
A Certification Authority for Elliptic Curve X.509v3
Certificates

Maria-Dolores Cano, Ruben Toledo-Valera, Fernando Cerdan
Dept of Information Technologies & Communications

Technical University of Cartagena (UPCT)
30202 Cartagena, Spain
mdolores.cano@upct.es

Abstract— Wireless networks are more and more common in
current communications networks. Nevertheless, wireless
communications entail a big concern: security. The use of
X.509v3 certificates to carry out authentication tasks is an
approach to improve security. These certificates are usually
employed with the RSA algorithm. Elliptic Curve Cryptography
(ECC) is a cryptographic technique eminently suited for small
devices, like those used in wireless communications, and is
gaining momentum. The main advantage of ECC versus RSA is
that for the same level of security it requires a much sorter key
length. The purpose of this work is to design and implement a
free open-source Certification Authority able to issue X.509v3
certificates using ECC. This research is an implementation study
on free open-source tools to issue digital certificates using ECC.
Moreover, it contributes to the development of free open-source
tools for network security based on ECC. The result of this
research may assist organizations to increase their security level
in wireless devices and networks, in a costless way, by including
authentication techniques based on ECC digital certificates.

Keywords- digital certificates; elliptic curve cryptography;
security; wireless communications.

I. INTRODUCTION

Wireless networks have suffered a dramatic increase in
recent years. Wireless technology is more and more present in
our society and millions of wireless equipment are sold every
year. However, one of the major concerns about wireless
communications is security. RSA is the most common method
employed in public key cryptography, for instance in X.509
digital certificates. These certificates are oriented to verify the
identity of a person or an entity. However, new concerns are
rising about the security of 1024-bit RSA [1].

Elliptic Curve Cryptography (ECC) is an innovative
cryptographic technique. Its security resides in the same
problem as RSA or Diffie-Hellman algorithms, but instead of
using integers as symbols of the alphabet to be ciphered, it uses
points in a mathematical object called elliptic curve. The real
ECC potential is that, with a much smaller key length, it
achieves the same security level as other proposals. Therefore,
ECC presents some key attributes truly important in scenarios
where the following resources are limited: processing power,
storage space, bandwidth and power consumption [2] [3].
There are even some organizations working towards ECC
standardization (IEEE, IETF, ISO, etc.), and leading enterprises

developing new ECC products. Nevertheless, to favor the
widespread use of ECC it is also essential promoting free open-
source ECC tools.

In this paper we introduce a free open-source Certification
Authority (CA) for ECC X.509v3 digital certificates. The CA
we propose is able to generate its own root certificate and to
issue clients’ certificates. We also develop the software a client
requires to create a certificate request. This certificate request is
the one that the CA should sign after some verification steps.
The tool we propose is mainly oriented to environments with
limited resources. As it will be shown in next sections, its
advantages are clearly noticeable.

The rest of this paper is organized as follows. In section 2,
we give a brief overview about Elliptic Curve Cryptography,
and the ECC mechanisms we use for the new X.509v3 ECC
digital certificates. In section 3, we explain the design of the
certification tool. In section 4, we describe the ECC CA
working scenario. Section 5 shows and discusses the
experimental implementation. The paper ends with the most
important concluding remarks in section 6.

II. OVERVIEW OF ELLIPTIC CURVE CRYPTOGRAPHY

Public key (asymmetric) cryptography uses two keys (a
private key and a public key), differing from private key
(symmetric) cryptography, where there must be a shared secret
key. Elliptic Curve Cryptography was discovered in 1985 by V.
Miller [4] as an alternative method for public key
cryptography. At that time, it was very difficult to perform the
necessary calculations. With time, implementations were much
more efficient, what allowed the performance of elliptic curve
mathematics to take the same amount of time as
implementations of integer factoring schemes for the same
number of bits. This, in its turn, implies a reduction in cost,
size, and processing time because elliptic curves require fewer
bits for the same security level.

