-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Repositorio Digital de la Universidad Politécnica de Cartagena

Computing large direct products of free groups in
integral group rings

Angel del Rio and Manuel Ruiz *

Abstract

We construct explicitly a subgroup of finite minimal index and min-
imal rank in ZG which is a direct products of free groups for each finite
group G for which this is possible.

1 Introduction and preliminaries

Let G be a finite group. If (G is abelian then the structure of the group of
units ZG of the integral group ring ZG is well known by the work of Higman,
Bass and Milnor. If G is non abelian then generators of subgroups of finite
index of Z(G have been found for a large class of groups, (see e.g. [12] and
[4]). However the structure of ZG (or of a subgroup of finite index) is not
known except for some few groups. Some of the known cases appeared in
(1], (2], (3], [7), [8] and [10].

In a series of three papers ([5], [9] and [6]) Leal, Jespers and the first
author characterized the groups G such that ZG contains a subgroup of
finite index which is a direct product of free groups. In those papers the
existence of such a large subgroup of ZG is proved theoretically. Let G
be a group satisfying the mentioned property. The aim of these paper is
to construct explicitly a subgroup of ZG which is a direct product of free
groups and of minimal index in ZG'.

We start with some notation:

The cyclic, dihedral and quaternion groups of order m are denoted by
Chn, Dy and @, respectively.

Let G be a group and R a ring. Then R denotes the group of units of
R and RG the group ring of GG with coefficients in R. We refer to [12] for
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notational matters concerning group rings. For any finite subset I of G let

o= II}I_I > h € QG. More generally, if v : H — Z is a map, then we set
heH

I/{; = |1}f_| hz;[ P(h)h. If g € G, then set g = @ The augmentation map is
€

denoted by w : ZG — Z. If H is a normal subgroup of G then A(G, H) =
Ker wyr is the augmentation ideal modulo H. We set A(G) = A(G,G).
The rank of GG, denoted by r(G), is the minimum of the cardinalities of the
generating subsets of (. Set G* = Hom(G, Z) and let inv : G — G denote
the map given by g — ¢g~1.

If K is another group and ¢ : G — Aut(K) is a group homomorphism,
then K X, G denotes the corresponding semidirect product.

The non abelian finite groups G such that ZG contains a subgroup of
finite index which is a direct product of free groups, are of the form G =
H x Z where Z is an elementary abelian 2-group and H is of one of the

following types (see [6]):
() e,y |2t =yt =% y] =2, 9" = [2, [z, 9] = [v, [w, ] = 1),

() (@yyry ooy L2t = wf = [y, ui] = 22, wi] = (=, vl yi] = (2, 93], 2] =

Y- yn | 2t =yt = gy = i yy] = 2%y = [vF 2] = 1),

2y yn | 27 = y7 = i y] = e, vl yi] = [o,w)? = 1),

(

(

@15 | 22 =yt =y e, ui) = [vi, 5] = [[2, 43 2] = 1),

(@ g1y | 2t =yt = 22f = yPle, ) = [y, yi) = [vF, 2] = 1),
(

Ty, -5 lYn | $4 = x2y24 = y?[$7y2] = [y27y]] = 1>7

U x4 (z) where U is an elementary abelian 3-group, = has order 2 or
4 and ¢(z) = inv.

(i) U xg K where U is an elementary abelian 3-group, K = (z,y) = Qs
and ¢(z) = ¢(y) = inv.

All throughout this paper G = H X Z where Z is an elementary abelian
2-group and H is of one of the types (a)-(i). The letter n is reserved to
denote either the number of y’s for the groups of types (b)-(g) or the rank
of U for the groups of type (h) and (i). The rank of 7 is always denoted by
k.



Our aim is to find a concrete subgroup F' = Fy x[[}_, F; of finite index of
Z(G, such that Fp is free abelian and Fj is free nonabelian and optimal in the
sense that the index of Fin ZG is minimal among all the possible subgroups
of ZG which are a direct product of free groups . There is a natural way to
obtain such a group if we do not impose the optimal condition. For every
primitive central idempotent e of QG one of the following conditions holds:

(A) QG is isomorphic to Q, an imaginary quadratic extension of Q or a
totally definite quaternion algebra over Q.

(B) QGe is a totally definite quaternion algebra over a real quadratic ex-
tension of Q.

