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Groups generated by two bicyclic units in integral group rings

Eric Jespers, ngel del Ro and Manuel Ruiz ∗

1 Introduction

In [5] Ritter and Sehgal introduced the following units, called the bicylic units, in the unit group
U(ZG) of the integral group ring ZG of a finite group G:

βa,g = 1 + (1− g)aĝ, γa,g = 1 + ĝa(1− g),

where a, g ∈ G and ĝ is the sum of all the elements in the cyclic group 〈g〉.
It has been shown that these units generate a large part of the unit group of ZG. Indeed, for

most finite groups G, the bicyclic units together with the Bass cyclic units generate a subgroup of
finite index in U(ZG) [3, 6]. The Bass cyclic units are only needed to cover a subgroup of finite index
in the centre and the group B generated by the bicyclic units contains a subgroup of finite index
in a maximal Z-order of each non-commutative simple image Mn(D) of the rational group algebra
QG. In particular, if n > 1, then B contains a subgroup of finite index in SLn(O), where O is a
maximal order in D; and hence B contains free subgroups of rank two. A next step in determining
the structure of U(ZG) is to investigate relations among the discovered generators. Presently this
is beyond reach. Hence a more realistic goal is to study the structure of the group generated by
two bicyclic units. In [4] Marciniak and Sehgal proved that if βa,g is a non trivial unit in ZG (here
G is not necessarily finite) then the group 〈βa,g, γa−1,g−1〉 is free of rank 2. Clearly, bicyclic units
are of the form 1 + a with a2 = 0. Salwa, in [7], used the ideas of Marciniak and Sehgal to prove
that if x and y are two elements of an additively torsion-free ring such that x2 = y2 = 0 and xy is
not nilpotent then 〈(1 + x)m, (1 + y)m〉 is free of rank 2 for some positive integer m. In particular,
if b1 and b2 are two bicyclic units and (b1 − 1)(b2 − 1) is not nilpotent, then 〈bm

1 , bm
2 〉 is free of

rank 2 for some positive integer m. In this paper we investigate the minimum positive integer m
so that 〈bm

1 , bm
2 〉 is free provided that b1 and b2 are two bicyclic units so that (b1− 1)(b2− 1) is not

nilpotent. We prove the following theorem which indicates that if b1 and b2 are of the same type
then frequently m = 1.

Theorem 1.1 Let b1 = βx,g and b2 = βy,h be two bicyclic units of the same type in the dihedral
group

Dn = 〈a, b|an = b2 = 1, ba = a−1b〉
so that 〈y, h〉 ⊆ 〈x, g〉. Then 〈b1, b2〉 is either torsionfree abelian or free of rank 2.

As a consequence one obtains the following.

Corollary 1.2 If p is prime and b1 and b2 are two bicyclic units of the same type of the dihedral
group Dp then 〈b1, b2〉 is either torsion free abelian or free of rank 2.

∗The first author has been partially supported by the Onderzoeksraad of Vrije Universiteit Brussel and the Fonds
voor Wetenschappelijk Onderzoek (Vlaanderen) and the second by the D.G.I. of Spain and Fundacin Sneca of Murcia.
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We prove Theorem 1.1 in Section 3. Before that we revisit Salwas’s Theorem in Section 2 with
the following two aims: first to present the tools needed in our proof of Theorem 1.1 and second
to complement Salwa’s result with the case that xy is nilpotent. Namely we prove the following

Theorem 1.3 Let K be a subfield of C and R a finite dimensional K-algebra. Suppose a, b are
two elements of R such that a2 = b2 = 0. The following properties hold:

1. if ab is nilpotent, then 〈1 + a, 1 + b〉 is nilpotent;

2. if ab is not nilpotent then there is a positive integer m so that 〈1 + a, (1 + b)m〉 is free of rank
2.

We finish the paper with some comments on the cases not included in Theorem 1.1. In particular
we relate the problem for arbitrary dihedral groups to an open problem on free points for groups
generated by a pair of 2× 2-matrices (see for example the recent work of Bamberg [1]).

2 Nilpotent-Free dichotomy

In this section we prove Theorem 1.3. Many of the ideas are already in [7] where the second
statement of the theorem is proved. Also, under some conditions (see the last part of Lemma 2.3)
on a trace map, it is shown that m = 1. For completeness’ sake we give a selfcontained proof.

Throughout this section K is a subfield of C, R is a finite dimensional K-algebra and a and b
are two elements of R so that a2 = b2 = 0. In order to prove Theorem 1.3 one may assume that
R = K[a, b]. Let J(R) denote the Jacobson radical of R. So R/J(R) =

∑k
i=1 Mni(Di), where Di

is a division K-algebra for every i.
If x is a real number then bxc (resp. dxe) denotes the greatest (resp. smallest) integer not

larger (resp. not smaller) than x.

Lemma 2.1 For every i = 1, . . . , k one has ni ≤ 2 and Di is a field. Furthermore, if ni = 1 then
Di = K.

Proof. Let A = C[a, b] = C ⊗K K[a, b] = C ⊗K R. First we prove that every simple quotient of
A/J(A) is of the form Mm(C) with m ≤ 2. We may assume without loss of generality that A is
simple, so that A = Mm(C) for some positive integer m and we identify A with the endomorphism
ring of an m-dimensional complex vector space. Let B = C[ab]. Then A = B + Ba + bB + bBa
and hence dimCA ≤ 4 dimCB. Since a2 = 0 we have Im a ⊆ Ker a and hence 2 dimC Im a ≤ m.
Consequently, dimC Im ab ≤ dimC Im a ≤ ⌊

m
2

⌋
. The Cayley-Hamilton Theorem then implies that

ab satisfies a polynomial identity of degree at most
⌊

m
2

⌋
+ 1. Hence dimCB ≤ ⌊

m
2

⌋
+ 1 and thus

m2 = dimCA ≤ 4(
⌊

m
2

⌋
+ 1). Consequently

(
m
2

)2 ≤ ⌊
m
2

⌋
+ 1, and therefore m ≤ 2.

