world, could be efficiently used in a future
to create really surprising situations. Let us imagine a World-Wide-
Web of entangled quantum computers that cooperate performing tasks
which are imposible even via satellite. Nowadays, this is just specula-
tion, although there are actual and future applications of entanglement
in the field of telecommunications. Le us see some of these implemen-
tations of entanglement.

4. Entanglement and teleportation

One of the most spectacular applications of entanglement is the possi-
bility of transporting a quantum system from one place to another with-
out carrying matter, but just information. Teleporting the polarization
state of one photon, like |Ψ〉 = c0 |l〉 + c1 |↔〉, is nowadays physically
realizable thanks to the original idea of Bennet et al. and the Innsbruck
experiment. However, there is a long way to cover before we can tele-
port a macroscopic (even a mesoscopic) system. Before we must fight
“quantum decoherence” (qubits a fragile and sensitive to any kind of
external noise).
Teleportation of one photon goes as follows (see Figure 4). A ultravi-
olet laser pulse strikes a Barium β-Borate crystal, creating an entan-
gled pair of photons (F1, F1′) and other pair (F2, F2′) after reflection
in a mirror M1. The polarizer P prepares F2 in the state Ψ, which
joins F1 through a beam splitter (BS). Then Alice makes a two-qubit
measure (also, “coincidence” or Bell’s measure) with the photon de-
tectors D1, D2. The measurement can have four different answers:
(RD1, RD2) = (1, 1), (1, 0), (0, 1), (0, 0). If both detectors are struck (i.e.
the answer is (1, 1)), Alice tells Bob (through a classic message) that
the photon F1′ has “transmuted” to the state Ψ, which Bob can verify
by using a beam splitter polarizer (BSP), consisting in a calcite crystal.
In the other three cases, Alice can always indicate Bob the operation to

rotate F1′ to Ψ. Thus, we need a two-bits classic message to teleport
one qubit (this is some sort of dense information coding).
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Figure 4: Quantum teleportation of the polarization state of one pho-
ton.

Quantum information can not be cloned (no-cloning quantum theorem),
which can limit long-range quantum communications due to decoher-
ence of quantum signals. However, intermediary teleporting stations
can save this obstruction.
However, the impossibility of (perfectly) cloning a quantum signal has a
positive side: the detection of eavesdroppers and the establishment of
reliable quantum communications.

5. Quantum Cryptography

Figure 5: “COME HERE AT ONCE” (Sherlock Holmes)

The basic ingredients to encrypt a secret message M are: a key K
(known only by the sender, Alice, and the receiver, Bob) and a crypto-
graphic algorithm E that assigns a cryptogram C = EK(M) toM though
K. The decryption process consists in applying the inverse algorithm
M = E−1

K (C). For example, the “one-time pad” algorithm assigns a
q-digits C = {c1, . . . , cq} (with cj = 0, . . . 25 − 1 the alphabet symbols)
to M = {m1, . . . ,mq} though K = {k1, . . . , kq} by using the addition
cj = mj ⊕ kj mod 32. The reliability of this simple cryptographic sys-
tem is guaranteed as long as the key K is randomly generated and not
used more than once. The problem is then when Alice and Bob, who
are far apart, run out of keys. How to generate new keys overcoming
the presence of eavesdroppers?.

5.1 Secure quantum private key distribution
One possibility is to use entangled pairs. Both can choose the direction
of magnetic fields ~H: ↑ or →, at pleasure. After measuring n pairs,
they broadcast the direction choice of ~H each time, but not the answer,
which can be: 1 = ↑ or 0 = ↓. In average, they should coincide n/2
times in the direction choice, for which the answers are perfectly anti-
correlated (RA, RB) = (1, 0) ≡ 0 or (RA, RB) = (0, 1) ≡ 1. Then Alice
and Bob keep only these approximately n/2 (anti-)correlated answers
(RA, RB) = 0, 1 and construct the key K = 00101 . . . One can prove
that (RA, RB) are indeed anti-correlated if and only if there has been
no eavesdroppers tapping the quantum channel, which can be verified
by sacrificing a small part of the key, for high values of n. The reliabil-
ity of this key distribution algorithm lies in the fact that the observation
of eavesdroppers destroys the quantum entanglement. Summarizing:
unlike classical communications, quantum communications detect the
presence of eavesdroppers. Actually, there are prototypes of tens of
kilometers long.

5.2 Quantum cracking of public key crypto-
graphic systems
Nowadays, the reliability of the RSA (Rivest, Shamir and Adleman)
public key cryptographic system is based on the difficulty of integer
factoring on classical computers. The protocol is the following. Alice
broadcasts her key, consisting of two big integers (s, c), with c = pq
the product of two big prime numbers only known by her. Anyone
wanting to send her an encrypted message can do it by computing
C = M s (mod c). In order to decrypt the message, Alice uses the for-
mula M = Ct (mod c), where t = t(s, p, q) can be calculated from the
simple equations: st ≡ 1 (mod p − 1), st ≡ 1 (mod q − 1). Any other
eavesdropper who wants to decrypt the message, firstly has to factor-
ize c = pq. To make oneself an idea of the difficulty of this operation,
for c ∼ 1050, and with a rough algorithm, we should make the order of√
c ' 1025 divisions. A quite good classical computer capable to per-

form 1010 divisions per second would last 1015 seconds in finding p and
q. Knowing that the universe is about 3, 8·1017 seconds, this discourages
any eavesdropper. Actually, there are more efficient algorithms that re-
duce the computational time, although it keeps exponentially growing
with the input size anyway.
P.W. Shor designed an algorithm, to be run on a quantum computer,
that factors in polinomial time t ∼ (log c)n, making factoring a tractable
problem in the quantum arena and threatening the security of most of
business transactions. The efficiency of the algorithm lies in the quan-
tum mechanical resources: entanglement and parallelism.
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