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Nonlinear Multiclass Discriminant Analysis
Junshui Ma, José L. Sancho-Gómez, and Stanley C. Ahalt, Member, IEEE

Abstract—An alternative nonlinear multiclass discriminant al-
gorithm is presented. This algorithm is based on the use of kernel
functions and is designed to optimize a general linear discrimi-
nant analysis criterion based on scatter matrices. By reformulating
these matrices in a specific form, a straightforward derivation al-
lows the kernel function to be introduced in a simple and direct
way. Moreover, we propose a method to determine the value of the
regularization parameter , based on this derivation.

Index Terms—Discriminant analysis, feature extraction, kernel
method.

I. INTRODUCTION

M ANY discriminant analysis methods have been devel-
oped over the last four decades, and perhaps the most

well established are those generally referred to as the Fisher’s
discriminant analysis (FDA), and its extension, the linear dis-
criminant analysis (LDA) [1]–[3]. However, because FDA and
LDA are intrinsically linear, their performance is limited when
applied to problems with nonlinear classification boundaries.

In order to overcome the limitation associated with con-
ventional FDA and LDA, several nonlinear discriminant
algorithms have been proposed in recent years. Most of these
algorithms have employed a technique referred to as thekernel
trick [4]–[6]. An efficient two-class nonlinear classification
technique based on FDA was first derived by Mikaet al.[4] and
was then extended to multiclass problems [6]. Subsequently,
another form of a multiclass nonlinear discriminant algorithm
based on a variant of the general LDA criteria was developed
[5]. However, the techniques employed to derive these non-
linear algorithms are not straightforward, and the forms of their
resultant algorithms are relatively complex.

In this letter, we present an alternative algorithm for non-
linear, multiclass discriminant analysis. This letter has two pri-
mary contributions with respect to previous results. First, our
algorithm is a simple and direct extension of a general LDA
criterion, and its derivation is straightforward. This simplicity
allows us to easily extend the formulation in this letter to new
algorithms [11]. Second, we provide a simple method that can
be used to determine the value of a critical parameter, which
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TABLE I
NOMENCLATURE USED IN THIS PAPER

provides numerically stability and controls the complexity of
the resultant algorithm [11].

Table I provides the nomenclature used in this letter.

II. LDA

Suppose, in space, we have a set of data ,
where , is the subset
of vectors from class. For a general -class problem, the input
data can be projected into an-, -dimensional space
following a linear transformation of

(1)

where the projection directions are determined by the column
vectors of the transformation matrix [2]. The objective of
this transformation is to maximize the class separability with
regard to a chosen separability criterion. One of the most widely
used criteria is

(2)

where the within-class matrix and between-class scatter ma-
trix are given respectively by

(3)

(4)
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Finding a transformation matrix to maximize is
straightforward [2]. The optimal matrix is indeed formed
by the eigenvectors of matrix corresponding to its

largest eigenvalues.

III. GDA

The linear discriminant analysis for multiclass problems de-
scribed above can be combined with thekernel trick[7] to ob-
tain a nonlinear multiclass discriminant analysis. That is, all of
the input vectors are mapped into a high-, or even infinite, di-
mensionalfeature space via a nonlinear functional vector

: , and the linear algorithm is then reformu-
lated in the feature space in a form of the dot product of the
mapped vectors . Meanwhile, if a kernel function
satisfies Mercer’s theorem [8], it can be represented as a dot
product of two vectors in feature space, and the vector in

is obtained by a nonlinear mapping , which is implic-
itly determined by the chosen kernel function , i.e.,

. Therefore, the inner product in
feature space can in practice be replaced by a kernel function
evaluation operation, and working explicitly with the high-di-
mensional vectors is thus avoided [8], [9]. In other words,
once a kernel function satisfying Mercer’s theorem is
selected, the nonlinear mapping functional vector is im-
plicitly chosen, and the remaining problem is only reduced to
a linear problem in the feature space. Therefore, a solution
becomes readily available by following the same procedure de-
scribed in Section II.

We begin our derivation by reformulating (3) and (4) as

(5)

(6)

where is a diagonal matrix with diagonal elements
; is a diagonal matrix

with diagonal elements ; and is given by

... (7)

We apply the LDA to the feature space after the nonlinear
mapping . Thus, the objective is to find the transformation
matrix such that the linear transformation

(8)

maximizes

(9)

where matrices and are respectively the within-class and
between-class scatter matrices of the projected vectors .
According to (2) the criterion has the form

(10)

In order to utilize the kernel, we need to represent matrices,
, and in terms of vector . The scatter

matrices in feature space can be directly induced from (5)
and (6) as

(11)

(12)

where is the training set
matrix in .

A result in [8] suggests that the column vectors of matrix
are in a space spanned by the vectors in the training set. Ac-
cordingly, any projection direction can be represented
as a linear combination of all the vectors in. That is, vector

can be expressed as

(13)

for certain values of the parameters. Then the linear trans-
formation from to can be represented as

... (14)

Note that this is actually a nonlinear transformation fromto
. Defining

...
...

