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ABSTRACT

The common approach to image matching is to detect spa-
tial features present in both images and create a mapping
that relates both images. The main drawback of this method
takes place when more than one matching is likely. A first
simplification to this ambiguity is to represent with a para-
metric model the point locus where the matching is highly
likely, and then use a POCS (projection onto convex sets)
procedure combined with Tikhonov regularization that re-
sults in the mapping vectors. However, if there is more
than one model per pixel, the regularization and constraint-
forcing process faces a multiple-choice dilemma that has no
easy solution. This work proposes a framework to over-
come this drawback: the combined projection over multiple
models based on the Lk norm of the projection–point dis-
tance. This approach is tested on a stereo-pair that presents
multiple choices of similar likelihood.

1. INTRODUCTION

Let I(x, y) and J(x, y) be two images, where J(x, y)
is assumed to be the result of the geometrical distortion
of I(x, y) by a continuous and differentiable spatial bi-
jective mapping Ψ(x, y) =

(
Ψx(x, y), Ψy(x, y)

)
, where

J(x, y) = I
(
Ψx(x, y), Ψy(x, y)

)
. In this scenario, the goal

is to find how both images, I(x, y) and J(x, y), are geomet-
rically related, that is, the estimation of mapping Ψ(x, y).
The spatial features of the image play an important role in
that estimation, since an image with weak features would
make this estimation ill-posed. An extreme case would be a
flat image without contrast, in which there is no way to es-
timate whether there has been geometrical distortion at all.

A common methodology in this problem is to detect
well-defined spatial features shared by both images and with
the corresponding spatial shift to create the mapping [1].
From this idea, in previous works [2, 3, 4] a method to es-
timate the mapping Ψ(x, y) for non-rigid motion was pre-
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sented. The proposed methodology consists of two separate
and sequential steps:

1. Parametrization: From I(x, y) and J(x, y) to obtain
a set of matching parametric models Ω(x).

2. Regularization: To obtain the optimal mapping Ψ̂o

from the parametric models Ω(x).

These two steps could be recognized in Fig. 1, where the
dotted line block encloses the first stage, and the lower block
the second one. This classical approach has a main draw-
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Fig. 1. Basic scheme to data correspondence

back, namely the detection of the common features is am-
biguous when there is more than one likely matching. To al-
leviate this problem the use of dual models to represent the
high similarity regions is proposed. The main issue of this
work is the constraint-forcing procedure on second stage,
because this is the point where model restrictions must be
applied. More details about the motion estimation algorithm
can be found in [2, 3, 4].

The paper is organized as follows: section 2 presents the
basic ideas to achieve a better image matching by using mul-
tiple models; section 3 presents comparative results to prove
the validity of this approach and illustrate the estimation im-
provement; finally, section 4 contains the conclusions.
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2. PROPOSED METHOD

Let us assume that for each point (x, y) we came up with a
parametric model Ω(x, y) that represents explicitly or im-
plicitly the point loci Φ where the matching is highly likely.
A parametric model will be present for the points (x, y)
where there is high evidence of feature correspondence be-
tween both images, and will be null for the remaining pixels.

2.1. Parametric models

For each pixel in I(x, y) a Similarity Map (SM) ρc(x, y)
of (2N + 1)-pixel width is computed according to [2, 3,
4], which contains the similarity between a block of I(x, y)
centered at the pixel c ≡ (cx, cy) and a set of equal size
blocks of J(x, y) in a (2N + 1) search length.

Two single parametrization models will be considered,
and in addition in this work a dual model is also introduced
to treat non-null disjoint regions capable of being parame-
trized independently. Fig. 2 shows some illustrative exam-
ples of various SMs, and the parametrization concept. In
short, the regularization and constraint-forcing procedure
needs to deal with following models:

1. Point model, Ωp = {x0, y0}, computed from the cen-
ter of mass of a cluster. This model will be applied in
image isolated details.

2. Curve model, Ωc = {θ, a, b, c}, that is, a quadratic
curve of coefficients a, b and c rotated by angle θ. It
mainly appears in object borders.

