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ABSTRACT 
 

In the present paper we construct a new, simple and powerful test for independence by 
using symbolic dynamics and permutation entropy as a measure of serial dependence. 
We also give the asymptotic distribution of an affine transformation of the permutation 
entropy under the null hypothesis of independence. An application to several daily 
financial time series illustrates our approach. 
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Introduction 
 

Independence is one of the most valuable notions in econometrics, time series analysis 

and statistics due to the fact that most tests boil down to checking some sort of 

independence assumption. As a result, an extensive literature on how to test 

independence has arisen: Correlation tests (see King (1987) for a survey) are widely 

used, but they are not consistent against alternatives with zero autocorrelation. 

Examples of serially dependent processes that exhibit zero autocorrelation include 

autoregressive conditional heteroskedastic (ARCH), bilinear, non-linear moving 

average processes and iterative logistic maps. The nonparametric literature also contains 

a large number of serial independence test (see Dufour et al. (1982) for a bibliographical 

survey on permutation, sign and rank tests for independence). These test procedures 

work well under commonly used dependence structures, like ARMA models, but they 

also fail to detect subtle nonlinear underlying dependence structures. Needless to say 

that other nonparemetric tests have emerged (Brock et al. (1996) and Pinkse (1998), 

among others) to cover these difficulties. 

    Serial independence has been increasingly studied by using entropy measures. These 

measures avoid restrictive parametric assumptions on the probability distribution 

generating the data, and they can capture the dependence present in a time series. As an 

outcome, establishing asymptotic distribution theory for smoothed nonparametric 

entropy measures of serial dependence has been so far challenging (see Hong and White 

(2005) and references therein). This line of research is narrowly connected with 

Information Theory: Jaynes (1957) introduced the maximum entropy principle (MEP) 

which determines the probability distribution of a random variable by maximizing the 

Shannon entropy, subject to certain moment conditions. This optimization principle is 

the same as the Kullback principle of minimizing the Kullback-Leibler relative entropy 

when one of the distributions is uniform. Jaynes' MEP was a turning point in the use of 

Shannon's entropy as a method of statistical inference. 

    The use of entropy has played a leading role as a measure of the dependence present 

in a time series in the last two decades. Joe (1989a, 1989b) considered a smoothed 

nonparametric entropy measure of multivariate dependence of an independent and 

identically distributed (i.i.d.) random vector. Granger and Lin (1994) proposed a 

normalized smoothed nonparametric entropy measure of serial dependence to identify 
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important lags in time series. Robinson (1991) developed a test for serial dependence 

using a modified entropy measure. Skaug and Tjøstheim (1993b, 1996) also considered 

a general class of smoothed density-based tests for serial dependence, which includes a 

test based on an entropy measure modified with a weight function. 

    As Granger and Lin (1994) pointed out, there is no asymptotic distribution theory 

available for smoothed nonparametric entropy measures of serial dependence. 

Consistency and in some cases convergence rates have been established, but asymptotic 

distributions for these entropy estimators are not available. Robinson (1991) first 

provided an asymptotic distribution theory for a smoothed nonparametric modified 

entropy measure of serial dependence, using a sample-splitting device. Granger et al. 

(2004) introduced a transformed metric entropy of dependence. Recently, the relevant 

investigation of Hong and White (2005) have provided, under certain assumptions, an 

asymptotic theory for a class of kernel-based smoothed nonparametric entropy 

estimators of serial dependence. They also show that their theory yields the limit 

distribution of the Granger and Lin's normalized entropy measure, which was 

previously unknown in the literature. Moreover, they develop a test that is 

asymptotically locally more powerful than Robinson's test. Nevertheless, most of the 

methods used to test for independence via an entropy measure of serial dependence 

extrictly require a continuous distribution function of the unknown underlying data 

generating process and also need to estimate the density function with stochastic 

kernels. As a result, free-choice parameters are introduced. Another difficulty 

acknowledged by Hong and White (2005) is that the finite sample level of their own test 

(and in general of others entropy-based tests) differs from the asymptotic one; 

furthermore, asymptotic theory may not work well even for relatively large samples. 