An elliptic curve is described by a cube equation, similar to
those used to calculate an elliptic circumference. Usually, the
cube equation of an elliptic curve is indicated by (1), where a,
b, c, d, and e are usually real numbers that comply with some
condition. Then, the elliptic curve is defined by the points (x,y)
that satisfy this equation. The addition operation can be defined
for an elliptic curve, together with the element point at infinity

Third International Conference on Networking and Services(ICNS'07)
0-7695-2858-9/07 $20.00 © 2007

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on October 20, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Digital de la Universidad Politécnica de Cartagena

https://core.ac.uk/display/60416851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0. This addition operation fulfills the associative and
commutative properties.

 edxcxxbyaxyy +++=++ 232 . (1)

Elliptic curves used in cryptography are defined over two
types of finite fields: fields of odd characteristics (

pF , where p
is a large prime number), and fields of characteristics two
(

mF2
). For the sake of simplicity we focus on

pF . Observe that
the field

pF only employs the numbers from 0 to (p-1), and all
computations end by taking the remainder on division by p. In
particular, cryptography is interested in elliptic curve groups
over

pF . If we chose two positive integers, a and b, smaller
than p such that (2) is true, then),(baE p

denotes the elliptic
curve group in

pF , whose elements (x,y) are pairs of positive
integers smaller than p that satisfy the elliptic curve equation
(3).

 0)(mod274 23 ≠+ pba . (2)

)(mod)(mod 32 pbaxxpy ++= . (3)

To create a crypto system using elliptic curves is necessary
to find a difficult problem such factorizing the product of two
prime numbers or calculating a discrete logarithm. Consider the
equation GkP ⋅= , where P and G are points belonging to

),(baE p
, and k is smaller than p. It is quite easy to assess P

given k and G, but it is very complex to calculate k given P and
G. This is called the Elliptic Curve Discrete Logarithm
Problem (ECDLP). In fact, the G point is called the generator
point. The criterion to select G is as follows: the smallest value
of n such that 0Gn =⋅ must be a large prime number. Most of
the elliptic curve cryptographic methods are related to the
discrete logarithm schemes, which were originally formulated
for usual modular arithmetic.

In order to use ECC, all parties must agree on all the
elements defining the elliptic curve, that is, all parties should
know the domain parameters. For the field

pF , the domain
parameters are: the prime number p, constants a and b, the
generator point G, and the integer n. The generation of these
domain parameters is not straightforward. Several standards
bodies publish domain parameters of elliptic curves [5] [6] [7].

Next, we briefly explain the two ECC algorithms that we
use in this work to generate the ECC X.509v3 certificates:
ECDSA to sign a digital certificate, and ECIES to generate the
public key included in a digital certificate.

A. ECIES
The Elliptic Curve Integrated Encryption Scheme (ECIES),

also known as Elliptic Curve Augmented Encryption Scheme
or Elliptic Curve Encryption Scheme, is an ECC public-key

encryption technique. ECIES is based on the Diffie-Hellman
method. Let us explain briefly how it works [6] [7] [8].

First, one entity (e.g. A) should establish what key
derivation function (KDF) to use (e.g. ANSI-X9.63-KDF with
SHA-1 option [7], IKEv2-KDF [10] or TLS-KDF [11]). A
KDF is used to derive keying data from a shared secret octet
string. Entity A should also select: the MAC (Message
Authentication Code) scheme (e.g., HMAC-SHA-1-160 with
160-bit keys, HMAC-SHA-1-80 with 160-bit keys, etc.), the
symmetric encryption scheme (e.g. AES), and any option
involved in them. A should decide on whether to use the
standard elliptic curve Diffie-Hellman primitive or the elliptic
curve cofactor Diffie-Hellman. In addition, A should establish
the elliptic curve domain parameters (a, b, G, n, etc.) at the
desired security level. Next, the other entity (e.g. B) should
obtain in an authentic manner the selections made by A.

After that, A should set up an elliptic curve key pair
associated with the elliptic curve domain parameters
determined during the setup procedure. Let’s call KPA to the A’s
public key and KpA to the A’s private key. KpA is an integer
chosen randomly in the range [1, n-1]. KPA is calculated as
indicated by expression (4):

 GKK pAPA ⋅= . (4)

Then, entity B should obtain in an authentic way the elliptic
curve public key selected by A, i.e. KPA. From now on, B (A)
should encrypt (decrypt) messages using the keys and
parameters established previously. For instance, if B wants to
send a ciphered message to A, then B does the following
actions:

• B generates a random number r ∈ [1, n-1] and assesses
GrR ⋅= .

