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RESUMEN

In the present paper, we construct a new, simple, consistent and powerful test for

spatial independence, called the SG test, by using symbolic dynamics and symbolic entropy

as a measure of spatial dependence. We also give a standard asymptotic distribution of an

affine transformation of the symbolic entropy under the null hypothesis of independence

in the spatial process. The test statistic and its standard limit distribution, with the

proposed symbolization, are invariant to any monotonuous transformation of the data.

The test applies to discrete or continuous distributions. Given that the test is based on

entropy measures, it avoids smoothed nonparametric estimation. We include a Monte

Carlo study of our test, together with the well-known Moran’s I, the SBDS (de Graaff

et al, 2001) and τ (Brett and Pinkse, 1997) non parametric test, in order to illustrate our

approach.
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1 Introduction

Dependence is one of the most outstanding characteristics of spatial data. Gould

(1970, pp 443-444) asks ’Why we should expect independence in spatial observations ’

and his answer is simple: ’I cannot imagine’. Tobler (1970, p.237) goes a step further

when he refers to ’the first law of geography: everything is related to everything else’.

Along the same lines, Anselin (1988, p.12) proclaims, ’The essence of regional science

(...) is that location and distance matter, and result in a variety of interdependencies

in space-time’ and Paelinck and Klaassen (1979, p.5) state that, ’(...) it is good to

start out in spatial econometric modelling with an interdependent model ’. To sum

up, there is a strong consensus about the importance of this question (Getis 2007),

which already forms a routine part of any spatial Econometric application.

The first problem in this discussion is to detect when the hypothesis of in-

dependence is not admissible, for which it will be necessary to use some of the

tests proposed in the literature. There is a wide variety of proposals and we could

distinguish up to five categories. (1) The traditional approach based on the space-

time interaction coefficient of Knox (1964), of which we can consider the tests of

Moran (1950), Geary (1954) and Dacey (1965), among others, as particular cases.

(2) Anselin (1988)’s text fully introduces the maximum-likelihood methodology into

this field, along with a new generation of more specific and flexible tests (Anselin

et al, 1996, Anselin and Bera 1988, Anselin, 2001, Leung et al, 2003, and Baltagi

et al, 2003). (3) Kelejian and Robinson (1993) propose using instrumental variables

in connection with spatial models, which leads to a new battery of tests of spa-

tial dependence based, directly or indirectly, on the GMM principle (Anselin and

Kelejian, 1997, Kelejian and Prucha, 1999, Conley, 1999, Saavedra, 2003, Kelejian

and Prucha, 2004 and 2007, and Fingleton, 2008). (4) The KR test of Kelejian and

Robinson (1992) and the Lagrange Multiplier, which Anselin and Moreno (2003) de-

rive for the error components model of Kelejian and Robinson (1995). (5) The last
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type of tests incorporated into the analysis of spatial data are the non-parametric

tests like the SBDS test (de Graaff et al, 2001) and the τ test (Brett and Pinkse,

1997, Pinkse et al, 2002).

In this paper, we propose a new test, called SG, whose immediate predecessor is

the test of serial independence in a time series developed by Matilla and Ruiz (2008)

based on permutation entropy. In general, the measures associated with entropy,

applied in a context of time series, have gained importance in recent years (see Joe,

1989a and b, Hong and White, 2005, and references therein) although, as far as we

know, this is the first time that the approach has been used in a context of spatial

data. It is a non-parametric test, not very demanding in terms of a priori hypotheses.

Furthermore, with the symbolization proposed, it is consistent and invariant to any

monotonous transformation of the series and its asymptotic distribution function is

standard. If we add that it is easy to obtain and that it is competitive against other

well-established tests in the literature, we think that it could play an interesting

role in the toolbox of spatial data analysis. The peculiarity of the SG test is that

it uses symbolic entropy as a measure of cross-sectional dependence. The idea is

simple and is carried out in two stages (Matilla and Ruiz, 2008, p.2-3). The first is

to symbolize the series through ’symbol sequences obtained for a suitable partition

of the state space’ whose mission is to capture the dynamic structure in the series.

Then, the result is interpreted, in the light of the Theory of Information: ’we use

the entropy measure associated to these symbols to test the dependence present in

the (...) series ’.

In order to better appreciate the characteristics of the SG test, with respect to

the others found in the literature, we are going to refer to the following aspects:

• Dependence vs. spatial autocorrelation.

• Linearity vs. nonlinearity.
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• Normality.

• The role of the weighting matrix.

