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Abstract—This paper investigates the use of Neural Network
(NN) nonlinear modelling for Power Amplifier (PA) linearization
in the Walsh-Hadamard transceiver architecture. This novel
architecture has recently been proposed for ultra-high band-
width systems to reduce the transceiver power consumption by
extensive parallelization of the digital baseband hardware. The
parallelization is achieved by replacing two-dimensional quadra-
ture modulation with multi-dimensional Walsh-Hadamard mod-
ulation. The open research question for this architecture is
whether conventional baseband signal processing algorithms can
be similarly parallelized while retaining their performance. A key
baseband algorithm, digital predistortion using NN models for PA
linearization, will be adapted to the parallel Walsh architecture.
A straighforward parallelization of the state-of-the-art NN archi-
tecture is extended with a cross-domain Knowledge Distillation
pre-training method to achieve linearization performance on par
with the quadrature implementation. This result paves the way
for the entire baseband processing chain to be adapted into ultra-
high bandwidth, low-power Walsh transceivers.

Index Terms—digital predistortion (DPD), power amplifier
(PA), time-delay neural network (TDNN), Walsh-Hadamard
transform

I. INTRODUCTION

Future wireless networks should evolve beyond human-

centric wideband demand, to serve billions of devices si-

multaneously, while concurrently supporting high-throughput

machine-to-machine communication applications like chip-to-

chip ultra-high-speed communications [1]. However, spectrum

availability and management have become the main bottleneck

for the future development of wireless networks. These factors

have pushed the development of one of the key enabling

technologies for 6G and beyond, ultra-wideband sub-terahertz

(sub-THz) communications.

One of the main challenges to enable THz communications

is that the transceivers are more affected by non-linearities

across the ultra-wideband frequency range [2]. For instance,

for an ultra-wideband system with 10 GHz of bandwidth, high-

speed data converters with a Nyquist sampling rate higher than

20 Giga-samples-per-second (GSPS) are required. However,

state-of-the-art converters for ultrawideband applications un-

derperform in terms of their Walden and Schreier figures of

merit [3], [4]. These figures of merit respectively consider

the trade-off between sampling rate, power consumption, and

effective number of bits, and between sampling rate, power

consumption and the signal-to-noise and distortion ratio.

Therefore, the converter´s linearity and energy efficiency for

ultrawideband wireless communications is quite limited [5].

To overcome the hardware limitations imposed by the large

sampling rate requirements for ultrawideband communications

in near-THz spectrum, the Walsh-Hadamard transceiver archi-

tecture has been recently proposed [6], [7]. This transceiver

architecture splits the ultrawideband communication system

into multiple parallel undersampling digital chains. Each chain

modulates a distinct Walsh-Hadamard basis function with a

certain sequency, similar to OFDM subcarriers with their dis-

tinct frequencies. Since each chain has a low digital sampling

rate, the overall system power consumption is much lower

than an equal bandwidth quadrature system [7]. The architec-

ture can be used with any arbitrary waveform, using Walsh-

Hadamard series approximation [6]. The Walsh-Hadamard

transformation allows mapping time-domain symbols into a

multidimensional orthogonal constellation space. Therefore,

an N-order Walsh transformation will enable an N-dimensional

constellation mapping and the same number of parallel pro-

cessing chains in the receiver, reducing each ADC’s sampling

rate by a factor N [8].

Although the Walsh transformation allows relaxing the

requirements in terms of energy, linearity and performance of

the analog-to-digital converters, it requires entirely new im-

plementations of baseband algorithms, such as digital predis-

tortion (DPD) to compensate power amplifier non-linearities.

Indeed, high bandwidth systems require the use of wideband

power amplifiers (PA), which have an inherent tradeoff be-

tween power efficiency and linearity. The operation region

with higher input power will be more power efficient but

also exhibit more nonlinear behavior. To improve power

efficiency without sacrificing linearity, many have proposed

digital predistortion linearization techniques [9]–[17]. In DPD,

the communication signal is sent through an inverse behavioral

model of the PA (the predistorter) before going to the PA

itself, such that the predistorter cancels out the PA’s nonlinear

distortion.

One class of DPD algorithms uses the linear-in-parameters

Volterra series [9]–[12] to implement the predistorter model.