• B obtains a shared secret PAS KrK ⋅= . Note that R and
KS are points in the elliptic curve.

• B uses the KDF to derive a symmetric encryption and
MAC keys, KE and KM respectively.

• B ciphers the message using KE and the symmetric
encryption scheme selected during the setup phase.

• B computes the tag of the ciphered message using KM.

• The decryption process is straightforward knowing the
Diffie-Hellman procedure.

In this work, we use ECIES to generate the public key of an
entity, which can be used for ciphering in later services. The
legitimacy of this public key is guaranteed by the digital
certificate ECC X.509v3 that our proposed Certification
Authority issues. The ECIES parameters that we have selected
in our implementation are shown below in Table 1.

B. ECDSA
Elliptic Curve Digital Signature Algorithm (ECDSA) is a

variant of the Digital Signature Algorithm (DSA) that operates
with elliptic curves. Signature schemes are designed to be used

Third International Conference on Networking and Services(ICNS'07)
0-7695-2858-9/07 $20.00 © 2007

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on October 20, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

when an entity A wants to send a message M to an entity B in
an authenticated way, and B wants to verify the authenticity of
M. ECDSA acts as follows [7] [8] [12].

First, an entity A should select what hash function to use
(e.g. SHA). Moreover, A should establish the curve domain
parameters (a, b, G, n, etc.) at the desire security level. Entity B
should get in an authentic manner the selections made by A.

Next, A and B should perform a key deployment procedure
to be prepared to use ECDSA. A should set up an elliptic curve
key pair associated with the elliptic curve domain parameters
agreed on the setup procedure to use with ECDSA. Let’s call
KPA to the A’s public key, as shown in (4), and KpA to the A’s
private key (randomly selected in [1, n-1]). B should obtain the
elliptic curve public key selected by A, i.e. KPA.

To sign a message M, A should proceed according to the
following steps:

• A applies the hash function to the message, and derives
an integer e from the obtained hash.

• A selects a random integer k in the range [1, n-1], and
calculates),(AA yxGkK =⋅= .

• A assesses)(mod nxr A= .

• A calculates))(mod(1 nrKeks pA ⋅+= − .

• The signature is the pair (r, s).

To verify the signature, the entity B should proceed as
follows:

• B checks if r and s are integers, otherwise the signature
is not valid.

• B applies the hash function to the message, and derives
an integer e from the obtained hash.

• B calculates)(mod1
1 nseu −⋅= and

)(mod1
2 nsru −⋅= .

• B computes PAAA KuGuyxK ⋅+⋅== 21),(.

• The signature is valid if)(mod nrxA = .

In this work, the Certification Authority uses ECDSA to
sign an ECC X.509v3 digital certificate containing an ECIES
public key, thus verifying the authenticity of the public key and
its owner.

TABLE I. ELLIPTIC CURVE DOMAIN PARAMETERS.

Parameter Value

a 0x7fffffffffffffffffffffff7fffffffffff80000000000
07ffffffffffc

b 0x6b016c3bdcf18941d0d654921475ca71a9db
2fb27d1d37796185c2942c0a

G 0x020ffa963cdca8816ccc33b8642bedf905c3d3
58573d3f27fbbd3b3cb9aaaf

n 88342353238919216479164875036030888480
7550341691627752275345424702807307

p 88342353238919216479164875036030888531
4476597252960362792450860609699839

III. ECC CERTIFICATION AUTHORITY DESIGN

We choose Java as programming language due to its
platform independence. After a searching phase, we leaned on
the open source library BouncyCastle [13] to write the code.
Next, we give details about the ECC CA design.

Our work can be divided into three blocks: classes to create
the CA, classes to create the certificate request by the client,
and classes so that the CA can sign the certificate request. In
addition, we define three classes (included in Fig. 1) that are
shared by all blocks:

• KeyGeneration is in charge of generating an elliptic
curve key pair. It uses the ECIES scheme specified in
ANSIX9.63 and IEEE P1363.

• X509Subject takes the component of the client data,
splits it into its minimum units, and composes it again to
eliminate possible misspellings.

• CertificateUtils generates .cer certificates (certificates
signed by the CA, i.e., the identity of the user has been
verified), and .der certificates (certificates that have not
been signed yet, i.e. a client certificate request).