This leads to implement, for each sample size, non-naive bootstrap procedures in order 

to correctly compute the test. Moreover, Hong and White need the time series Xt to have 

a compact support in the interval [0,1], although this is not necessarily a restriction 

whenever the test is invariant under monotonous transformations of the series. 

Obtaining a compact support can always be ensured by a continuous strictly 

monotonous transformation such as the logistic function. 

    On the other hand, there are a number of other nonparemetric tests for independence 

that avoid smoothed nonparemetric estimation (Skaug and Tjøstheim (1993a); Delgado 

(1996); Hong (1998); and Hong (2000), among others; see also Tjøstheim (1996) for an 

excellent complete survey). These procedures are based on the empirical distribution 
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function or on the characteristic function. Importantly, some of these statistics are 

invariant to order preserving transformation; the distribution generating the data can be 

continuous or discrete; under certain conditions, the tests are distribution free. 

Unfortunately, some of these statistics have nonstandard limiting distribution. In these 

procedures, as in the case of tests based on smoothing estimation techniques, the test 

statistic is a distance between the joint density (or estimated joint distribution) and the 

marginal densities (or estimated marginal distributions). 

    In the present paper we take a different way, and we propose a new test for 

independence also based on Information Theory, but avoiding the potential 

disadvantage of depending on the choice of a smoothing number. More precisely, the 

absence of dependencies in the unknown underlying data generating process is studied 

via symbolic dynamics. Symbolic dynamics studies dynamical systems on the basis of 

the symbol sequences obtained for a suitable partition of the state space. The basic idea 

behind symbolic dynamics is to divide the phase space into a finite number of regions 

and label each region by an alphabetical letter. In this regard, symbolic dynamics is a 

coarse-grained description of dynamics. Some recent tests of independence are also a 

coarse-grained description of the underlying dynamic from which the data was 

generated. Even though coarse-grained methods lose a certain amount of detailed 

information, some essential features of the dynamics may be kept, e.g., periodicities and 

dependencies, among others. Symbolic dynamics has been used for investigation of 

non-linear dynamical systems (for an overview see Hao and Zheng, 1998). The process 

of symbolizing a time series is based upon the method of delay time coordinates, 

introduced by Takens (1981), in order to carry out the phase space reconstruction. Such 

a reconstruction is done from a scalar time series and all relevant components (relative 

to the underlying dynamics), such as dependencies, periodicity and complexity changes, 

have to be extracted from it. 

    Then, given a time series {Xt}, we study the dependence present in the series by 

translating the problem into symbolic dynamic and then, we use the entropy measure 

associated to these symbols to test the dependence present in the time series. More 

concretely, we study all m! permutations (symbols) π of length m in the symmetric 

group Sm which are considered here as possible order types of m different numbers. 

Afterwards, we give the distribution followed by the mentioned symbols and define the 

entropy measure associated to them. This entropy measure is called permutation entropy 

(see Bandt and Pompe (2002) and Section 2 for a detailed explanation). Moreover under 
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the null of independence we prove that an affine transformation of the permutation 

entropy is asymptotically χ² distributed. 

    This allows us to construct a simple, consistent, easy to compute and powerful test 

for independence. The new test avoids restrictive assumptions on the probabilistic 

distribution generating the data. This fact allows the test to be of more general 

applicability. The distribution generating the data can be continuous or discrete. No 

moment is required; this is attractive for time series whose variances are infinite, as 

often arises in financial time series. It does not involve sample splitting (as Robinson 

(1991) requires) and thus, it does not need choosing tuning parameters that can lead to 

ambiguous conclusions when the test is used by two different practitioners. An 

interesting property of the proposed test is that it is invariant under monotonous 

(continuous or not) transformation of the data. Therefore, provided that {Xt} is i.i.d. if 

and only if any series of its continuous monotonous transformation is i.i.d., the 

invariance property guaranties that no information is lost. Of important relevance for 

our test is that the finite sample level does not differ from the asymptotic level, and 

hence general applicability and reproducibility of the test is ensured. 