(C) QGle is isomorphic to M3(Q).

Let A, B and C be the sets of primitive central idempotents of QG of types
(A), (B) and (C) respectively and I = AU B UC. For every e € I, let
O be an order in QGe. Then O, is finite if e € A, virtually infinite cyclic
if e € B and virtually free nonabelian if ¢ € C. Since O = [[_.;O. and
ZG are orders in QG, then O and ZG are commensurable, that is O NZG
has finite index in both. Therefore ZG N (1 + QGe) contains a subgroup
of finite index F, which is trivial if e € A, infinite cyclic if e € B and free
nonabelian if e € C'. Then ] ; F: is a subgroup of finite index of ZG with
the desired structure. However this does not give information on how big
the constructed group is. Surprisingly what we are going to prove in this
paper is that this naive approach provides the optimal subgroup in almost
all the cases. Our first theorem is:

Theorem 1.1 Let G = H X Z, where Z is an elementary 2-group and H
is one of the types (a)-(i). Let B and C be the sets of primitive central
idempotents of types (B) and (C) respectively. Then

1. Fo=ZGN (14 QG fg), where fg = > f, is free abelian of rank | B]
feB

2. If G % Dg, Ds, then for all e € C
F.=7ZGnN (14 QGe)

is free non abelian and all the F.’s have the same rank.

3. F=Fyx [] Fe has finite index in ZG
eeC



So the group F' = Fy x [] Fe of Theorem 1.1 has the desired properties. We
eeC
prove Theorem 1.1 in Section 2. Besides we compute the ranks of Fy and all

the F.’s for all the groups. Moreover every F, is isomorphic to a subgroup
of the modular group SLy(Z) that we compute in Proposition 2.1. Using
that it is theoretically easy to compute generators for all the F.’s. Also
generators of Iy are easy to compute by using Proposition 2.3. So there is
a method to obtain generators for F.

In Section 3 we prove that the group F' computed in Section 2 is the
best possible. Explicity we prove the following Theorem:

Theorem 1.2 Let G = H X Z and F = Fy x [[ F. as in Theorem 1.1.
eeC
If £ = Fy X HjeJ E; is a subgroup of finite index of ZG, where Fy is free

abelian and E; is free non abelian for every j. Then

1. r(Eo) = |B| and |C| = |J|.
Besides, if G 2 Ds, Dg, Qs and Q14 then

2. [ZG : F) < [ZG : E].
3. (L) > r(F,) for everye € C and j € J.

Note that the exceptional groups Dsg, Dg, (12 and )16 belong to the
list of groups we are considering with the following parameters: £ = 0 and
n =1 for all of them; then Dsg is of type (d) or (e), Dg and (12 are of type
(h) with @ of order 2 and 4 respectively and finally Q16 is of type (g). These
four groups have been studied separately in several papers and satisfactory
results can be found in [3] for Ds; [7] for Dg; [10] for Q12 and [8] for Q6.

2 Large subgroups: Proof of Theorem 1.1

The statement (3) of Theorem 1.1 follows by the arguments in Section 1.
The subsequent Proposition 2.1 implies (2) and Proposition 2.3 implies (1).
For every a,b € Z set

r() = SLQ(Z)0-1—|—I)(§ %)],
Av(b) = SLQ(Z)m:Hb(% “ZZ )] and
AJ(b) = SLQ(Z)ﬂjl—l—b(Zé aZZ )]
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If T is a subgroup of SLy(Z), then T' denotes the image of I in PSLy(Z).

Proposition 2.1 Let e be a primitive central idempotent of QG of type (C).

1.

Assume that H is of type (a)-(g). Then Ge ~ Dg and there are

a,b € Ge such that {e,a,b,ab} is an integral basis of ZGe. Furthermore if
ae = age + ara + asb + azadb, with ag, @1, a9, a3 € Z and o € ZG, then
w(a) = ag+ aq + oz + a3 mod 2.

(i)

(i)

(iii)

If H is of type (a) then e = <362/,\y2>x(1 - é\’)z\p for some non trivial
Y € (2%, y®)* and some ¥ € Z*. Moreover F, ~ A?(2"*3), so that F,
is free of rank 1 4 23%+6,

Assume that H is of type (b)-(f). For everyi=1,... nlett; =[x,y
Let ¢ : G' — G be given by d(t31 L5 - -tin) =y ys? - -yir. Then

¢ = sy = 28 — GN(S) o 7y

where S is a mazimal subgroup of G', ¥ € Z* and ¢ : $(S) = Z is a
map such that ¢ o ¢ € S*. Moreover, if H is of type (f), thent; € S.