In the first block, classes to make the CA, we define the
class CAcertEC shown in Fig. 2. Its main task is to generate the
X.509v3 root certificate and the PKCS#12 (Public Key
Cryptography Standard, PKCS) with the corresponding CA’s
private key. A root certificate is a certificate that contains the
public key of a CA. Clients can trust a CA only if a copy of the
CA root certificate is in its trusted root certificate store.
Moreover, the CA public key included in the CA root
certificate is needed to verify the validity of any certificate that
the CA issues. PKCS is a set of standard protocols to exchange
secure information on the Internet using a public key
infrastructure. PKCS#12 is a standard that specifies a portable
format for storing a user’s private key.

In the second block, classes to create the certificate request
by the client, we characterize the classes illustrated in Fig. 3.
They involve the following tasks:

• GraphicClient launches an applet that the client uses to
fill in the data necessary for the certificate request.

• Manager captures the applet events.

Figure 1. Shared classes.

KeyGeneration

Static KeyGeneration(int): KeyPair

X509Subject

Static decodeX509Subject(string) : string

CertificateUtils
Static X509Certificate genCert

Static createCertMaster(PublicKey, PrivateKey, string,
int, string): X509Certificate

Static createCertDER(PublicKey, PrivateKey, string,
string): PKCS10CertificateRequest

Third International Conference on Networking and Services(ICNS'07)
0-7695-2858-9/07 $20.00 © 2007

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on October 20, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

CAcertEC
nameCA string

departmentCA string
organizationCA string

cityCA string
countryCA string

postalcodeCA string
passwdCA string
emailCA string
caIssuer string
sizeClave int

monthDurationCACertificate int
signAlgorithm string
keyPairCA KeyPair

caPrivKey PrivateKey
caPubKey PublicKey

pfxPath string
cerPath string

Public CAcertEC()
Figure 2. Classes to create the CA.

• UserCertEC_DER generates a .der certificate (a
certificate request). This is a certificate without a
signature, hence, not valid yet. The .der certificate
should be sent to the CA for signing. This class also
generates a PKCS#12 to store the private key.

• MinimumClient takes the client .der certificate and
sends it to the CA.

In the last block, classes so that the CA signs the certificate
request, we create the classes included in Fig. 4. The goals of
these classes are:

• MinimumServer, the CA is listening, waiting for a client
request. When a client connects to the CA, the CA
checks if the client is authorized to demand the service.

If the client is authorized then the CA signs the client
certificate request using the DER2CER class.
Afterwards, the CA returns the signed certificate (.cer),

ready for use, back to the client. The CA keeps waiting
for new client requests.

• DER2CER, this class firstly edits the client certificate
request (PKCS#10), and adds new data such as key
length, certificate serial number, period of validity
(valid from-to), and signature algorithm. In our case, the
CA uses the ECDSAwithSHA-1 (Elliptic Curve Digital
Signature Algorithm with Secure Hash Algorithm 1) to
sign certificates. DER2CER needs to know the key
(usually known as superkey) to access the CA secret
key, which is located in the file server.pfx. It is
necessary to know the CA secret key otherwise the CA
would not be able to sign the client certificate.
Afterwards, the client certificate (.cer) is created with
CertificateUtils.

IV. ECC CERTIFICATION AUTHORITY PROTOCOL APPROACH

In this section we explain the general procedure to obtain an
ECC X.509v3 certificate (see Fig. 5). First of all, the client asks
the CA to issue a certificate (step 1). In further services, the
client could be authenticated with this certificate, or the public
key included in the certificate could be used for ciphering.
Then, the CA sends its root certificate (serverCa.cer) and the
software needed by the client to generate the certificate request
(step 2). The client installs the CA root certificate in its trusted
store. Although not implemented, the software could also be
signed so that the client can trust in it.

The client executes the software to generate a key pair and
a certificate request (client.der) (step 3). The client sends its
certificate request to the CA (step 4). The CA receives the
certificate request and some information from the user to
validate him/her. Different approaches can be taken to decide if
a user is authorized or not to ask for an ECC X.509v3
certificate and verify his/her identity. For instance, if this
system were used in a pre-paid hotspot (e.g. airport, hotel, etc.),
the user could send a code number to be validated. This code
could be obtained when a pre-paid card is bought. In other
environments, like a small company, the user validation could
be done in person.