    The rest of the paper is structured as follows. In Section 1 we introduce the notation 

and several definitions in order to describe the symbolic dynamic representation 

methodology. The procedure is illustrated with an easy example. In Section 2 we give 

the construction of the independence test via permutation entropy and we prove that 

under the null of independence an affine transformation of the permutation entropy is 

asymptotically χ² distributed. Size and power of the new test are studied by Monte Carlo 

methods in Section 3. An empirical application for daily financial returns is reported in 

Section 5. Finally, we give the conclusions and final remarks in Section 4. 

 

Definitions and Notation 
In this section we give some definitions and we introduce the basic notation. We 

illustrate the definitions with a very easy example. 

Let { }t t I
X

∈
be a real-valued time series. For a positive integer m ≥ 2 we denote by 

mS the symmetric group of order m!, that is the group formed by all the permutations of 

length m. Let ( )i 1,..., m mi i Sπ = ∈ . We will call an element iπ  in the symmetric group 

mS  a symbol. The positive integer m is usually known as embedding dimension. 
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Now we define an ordinal pattern for a symbol ( )i 1,..., m mi i Sπ = ∈  at a given time t I∈ . 

To this end we consider that the time series is embedded in an m-dimensional space as 

follows: 

 ( )1 2( ) , ,..., ,m t t t mX t X X X t I+ + += ∈  

Then we say that t is of iπ -type if and only if ( )1 2, ,...,i mi i iπ =  is the unique symbol in 

the group satisfying the two following conditions: 

         1 2

11

( ) ,  and

( )

...
m

s ss s

t i t i t i

t i t i

a X X X

b i i if X X
−−

+ + +

+ +< =

≤ ≤ ≤
 

Condition (b) guaranties uniqueness of the symbol ( )1 2, ,...,i mi i iπ = . This is justified if 

the values of Xt have a continuous distribution so that equal values are very uncommon, 

with a theoretical probability of occurrence of 0. 

Notice that for all t such that t is of iπ -type the m-history ( )mX t  is converted into a 

unique symbol iπ . This symbol iπ  describes how the ordering of the dates 

t+0<t+1<…<t+(m-1) is converted into the ordering of the values in the time series 

under scrutiny. In order to see this, the following example will help the reader. 

Take as embedding dimension m = 3. Thus the symmetric group is 

 

 S3 = {(0,1,2),(0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0)}. 

 

 Consider the finite time series of seven values 

 1 2 3 4 5 6 7{ 2,    8,    6,    5,    4,   9,   3}X X X X X X X= = = = = = =  (1) 

 

 

Then for t = 2 we have that Xt+2 = 5 < Xt+1 = 6 < Xt+0 = 8 and therefore we have that the 

period t=2 is of (2,1,0)-type. 

Also, given a time series { }t t I
X

∈
and an embedding dimension m one could easily 

compute the relative frequency of a symbol ( )i 1,..., m mi i Sπ = ∈  by: 

 
{ }#  is of -type

( )
1

t I t
p p

I mπ

π
π

∈
≡ =

− +
 (2) 
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where by |I| we denote the cardinal of the set I. 

 

Then for the time series given in (1) we have that the 3-history X3(1)=( X1=2, X2 = 8, X3 

= 6) is represented by the symbol (0,2,1); X3 (2) = (8,6,5) and X3(3)=(6,5,4) are 

represented by the symbol (2,1,0); X3 (4) = (5,4,9) is represented by the symbol (1,0,2) 

and finally X3(5) = (4,9,3) is represented by the symbol (2,0,1). Therefore we obtain that 

p((0,1,2)) = 0 = p ((1,2,0)), p ((0,2,1)) = (1/5), p ((1,0,2)) = (1/5), p ((2,0,1)) = (1/5) and 

p ((2,1,0)) = (2/5). 