Clearly, both J(R) and J(A) are nilpotent. As A is a central extension of R we know that
J(R) = J(A) ∩R. So we consider R/J(R) as a subring of A/J(A).

Let S = Mn(D), with D a division ring, be a simple quotient of R. By the above S is embedded
in a simple quotient Mm(C) of A, with m ≤ 2. Hence every complete set of orthogonal idempotents
of S has at most 2 elements. So n ≤ 2. Furthermore, if n = 2, then m = 2 and D being the
double centralizer of a set of a primitive idempotents yields that D ⊆ C. So, in this case, D is a
field. On the other hand, if m = 1, then the natural images a and b in S = D are zero. Hence
S = K

[
a, b

]
= K. This proves the result.
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Lemma 2.2 Let A = M2(D) where D is a division ring and a, b ∈ A so that a2 = b2 = 0. If ab is
nilpotent then ab = ba = 0.

Proof. Again, we identify A with the endomorphism ring of a two dimensional vector space V
over D. If ab 6= 0 then Ker ab = Ker b = Im b and Im ab = Im a = Ker a. Let 0 6= v1 ∈ Im a and
v2 ∈ V so that a(v2) = v1. Then V = 〈v1, v2〉. Furthermore (ab)(v1) = λv1 for some λ ∈ K. Since
ab is nilpotent, λ = 0. Thus (ab)2 = 0 and therefore Ker b = Ker ab = Im ab = Im a. We conclude
that ab = 0, a contradiction.

Lemma 2.2 implies that if ab is nilpotent, then Ra + J(R) and Rb + J(R) are nilpotent left
ideals of R. So a, b ∈ J(R). Hence 〈1+a, 1+ b〉 is contained in the (multiplicative) nilpotent group
1 + J(R). This proves statement 1 of Theorem 1.3.

To prove the second statement of Theorem 1.1, first recall that from from Sanov’s Theorem [8]
and a change of basis argument it is easy to deduce that if z and w are two complex numbers so
that |zw| ≥ 4, then the following two matrices generate a free group of rank 2:

(
1 z
0 1

)
,

(
1 0
w 1

)

If ab is not nilpotent, then ρ(ab) is not nilpotent where ρ : R → Mni(Di) is an epimorphism for
some i = 1, . . . , k with ni = 2. Statement 2 of Theorem 1.3 then follows from the following Lemma.

Lemma 2.3 Let A = M2(K), where K is a subfield of C and a, b ∈ A so that a2 = b2 = 0 and ab
is not nilpotent. Then 〈1 + a, 1 + mb〉 is a free group for some positive integer m. If, moreover,
|tr(ab)| ≥ 4, then 〈1 + a, 1 + b〉 is a free group.

Proof. Again we identify A with the endomorphism ring of the two dimensional K-vector space
K2. Since ab is not nilpotent of rank 1, after a change of basis in K2 one may assume that

ab =
(

λ 0
0 0

)

for some nonzero λ ∈ K.Hence, as Im a = Im ab and Ker b = Ker ab one has that

a =
(

p r
0 0

)
and b =

(
q 0
s 0

)

for some p, q, r, s ∈ K. Because a and b are nonzero nilpotent elements, p = 0 = q and r 6= 0 and
s 6= 0. Thus

1 + a =
(

1 r
0 1

)
and 1 + b =

(
1 0
s 1

)
.

By Sanov’s Theorem 〈1 + a, 1 + mb〉 is a free group for m =
⌈

4
|rs|

⌉
. If |tr(ab)| ≥ 4, then |rs| ≥ 4

and hence m = 1.

Proposition 2.4 Let A be a Q-algebra which is a direct product of division rings and 2× 2-matrix
rings over subfields of C. Suppose a, b ∈ A are such that a2 = b2 = 0. The following properties
hold:

1. if ab is nilpotent, then 〈1 + a, 1 + b〉 is torsionfree abelian;
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2. if ab is not nilpotent, then there exists an integer m so that 〈1 + a, 1 + mb〉 is free of rank 2.
Moreover if |tr(ρ(ab))| ≥ 4, for some projection ρ : A → M2(K) onto a simple quotient of A,
then 〈1 + a, 1 + b〉 is free of rank 2.

Proof. Everything is an immediate consequence of Lemma 2.2 and Lemma 2.3 except the torsion-
freeness of the abelian case.

Assume that u = (1+a)k(1+b)l is a periodic element of order m in the abelian group 〈1+a, 1+b〉
(with k, l ∈ Z). Then, 1+kma = 1−lmb and so ka = −lb. Hence, (1+a)k = 1+ka = 1−lb = (1+b)−l

and thus u = 1.

3 Bicyclic units

In this section we prove Theorem 1.1. Let b1 = βx,g and b2 = βy,h be two bicyclic units of Dn so
that 〈y, h〉 ⊆ 〈x, g〉. Note that QDn satisfies the conditions of Proposition 2.4. So either 〈b1, b2〉 is
torsionfree abelian or 〈b1, b

k
2〉 is free of rank 2 for some k ≥ 1. We have to prove that in the former

case one can take k = 1. For that we make use once more of Proposition 2.4 and we only have
to prove that if b1 and b2 do not commute then there exists an irreducible complex character χ of
degree 2 of Dn so that |χ(α)| ≥ 4, where α = (b1 − 1)(b2 − 1).