If H is of type (b) or (c), then F, ~ A?(2*"*F) which is free of rank
1 + 26n-l—3(k—1).

If H is of type (d)-(f) then F, ~ A*(2¥+k=1). which is free of rank
1+ 26n43=2) "ynless H is of either type (d) or (¢), n =1 and k = 0,
or equivalently G ~ Dsg.

Assume that H is of type (g). For everyi=1,... ,n lett; be the image
of [z, yi] in G/{z?). Let ¢ : G/(x?) = G be given by ¢(t''ty -+ tir) =

11 ,,02

yi'yy -y, Then

e

e =espu= (S —Con(S) .2y

where © : G — G/(2%)is the projection, S is a mazimal subgroup of
G’ containing (x%), v € Z* and ¢ : do7w(S) — Z is a map such that
pod € (S/(x))*. Moreover F, ~ A*(2*"*%), so that I. is free of rank
14 26n—l—3(k—1)

2. Assume that H is of type (h) or (i). Then G'e ~ D¢ and there exist
a,b € Ge such that

ZG(1—a)e=Ze(l—a) 3 Za(l—a) B Zb(1—a) G Zab(l — a).



(i) If H is of type (h) with x of order 2 then e = egy = (3—(7)21, where S
is a mazimal subgroup of U and 1 € Z*. Moreover I, ~ A3(2%3"~1)
which is free unless k = 0 and n = 1, that is to say, G = S3. So
if G # Ss then the rank of F, is 3°"™* if k = 0, and 231374

otherwise.

(i1) If H is of type (h) with x of order 4 then e = egy = ;5(3—(7)2/, where
S is a mazimal subgroup of U and 1 € Z*. Then F, ~ Az(2Ft137—1)
which is free of rank 1 4 23k+233(n—1)

wi) If H is of type (i), thene = eg ., = S—G7 Z\?y\ where S is a mazx-
WX ¥ X
imal subgroup of U, 1 € Z* and x € (xy)*. Then F. ~ Az(2F+237~1),
which is free of rank 1 + 23k+533(n=1),

Proof. The proof is done separately for each case. The first step in each
case is to identify the elements of C'. We leave this part to the reader. Then
for each e € C' one has to make a good selection of ¢ and b. This selection
induces a ring isomorphism ¢ : QGe — M3(Q) and using this isomorphism
one identifies ¢(F,) which happen to be the free subgroup of the modular
group in the proposition. Cases (a)-(g) are very similar. We only do case
(c) and let the reader check that similar arguments work for the remaining
cases. Cases (h) and (i) are also similar so we only do case (i).

Assume that H is of type (c) and let e = €5, € C as in (1.ii). Then
Hs = (2%, G’ ¢(S), Z) is a normal subgroup of index 4 of G and if t € G\ 9,
then 1,2,y = ¢(¢), 2y is a transversal of G modulo Hg. Set a = ze and
b = ye. Every element a € Z( can be written as

a = fo+ Bz + By + Bazy

where §; € ZG and Supp(f;) C Hs. Moreover if b € Hg, then he = +1
and therefore ae = ape + aya + azb + azab for some ag, a1, a9, 3 € Z
and w(a) = Z?:ow(ﬂi) = ag+ o1 + a; + agmod 2. It is easy to see
that Ge ~ Dg and e, a,b, ab is an integral basis of ZGe. Then there is an
isomorphism p : QGe — M3(Q) given by

(ae) = g — oy +ag — a3 2(ay —ay)
p N o+ o3 g+ 0oy — g+ Qs

(see [3] or [12]). Since the support of e is Hg, aye € ZG for every 7 and
considering the coefficient of 1 in this element one deduce that 22"** | q;.
Let v; = a;/22"F* Then a =1+ 22”+k(70 + y12 4 Y2y + Y32y )€, so that

pla) = 1 4 220tk ( Yo =71+ 72— 73 2(72 =) )
7+ 73 Yo+ — 72+ 73



Therefore p(a) = 1 + 227+* ( Z de
implies that the determinant of p(a) is 1. Thus p(F.) C A3(2?2"**) and