The tests to which we have referred at the beginning of this section are mostly

non autocorrelation tests. For example, in the test of Moran, we test whether the

covariance between the series and its spatial lag is statistically different from zero.

Moreover, the maximum-likelihood tests are linked directly to a coefficient of au-

tocorrelation. Nevertheless, non autocorrelation is synonymous with independence

only under restrictive conditions (as in gaussian stationary random fields; see Arbia,

1989 and 2006, for a deeper discussion of the concept of spatial random field). The

SG test is, in a strict sense, a test of independence like the SBDS and τ tests,

although it is more generic than them (in the SBDS test, the structure of depen-

dencies must be absolutely regular, while that of Brett and Pinkse requires strongly

mixing processes). The assumption of linearity is not an essential requirement in

non-parametric tests. This is an important characteristic because the tests that

use the linear correlation approach are not consistent against other alternatives of

non-linear dependence with zero autocorrelation like the non-linear moving average

processes or the spatial ARCH (called SARCH processes by Bera and Simlai, 2004).

Normality is a minor restriction but forms part of the set of hypotheses on which the

tests habitually used in a spatial context are based. The assumption is of the utmost

importance for the maximum-likelihood tests and is very useful in those linked to

the Knox statistic. The exact distribution of Moran’s test, even assuming normality

is not standard and depends on the eigenvalues of the weighting matrix (Tiefelsdorf

and Boots, 1995, Tiefelsdorf, 2000, Kelejian and Prucha, 2001). Under relatively

weak conditions, this distribution converges to the normal distribution (Sen, 1976).

If the assumption of normality is not acceptable, and to avoid biases in the test, Cliff

and Ord (1981) propose using a type of bootstrap that they call ’randomisation’.

This discussion, in the case of the three non-parametric tests (SBDS, τ and SG),
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is more simple. Their exact distribution is unknown although, asymptotically and

whatever happens with the finite sampling distribution, we obtain standard distri-

butions (a normal one in the case of SBDS and chi-squared with the τ and SG

tests).

The absence of a natural ordering of the data is an inevitable source of prob-

lems when dealing with spatial series. The usual solution is to specify a weighting

matrix using ’a set of weights which he (the investigator) deems appropriate from

prior considerations ’ (Cliff and Ord, 1981, p.17). This situation is very undesirable

because it implies that the test not only examines the existence or not of spatial

dependence in the data, but also the adequacy of the weighting matrix itself. In fact,

as Pinskse (2004) indicates, this matrix forms part of the null hypothesis. Florax

and Rey (1995) demonstrate that, if the matrix is misspecified, the tests tend to lose

reliability. The consequences will be more severe, the more serious the misspecifica-

tion (Cliff and Ord, 1981, p.168, with respect to Moran’s I). The key term in this

case is ’uncertainty ’, although some authors prefer to speak of ’flexibility ’, and it

remains to be one of the fundamental problems in applied spatial econometric mod-

eling (Griffith, 1996, Bavaud, 1997, Haining, 2003, for a discussion). In this context,

we wish to underline that the SG test, the same as the SBDS, does not require

the specification of a weighting matrix, unlike the other tests (in the τ test it is

necessary to specify the neighbors of each point, which is equivalent to constructing

the whole weighting matrix).

The paper consists of seven sections. In the second, we introduce the concepts

and the basic notation that we will use in the rest of the paper. In the third section,

we construct the test of independence, based on symbolic entropy, that motivates

our research. The fourth section discusses the most important properties of the

test. The fifth section is dedicated to the symbolization procedure of the series,

with respect to which the user has a lot of flexibility. The sixth section presents

XVI Jornadas de ASEPUMA y IV Encuentro Internacional
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the results of a Monte Carlo experiment in which we examine the behavior of the

SG test together with Moran’s I, the SBDS and τ tests. The paper finishes with

a section of conclusions and future perspectives.

2 Definitions and Notation

In this section we give some definitions and we introduce the basic notation.

Let {Xs}s∈S be a real-valued spatial process, where S is a set of coordinates.

Given a coordinate s0 we will denote by (ρ0
i , θ

0
i ) the polar coordinates of location si

taking as a origin s0.

Let Γ = {σ1, σ2, . . . , σn} be a set of n symbols. Let m be a natural number

with m ≥ 2. Next, we consider that the spatial process {Xs}s∈S is embedded in an

m-dimensional space as follows:

Xm(s0) = (Xs0 , Xs1 , . . . , Xsm−1) for s0 ∈ S (1)

where s1, s2, . . . , sm−1 are the m− 1 nearest neighbors to s0 satisfying the following

two conditions:

(a) ρ0
1 ≤ ρ0

2 ≤ . . . ≤ ρ0
m−1,

(b) and if ρ0
i = ρ0

i+1 then θ0
i < θ0

i+1.