The parameters of these models can be identified using a

single least-squares fit or iteratively using algorithms such

as recursive least squares or least mean squares [9], [11].

Parallelizing Volterra-based DPD has also been investigated,
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for instance in [12] authors propose a separate DPD model for

each subcarrier in an OFDM system. A Volterra predistorter

model in N-dimensional parallel Walsh domain has been

presented for the first time by authors in [11].

One of the challenges faced by traditional Volterra predis-

torters is that some predistorted waveforms can have a larger

PAPR compared to the signal itself, particularly for OFDM

systems [16]. Another limitation of Volterra models is the

high correlation between polynomial bases of higher orders,

thus limiting the scaling of Volterra models to high model

complexities [17]. To overcome these challenges, deep neural

network models have been widely investigated for DPD [13]–

[17].

The basic neural network (NN) model used for PA behav-

ioral modelling and distortion is the Real-Valued Time-Delay

Neural Network (RVTDNN) [13]. In this model, the complex

baseband signal is split into real and imaginary components

which are fed to a feedforward NN, together with a vector

of previous samples. The outputs of the NN are the real and

imaginary components of the predistorted waveform, to be sent

to the RF frontend. The NN model parameters are identified

iteratively using methods based on stochastic gradient descent.

The performance of the basic RVTDNN was improved in [14],

augmenting it with additional inputs containing envelope terms

(e.g. amplitude or amplitude squared). Authors in [16] have

investigated a type of TDNN with delayed and advanced input

samples, and found that it reduces the PAPR of the predistorted

waveform compared to Volterra predistorters. Wu et al. [15]

incorporated a skip connection between inputs and outputs of

the predistorter neural network, this forces the neural network

layers to model additive nonlinearity. They named the resulting

model the Residual Real-valued TDNN (R2TDNN).

To the best of our knowledge, the adaptation of R2TDNN

models to N-dimensional parallel Walsh domain and the trade-

off between the performance indicators of the DPD and the

neural network complexity has not been investigated before.

Indeed, our preliminary research showed that a DPD based

on R2TDNN extended to N-dimensional Walsh domain is

not capable of fully linearizing the response of ultrawideband

power amplifiers. Although this approach improves the EVM,

the spectral regrowth of the PA is not significantly reduced.

We hypothesize that during the training for N dimensions, the

neural network optimizer loses track of essential features of the

time-frequency response of the amplifier as the amplitude and

phase components are transformed into a higher dimensional

space (i.e., Walsh domain). We propose pre-training of the

Walsh-domain neural network predistorter, using the predis-

tortion waveform generated by a large IQ-domain model. This

process is known as Knowledge Distillation [18], wherein the

IQ-DPD model is the teacher and the Walsh-DPD model the

student that learns to mimic the teacher’s output. Multiple au-

thors [19], [20] have similarly used offline pre-training with an

ideal predistortion waveform acquired using computationally

expensive iterative learning control [21].

The main novelty of this paper is an adaptation of R2TDNN

DPD models for an N-dimensional parallel Walsh-Hadamard

communication system, without sacrificing the linearization

performance. More specifically, the R2TDNN model will be

adapted to the Walsh domain by replacing the IQ inputs and

outputs with N-dimensional vectors, similar to the process

followed in [11] for Volterra models. To precondition the

Walsh-domain predistorter towards specific features relevant to

time domain DPD, we propose Knowledge Distillation offline

pre-training with an IQ-domain DPD acting as teacher model.

The outline of this paper continues as follows. In Section II

we detail the proposed neural network for PA behavioral

modeling and DPD in the Walsh sequency domain. In Sec-

tion III we provide our research findings and provide a

numeric analysis demonstrating that the forward modelling

and linearization performance of the proposed approach is

on par with quadrature-based R2TDNN. Finally, our research

findings and conclusions are summarized in section IV.