So in the remainder we assume that b1 and b2 do not commute. This imply that both g and h
do not belong to 〈a〉 and hence 〈x, g〉 is a dihedral group. Therefore one may assume without loss
of generality that Dn = 〈x, g〉. Since βaib,ajb = βai−j ,ajb, without loss of generality, we may assume
that Dn = 〈x, g〉, x, y ∈ 〈a〉 and changing generators if necessary, x = a and g = b. Summarizing
b1 = βa,b and b2 = βai,ajb for some 1 ≤ i, j < n and 2i 6= n.

The non-linear irreducible complex characters of Dn are all maps χk, with 1 ≤ k < n
2 , given by

χk(at) = ξt + ξ−t, χk(atb) = 0

for every 0 ≤ t < n, where ξ denotes an n-th root of unity.
For every m ∈ Z we denote:

ηm = ξm + ξ−m = 2 cos
2πm

n
, νm = ξm − ξ−m = 2 sin

2πm

n
.

The following formulae are easily verified:

ηnηm = ηn+m + ηn−m

νnνm = ηn+m − ηn−m

νmηn = νm+n + νm−n.

Then
α = ai+1 − ai−1 + a−i−1 − a1−i + a1−i−j + ai−1−j − a1+i−j − a−1−i−j+

(a1−i + ai−1 − a1+i − a−1−i + a1+i+j + a−1−i+j − a−1+i+j − a1−i+j)b

and hence

χk(α) = η(i+1)k − η(i−1)k + η(−1−i)k − η(1−i)k + η(1−i−j)k + η(i−1−j)k − η(1+i−j)k − η(−1−i−j)k

= 2νkνik + η−jk(ν(1−i)k − ν(1+i)k) = νkνik(2− ηjk)
= 8 sin 2πk

n sin 2πik
n (1− cos 2πjk

n ) = 16 sin 2πk
n sin 2πik

n sin2 πjk
n .

The existence of a character with the required properties then follows from the following Lemma.
The remainder of the section is devoted to its proof. Unfortunately the proof is longer than one
would like. On the other hand the remarks given in Section 4 indicates that the inequality of the
Lemma is quite elusive.
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Lemma 3.1 If i, j, n are positive integers such that 1 ≤ i, j < n, n ≥ 3 and (n, i, j) 6= (6, 3, 1) then
there is k ∈ Z such that ∣∣∣∣sin

2πk

n
sin

πik

n
sin2 πjk

n

∣∣∣∣ ≥
1
4
. (3.1)

Proof. For every integer a ∈ R let sa = 2πa
n and fa : R → R/2πZ = S be the map defined by

fa(x) = sax + 2πZ.
Let i, j, n be integers satisfying the conditions of the Lemma. Without loss of generality we

may assume that i, j ≤ n
2 , so that si, sj ≤ π. Let f = fi,j : [0, n) → T = S2 be defined by

f(x) = (fi(x), fj(x)). The image of f is a spiral on the torus T .
We identify S with [0, 2π) and T with the square [0, 2π)2, so that we consider fa as a map

R→ [0, 2π). Let D denote the diagonal of T and V =
[

π
2 , 3π

2

]2.

j/i = 4/3 j/i = 5/3 j/i = 7/3 j/i = 1

Figure 1

The first of the pictures in Figure 1 represents T (the big square), D (the dotted line) and V (the
small square). The other pictures include the image of f for different values of j/i.

Let

W =
[
n

8
,
3n

8

]
, W1 =

[⌈n

8

⌉
,

⌊
3n

8

⌋]
, X = f−1(D)

and consider the following four conditions:

(1) There are k1, k2 ∈ Z such that
∣∣sin fi(k1) sin fi(k1/2) sin2 fj(k1/2)

∣∣ ≥ 1
4 and∣∣sin fi(k1) sin2 fi(k1/2) sin fj(k1/2)

∣∣ ≥ 1
4 .

(2) There are k1, k2 ∈ Z ∩W such that
∣∣sin fi(k1/2) sin2 fj(k1/2)

∣∣ ≥
√

2
4 and∣∣sin2 fi(k2/2) sin fj(k2/2)

∣∣ ≥
√

2
4 .

(3) f(Z ∩W ) ∩ V 6= ∅.

(4) f(W1) ∩D ∩ V 6= ∅.

Condition (1) is equivalent to the statement of the lemma. This condition is introduced to get
symmetry in the roles of i and j. Clearly (3) implies (2) and (2) implies (1). Now we prove that
(4) implies (3). Let t ∈ W1 be such that f(t) ∈ V ∩ D. Then there is an integer l such that
l ≤ t ≤ l + 1 and l, l + 1 ∈ W1 ⊆ W . Assume that i ≤ j. Since sj ≤ π and π

2 ≤ fj(t) ≤ 3π
2 , then

either π
2 ≤ fj(l) ≤ fi(l) ≤ fi(t) ≤ 3π

2 or π
2 ≤ fi(t) ≤ fi(l + 1) ≤ fj(l + 1) ≤ 3π

2 . Thus (3) holds.
We now argue by contradiction. So assume the Lemma is not true and thus that the conditions

(1) to (4) do not hold. Hence, from now on we work under the following assumptions:

(C1) either, for every k ∈ Z,
∣∣sin f1(k) sin fi(k/2) sin2 fj(k/2)

∣∣ < 1
4 , or, for every k ∈ Z,∣∣sin f1(k) sin2 fi(k/2) sin fj(k/2)

∣∣ < 1
4 .
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(C2) either for every k ∈ Z,
∣∣sin fi(k/2) sin2 fj(k/2)

∣∣ <
√

2
4 , or for every k ∈ Z,∣∣sin2 fi(k/2) sin fj(k/2)

∣∣ <
√

2
4 .