Now under this setting we can define the permutation entropy of a time series { }t t I
X

∈
 

for an embedding dimension m ≥ 2. This entropy is defined as the Shanon's entropy of 

the m! distinct symbols as follows: 

 ( )( ) ln
i i

i mS

h m p pπ π
π ∈

= − ∑  (3) 

Permutation entropy, ( )h m , is the information contained in comparing m consecutive 

values of the time series. It is clear that 0 ≤ ( )h m ≤ ln(m!) where the lower bound is 

attained for an increasing or decreasing sequence of values, and the upper bound for a 

completely random system (i.i.d. sequence) where all m! possible permutations appear 

with the same probability. For the time series given in (1) we have that 

(3) -3(1/ 5) ln((1/ 5)) - (2 / 5) ln((2 / 5)) 1.332179.h = ≈  

 

Construction of the independence test 

 
In this section we construct an independence test with all the machinery defined in 

Section 2. We also prove that an affine transformation of the permutation entropy 

defined in (3) is asymptotically χ² distributed. 

Let { }t t I
X

∈
 be a time series and m be a fixed embedding dimension. In order to 

construct a test for serial independence in{ }t t I
X

∈
, which is the aim of this paper, we 

consider the following null hypothesis: 

 { }0 . . .t t I
H X i i d

∈
=  (4) 

against any other alternative. 
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Now for a symbol ( )i 1,..., m mi i Sπ = ∈  we define the random variable 
it

Zπ  as follows: 

 
that is, we have that 

it
Zπ = 1 if and only if t is of typeiπ − . 

Then 
it

Zπ  is a Bernoulli variable with probability of "success" 
i

pπ , where "success" 

means that t is of typeiπ − . It is straightforward to see that 

 

 
Now assume that the set I is finite and of order T. Then we are interested in knowing 

how many t's are of typeiπ −  for all symbol i mSπ ∈ . Let us call K=T-m+1. In order to 

answer the question we construct the following variable 

 
The variable 

i
Yπ  can take the values {0,1,2,…,K}. Then it follows that the variable 

i
Yπ  

is the Binomial random variable 

 

 
For each symbol i mSπ ∈  we are going to denote by 

 

for i=1,2,…,m!. Then under the null H₀, the joint probability density function of the m! 

variables ( )1 2 !
, ,...,

m
Y Y Yπ π π is: 
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where 1 2 !... ma a a K+ + + = . Consequently the joint distribution of the m! variables 

( )1 2 !
, ,...,

m
Y Y Yπ π π  is a multinomial distribution. 

The likelihood function of the distribution (10) is: 

 

and since 
!

1
1

i

m

i
pπ

=

=∑  it follows that 

 

 
Then the logarithm of this likelihood function remains as 

 

 
In order to obtain the maximum likelihood estimators ˆ of  

i i
p pπ π  for all i  = 1,2,…,m!, 

we solve the following equation 

 

  
to get that 

 

 
Then the likelihood ratio statistic is (see for example Lehmann, 1986): 
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On the other hand, ( ) -2 ( ( )) G m Ln Yλ=  asymptotically follows a Chi-squared 

distribution with m!-1 degrees of freedom (see for instance Lehmann, 1986). Hence 

 

 

Now under the null H₀ it is clear that 1
!i

p
mπ =  for all i=1,2,…,m!. Then it follows that 

 

 
 

Now taking into account that ( )
!

1

( ) ln ln
i i

i m

m
i i

S i

n nh m p p
K K
π π

π π
π ∈ =

⎛ ⎞= − = − ⎜ ⎟
⎝ ⎠

∑ ∑  we have that 

 

 
Therefore we have proved the following result. 
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Theorem 3.1. Let { }t t I
X

∈
 be a time series with |I|=T. Denote by h(m) the permutation 

entropy defined in (3) for a fixed embedding dimension m>2, with m∈N. If the time 

series { }t t I
X

∈
 is i.i.d., then the affine transformation of the permutation entropy 

 

  
 

is asymptotically 2
! 1mχ −  distributed. 