II. PROPOSED WALSH-DOMAIN NEURAL NETWORK

The proposed approach to DPD linearization of PAs in

Walsh domain is shown in Fig. 1.
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Fig. 1: Rationale of proposed Walsh-based Neural Network system enhanced
by off-line knowledge distillation pre-training

In this diagram, complex IQ signals are shown in lower

case x, while Walsh-domain vectors are shown in bold upper

case X. The transmit IQ waveform x(n) is transformed to

Walsh-domain, predistorted using a Neural Network model,

and then sent towards the PA. The IQ-domain predistorter, a

R2TDNN, is drawn in grey since it is only used for offline

pre-training of the Walsh-domain predistorter. This process

called cross-domain Knowledge Distillation (KD) uses an ideal

predistortion waveform generated by the R2TDNN as pre-

training data for the Walsh-domain Neural Network (WDNN).

This allows the WDNN predistorter to model accurately the

ideal predistortion behavior, without specific adaptations in the

model architecture.

Whereas conventional DPD operates on IQ signals, the

proposed DPD operates on Walsh-domain vectors X, which

can be obtained from the respective IQ signal x by means of

the Walsh transform

X(i) =

N
∑

n=1

x(n)WN
i (n) for i = 1...N (1)

where WN
i (n) represents the Walsh-Hadamard basis function

with Walsh order N and sequency i [6], [11]. These basis



functions are binary, orthogonal waveforms that decompose

the signal x(n) into it’s sequency spectrum X(i). By letting

the predistorter operate in the sequency domain, we parallelize

the DPD operation by a factor equal to the Walsh order N .

The algorithm proposed in [11] exploits this architecture to

adapt a block-based Volterra model as predistorter, while our

work will investigate the use of a WDNN predistorter.
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Fig. 2: Proposed Walsh-domain Neural Network

In conventional neural network predistorters, the model

architecture is specifically engineered for PA behavorial mod-

elling. This includes a delay line at the NN input contain-

ing memory terms [13], further input features representing

envelope terms |x(n)|k [14] and possibly a skip connection

between input and output [15]. In our proposed WDDN

architecture, the input delay line is replaced with a vector

of Walsh coefficients representing the Walsh transform of the

complex input. The conventional I and Q outputs are replaced

by a vector output of size 2 ∗ N , corresponding with the

sequency domain version of I and Q outputs. The complete

model is shown in Fig. 2, including a residual connection

between input and output. Although no PA-specific envelope

or memory term features are input to the model, it can still

function as an accurate PA behavioral model due to our

Knowledge Distillation pre-training method.

The neural network behavioral model is trained using the

Adam optimizer [22], normalized mean square error (NMSE)

loss (3) and maximum 10000 epochs of training. Training data

is grouped into training-validation-test sets according to a 60-

25-15% split. Hyperparameters of the neural network model

are selected using a grid search, where training is stopped early

if after 50 epochs there is no improvement in validation loss.

We investigated neural networks with hyperbolic tangent and

ReLU activations, and similar to [17] we consistently found

the tanh outperformed the ReLU activation.

By setting a constraint on the overall number of network

weights, we can search for optimal models within a certain

model complexity range. We use as model complexity metric

the number of Floating-Point-Operations-per-Second (FLOPS)

where k, n, fsymb, I , O represent the number of hidden layers,

amount of neurons per layers, symbol rate and Input / Output

feature size respectively:

FLOPS = [2 ∗ n ∗ (I + k ∗ n+O) +O] ∗ fsymb. (2)

In this equation fsymb is 20 Giga-symbols-per-second for

IQ-based R2TDNN (1GHz signal bandwidth, 10 times over-

sampled). Walsh-based WDNN will have an N times larger

I and O, but also N times smaller fsymb, so overall similar

FLOP numbers as IQ-based neural networks.

The NMSE is used as loss function for NN training as well

as the metric to evaluate forward PA modelling accuracy on

the test dataset. In (3), y(n) represents the true PA output and

ŷ(n) represents the NN model estimated output:

NMSEdB = 10 · log10















1

N

N
∑

n=1

|ŷ(n)− y(n)|2

1

N

N
∑

n=1

|y(n)|2















. (3)

To compare NN based predistorters, we use the error vector

magnitude (EVM) and adjacent channel leakage ratio (ACLR)

as performance metrics. Definitions are given below in (4)

and (5), where x(n) is the original transmit signal, y(n) is

the output of the combined DPD-PA system and Padj , Pmain

represent adjacent channel and main channel radiated power

respectively:

EVM% = 100 ∗

√

√

√

√

√

√

√

√

1

N

N
∑

n=1

|y(n)− x(n)|2

1

N

N
∑

n=1

|x(n)|2
, (4)

ACLR = 10 ∗ log10(
Padj

Pmain

). (5)

For the PA and DPD modelling we considered a waveform

with 1 GHz bandwidth and 11.49dB PAPR as input stimulus

to a custom-designed CMOS PA operating in D-band. The

resulting output waveform is obtained using Cadence post-

layout simulation, including the PA memory effects. The

custom PA in question has 11 dBm saturation power and 15 dB

nominal gain.

III. RESULTS

In this section we compare the Walsh-based WDNN and IQ-

based R2TDNN architectures, with the Walsh-domain results

always reported using Walsh order N = 64. First, we evaluate

forward PA modelling accuracy in terms of NMSE. The

accuracy/complexity tradeoff in Fig. 3, shows the scaling trend

for both models is very similar. Indeed, the difference in

accuracy between Walsh and IQ models from 16 TFLOPS

onwards is negligible. For lower TFLOP numbers there is a

performance gap due to the reduced capacity of the WDNN

to model essential time-domain features.

For WDNN-based DPD this issue will be solved by using

cross-domain Knowledge Distillation (KD) pre-training, which

we validate for the simulated 1 GHz bandwidth waveform.
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Fig. 3: PA modelling accuracy (NMSE) dependence on model complexity.

Fig. 4 shows the simulated amplitude and phase response of

the linearized PA, while Fig. 5 shows the spectrum before and

after DPD.

Fig. 4: AM-AM and AM-PM response after applying proposed Walsh-based
DPD algorithm
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Fig. 5: Spectrum at output of PA after applying considered DPD approaches

Fig. 5 visualizes how the proposed KD pre-training ap-

proach improves the Walsh-based DPD. It improves ACLR

by approximately 3dB, achieving comparable linearization

performance as IQ-DPD, with a difference of less than 0.08dB

in ACLR. We refer to Figs. 6 and 7 for a quantitative overview

of the linearization performance. Here we show EVM (4)

and ACLR (5) evolution as a function of growing model

computational complexity (2). In each figure, the baseline PA

performance without linearization is shown as a solid line.

The trend on Fig. 7 clearly shows ACLR improvements up

to the highest considered complexity, indicating the frequency

domain behavior of the PA (the memory effect) requires a

higher model complexity. The WDNN-based DPD achieves up

to 1.98 dB ACLR improvement after linearization, for model

complexity between 16-64 TFLOPS. This is only slightly

worse compared to the most complex IQ DPD model. Fig. 6
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Fig. 6: EVM - complexity tradeoff for investigated DPD methods
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Fig. 7: ACLR - complexity tradeoff for investigated DPD methods

illustrates that the EVM for both architectures reaches a com-

parable level for higher model complexities, with a difference

between best models of just 0.24%. This demonstrates our

Walsh-based DPD model reproduces the time-domain features

of the ideal Knowledge-Distillation waveform.

To summarize we show the best achieved PA modelling

accuracy and DPD performance in Table I. The table shows

Walsh-domain neural network predistortion achieves similar

performance as the quadrature equivalent. As the DPD per-

formance metrics are similar, our model allows exploiting the

benefits of Walsh architecture for reducing the ADC sampling

rate and power consumption for ultrawideband communica-

tions.

TABLE I: NN model results summary

System NMSE [dB] ACLR [dB] EVM [%]

PA (no DPD) / -27.82 8.45

R2TDNN -42.31 -31.24 3.36

WDNN -43.03 -29.80 3.12

IV. CONCLUSION

An adaptation of TDNN models towards Walsh transceiver

architectures was proposed, reducing the power consumption

of the analog - digital conversion. An offline pre-training

method based on knowledge distillation for domain adapta-

tion improves the spectral mask of the proposed approach

and achieves similar linearization performance as traditional

quadrature architectures. Simulation results confirm these find-

ings. The proposed adaptation of neural network DPD algo-

rithms paves the way for other signal-processing tasks to be

incorporated in the same way into the novel Walsh transceiver

architecture.
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