Figure 3. Classes to generate a certificate request.

CertificateUtils

X509Subject

UserCertEC_DER
String name

String organization
String city

String country
String passwd
String email

X509Certificate UserCert
KeyPair Keys

PrivateKey PrivKey
PublicKey PubKey

int keySize
int monthDurationUserCertificate

String signAlgorithm
String pfxPath
String cerPath

init(): void

Manager
TextField text1, text2, text3, text4, text5, text6,

text8, text9
Jpassw

String Name
String Dept

String Organization
String City

String Country
String PC

String pwd
String email

String pathCert
Public Manager(TextField, TextField, TextField,

TextField, TextField, TextField, JPassword
Field, TextField, TextField)

PublicactionPerformed(ActionEvent): void

GraphicClient

init(): void

KeyGeneration

CertificateUtilss

X509Subject

Third International Conference on Networking and Services(ICNS'07)
0-7695-2858-9/07 $20.00 © 2007

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on October 20, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

DER2CER
String cerPath
String derPath

String pfxCAPath
String keyPFXCA
String userParam
String caParam
String caIssue

KeyPair keyPairCA
PrivateKey caPrivKey
PublicKey caPubKey
X509Certificate caCer

String nameCA
String organizationCA

String cityCA
String countryCA

String postalcodeCA
String passwdCA
String emailCA

String name
String department
String organization

String city
String country

String postalcode
String email

String passwd
int keySize
long nserie

int monthDurationUserCertificate
String signAlgorithm

Public MinimumClient()
Figure 4. Classes to sign the client certificate request.

Figure 5. General procedure.

If the user is authorized to demand this service, and his/her
identity has been confirmed, the CA processes the certificate
request, signing it with its private key and sending the final
X.509v3 certificate (client.cer) to the client. Using this
certificate, the client can be authenticated for later network
services. Note that the entire process is transparent from the
user side.

V. ECC CERTIFICATION AUTHORITY IMPLEMENTATION

In this section we present the implementation of our free
open-source ECC Certification Authority. The implementation
can be downloaded from [14]. For simplicity, we follow the

same nomenclature (step 1, step 2, etc.) than we used in the
previous section.

At first, the server is waiting for client requests. In our
implementation, we assume that the client already has the
software to generate the certification request (steps 1 and 2 in
Fig. 5). To make the rest of the process easier, we have
included a web page where the user can introduce some of the
data needed for his/her certificate (e.g.: name, affiliation, etc.).
Therefore, in the third step the client loads the web page (Fig.
6). When the form is filled in, the client clicks the “send”
button. At that time, the client software creates a key store
PKCS#12, where the private ECC key is stored and the
certificate request client.der is generated. The client
automatically sends the client.der certificate to the Certification
Authority (step 4 in Fig.5).

The CA receives the certificate request client.der, the name
of the client host, and its IP address. Received data belonging
to client.der is shown in the screen. We assume that the client
has proper access to the service, so the CA should only issue
the final client certificate. Once the client.cer certificate is
ready, the CA sends it back to the client.

At this moment, the client has three files: client.cer,
client.der, and client.pfx. The file client.cer is the X.509v3
ECC certificate. The file client.der is the certificate request that
can be deleted. The file client.pfx is the key store, where the
client’s private key is kept. These three files are located in the
directory previously indicated in the form, in the box “path to
store the certificate” (Fig. 6).

In Fig. 7 and Fig. 8, we observe the details of the certificate
(client.cer). The certificate is issued to “Paco” by the
Certification Authority “CA4ec” and is valid from 10/12/2005
(following the date format dd/mm/yy) to 09/05/2006. We see in
Fig. 8 that the signature algorithm corresponds to the OID
(Object Identifier) 1.2.840.10045.4.1. This OID matches the
ECDSAwithSHA1 algorithm. From Fig. 8, we observe that the
public key algorithm is ECIES, identified by the OID
1.2.840.10045.2.1. OIDs can be checked in [15].