by solving a system of linear equation one can easily verify that the equal-
ity holds. Moreover A%(22"*%) is a subgroup of index 2 of I'(2?2"*+*) and

e

[(227FF) ~ T'(220+k) is a subgroup of index 267+3k=4 of ['(2) (see [11]). Since
the last group is free of rank 2 then A2(22"%%) is free of rank 14 267+3(k=1),
Now assume that H is of type (i). Then e = egy as in (2.ii). Set
a = ue and b = ze where u € U\ S. Then Hg = (2y,S,7) is a normal
subgroup of G and 1, u, u?, z, zu, zu? is a right transversal of G modulo Hs.
For the first part we argue as in the previous case by noticing that he = +e
for every h € Hg and (14+u+u?)e = 0. On the other hand ZGe = ZG(1—a)e
so that (1 —a)e,a(l —a)e,b(1 — a)e,ba(l — a) is an integral basis of ZGe.
Moreover, as in [12] or [7], there is an isomorphism p : QGe — M3 (Q) that
associates ag(l — a)e+ a1 (1 — a)e + azb(1l — a)e + aszba(l — a)e with

) with ¢ = d mod 2. Note that this

( 3(0&0—0&1 —042) —Oéo—|—20&1—|—2042 — Q3 )
3(0&0 - 20&1 — Qg — 043) 3(0&1 + 042)

Furthermore, if @ € ZG'N (14 QGe) = F, then o — 1 € A(G, (u))e =
ZG(1—a)e and

a=14+(a—1e=14(Bo(1 —a)+ pra(l —a)e+ F2b(1 — a) + Fsba(l — a)e

with 3; € Z. Unfortunately in this case, unlike the previous one, the sup-
ports of the base elements intersect. However this difficulty can be overcome
as follows. The coefficients of 1, u, & and zu in & — 1 are v = Mﬁ,

_ B1 — B2 — B3 ;
V1 = SE¥2gn=1 12 = JEF23n=1 and Y3 = gE¥age=1) respectlvely. Thus

- 3(v0o =71 —72) Yo+ 271+ 272 — 73
a) =14 2k+2370 1(
p(e) 3(vo— 271 — 2 — 73) 3(v1 4+ 72)

so that by similar arguments as in the previous paragraph one shows that
p(F.) = A3(2¥+237=1). The ranks can be computed as in the previous case.

The classical quaternion algebra over an arbitrary ring R is denoted by
H(R).

In order to prove statement (3) of Theorem 1.1 we need information
about the central idempotents of QG of type (B). This is the role of next
Lemma. The proof is straightforward.



Lemma 2.2 1. If G is not of type (g) or (i) then B = 0.
2. Assume that G is of type (g) and let

n

K=lys,...,yty2, 7) = {yf“yg22 .. yiln : Zit =0mod 2} x Z.
t=1

For every € € K* and every 2 < i < n, let &, = £(y3y?),

I((f) = <yf2y2, s 7y§nyn7 Z>

and S i '
Te={y;=> "y . ..yr 1 0<4; < 1}
Then Tg is a transversal of (x*, K (£)) modulo K. Moreover each element of
B is of the form
[ = fox = (1= DEQ),,.
for some £ € K* and x € K(&)* so that K C Ker x and pg¢ , (kt) = x(k)&(t)
for every k € K and t € T;. Furthermore
Gfiy=(a=afb=y f|a®=0"0°=1,aba™ =b"") ~ Qyg,

B = {f,b,b%b% a,ab,ab? ab®} is an integral basis of ZGf and the map
6:QGf — H(Q[v/]) given by

(X ,en059) = ap+ Loy — )+ (a0 + L (au — age))it
(e + Y2 (a0 + ape))j + (g + L2 (up + age)

is a ring isomorphism.
3. Assume that G is of type (i). Then every element of B is of the form

fow =0 —-22)(5 -7,

where S is a mazimal subgroup of U and ¢ € Z* Moreover G fsy ~ Q12
and if X = «f, Y = yf and W = wf, with w € U\ S, then B =
{f,. X, Y, XY W WX WY WXY} is an integral basis of ZG f and the map
6 QG — B(Q[V3)) given by

O(Xengg) = 3[201 — aw +V3Baxyw + (2axy — axyw — V3aw)i
(2ax — axw — V3ayw)j + 2oy — ayw + @axw)k]

is a ring isomorphism.