Notice that conditions (a) and (b) ensure the uniqueness of Xm(s) for all s ∈ S.

We will call Xm(s) an m-surrounding of s.

Now assume that there is a map

f : Rm → Γ (2)

defined by f(Xm(s)) = σjs with js ∈ {1, 2, . . . , n}. We will say that s ∈ S is of

σi-type if and only if f(Xm(s)) = σi. We will call the map f a symbolization map.
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Moreover, if the symbolization map f is such that, under the null of independence,

all the symbols have the same probability of occurring, we will say that f is a

standard symbolization map.

Denote by

nσi
= ]{s ∈ S| f(Xm(s)) = σi}, (3)

that is, the cardinality of the subset of S formed by all the elements of σi-type.

Also, under the conditions above, one could easily compute the relative fre-

quency of a symbol σ ∈ Γ by:

p(σ) := pσ =
] {s ∈ S | s is of σ − type}

|S|
(4)

where by |S| we denote the cardinality of the set S.

Now, under this setting, we can define the symbolic entropy of a spatial process

{Xs}s∈S for an embedding dimension m ≥ 2. This entropy is defined as the Shanon’s

entropy of the n distinct symbols as follows:

h(m) = −
∑
σ∈Γ

pσ ln(pσ). (5)

Symbolic entropy, h(m), is the information contained in comparing the m-

surroundings generated by the spatial process. Notice that, in the case in which

the symbolization map is standard, 0 ≤ h(m) ≤ ln(n) where the lower bound

is attained when only one symbol occurs, and the upper bound for a completely

random system (i.i.d. spatial sequence) where all n possible symbols appear with

the same probability.

3 Construction of the Independence Test

In this section, we construct an independence test with all the machinery defined

in Section 2. We also prove that an affine transformation of the symbolic entropy

defined in (5) is asymptotically χ2 distributed.
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Let {Xs}s∈S be a spatial process and m be a fixed embedding dimension. In

order to construct a test for spatial independence in {Xs}s∈S, which is the aim of

this paper, we consider the following null hypothesis:

H0 : {Xs}s∈S i.i.d (6)

against any other alternative.

Now, for a symbol σi ∈ S, we define the random variable Zσis as follows:

Zσis =


1 if f(Xm(s)) = σi

0 otherwise,

(7)

that is, we have that Zσis = 1 if and only if s is of σi-type, Zσis = 0 otherwise.

Then Zσis is a Bernoulli variable with probability of “success” pσi
, where “suc-

cess” means that s is of σi-type. It is straightforward to see that

n∑
i=1

pσi
= 1 (8)

Now assume that set S is finite and of order R. Then we are interested in

knowing how many s’s are of σi-type for all symbol σi ∈ S. In order to answer the

question, we construct the following variable

Yσi
=

T∑
s=1

Zσis (9)

The variable Yσi
can take the values {0, 1, 2, . . . , R}. Then it follows that the

variable Yσi
is the Binomial random variable

Yσi
≈ B(R, pσi

). (10)

Then under the null H0, the joint probability density function of the n variables

(Yσ1 , Yσ2 , . . . , Yσn) is:

P (Yσ1 = a1, Yσ2 = a2, . . . , Yσn = an) =
(a1 + a2 + . . . + an)!

a1!a2! · . . . · an!
pa1

σ1
pa2

σ2
· · · pan

σn
(11)
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where a1 + a2 + . . .+ an = R. Consequently, the joint distribution of the n variables

(Yσ1 , Yσ2 , . . . , Yσn) is a multinomial distribution.

Then the likelihood ratio statistic is (see, for example, Lehmann, 1986):

λ(Y ) =

R!
nσ1 !nσ2 !·...·nσn !

p
nσ1
σ1 p

nσ2
σ2 · · · pnσn

σn

R
nσ1 !nσ2 !·...·nσn !

p̂
nσ1
σ1 p̂

nσ2
σ2 · · · p̂nσn

σn

=

n∏
i=1

p
nσi
σi

n∏
i=1

(
nσi

R

)nσi
=

= R

n∑
i=1

nσi
n∏

i=1

(
pσi

nσi

)nσi

= RR
n∏

i=1

(
pσi

nσi

)nσi

. (12)

On the other hand, SG(m) = −2 ln(λ(Y )) asymptotically follows a Chi-squared

distribution with k degrees of freedom, where k is equal to the number of unknown

parameters under H1 minus the number of unknown parameters under H0 (see, for

instance, Lehmann, 1986).