Regarding the certification path, we note from Fig. 7 and
Fig. 9 that the certificate appears as not valid (red cross in Fig.
9). This is due to the fact that Windows XP operating system
does not include yet any library (or module) to use ECDSA.
That is, it does not understand yet the algorithms ECIES or
ECDSA. Consequently, it is not able to verify the integrity of
the certificate.

VI. CONCLUSIONS

In this paper, we propose, design, and implement a free
open-source Certification Authority that generates X.509v3
certificates by using elliptic curve cryptography. We explain
the classes needed to create the Certification Authority, the
classes needed to create a client certificate request, and the
classes to sign and generate the final validated client certificate.
We also show a real implementation. With the use of this type
of application, we aim to help to spread the use of elliptic curve
cryptography. Our implementation is notably useful for small
wireless devices with processing power, storage space, or
power consumption restrictions.

1

2

3
4

56

MinimumServer

Static Main(args[]) :
void

CertificateUtils

X509Subject

Third International Conference on Networking and Services(ICNS'07)
0-7695-2858-9/07 $20.00 © 2007

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on October 20, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

Figure 6. Client web page. The user can fill in: name, surname, department,
organization, city, country code, postal code, secret key to access his/her

private key, email address, and the path to store the certificate.

Figure 7. Certificate information.

Figure 8. Details of the certificate.

Figure 9. Certificate path.

REFERENCES

[1] S. Vanstone, “Next generation security for wireless: elliptic curve
cryptography”, Computers & Security, Vol. 22, No. 5, pp. 412-415,
2003.

[2] N. R. Potlapally, S. Ravi, A. Raghunathan, N. K. Jha, “A study of the
energy consumption characteristics of cryptographic algorithms and
security protocols”, IEEE Transactions on Mobile Computing, Vol. 5,
No. 2, pp.128-143, 2005.

[3] W. Rao, Q. Gan, “The performance analysis of two digital signatures
schemes based on secure charging protocol”, Proc. International
Conference on Wireless Communications, Networking, and Mobile
Computing, Vol. 2, pp. 1180-1182, September 2005.

[4] V. S. Miller, “Use of Elliptic Curves in Cryptography”, Proc.
CRYPTO’85, Springer-Verlag, New York, pp. 417-426, 1986.

[5] National Institute of Standards. FIPS-PUB 186-2. “Recommended
Elliptic Curves for Federal Government Use”, 1999. Available online
<http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf>. Last
accessed 3rd March 3rd, 2006.

[6] Certicom, “Standards for efficient cryptography. Sec2:Recommended
Elliptic Curve Domain Parameters”, Released Standard Version 1.0,
2000. Available online <http://www.secg.org> . Last accessed March 3rd,
2006.

[7] ANSI X9.63, “Public-Key Cryptography for the Financial Services
Industry, Key Agreement and Key Transport Using Elliptic Curve
Cryptography”, 2001.

[8] D. R. Brown, “Standards for efficient cryptography. Sec1: Elliptic Curve
Cryptography”, Released Standard Version 1.0 and Working Draft v1.5,
2005. Available online <http://www.secg.org>. Last accessed March 3rd,
2006.

[9] IEEE1363 Working Group. IEEE Std P1363a-2004 (Amendment to
IEEE Std P1363-2000). IEEE Standard Specifications for Public-Key
Cryptography – Amendment 1: Additional Techniques, 2004.

[10] C. Kaufman, “Internet Key Exchange (IKEv2) Protocol”, Internet Draft,
2005.

[11] V. Gupta, S. Blake-Wilson, B. Möller, C. Hawk, N. Bolyard, “ECC
Cipher suites for TLS”, Internet Draft, 2004.

[12] ANSI X9.62. (2005). Public-Key Cryptography for the Financial
Services Industry, the Elliptic curve Digital Signature Algorithm
(ECDSA).

[13] The Legion of the BouncyCastle. Available online
<http://www.bouncycastle.org>. Last accesed March 3rd, 2006.

[14] M. D. Cano, R. Toledo Valera, F. Cerdan. Email corresponding author
for code donwload.

[15] ASN.1 Information Site. OID Repository, 2006. Available online
<http://asn1.elibel.tm.fr/oid/index.htm>. Last accesed March 3rd, 2006.

Third International Conference on Networking and Services(ICNS'07)
0-7695-2858-9/07 $20.00 © 2007

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on October 20, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