Next proposition provides a proof of statement (3) of Theorem 1.1 and
also computes the rank of Fy.

Proposition 2.3 The group Fy is embedded in the centre of QG. If H is
of type (g) then Fy is free abelian of rank 2°"t5=2; if H is of type (i) then
Fy is free abelian of rank 2F=1(3" — 1). In the remaining cases Fy = 1.

Proof. By Lemma 2.2, we may assume that G is of type (g) or (i). By the
comments prior to Theorem 1.1, it is enough to show that for every f € B,
Fyf is embedded in the centre of QG f and realizing that the rank claimed
for Iy coincides with the cardinality of B that can be easily computed using
Lemma 2.2. -

Assume that H is of type (g). Then fp = 1 — 22 If a € Iy then
a—1 € A(G,(2?) and hence (o — 1) fp = 0 mod 2, in ZG fg. Therefore,
if f€ B, then (a —1)f =0mod 2, in ZG f and, by Lemma 2.2, ¢(a) is a
unit of H(Z[v/2]), where ¢ is the isomorphism of Lemma 2.2. Using that all
the units of H(Z[v?2]) are of the form w, ui, uj or uk, where u € Z[/2], one
easily deduces that ¢(a) € Z[v2] and hence «a is central.

Assume now that G is of type (i). Then fp = (1 —;5)(1 —U). Therefore,
Fo C A(G,(X?*)NA(G,U) and we argue as in the previous case. i

3 Optimality: Proof of Theorem 1.2

By Theorem [12, Theorem 30.1] the following is a torsionfree normal com-
plement of the trivial units of ZG'"

V =ZGN (1+ A(G)A(G,G)

It is well known that V is free nonabelian if G = Dg or G = Dg. Using this
fact and Proposition 2.1, it is easy to prove:

Lemma 3.1 For every e € C, Ve is torsionfree.

Set
Fo={u € ZG : ue = ¢ for every e € C'}

and for every e € C, let
F.={u€eZG:uf=fforall feC\{e}}.

Plainly ]50 = ]561 N ]562 for every two different e; and ey in C.



The group of type (h) with n =1, £ = 0 and z of order 4 is denoted by
03 X 04.

The crux of our argument relies on the following technical lemma.

Lemma 3.2 If G # C3 X Cy and G # Qqs, then for every e € C, NV C
F()XFB (lndFoﬂVgFo.

Proof. Let e € C.

Claim 1. If [ is a primitive central idempotent, such that QG f is com-
mutative or isomorphic to H(Q), then Vf = f.

If QG f is commutative, then f(1 — é\’) = 0 and the claim follows. If
QGf ~ H(Q) then Gf ~ Qs = (a,b) and T" = {f,a,b,ab} is a rational
basis of QG f. Moreover for every ¢ € G', gf = +f. This implies that
every element of A(G)A(G,G") f is of the form 2af for some a € A(G).
Moreover af = > ,crast, where oy € ZW, W being the kernel of the
canonical map G — Gf — Gf/{a*®). Then ouf = B;f where 8; € Z and
B¢ = w(ag) mod 2. Therefore 3,7 8; = w(a) = 0 mod 2. Thus, if u € V,
then uf =142 .7 Bst, with 3, B¢ even. Since the unique units of H(Z)
are +1, +i, j and £ij, we conclude that v = f. This proves Claim 1.

Claim 2. If G # Q12 and f € A, then (F.NV)f = f.

By Claim 1, we may assume that QG f is not commutative and QG f #
H(Q). This implies that H is of type (h) with z of order 4 and QG f is
isomorphic to the generalized quaternion algebra A = Q[i,7:12 = —1,5% =
—3,ij = k = —ji] (see [9]). By Proposition 2.1 and [9]

e~

e=egy = 2%(S — (A])Z\p

and P

f=Fsi =0 —22)(51 = U)Zy,
where S and 57 are two maximal subgroups of U and ,1¢; € Z*. Fix
y € U\ S;. Then By = {f,a = af,b = yf,ab} is an integral basis of ZG f
and there is an isomorphism ¢ : QG f — A so that ¢(a) =i and ¢(b) = lzi
Therefore ¢(ZG f) is the subring of A generated by ¢ and 1% Furthermore
the only units of this ring are £1, =+, j:l%j, j:l%j, j:il%j and j:il%j [10].