(C3) f(Z ∩W ) ∩ V = ∅.
(C4) f(W1) ∩D ∩ V = ∅ or equivalently W1 ∩X ∩ f−1(V ) 6= ∅.

An exhaustive computer search shows that the only triple of positive integers (n, i, j) with
n ≤ 200 and i, j ≤ n

2 for which there is not an integer k satisfying (3.1) is (n, i, j) = (6, 3, 1);
precisely the case excluded in the statement of the Lemma. So we assume n > 200. Note that
because of condition (C4) and the fact that si, sj ≤ π we also easily deduce that i 6= j. Moreover,
because of the symmetry of the roles of i and j, we may also assume that i < j.

We introduce the following notation:

m = gcd(i, j) = |f−1(0, 0)|
v =

j − i

m
= |D ∩ Im f |

α =
n

mv
θ = fi(α)(= fj(α)).

Then

X = {kα : k = 0, 1, . . . , mv − 1} and

f(X) = D ∩ Im f = {(2πk

v
,
2πk

v
) : k = 0, 1, . . . , v − 1}

It is clear that f(X) is a cyclic subgroup of D ∩ T of order v and (θ, θ) is a generator of f(X).
The dots in the previous picture represent the elements of f(X).

Since f(X) ∩ V = Im f ∩ V ∩D, condition (C4) implies that

(C5) If I is an interval so that f(I) = Im f then f(X) ∩ V ⊆ f((I \W1) ∩X).

Since α = n
j−i > 2, every interval of length ≤ 2 contains at most one element of X and therefore

condition (C4) implies
∣∣∣
[n

8
,
⌈n

8

⌉]
∩X

∣∣∣ ≤ 1,

∣∣∣∣
[⌊

3n

8

⌋
,
3n

8

]
∩X

∣∣∣∣ ≤ 1 and hence
∣∣W ∩X ∩ f−1(V )

∣∣ ≤ 2. (3.2)

We consider separately the mutually exclusive cases (1) v 6= 1 and mv 6= 2, (2) and v = 1 and
m ≥ 3 and (3) mv ≤ 2.

Case 1: v 6= 1 and mv 6= 2. First we show that m ≤ 4. Note that

|f(X) ∩ V | =





v
2 + 1 if v ≡ 0 mod 4
v
2 if v ≡ 2 mod 4
v+1
2 if v ≡ 3 mod 4

v−1
2 if v ≡ 1 mod 4

(3.3)

which is different from 0. Let I be the interval centred at n
4 and of length n

m . As f(I) = Im f ,
condition (C5) implies that I is not contained in W1 and this implies that m ≤ 4.

Second we show that m 6= 4. So, suppose the contrary, that is assume v 6= 1 and m = 4. Because
W has length n

m = n
4 , we get that f(W ) = Im f and by (C5) we have f(X)∩V ⊆ f((W \W1)∩X).
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So that |f(X) ∩ V | ≤ 2, by (3.2). As, by assumption, v 6= 1, we obtain easily from (3.3) that
either v = 2, 3 or v = 5. However if v = 3 or v = 5 then X ∩ W = {2n

12 , 3n
12 , 4n

12 } or X ∩ W =
{3n

20 , 4n
20 , 5n

20 , 6n
20 , 7n

20 } respectively, so that X ∩W ⊆ W1 and thus f(X) ∩ V = ∅, a contradiction. So
v = 2 and hence f(n

8 ) = (π, π) = f(3n
8 ). By condition (C3) n is not a multiple of 8. Because of

(C3) we know that f(
⌈

n
8

⌉
) 6∈ V and so fj(

⌈
n
8

⌉
) > 3π

2 . Thus

π

2
< fj(

⌈n

8

⌉
)− fj(

n

8
) = sj (dn/8e − n/8) ≤ π

(⌈n

8

⌉
− n

8

)

and hence n ≡ q mod 8 with q = 1, 2 or 3. This implies that for k =
⌊

n
8

⌋
one has

5π

8
≤ π − qπ

8
= fj(k) < fi(k) < π

and
π

4
> f1(k) =

2π n−q
8

n
=

π

4
− πq

4n
≥ π

4
− 3π

800
=

197π

800
.

Consequently, ∣∣∣∣sin f1(k) sin
fi(k)

2
sin2 fj(k)

2

∣∣∣∣ ≥ sin
197π

800
sin3 5π

8
≥ 1

4

and ∣∣∣∣sin f1(k) sin2 fi(k)
2

sin
fj(k)

2

∣∣∣∣ ≥ sin
197π

800
sin3 5π

8
≥ 1

4

in contradiction with (C1).
Third we show m 6= 3. Suppose the contrary, that is, assume m = 3. Let I =

[
0, n

3

]
. Then

f(X)∩V ⊆ f(
[
0,

⌈
n
8

⌉]∩X), by (C5). Note that
[
0, n

8

]∩X = {kn
3v | 1 ≤ k ≤ 3v

8 } has
⌊

3v
8

⌋
elements.