3. Dual model, Ωm = {Ω1,Ω2}, where Ω1 and Ω2

could be any of the preceding models.

The constraint-forcing process consist of a model projection
method. Specifically, the projection over multiple models is
not an entirely solved issue, and will be treated below.

Fig. 2. Similarity map parametrization examples.

2.2. Projection over multiple models

If two models are present in Ω, that is to say, Ω =
{Ω1,Ω2}, the projection of a point or vector x0 ≡ (x0, y0)
over this dual model must be averaged in some manner.

This projection need to be consistent with both models, and
not to suppose a drastic rejection of none of the models.
Moreover, it is intended that the projected point position,
x′0 ≡ (x′0, y

′
0), be so close to point x0 as both models re-

strictions allow, so that the variation of the spatial position
will be minimum. In general, to attend all these require-
ments, it is possible to compute the point x′0 in the way
showed the following expression:

x′0 = x′1
d2

d1 + d2
+ x′2

d1

d1 + d2
(1)

where vectors x′1 = P{
x0,Ω1

}
and x′2 = P{

x0,Ω2

}
are

the projections of the vector x0 over each of the models
contained inside of the dual model, and d1 and d2 are res-
pectively the Euclidean distances from such projections to
the point x0. To compute d1 and d2 the rule di = ‖x′i − x0‖
will be applied.

2.2.1. Averaged projection over point-point models

The point-point dual models use to apear in image regions
with clear and repetitive structures in the proximity of the
analyzed pixel. In real images, the appearance probability
of these models is substancial, in practice about 30% of dual
models are of the type point-point.

Moreover, this is the most delicate situation, because the
averaging process is not possible as such, and it is caused a
unavoidable selection of one model. The election was re-
solved according to the point to project: the method selects
the parameters of the model of minimal Euclidean distance
to the point. This situation is shown in Fig. 3. Parameters
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Fig. 3. Projection example over point-point model.

of both models, Ω1 and Ω1, will be Ω1 = {x1, y1} and
Ω2 = {x2, y2}. Although the projections over these models
could be obtained in a direct manner, x′1 = x1 and x′2 = x2,
due to special conditions of this type o dual models, and for
correct application of expression (1), the coordinates of the
projected vectors will be assigned according to (2).

x′1 ≡ x′2 =
{

x1 if ‖x1 − x0‖ < ‖x2 − x0‖
x2 if ‖x1 − x0‖ > ‖x2 − x0‖ (2)



where x2 = (x2, y2), x1 = (x1, y1) and x0 = (x0, y0).

2.2.2. Averaged projection over point-curve models

Dual models of the type point-curve used to appear in sim-
ilar situations to the previous section, but not for so well-
defined structures. It may be considered a transition situa-
tion between the point-point and curve-curve dual models.
For this reason and depending on the circumstances it is
possible that these regions were detected in several ways.
This dual model is the situation of least appearance proba-
bility. According to the experiments with real images, this
probability could be summarized about a 20% of dual mo-
dels. To obtain the averaged projection, a direction of pro-
jection must be determined: the direction that join the point
to project and the point representing the model will be taken.
So that, the projection over the point model comes from
the own coordinates that defines the point model, whereas
the projection on the curve model could be obtained from
the intersection of the projection direction and the curve
model. Once the projections on both models have been
computed, the final projected vector x′0 will be determined
in a weighted averaging process by means of expression (1).
Fig. 4 illustrates the projection process. Assuming that the

Model A
Model B
Point to project
Projected points
Averaged projection
Projection direction

Fig. 4. Projection example over point-curve model.

first model is the point model, the model parameters will be
Ω1 = {x1, y1} and Ω2 = {θ, a, b, c}. According to the
previous ideas, the projection over the point model is ob-
tained in a direct way, x′1 = P{

x0,Ω1

}
= x1, whereas the

projection over the curve model, x′2, is computed by means
of the following successive expressions, that is, (3), (4), (5)
and (6).