Let ue VN ]56. We have to prove that uf = f.

Assume first that (S,4¢) # (S1,%1). Let ¢ = eg y,. Then By =
{e/,xe',ye’,xzye'} is an integral basis of ZGe'. Moreover for an o € ZG
the coefficients of «f and we’ in the basis By and By are pairwise congruent
modulo 2. Since (u—1)e’ = 0, the coefficients of (u— 1) f in the basis By are
even. Therefore uf = 14 2(3_,cp, out) is a unit in ZG f. By the previous

10



paragraph uf = £f. If uf = — f, then (u—1)f = —2f. Since u € V', we can
write (u—1)f = (g + 1) 1_29”2 EIZZ where g, 1 € ZG and its support is
embedded in a fixed transversal of G modulo (22,51, Z) containing 1. Then
the coefficient of 1in (u —1)f is W, where (3 is the coefficient of 1 in
. However the coeflicient of —2f is —
Thus uf = f as desired.

Now assume that S = 5;. By Claim 1 and the previous paragraph we
have

ﬁ, which yields to a contradiction.

3
w—1=(u—1)(fsy+esy)=(u—1)(S-0)Zy=3 an'(§-0)Z,

=0
with a; = Z?:o @iy’ € Aly). The coefficient of 2'y’ in u — 1 is

Bij — g — 1 — Qg Qg
okgn T 9kgn-1

€ 7.

Therefore 2¥37~1 | a;; and hence uf € f 4+ 2F37=17,G'f is a unit of ZG Y.
If » > 1, then uf = f. Assume now that n = 1. Since we are assuming
that G # C5 X Cy, then k£ > 1 and we argue as at the end of the previous
paragraph to prove that «wf = f. This finishes the proof of Claim 2.

Now we prove that ﬁoﬂV C Fy. By Claim 1, the result is obvious unless
H is of type (h) and the order of z is 4. In this case if G # (12, then the
cardinality of (' is greater than 2 and the result is a consequence of Claim
2.

Now we prove E.Nnv C Fy x F,. for every e € C'. If H is neither of
type (g) or (i), then B = () and hence the Lemma is a direct consequence of
Claim 2.

Assume now that H is of type (g) and G # @16, so that either n > 1
or k > 0. The sum of the elements of B is fg = 1 — 22, Without lost of
generality one may assume that

e=R(S-GHZ,

where R = (y2,...,yn), S = (y2,...,y2) and ¢ € Z*. The support of e is
L= vys .. ,yn)xZand T, = {1,2,y;, vy, } is a transversal of G modulo
L.

Let w € V N F, and B =u—1. If l € L, then le = Le. Therefore,
pe = o'e with o € ZG, Supp(a’) C T, and w(a) = w(a) = 0 mod 2. By
Claim 2, u = 1+ a’e 4+ 3 fp. It is enough to prove that 3, — 3,2 is even for

11



every g € . Indeed, in this case 3fp € ZG and so u = (1+a'e)(1 + 3fB),
1+deec F.and 1+ (fg € Iy.
Let g € G and t € T, so that ¢ = ¢t mod L. Then the coeflicient of ¢ in

u—11is .
+ (a5 + ﬁg - ﬁgaﬁ
22n+k 2 )
Therefore o) = 22n+k=1p, for some oy € Z and Yy = By — B2y = oy mod 2.

So it is enough to show that a4 is even for every t € T..

To obtain our goal we are going to consider the image of uf under the
isomorphism ¢ = ¢; : QG f ~ H(Q(v/2)), given in Lemma 2.2, for every f €

B. Recall that an element of B is of the form f = fe, = (1 _ﬁ)lﬁﬁ,x as
in Lemma 2.2. We use all the notation of that lemma. Then 3f =3, 2 vb
where

W= penclk)(Bok = Bppaz)-

kEK‘S

Note that K(£)NL hasindex 2 in K (&) and hence the cardinality of K (§)NL
is 22(1=1)+k  Gince either n > 1 or k > 0, these cardinality is even. Since

By w2 — By = By — Byyp2 mod 21if g1 = g3 mod L,

Yt = Z p&,x(k) (ﬁth - ﬁthﬁ) + Z p&,x(k) (ﬂth - ﬁthﬁ)

kEK (€)NL kEK (E)\L

is even. By Lemma 2.2, ¢(ZG f) C H(Z[v2]). Since every unit of H(Z[v/?2])
is of the form w, ui, uj or uk with u a unit of Z[v/2] then by Lemma 2.2 we
deduce that

Yo = V62 = Yap2 = Yab = Yapr = Vb + Y2 = 0.