So (3.2) implies

|f(X) ∩ V | ≤ |X ∩ (0,
⌈n

8

⌉
)| ≤

⌊
3v

8

⌋
+ 1 (3.4)

Hence a careful analysis of inequality (3.4) and (3.3) yields that v = 9, 2, 3, 5 or 6 and in all these
cases |f(X)∩V | > ⌊

3v
8

⌋
. We conclude that X ∩ [

n
8 ,

⌈
n
8

⌉]
has one element. The latter is 4n

27 if v = 9,
n
6 if v = 2, 2n

9 if v = 3, 2n
15 if v = 5, and 3n

18 if v = 6. The smallest of the listed numbers is 2n
15 and

thus we get
n

8
≤ 2n

15
≤

⌈n

8

⌉
.

Consequently n
120 = 2n

15 − n
8 < 1. So n < 120, and this contradicts the assumption that n > 200.

We conclude that m ≤ 2. Note that it follows that f(n
4 ) 6= (0, 0). We claim that mv is not a

multiple of 4 for otherwise f(n
4 ) ∈ f(W1) ∩ V ∩D; in contradiction with (C4).

Consider the maps g : [0, n) → R and ḡ : [0, n) → T given by g(t) = θ
α t and ḡ(t) = (g(t) +

2πZ, g(t) + 2πZ). So the image of ḡ is D and ḡ(t) = f(t) for every t ∈ X. Because of condition
(C4), one has

ḡ(X ∩W1) ∩ V = ∅. (3.5)

Assume now that π
2 < θ < 3π

2 . Then, by condition (C4), α = n
mv 6∈ W1 and because mv > 2,

α <
⌈

n
8

⌉
. Because 4 does not divide mv we get that mv ≥ 9. The restriction on θ easily yields that

if W1 ∩X has at least three elements then W1 ∩X ∩ f−1(V ) 6= ∅, contradicting (C4). Thus we get
|W1 ∩ X| ≤ 2. Hence the length of the interval W1 is at most 2α and at least n

4 − 2. Therefore
2n
9 ≥ 2α ≥ n

4 − 2 and this implies that n ≤ 72, a contradiction.
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So it remains to deal with the situation θ ≤ π
2 or θ ≥ 3π

2 . We deal with θ ≤ π
2 (the other case

is dealt with similarly). Clearly then v ≥ 4. Because 4 does not divide mv it follows that v ≥ 5
and v 6= 8. If v = 6, then n

3 ∈ W1 ∩X and ḡ(n
3 ) ∈ V ; if v = 7 and m = 1 then 2n

7 ∈ W1 ∩X and
ḡ(2n

7 ) ∈ V ; and if v = 7 and m = 2 then n
7 ∈ W1 ∩X and ḡ(n

7 ) ∈ V . These three cases yields to a
contradiction with (3.5) so that v = 5 or v ≥ 9.

Assume first that v = 5. If m = 2, then 2α = n
5 ∈ W1∩X and ḡ(2α) ∈ V , again a contradiction

with (3.5). Thus m = 1 and g(α) = 2π
5 . Because of (C3) one has f(Z ∩ I) ∩ V = ∅, where

I =
[

n
5 , n

4

]
. Moreover, for every x ∈ I, fi(x) ≤ fj(x) ≤ fi(x) + π

2 , that is f(I) is in the strip
between the diagonal and the parallel of the diagonal through A = (π

2 , π). (Note that this last has
a continuation in the lower right corner as it is shown in Figure 2.)

P

A

π

π

2π

5

Figure 2

The dots on the diagonal represent the elements of f(X), f(α) = (2π
5 , 2π

5 ) is labelled by P . The
lines leaving P represent several possibilities for f(I). All of them leave in P and end in the line
parallel to the diagonal through A. The length of the interval fi(I) is at least π

10 , and the equality
holds if and only if i = 1. If i = 1 then f

(
n
4

)
= A and f(I) is the segment joining P and A. Then

f
(⌈

n
4

⌉) ∈ V contradicting (C3). Therefore i 6= 1 and hence f(I) intersects the interior of V and in
fact f

[
n
5 , 9n

40

]
intersects V . This is because the length of fi

[
n
5 , 9n

40

]
is πi

20 ≥ π
10 , and hence there exists

t ∈ [
n
5 , 9n

40

]
with fi(t) = fi

(
n
5

)
+ π

10 = π
2 and for such a t one has f(t) ∈ V (look at the picture).

Let t be the smallest element of I so that f(t) ∈ V and set k = btc. Then k + 1 ∈ I and hence
f(k+1) 6∈ V . This implies that fi(k+1) > π (look at Figure 2) and therefore π

2 < fi(k+1)−fi(k),
so that the slope of fi is larger than π

2 . Thus

π

2
=

2π

5
+

π

10
≤ fi(bαc+ 1) ≤ fj(bαc+ 1) ≤ 3π

2

so that f(bαc+ 1) ∈ V , a contradiction with (C3).
Finally, assume that v ≥ 9 and recall that we are assuming θ ≤ π

2 . Let l be the first non negative
integer such that g(lα) ≥ π/2 and p the least positive integer such that g((l + p)α) > 3π/2. Note
that the first inequality implies that (l − 1)α < n

4 . Since α ≤ n
9 we thus get that lα ≤ n

3 <
⌊

3n
8

⌋
(recall that n > 200). Since θ ≤ π/2, we have that l, p ≥ 2. We claim that p = 2. Assume that
p ≥ 3. Let β = (l + p − 1)α. Then g(β) ∈ V and because of condition (3.5), β 6∈ W1. As also, by
assumption, p ≥ 3 and because g((l + p)α) > 3π

2 it thus follows that g(β) > 3π
2 − π

3 = 7π
6 . So that

the length of g[0, β] is at least 7π
6 . If β ≤ ⌈

n
8

⌉
, then the length of g(W1) is at least

7π

6

⌊
3n
8

⌋− ⌈
n
8

⌉
⌈

n
8

⌉ ≥ 7π

3
n− 6
n + 7

≥ 2π.