Now, if symbolization map f is standard, that is, under the null hypothesis, all

the symbols have the same probability of occurring, pσi
= 1

n
for all i = 1, 2, . . . , n,

then it follows that

SG(m) = −2R[ln(
1

n
) + h(m)] = −2R[h(m)− ln(n)] = 2R[ln(n)− h(m)]. (13)

Therefore, we have proved the following theorem.

Theorem. Let {Xs}s∈S be a real-valued spatial process with |S| = R. Assume

that there exist a standard symbolization map f for {Xs}s∈S. Denote by h(m) the

symbolic entropy defined in (5) for a fixed embedding dimension m ≥ 2. If the spatial

process {Xs}s∈S is i.i.d., then the affine transformation of the symbolic entropy

SG(m) = 2R[ln(n)− h(m)] (14)

is asymptotically χ2
k distributed.

Let α be a real number with 0 ≤ α ≤ 1. Let χ2
α be such that

P (χ2
k > χ2

α) = α. (15)

XVI Jornadas de ASEPUMA y IV Encuentro Internacional
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Then to test

H0 : {Xs}s∈S i.i.d. (16)

the decision rule in the application of the SG(m) test at a 100(1− α)% confidence

level is:

If 0 ≤ SG(m) ≤ χ2
α Accept H0

Otherwise Reject H0 (17)

4 Proposed Symbolization Procedure

In this section, we propose a standard symbolization map f for the spatial

process {Xs}s∈S. There might be several possible standard symbolization maps, and

we invite the reader to do so in order to detect spatial dependence. The procedure

we are going to show in this section can be refined in particular cases in which the

researcher has a better understanding of the particular process to be studied. The

proposed standard symbolization map f is defined as follows: denote by Me the

median of the spatial process {Xs}s∈S and let

Ys =

 0 if Xs ≤ Me

1 otherwise
(18)

Now, define the indicator function

Is1s2 =

 0 if Ys1 6= Ys2

1 otherwise
(19)

Then, the standard symbolization map f : Rm → Γ is defined as:

f(Xm(s)) = f(Xs, Xs1 , . . . , Xsm−1) = (Iss1 , Iss2 , . . . , Issm−1) (20)

For any localization s set Xm(s) = (Xs, Xs1 , . . . , Xsm−1). We will denote by

Ns = {s1, . . . sm−1} the m− 1 nearest neighbors of s. This symbolization procedure

10 XVI Jornadas de ASEPUMA y IV Encuentro Internacional
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consists of comparing at each localization s the value of Ys with Ysi
for all si ∈ Ns.

Then if Ys = Ysi
means that Xs and Xsi

are both less than, or greater than, Me

and hence σs will have the value 1 at the ith-entry.

Notice that, with this symbolization map the set of symbols has cardinality

2m−1 and the SG test has k = n (the number of symbols) degrees of freedom. It

is straightforward to check that, under the null H0 : {Xs}s∈S i.i.d., all the symbols

have the same probability to occur 1
2m−1 , for any continuous process.

5 Finite sample behavior of SG(m) and compari-

son with other tests for independence

In this section, we examine the finite sample behavior of the SG(m) test. More-

over, we have conducted a power comparison among different non-parametric tests

for spatial independence, the τ test of Brett and Pinkse (1997) and the SBDS of

de Graaff et al. (2001). In Cliff and Ord (1981), Anselin and Rey (1991), Anselin

and Florax (1995), Florax et al (2003) and Florax and de Graaff (2004) different

simulations on some of the most popular tests can be found. However, we know of

no simulation specifically for the nonparametric tests (SBDS and τ) in a spatial

context. In this paper, we resolve an exercise of this type in which we also include

the SG test. We will also compare these tests with the classical Moran’s I. We first

present the tests and then discuss the Monte Carlo simulation results.

Under the alternative, we have considered 4 data generating processes

DGP 1 X = (In − ρW )−1ε,

DGP 2 X = (In + ρW )ε,

DGP 3 X = (In + ρW )ε2,

DGP 4 X = (In + ρW )ε3.

(21)
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where ε ∼ iid, N(0, 1). DGP1 is an SAR process, DGP2 is an SMA process and

DGP3 and DGP4 are two non-linear processes.

Table 1 reports the empirical power of the SG test on different sample sizes. As

we can see, the power of our test against dependent processes is certainly satisfac-

tory. Power results rapidly improve as the sample size (lattice dimensions) increases,

regardless of the underlying stochastic process. This outcome is highlighted with

the intrinsic good properties of the SG test, such as, simplicity, consistency and the

absence of restrictive assumptions on the data generating process.