Writing these equations in terms of the 3’s we obtain a system of linear
equations

Z pva(h) (ﬁth - ﬁthl’2) = 07

heK (€)

for every t = x, y}, zy?, xy1, zy;. For afixed £ € K* and k € K the previous
system of linear equations becomes

Z xX(t1) Z (k) (Beerk — ﬁttﬂm’?) =0.

t1 ET‘S keK

But the matrix (X(tl))tleTﬁ,xe(K(é)/Ix’)* is a Hadamard matrix, that is a
matrix of 1’s and —1’s with orthogonal rows. In particular its determinant
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is not zero and hence

Z f(k)(ﬁttlk - ﬁttﬂm’?) =0

keK

for every £ € K* and ¢; € K. Using that the matrix (§(k))eer*rek is a
Hadamard matrix too, we deduce that By — B2 = 0 for every £ € K(§).
Therefore if g is congruent with either y?, x, xy;, 2y}, or 2y modulo K () for
some § € K™ then 8, — B,,2 = 0. In particular oy = ﬁy% — Byra2 = 0 mod 2,
ay = Bz — By = 0mod 2 and gy, = Byy, — By, = 0 mod 2. Furthermore
if £(y?y?) = —1, then y; 'y, € K(£) and therefore y;y; = y? mod K (§).
Moreover y1 = y1yo mod L. Thus ay, = By, — B42y,,, = 0 mod 2. This
finishes the proof for this case. .

Assume now that H is of type (i). Then fp = (1 — 22)(1 — (A]) and
e = esy as in Proposition 2.1. In order to simplify the arguments we
assume that ¢(z) = 1 for every z € Z. The general case follows by similar
arguments. Let w € U\ S and L = (y,5,7). Let u € F.NV. By Claim
2 and Proposition 2.1, 3 = u — 1 = o’e + §fp where the support of o’ is
embedded in {1,z,w,wz}. Then for every t € {1,2} and [ € L

3 _ 2a—a}, + 3= yeu St
tl - 2k+2,3n .3n
_ _a£+2aéw 3n5twl_zyeU5tlv
ﬁtwl - 2k+2.3n + 2.37
B0 = = 38121 =2 yeu St
tw?l  — 2k+2.3n 2.3

where &, = 8, — 3,,2. Thus

20 — oy, + 281 (376, — > _ver Otlv)

— o) + 200, 4+ 28T (378 — X, ey Oti)

—af — afy, + 2P (3700 = X e Suv)

;From this fact and the equality d, 4 d,,2 = 0, for every g € &, one deduces
that 25+237 divides

(3" (61 — Spp2t) — D (Butw — Gruzy)) = 252 (3700 = Y Gunw)
vel vel

0 mod 2kt23n,

for every t € {1, 2, w, wr,w? w?z} and hence 3" divides > ver 00 for every
g € G. Then 25t13" divides 2a} — o}, and —a} +2a},, and hence 251371 |

o}, o, Write af = 25+137=1a, . Then 3 | ay + az,. Moreover for every

9 € G, Yuevdgw = YXuwe(ar,ry Bgw = 0 mod 2 because 3 € A(G,G) and
G’ = (2?,U). Thus

Oy = Oy mod 2, vy = §yp mod 2 and o + gy = §yy2; mod 2. (1)
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As in the previous case, to finish the proof it is enough to show that «y

and oy, are even for every ¢t = 1, z. Again we obtain our goal by inspection
of the isomorphisms ¢ of Lemma 2.2 for f € B. Recall that B={f, X =
af,Y = yf, XYW = wf, XW, YW, XYW} is an integral basis of ZGf.
Then, by Lemma 2.2, we have that ¢(uf) is a unit of Z[H'z\/g,i,j]. The
units of this ring are of the form v or vj where v is a unit of Z[H'Q—\/g, i].
Moreover 3f = deB Y9, With

T = ZZEZ ¢(Z) 2565(57552 - 5tw2sz)
yrw = ZzeZ ¢(Z) Zses((stwsz - 5tw2sz)

forevery t = f, XY, XY. Let t € {1,z,y,2y} and T =tf. Then

ZZGZ Qb(Z) Zses(QgtSZ - 57,‘1,05;; - 5tw2sz)
- ZZGZ ¢(Z) ZuEU 5tzu = 0 mod 3.