This implies that ḡ(W1 ∩X) ∩ V 6= ∅, contradicting (3.5). So β >
⌈

n
8

⌉
and hence, as β 6∈ W1, we

also get β >
⌊

3n
8

⌋
. Let k be the greatest non negative integer such that (l + k)α ≤ ⌊

3n
8

⌋
(recall

8



that lα <
⌊

3n
8

⌋
). Thus k < p − 1. As f((l + k)α) ∈ V and thus (l + k)α 6∈ W1, we obtain that

(l + k)α <
⌈

n
8

⌉
. Consequently,

⌊
3n

8

⌋
< (l + k + 1)α ≤ 2(l + k)α ≤ 2

⌈n

8

⌉
≤ n + 7

4
≤

⌊
3n

8

⌋

a contradiction. So indeed p = 2. Consequently, π
2 + 3θ > 3π

2 and thus θ > π
3 . Hence, g(2α) >

2π
3 > π

2 . Thus l = 2 and so ḡ(3α) ∈ V , so that 3α 6∈ W1. Since 3α ≤ n
3 we get 3α <

⌈
n
8

⌉
. Since also

g(4α) = 4θ > 3π
2 , g(3α) = 3θ ≥ 9π

8 and we therefore obtain that the length of g(W1) is at least

9π

8

⌊
3n
8

⌋− ⌈
n
8

⌉
⌈

n
8

⌉ ≥ 9π

4
n− 6
n + 7

≥ 2π.

Consequently, ḡ(W1 ∩X) ∩ V 6= ∅ again a contradiction.
This finishes the proof for v 6= 1.
Case 2: v = 1 and m ≥ 3. Let λ = i

m = j
m − 1, a positive integer. The slope of f is j

i = 1 + 1
λ .

Figure 3 shows the image f
[
0, n

j

]
for λ = 1, 2 and 3. The greater λ the closer this image is to the

diagonal D.

π

π

Figure 3

Suppose m ≥ 4. Let t0 be the greatest element of
[
0, n

4

] ∩ X and t1 the next element of X.
Note that t1 − t0 = n

m ≤ n
4 and hence t0+t1

2 = t0 + t1−t0
2 ≤ 3n

8 . Clearly t0 =
⌊

m
4

⌋
n
m . So if m ≥ 6

then t0 ≥ m−3
4

n
m ≥ n

8 . On the other hand, if m = 4 or 5, then t0 = n
m ≥ n

5 . So it follows that
for m ≥ 4, I =

[
t0,

t0+t1
2

] ⊆ W . Because of condition (C3) we thus get f(I ∩ Z) ∩ V = ∅. Set
k = bt0c+ 1 ∈ W . Then 0 < fj(k) ≤ π and thus fi(k) < π

2 (Figure 3 is helpful here). Let p be the
least non negative integer so that fi(k + p) ≥ π

2 . Since π ∈ fi(I) (as at least half of circle is covered
by fi(I)), we have that k + p ∈ I ∩ Z and so fj(k + p) > 3π

2 .

Assume that λ 6= 1, of the possible lines representing f
[
0, n

j

]
in Figure 3, the most left one is

excluded. Then a look at the picture shows that fj(k+p) > 3π
2 implies that fi(k+p) > π. So si > π

2 .
It then follows easily that p = 1. So fj(k + 1) > 3π

2 . Since sj ≤ π we get that fj(k) > π
2 . A similar

backward argument shows that π ≤ fj(dt0e−1) < 3π
2 . Consequently, |fj(bt0c+1)−fj(dt0e−1)| > π.

Using again that sj ≤ π we thus get that the length of the interval [dt0e − 1, bt0c + 1] is greater
than 1 and hence t0 is an integer. Therefore π

2 < fi(k +1)− fi(k) = fi(t0 +1)− fi(t0) = fi(k) < π
2 ,

a contradiction.
Thus λ = 1 and hence j = 2i and m = i. Figure 4 represents the image of f and the curves C1

and C2 defined by the equations sin(x/2) sin2(y/2) =
√

2
4 and sin2(x/2) sin(y/2) =

√
2

4 respectively.

9



C1

C2

a1 a2 b1 b2

Figure 4

If (x, y) is in the region R1 limited by the curve C1 then sin(x/2) sin2(y/2) ≥
√

2
4 and if (x, y) is in

the region R2 limited by C2 then sin2(x/2) sin(y/2) ≥
√

2
4 . Let ai and bi be the first coordinates of

the intersecting points of the first part of the image of f with Ci (i = 1, 2). Because of condition
(C2), there do not exist integers k1 and k2 in the interval W so that f(ki) ∈ Ri for both i = 1, 2.
Hence it follows easily that si > min(b1 − a1, b2 − a2). Computing these intersections one obtains
that

a1 ≤ 1.019, a2 ≤ 1.302, b1 ≥ 2.484, b2 ≥ 2.766.

So si > 1.464 and thus i
n = S

2π ≥ 0.233. As n > 200 we thus get i > 46 and hence α = n
m =

n
i < n

46 . It follows that n
4 − n

46 < t0 < t1 < n
4 + n

46 . Consequently, for every t ∈ [t0, t1] one has
sin 2πt

n ≥ sin 21π
46 > 0.9. Let C ′

1 be the curve defined by the equation sin(x/2) sin2(y/2) = 1
4·(0.9) and

C ′
2 the curve defined by sin2(x/2) sin(y/2) = 1

4·(0.9) . Let a′i and b′i be the first components of the
intersecting points of C ′

i with the first part of the image of f . Then

a′1 ≤ 0.912, a′2 ≤ 1.165, b′1 ≥ 2.573, b′2 ≥ 2.854.