ϕ = arctan
(

y1 − y0

x1 − x0

)
=⇒ m = tan(ϕ− θ) (3)

[
x̂0

ŷ0

]
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

] [
x0

y0

]
(4)

ŷ = m(x̂− x̂0) + ŷ0

ŷ = ax̂2 + bx̂ + c

}
=⇒





x̂ =
−(b−m)±

√
(b−m)2−4a(c+mx̂0−ŷ0)

2a
ŷ = ax̂2 + bx̂ + c

(5)

[
x′2
y′2

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x̂
ŷ

]
(6)

If a = 0, it is not possible to apply equations in (5) due
to an indetermination. In that case, the process can still be
applied by replacing (5) by (7).

ŷ = m(x̂− x̂0) + ŷ0

ŷ = bx̂ + c

}
=⇒





x̂ =
−(c + mx̂0 − ŷ0)

b−m
ŷ = bx̂ + c

(7)

2.2.3. Averaged projection over curve-curve models

Curve-curve dual models are the most usual models, and
also the produce the most ambiguous situation, because
more freedom over the projected point location is allowed.
About a 50% of dual models are of this type. Fig. 5 shows
the procedure of averaged projection for the case. The
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Fig. 5. Projection example over curve-curve model.

model parameters, Ω1 and Ω2 will be Ω1 = {θ1, a1, b1, c1}
and Ω2 = {θ2, a2, b2, c2}. The first step to achieve the dual
projection is to determine, like it is showed in (8), the nor-
mal direction to the mean angle of the orientations of both
parametric models, ϕ. From this value of ϕ and for each
model orientation, θ1 and θ2, the slope of a new θ-derotated
line, m1 and m2 respectively, is computed as follows:

ϕ =





θ1+θ2+π

2
if |θ1−θ2| < π

θ1+θ2

2
if |θ1−θ2| ≥ π

=⇒
{

m1 = tan(ϕ− θ1)
m2 = tan(ϕ− θ2)

(8)

In this point, the intersections of each curve, defined by its
model parameters, and a line of direction ϕ are computed.



In this way, expressions (4), (5) or (7), and (6) can be ap-
plied once per model and with the corresponding values of
θi, ai, bi, ci and mi parameters. Finally, from the computed
projections, x′1 and x′2, expression (1) must be applied to
determinate the averaged projection point, x′0.

It must be noted that when the original point position,
x0, is outside the region located between both models, the
projected point x′0 will be inside it, in an initial approach-
ing operation. Once this situation is reached, the use of (1)
iteratively tends to take no effect over the projected vec-
tor x′0. This fact is not a drawback of the algorithm, but it
is the fundamental goal of the method. In this manner, no
hard decisions are taken and the neighboring pixels influ-
ence (single models and regularization procedure) pull the
final projected vector towards the correct model, always in-
side the region described by the dual model.

3. RESULTS

Fig. 6 shows comparative results of image matching for a
pair of 500 × 500 sample images. Both initial images,
Fig. 6(a) and Fig. 6(b), are taken from a semispheral dome,
so the interimage deformation proceeds from different cam-
era point of view and the own dome curvature. Fig. 6(c) and
Fig. 6(d) show the results of best matching reached from
a single model estimation. Some errors in pixel matching
can be clearly observed. When dual models are consid-
ered, Fig. 6(e) and Fig. 6(f), these errors are avoided and
no visual difference can be detected between Fig. 6(e) and
Fig. 6(a). Anyhow, note that deformation estimation results
poor, although better, in regions around image corners. In
these points, different objects or features are present in each
image, therefore perfect matching is not possible.

4. CONCLUSIONS

In this work, the use of simple dual parametrization mo-
dels to deal with ambiguous matching situations is pro-
posed. This cases appear when characteristics of the image
induces ambiguity in terms of multiple likely choice. The
showed results prove the efficiency of this approach. Most
of pixel assignment errors can be solved with this idea. The
proposed method alleviates the problem that presents some
classic matching algorithms. Typical block-matching algo-
rithms suffer from this limitation. The dual parametriza-
tion method is been applied today to registration of a wide
kind of images with excellent results. The extension of the
method to more complex models is under test at present.
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