 

Let α be a real number with 0≤α≤1. Let 2
αχ  be such that 

 

 
Then to test 

 
 

the decision rule in the application of the G(m) test at a 100(1-α)% confidence level is: 

 

  
 

It is important to note, from a practical point of view, that the researcher has to decide 

upon the embedding dimension m in order to compute permutation entropy and 

therefore to calculate the G(m) statistic. Fortunately, this decision can be easily 

conducted. Note that T should be larger than the number of permutation symbols m! in 

order to have at least the same number of m-histories as possible symbols (events) 

i mSπ ∈ . When the χ² is applied in practice, and all the expected frequencies are ≥5, the 

limiting tabulated χ² distribution gives, as a rule, the value 2
αχ  with an approximation 

sufficient for ordinary purposes. For this reason, we require to work with data sets 

containing at least five times the number of possible events. For instance, a data set of 

200 observations is enough for computing G(4) because 24 symbols are obtained for m 
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= 4; similarly, 600 observations is the smallest data set that can be considered for an 

embedding dimension of m=5 since in this case 120 symbols might be found. Beyond 

embedding dimension of m=6, data requirements are unrealistic for real economic time 

series, so we do not use such dimensions. Conversely, for m=3 only six possible 

symbols are analyzed, and then the degree of information capture by these symbols is 

very limited and therefore we do not suggest the use of m=3. Through this paper we 

compute permutation entropy in a manner that the researcher has not to choose the 

embedding dimension: For a given data set of T observations, the embedding dimension 

will be the largest m that satisfies 5m!≤T with m=2,3,4,.... For example, for case of T = 

500, we set1 m=4. 

 

Finite-Sample Behavior 
 

Various time series were generated in order to test the size and power of the G(m) test. 

We have studied the new test for three embedding dimensions: m=4,5 and 6, 

accordingly, sample sizes of T=120,T=600 and T=3600 have been considered, 

respectively. In order to conduct size experiments the analyzed models have been the 

following: 

 

 1. A Gaussian distribution, zero mean and unit variance, N(0,1)   

 2. A Uniform distribution on the (0,1) interval, U(0,1) 

 3. A Chi-square distribution with 4 degrees of freedom, χ² 

 4. A Student's t-distribution with 4degrees of freedom, t4 

 

Each process was repeated 2000 times and the proportion of rejections of the i.i.d. null 

was calculated using a nominal size of 1, 5 and 10 per cent. 

Table 1 reports the empirical size of our test under the four i.i.d. models. As it can be 

seen, even for the smallest considered data set (that is, for m=4 where T=120=5m!), the 

test is reasonably well sized, with rejection frequencies occurring at approximately their 

nominal rates. The finite sample level does not differ from the asymptotic level. 

Furthermore, test's size improves as T increases (T>5m!). The same behavior is 

                                                 
1 Note that if T is too large (T>25.200), then the selected m will be too large as well (indeed m>7), and 
hence the procedure will be too expensive in terms of computational time. For this reason, and because of 
the usual length of economic time series, we recomend to operate with m=6 for T>3600 
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obtained (although not reported here for sake of space) for m=5 and m=6. These 

observations are relevant because as Hong and White (2005) note the finite sample level 

of their own test (and in general of the previous entropy-based tests) differs from the 

asymptotic one, not only for small samples but also for large samples. As a result, the 

G(m) test does not need computing non-naive bootstrap procedures in order to compute 

the test. These results also show that the new test behaves well when facing several 

random distributions with different shaped probability density functions such as fat-

tailed, either symmetric or not, and infinitely fat-tailed like the uniform distribution.  

 

 

 
 

On the other hand, in order to test for the power of the G(m) test, we have considered 

the same data generating processes (DGPs) as in Granger and Lin (1994) because of its 

rich nonlinear variety. The models are the following: 

 
where . . . (0,1)tx i i d N . For the simulations that follow, we increase Granger and Lin's 

(1994) DGPs with the following process: 
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For each DGP, we first generate T+200 observations and then discard the first 200 to 

mitigate the impact of initial values. DGP's 1-4 are MA processes of order 1,2,3 and 3 

respectively. DGP's 5-7 are AR(1) autoregressions with various decaying memory 

properties. DGP 8 is a simple I(1) with persistent memory and DGP 9 is bilinear with 

white noise characteristics. DGP 10 is the logistic function generating chaotic dynamics. 

DGP 11 is a ARCH(1) process commonly employed in financial applications. 

We shall use these models to evaluate the power of our non-parametric dependence test. 