Thus, by Lemma 2.2, the coefficient of 1 in the expression of ¢(uf) in the
basis ¢(B) is not zero and hence ¢(uf) is a unit of Z[H'z—\/?_’, i]. That is
Yx =7y =7vxw = Yyw = 0. In other words

Z ¢(Z) Z((Stsz - 5tw2sz) = Z ¢(Z) Z((Stwsz - 5tw2sz) =0

zE€EZ SES z€Z sES

297 — yrw

for every t = z,y. Since the matrix (¢/(2))yez+.cz is invertible, then
Y ooes Otsz = Spu2sr = D icg Otwsz — Opy2s, = 0 fort =,y and 2z € Z. Using
these formula and (1) one conclude that

Qo = 00y = 3" L, = Z((sz — 0pu2sx) = 0 mod 2
SES

and similarly oy = o, = 0 mod 2, as desired. |
We need one more lemma.

Lemma 3.3 If F is a free nonabelian subgroup of ZG then there is ane € C
such that Fe is nonabelian subgroup. Moreover, for every e € C' such that
FEe is non abelian Cengg(E)e C {£e}.

Proof. If e € I\ C then for every z,y € FE, there is n > 1 so that
[(ze)™, (ye)"] = 1. Therefore there is e € C' so that Fe contains a nonabelian
subgroup. Identify QGe with M;(Q). Let a € Cengg(£). Then Fe is a
nonabelian subgroup of the centralizer of ae. By considering the canonical
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Jordan form of ae one can prove easily that either ae is central in QGe or
the centralizer of ae in M3(Q) is abelian. Therefore ae is a unit in the ring
of integers of the centre of M5(Q) and hence ae = +e. |

Now we can prove Theorem 1.2. Let I/ = Ey x [[ E; be a subgroup of
€J

finite index of Z(G so that Fj is free abelian and E]j is free nonabelian for
every 7. By Lemma 3.3, there is a map o : J — (' such that for every j € J
there is an o(j) € C so that E;o(j) is nonabelian and Eyo(j), Ej,0(j5) C
{xo(j)}, for every ji # j. This implies that F; N F,(;) contains a subgroup
of finite index of Fj(;). Plainly o is injective. Let now e € C'. Then F. N E
is a subgroup of finite index of F, and therefore F. N F is free non abelian.
Thus I, N E; is non abelian for some j € J and then F. N £y =1 for every
j' # j. This implies that the cardinality of C' and J coincides and o is a
bijection. From now on we identify J and C' and consider ¢ as an equality,
so that for every two different elements e and f of C'; F.e is non abelian and
E.f==4f.

Then FyN ]50 and Fp are subgroups of finite index of ]50 and therefore
they have the same rank. Since the former has also finite index in Fp, then
T‘(Eo) = T‘(Fg).

If a € I, then a = vg for some v € V and a trivial unit ¢ € £G. Then
for every f € C\{e}, £f =af =vf-gf. Therefore vf is a torsion element
of Vf. By Lemma 3.1, vf = f. Combining this with Lemma 3.2 one obtain
E.C+(F.NV)x G C+(Fy x F,) x G and the same argument shows that
Eo C +(IyNV) % G = £F, 1 G. Therefore E C F % (+G). Since E is
torsionfree [F' x (£G) @ E] > 2|G| and thus

[ZG : F] [ZG : F x (£G)][F % (£G) : F]
[ZG : F x (£G)] 2 |G
[ZG : F x (£G
[ZG

v I

(£G4 (£G) = F]

: F.

Finally, since F. C +(Fox F.)xG, EF.NFy = 1 and Iy is central (Lemma
2.3), there is an injective homomorphism f : F. — £F, x G, so that f(F.)
has finite index in £F, xG. Then [£F. xG : F,] = 2|G| < [£F. X G : f(E.)]
and hence [F, : F.N f(Ee)] > [f(Ee) : Fen f(Ee)]. Thus, if r = r(Fen f(E))
then

r—1 r—1

e (Y AN (1A R VA RN T 29 R Ay
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