... (15)

Equation (14) becomes

(16)

Therefore, from (8) and (16) we obtain

(17)

Inserting (17), (11), and (12) into (10), becomes a
function of matrix and is expressed in terms of vectors
as

(18)

where

(19)

(20)

(21)

Comparing (2) and (18), we can easily find that both equations
have the same form if we note the following corresponding
pairs , , and . Therefore,
the optimization solution to (18) is exactly the same as that to
(2). That is, the solution is given by those eigenvectors of

corresponding to the largest eigenvalues.
There are two important comments about this result. First, be-

cause our selected Kernel function meets Mercer’s theorem, the



198 IEEE SIGNAL PROCESSING LETTERS, VOL. 10, NO. 7, JULY 2003

matrix in (19) is indeed implemented by kernel function eval-
uation, and working with high-dimensional vectors
is thus avoided. Second, matrix is singular and is thus not
invertible in practice. Section IV deals with this implementation
issue.

IV. A PRACTICAL ISSUE INVOLVED IN

IMPLEMENTING OUR ALGORITHM

There are currently two methods that can be used to circum-
vent the problem of the noninvertibility of the matrix . The
first method is to replace the inverse matrix with a

pseudoinverse matrix of matrix . The pseudoin-
verse matrix is defined as , where is
formed by the eigenvectors of matrix , and where is
a diagonal matrix formed by the inversion of the nonzero eigen-
values of matrix [6], [10]. However, this method does not
constrain the complexity of the resultant algorithm, and tends to
overfit the training set in some cases. Therefore, we adopt here
a different method to solve the problem [4], [5]. In this method,
a nonsingular matrix is introduced from as

(22)

where and is called theconditioning coefficient, and is
the identity matrix.

The conditioning coefficient (22) plays two important roles
in our algorithm. First, from (22) we know that the largeris,
the more significantly deviates from the original , but

becomes better conditioned, which makes computing the
inverse matrix of more numerically stable. Therefore,
should be properly chosen to achieve an optimal tradeoff be-
tween theoretical accuracy and numerical stability.

Second, in (22) also has the effect of controlling the com-
plexity of the resultant algorithm and thus provides us with a
way of avoiding overfitting the training dataset. A properly se-
lected will help to achieve an optimal trainoff between the
training error and generalization error.

In our implementation theconditioning coefficient in (22)
is chosen as

(23)

where is the maximal eigenvalue of ; is
a predetermined value used to control the complexity of the re-
sultant algorithm, and which can be obtained using cross-vali-
dation methods; is also a predetermined value chosen so
that any matrix whose condition is less than this value can be
numerically inverted stably, given a specific computational pre-
cision. Basically, the first term in (23) provides an estimate of
the lower bound of an optimal conditioning coefficient,.

The justification for choosing according to (23) is as fol-
lows. From (22) we know that the condition of matrix
and are and respectively, which can be calcu-
lated as

(24)

Fig. 1. Three-class problem composed by two-feature vectors.

(25)

Let , and substitute it into (24) and (25), we
obtain

(26)

By taking into consideration the facts that , and
, (26) becomes

(27)

Thus

(28)

Fortunately, it is generally not necessary to calculate the co-
efficient exactly. In fact, we can further reduce the computa-
tional complexity by replacing in (23) with one of its
approximations. For example, we can replace with

the one-norm of in practice. The rationale behind this re-
placement is that the one-norm of should reflect the scale
of the two-norm of , which is exactly .

V. EXPERIMENTS

In this section, we use a synthetic three-class problem, as il-
lustrated in Fig. 1, to demonstrate the performance of our algo-
rithm. A radial basis function is selected as the kernel function
in this experiment.

For a three-class problem, our algorithm obtains two eigen-
vectors, which corresponds to the two nonzero eigenvalues of

. Therefore, two new features can be extracted
from each original vector. The distribution of the new vectors,
which are formed by the two extracted features, is shown in
Fig. 2. From this figure, we observe that the extracted features
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Fig. 2. Distribution of new vectors, which are formed by two extracted
features.

are sufficient to readily separate the three classes in this
problem.

Experiments of applying this algorithm to benchmark
datasets, as well as the performance comparison between this
algorithm and alternative algorithms such as support vector
machines, are implemented in [11]. We refer the reader to these
results due to space limitations.

VI. CONCLUSION

In this letter, we have introduced a new nonlinear multiclass
discriminant analysis algorithm. This algorithm relies on the use

of the kernel trick, which permits the efficient computation of
the linear discriminant in a high-, or even infinite, dimensional
feature space. Our algorithm is a simple and direct extension
of the general multiclass linear discriminant analysis. We also
suggest a simple way to determine the proper value for the reg-
ularization parameter,, which can be used to both guarantee
the numerical stability and avoid overfitting the training data.
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