A minimum of 2000 Monte Carlo replications from each model are computed. Code 

was written in Mathematica 5.2 programming language. 

 

Table 2 reports the empirical rejection rates of G(4), G(5), G(6) under DGPs 1-11, for 

T=120, T=600 and T=3600, respectively. As we can see, the power of our test against 

dependent models (either linear or non-linear) is near 100% when T=3600. For T=600 

and regarding the nonlinear moving average processes (DGPs 1-4), the power of the 

G(m) test is significantly high at all levels, except, perhaps, for the DGP 3 at 1%. This 

test's performance does not hold for the smallest data set. Concerning the AR(1) 

processes (DGPs 5-7) the power of the test for T=600 is very close to 100% at all levels, 

while for T=120 the results are not so optimistic. The behavior of the test, in terms of 

power, in presence of an I(1) process with persistent memory (DGP 8) is near 100%, 

regardless the sample size. The performance of the test for the bilinear with white noise 

(DGP 9) is very high at all levels, except for the case of T=120. As expected, the 

chaotic nature of process (DGP 10) is always capture regardless the sample size. 

Finally, for the ARCH model (DGP 11), our test only performs well for the largest 

sample size.  
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Two compatible reasons can explain why DGP 11 is not capture by G(4) and G(5). One 

relies on the fact that we are computing the tests over small sample sizes. The other one 

is that the number of analyzed symbols (24 symbols for m=4, and 120 symbols for 

m=5) is not enough to capture the complexity of ARCH processes. Figure 1 shows the 

power of G(4) test for increasing sample sizes (T goes from 120 to 5000). By inspection 

of Figure 1 it is evident that valuable powers are attained for large sample sizes at all 

nominal levels2. Sample sizes greater than 5000 are needed for G(4) to obtain, at all 

nominal levels, powers larger than 75%. This fact underlines the central role played by 

the number of analyzed symbols for a given data set. In this regard, observe from Table 

2 that the power against DGP 11 is almost 100 per cent for T=3600 and m=6. Note that 

this power's gain is obtained via rising the number of symbols with which the data set is 

analyzed, and not by increasing the sample size (T). Therefore, even though the sample 

size is certainly important for G(m) test's power, it is more relevant the role played by 

the number of symbols used for detecting dependence.  

 

                                                 
2 The same occurs for m=5. 
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In comparison with other tests for independence based also on entropy concepts 

(Robinson 1991; Skaug and Tjøstheim 1996; Hong and White 2005), the main 

advantages of our test are the following: (a) It does not require to selected many free 

parameters, in fact, the unique free parameter is the number of symbols (m!) upon 

which permutation entropy is computed. (b) The test is well defined for both continuous 

and discrete processes. (c) The test is invariant under monotonous (either linear or 

nonlinear) transformation of the data set. Invariance is important since otherwise 

inadvertent transformations would produce different levels of dependence. Notice that 

this property is essential when testing independence in time series. For instance in Hong 

and White's test, in order to ensure that the support of the time series belongs to the 

compact interval [0,1] they make a logistic transformation (monotonous) of the data. 

Therefore if the test is invariant under monotonous transformations, the condition on the 

support is not a restriction. (d) G(m) test does not need any estimation of the density 

function nor the use of stochastic kernels for its computation, something that does not 

occur with most of the entropy-based tests for serial dependence. 

    Advantages (a)-(d) make the G(m) test not only more general and less dependent on 

free choice parameters, but also easier to compute and shorter in computing running 

time. 
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Empirical Application 
 

This section illustrates our test by using the G(m) statistic to explore possible 

dependences in the following well studied daily financial returns: Dow Jones Industrial 

Average (DJIA) and three exchange rate time series, namely, the French franc, the 

German mark and the Canadian dollar, all against the U.S. dollar. Daily returns of Dow 

Jones Industrial Average (DJIA) ranges from January 3, 1928 to October 18, 2000 while 

daily exchange rate's returns go from January 4, 1971 to December 31, 1998. Returns, 

Rt, are defined as the difference of logarithm of the stock price index (or of the 

corresponding exchange rate) (Rt = ΔlnPt), where Pt is the daily closing price index (or 

the closing exchange rate). We are interested in testing independence3 of the Rt as a way 

of examining the correctness of the random walk hypothesis for the logged prices (or 

for the logged the three exchange rates). 