12 XVI Jornadas de ASEPUMA y IV Encuentro Internacional
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τ SG I SBDS

ρ 0,1 0,5 0,9 0,1 0,5 0,9 0,1 0,5 0,9 0,1 0,5 0,9

DGP1 7 x 7 0,043 0,600 0,996 0,058 0,278 0,919 0,064 0,738 1,000 0,053 0,144 0,871

12 x 12 0,069 0,938 1,000 0,052 0,583 1,000 0,132 0,984 1,000 0,068 0,245 0,999

20 x 20 0,091 1,000 1,000 0,070 0,955 1,000 0,219 1,000 1,000 0,045 0,455 1,000

40 x 40 0,121 1,000 1,000 0,119 1,000 1,000 0,536 1,000 1,000 0,054 0,913 1,000

DGP2 7 x 7 0,059 0,518 0,918 0,051 0,228 0,521 0,086 0,700 0,982 0,066 0,124 0,325

12 x 12 0,065 0,845 1,000 0,047 0,391 0,912 0,115 0,965 1,000 0,052 0,138 0,534

20 x 20 0,083 0,968 1,000 0,086 0,796 0,999 0,262 1,000 1,000 0,052 0,182 0,843

40 x 40 0,109 1,000 1,000 0,113 1,000 1,000 0,496 1,000 1,000 0,055 0,479 0,999

DGP3 7 x 7 0,085 0,716 0,984 0,045 0,280 0,542 0,076 0,728 0,990 0,060 0,158 0,520

12 x 12 0,094 0,904 1,000 0,057 0,667 0,964 0,123 0,979 1,000 0,052 0,141 0,675

20 x 20 0,082 0,992 1,000 0,087 0,990 1,000 0,170 1,000 1,000 0,050 0,234 0,893

40 x 40 0,122 1,000 1,000 0,207 1,000 1,000 0,526 1,000 1,000 0,051 0,278 0,998

DGP4 7 x 7 0,092 0,959 0,999 0,232 0,533 0,636 0,063 0,779 0,986 0,052 0,157 0,532

12 x 12 0,106 1,000 1,000 0,635 0,967 0,993 0,104 0,968 0,999 0,049 0,142 0,731

20 x 20 0,142 1,000 1,000 0,985 1,000 1,000 0,193 0,999 1,000 0,036 0,222 0,960

40 x 40 0,189 1,000 1,000 1,000 1,000 1,000 0,514 1,000 1,000 0,037 0,279 0,999

6 Conclusions

The present paper attempts to analyze limited and noisy data using minimal

hypothesis, looking specifically at the assumption of independence. Specifically, we

are interested in the competence of a non-parametric approach based on entropy

measures, well-established in mainstream Econometrics, but as far as we know al-
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most unnoticed in a spatial context. Hong and White (2005) present some tests for

independence obtained by using entropy measures and provide their asymptotic dis-

tribution. The lastest proposal in this line is the G test of Matilla and Ruiz (2008)

which offers several advantages with respect to the other nonparametric tests. In

line with the suggestions in the above-mentioned work of Matilla and Ruiz, we have

proposed a new test for spatial independence, called SG, which relies on the con-

cept of entropy. The last paper also provides the asymptotic standard distribution

of an affine transformation of the symbolic entropy under the null of independence.

The theoretical distribution allows us to construct a test for independence which is

consistent against a broad class of spatial dependences (including those with zero

autocorrelation). The empirical size does not differ from the theoretical size, which

is an interesting property that guarantees the general applicability and reproducibil-

ity of the test. Moreover, the test is invariant under monotonic transformations of

data. Invariance makes our procedure very attractive in practice. Most impor-

tantly, our test makes no assumptions about the continuous or discrete nature of

the data generating process and of its marginal densities, nor it is necessary to

specify the weighting matrix. Two final advantages are its computational simplicity

and, hence, its short running computational times. We present the main results

of a Monte Carlo simulation in which we have included the SG test together with

the well-known Moran’s I and two other non-parametric spatial independence tests,

namely, the SBDS of de Graff et al. (2001) and the τ test of Brett and Pinkse

(1997). These results allow to state that the SG has, in general, the right empirical

size and good power against several departures from the null hypothesis of inde-

pendence. Its performance considerably improves with the sample and, in a large

sample case, the SG test is fully competitive with respect to the other tests in spite

of being less demanding in terms of prior information. Singularly, the SG test is

free from the yoke of specifying the weighting matrix.
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