Because of condition (C1), one obtains similarly as above that sj > 2min(b′1−a′1, b
′
2−a′2) ≥ 3.316 >

π, a contradiction.
So we have shown that m = 3. Let t0 =

⌈
n
3

⌉
and k = t0−1. Similarly as in the previous situation

(that is, for m ≥ 4), one can now come to a contradiction arguing backward in the interval
[

n
6 , n

3

]
.

Case 3: mv ≤ 2. Let I = [t0, 2t0] ∩W where t0 = α
4 , so that

f(t0) =
{ (

0, π
2

)
,
(

π
2 , π

)
,
(
π, 3π

2

)
or

(
3π
2 , 0

)
if v = 1(

π
4 , 3π

4

)
,
(

3π
4 , 5π

4

)
,
(

5π
4 , 7π

4

)
or

(
7π

4 , π
4

)
if v = 2

For every t ∈ I, we have

π

2
≤ fj(t)− fi(t) =

2πt

α
≤ π.

Hence f(I) is in the shadowed part of Figure 5 where the possible values for f(t0) have been
represented by bold circles.

10



Figure 5

Moreover the slope sj−i of the function fj − fi is 2π(j−i)
n = 2vmπ

n < π
50 (because by assumption

n > 200).
The possible values of m and f(t0) leads to 12 different cases. Using similar arguments one can

now show that each of these cases leads to a contradiction, and hence finishes the proof. Crucial in
all these arguments is to understand what happens “shortly” after the time t0. We illustrate the
method for m = 2 and f(t0) = (0, π

2 ) = O, so that v = 1.
Let k = dt0e. As si ≤ π and sj−i ≤ π

50 it thus follows that 0 ≤ fi(k) ≤ 7π
8 and π

2 =
fj(t0)− fi(t0) ≤ fj(k)− fi(k) = (fj − fi(t0)) + (fj − fi)(k− t0) ≤ π

2 + π
50 = 13π

25 . Thus π
2 ≤ fj(k) ≤

7π
8 + 13π

25 < 3π
2 . So, because of condition (C3) we obtain that fi(k) < π

2 . Let l be the first integer
greater than t0 so that fi(l) ≥ π

2 . We claim that fi(l) ≥ 3π
4 . This is easy if l ≥ 3n

16 , because m = 2
divides i and then fi(l) ≥ 2πi

n
3n
16 ≥ 3π

4 , as desired. So suppose that l < 3n
16 and fi(l) < 3π

4 . Then
fj(l) = (fj − fi)(l) + fi(l) < 4π

n
3n
16 + 3π

4 = 3π
2 . However this yields a contradiction with condition

(C3). This proves the claim fi(l) ≥ 3π
4 . Hence it follows that si ≥ π

4 , and thus we get l ≤ k + 2. If
the slope of the image of f is S, then

1 < S = (fj(l)−fj(t0))
(fi(l)−fi(t0)) = 1 + (fj(l)−fj(t0))−(fi(l)−fi(t0))

(fi(l)−fi(t0)) = 1 + sj−i(l−t0)
fi(l)

< 1 +
π
50

(2+ 7
8
)

3π
4

= 323
300 = Smax.

Let a and b be the first two elements of I so that A = f(a) = (A1, A2) and B = f(b) = (B1, B2)
belong to the curve C1 with equation sin(x/2) sin2(y/2) =

√
2

4 , and let c and d the first two elements
of I so that C = f(c) = (C1, C2) and D = f(d) = (D1, D2) belong to the curve C2 with equation
sin2(x/2) sin(y/2) =

√
2

4 . Figure 6 represents the curves C1 and C2 and the lines L1 and L2 through
O of slopes 1 and Smax respectively.

O

L1
L2

C1

C2

A

C

B

D

Figure 6
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The image of an interval [t0, t0 + ε] by f lies in the region between L1 and L2. Computing the
intersections of the line through the point O and slopes 1 and Smax one deduces that

0.82 < A1 < 0.84
1.27 < C1 < 1.29
3.19 < B1 < 3.44
3.65 < D1 < 3.88

Condition (C2) implies that either fi(l− 1) < A1 and B1 < fi(l), or fi(l− 1) < C1 and D1 < fi(l).
Thus l − 1− t0 = (l−1)−t0

l−(l−1) ≤ max{ A1
B1−A1

, C1
D1−C1

} ≤ 0.6. In particular, (l − 1)− t0 < 1. Since also
l, k ∈ Z and t0 ≤ k ≤ l − 1 we get that l = k + 1 and dt0e − t0 = k − t0 < 0.6, so that n 6≡ 1, 2, 3
mod 8.

Arguing similarly in the interval
[

5n
8 , 6n

8

]
(note that f(5n

8 ) = 5f(t0) = O) one deduces that
5n 6≡ 1, 2, 3 mod 8, so that n 6≡ 5, 7 mod 8. If n ≡ 0 mod 8 then f(l) ∈ V contradicting (C3).
We conclude that n ≡ 4 mod 8 or n ≡ 6 mod 8.

Condition (C2) implies that either fi(k) < A1 and fi(k+1) > B1, or fi(k) < C1 and fi(k+1) >
D1. Therefore si > min(B1 −A1, D1 − C1) ≥ 2.35.