We also test for independence in various power transformed absolute returns series, 

|Rt|d,d=1/2,1,1,5 and 2, since it is well known (see Ding et al., 1993) that proxy volatility 

measures, as power transformations of financial returns, have higher autocorrelation 

compared to the return series. 

Given that T>3600 for all data sets, we have compute the G(m) test for m=6. Results for 

the four data sets are reported in Table 3. As can be observed, as regards the DJIA 

returns, the null of independence is rejected at 1 per cent significance level; however, 

independence is not rejected for the transformed absolute returns. Exchange rate's 

returns behave similarly, independence is rejected at 1 per cent; however, now the test 

rejects the null at 1% level, for all absolute return's power transformations. All these 

results indicate that the DJIA daily stock prices and the three exchange rate time series 

do not follow a random walk. As regarding volatility, measured via the proxy variables 

|Rt|d, these results point out that, while rejection of the random walk hypothesis for the 

three exchange rate returns might be due to potential strong volatility clustering, this is 

not the case for the DJIA since independence cannot be rejected for absolute power 

                                                 
3 The exchange rate time series under study in this section have been recently analyzed looking for 
chaotic behavior in Fernández et al. (2005); the same happens for the DJIA data set, see Shintani and 
Linton (2004). 
 



 18

transformations. It is also interesting to comment that the same conclusions are obtained 

by fixing m=4 and m=5(4). 

 
 

 

 

 

 

 

 

 

 

                                                 
4 Although not reported in the paper, these results are available from the authors. 
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Conclusions 
 

From a general and wide perspective, this paper expands the interrelationship between 

Information Theory, statistics and inference, and the research line based on entropy 

concepts. Particularly, the present paper attempts to analyze limited and noisy data 

using minimal assumptions. In this fashion, we have proposed a new test for 

independence which relies on the concept of entropy. This concept, as presented here, is 

formulated in terms of symbols obtained from ordinal patterns found in a time series. In 

other words, we do not work with the actual observed values which are real numbers; 

rather we take the number of order patterns in the observed series as a measure of its 

complexity. Although this methodology loses a certain amount of detailed information, 

some essential features of the dynamics are kept, among others, dependence or 

independence of the data generating process. 

    Independence is one of the most valuable notions in statistics and econometrics, 

therefore testing for serial independence is crucial. In this regard and in connection with 

entropy econometrics, certain amount of significant research has tested for 

independence by using smoothed nonparametric entropy measures. Robinson (1991), 

Skaug and Tjøstheim (1996), and recently Hong and White (2005) have provided an 

asymptotic distribution theory for certain entropy measures, and as a result they have 

obtained some test for independence. These tests rely on kernel-based estimation 

techniques, and hence kernels and bandwidths have to be freely selected by the 

researcher. Most importantly, the finite sample level of these tests differs from the 

asymptotic one; furthermore, as Hong and White point out, asymptotic theory may not 

work well even for relatively large samples. Also of relevant importance is that all 

known entropy-based tests for independence make several assumptions about the data 

generating process that restrict the general applicability of the test. 

    As has been shown, this paper provides the asymptotic distribution of an affine 

transformation of the permutation entropy under the null of independence. The 

theoretical distributions allows us to construct a test for independence. Importantly for 

our test, the finite sample level does not differ from the asymptotic level, which is an 

interesting property that guaranties general applicability and reproducibility of the test. 

Moreover, the test is invariant under monotonuous transformations of data. Invariance 

makes our procedure very attractive in practice. Most importantly, our test makes no 
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assumptions about the continuos or discrete nature of the data generating process and of 

its marginal densities. In sum, the G(m) test only needs Xt be a real-valued time series, 

and hence it is more general than other entropy-based tests. Two final advantages are its 

computational simplicity and its short running computational times. 

An empirical application to daily Dow Jones Industrial Average price index and to three 

daily exchange rate returns has illustrated our approach by testing the random walk 

hypothesis on these prices. 
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