Assume that n ≡ 4 mod 8. Then fi(k) = si/2 > 2.35/2 > A1 and hence fi(k) < C1 and
fi(k+1) > D1. The first implies that si < 2C1 < 2.58 and the second implies that si > 2D1

3 > 2.43.
Therefore, we have

2π +
π

2
<

7 · 2.43
2

< fi(k + 3) =
7si

2
<

7 · 2.58
2

< 2π +
3π

2

and

2π+
π

2
<

7 · 2.43
2

+
π

2
< fi(k+3)+

π

2
< fj(k+3) < fi(k+3)+

π

2
+

7π

2
π

50
<

7 · 2.58
2

+
π

2
+

7
2

π

50
< 2π+

3π

2
.

So f(k + 3) ∈ V which yields to a contradiction with (C3).
So n ≡ 6 mod 8. Then 5si/4 = fi(k + 1) > B1 > 3.19, so that si > 2.55. Let h =

⌈
n
4

⌉
= n+2

4 .
Then π

2 < f1(h) = π(n+2)
2n < π

2 + π
200 = 102π

200 , 1.27 < si/2 = fi(h) < π
2 and π < fj(h) ≤ fi(h)+π+ π

100 ,
so that

min{| sin f1(h) sin fi(h/2) sin2 fj/2(h/2)|, | sin f1(h) sin2 fi(h/2) sin fj/2(h/2)|} ≥

sin 102π
200 sin2 1.27

2 sin (1.27+101π/100)
2 > 1

4 ,

which yields to a contradiction with (C1).

4 Final Remarks

From the first part of the paper it is clear that the problem of the freeness of the group generated by
two bicyclic units is usually a consequence of a problem of determining when the group generated
by two 2× 2-matrices is a free group. In particular, with notation as in Proposition 2.4, to ensure
that the group G = 〈1 + a, 1 + b〉 is free of rank 2 it is enough to show that the two matrices

(
1 2
0 1

) (
1 0
λ 1

)
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generate a free group, where 2λ = tr(ρ(ab)) ∈ C. If this is the case it is common to say that λ is a
free point [1]. So far we have used Sanov’s Theorem that states that a complex number of modulus
at least 2 is a free point. The problem of deciding when a complex number is a free point is an
active topic of research. For numerous complex numbers it has been determined whether they are
free or not. For an up to date list we refer to [1].

Recently Bamberg [1] has given a family F of polynomials so that a point is free if and only if
it is the root of an element of F . However, it is very difficult to check if a particular λ is root of
one of the given polynomials. In particular we don’t know if

√
3 is a free point. We now outline

that an answer to the latter is needed to deal with bicyclic units of arbitrary dihedral groups.
Let b1, b2 be two non commuting bicyclic units of the same type in ZDn. It is again easily seen

that we may assume that b1 = βat,b and b2 = βai,ajb. If x = (b1−1)(b2−1), then (with the notation
of Section 3)

χk(x) = 16 sin
2πtk

n
sin

2πik

n
sin2 πjk

n
.

In general it is not true that there is k so that χk(x) ≥ 4. For example, if n = 12, t = j = 2
and i = 3, then χk(x) = 0 if k = 2, 3, 4 and |χk(x)| = 2

√
3 < 4 if k = 1, 5. Let us look at the

representations. The Wedderburn decomposition of QD12 is well known:

QD12 = 4Q⊕ 3M2(Q)⊕M2(Q(
√

3)).

Taking appropriate basis one may make the following identifications:

b1 = (1, 1, 1, 1, A, A, 1, C) and b2 = (1, 1, 1, 1, 1, B, D),

where A,B ∈ M2(Q) are non-identity matrices so that (A− 1)2 = (B − 1)2 = 0, and

C =
(

1 2
0 1

)
and D =

(
1 0√
3 1

)
.

Thus 〈b1, b2〉 is free if and only if there do not exist non zero integers h1, . . . , hm and k1, . . . , km so
that

h1 + . . . + hm = k1 + . . . + km = 0 and Ch1Dk1Ch2Dk2 . . . ChmDkm = I.

In particular if
√

3 is a free point then 〈b1, b2〉 is free.
Actually the previous case seems to be the only problematic case in dihedral groups. Indeed, a

computer search for n ≤ 200 shows that if n is not a multiple of 12 then for every 1 ≤ t, i, j < n
there exists a k so that |χk(x)| ≥ 4. Moreover if n = 12m then the only values of (t, i, j) for which
|χk(x)| < 4 for every value of k are

(2, 3, 2)m, (3, 2, 2)m, (4, 3, 2)m and (3, 4, 2)m.

After an appropriate reduction one can show that all the cases reduce to n = 12 and (t, i, j) =
(2, 3, 2). This is precisely the example dealt with above. So, this seems to be an indication that for
every two non commuting bicyclic units b1 and b2 of the same type in ZDn one has that 〈b1, b

2
2〉 is

a free group and if
√

3 is a free point then 〈b1, b2〉 is always free.

We finish with a remark on the group generated by two bicyclic units of different type. Let
b1 = βa,b and b2 = γai,ajb. Then for every irreducible complex character χk of Dn we get

χk(x) = 16 sin
2πk

n
sin

2πik

n
cos2

πjk

n
.

13



However, for this formula there is no analogue of Lemma 3.1. Indeed, for n = 3, that is for D3,
there are pairs of bicyclics with “bad” trace. For example, if b1 = βa,b and b2 = γa,ab, then

χ1(x) = 16 sin
2π

3
sin

2π

3
cos2

π

3
= 3.

This implies that 〈b1, b2〉 is not free. Actually as mentioned in [2] the group 〈b1, b2〉 contains the
trivial unit a ∈ D3.

Acknowledgment. We would like to express our gratitude to Victor Jimnez for some helpful
conversation on inequality (3.1).
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